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Flow-induced pruning of branched systems
and brittle reconfiguration

Diego Lopeza, Sébastien Michelina, Emmanuel de Langrea,∗

aDepartment of Mechanics, LadHyX

Ecole Polytechnique-CNRS

91128 Palaiseau, France

Abstract

Whereas most plants are flexible structures that undergo large deformations

under flow, another process can occur when the plant is broken by heavy fluid-

loading. We investigate here the mechanism of such possible breakage, focusing

on the flow-induced pruning that can be observed in plants or aquatic vegetation

when parts of the structure break under flow. By computation on an actual tree

geometry, a 20-yr-old walnut tree (Juglans Regia L.) and comparison with simple

models, we analyze the influence of geometrical and physical parameters on the

occurrence of branch breakage and on the successive breaking events occurring in

a tree-like structure when the flow velocity is increased. We show that both the

branching pattern and the slenderness exponent, defining the branch taper, play a

major role in the breakage scenario. We identify a criterion for branch breakage

to occur before breakage of the trunk. In that case, we show that the successive

breakage of peripheral branches allows the plant to sustain higher flow forces.
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This mechanism is therefore similar to elastic reconfiguration, and can be seen as

a second strategy to overcome critical events, possibly a widespread solution in

plants and benthic organisms.

Keywords: Wind-loading, Allometry, Tree-like structure, Bending stress,

Branch breakage

1. Introduction1

Most living systems are surrounded by a fluid, be it air or water. When this2

fluid flows, it generates mechanical forces, that may have major consequences on3

growth as well as on reproduction or survival [1, 2, 3]. Typical cases are trees4

subjected to wind or corals subjected to water currents. In terms of flow-induced5

deformations, two typical behaviors can be pointed out. In the most common one,6

the solid undergoes large elastic deformations, for instance in crops or aquatic7

vegetation. In the second type, the system breaks before any significant deforma-8

tion can occur; this will be referred to as brittle behavior in the following. The9

former has been abundantly studied, a key result being that of load reduction by10

elastic reconfiguration [4, 5]. The latter has already been described in trees or11

corals [6, 7], but to the best of our knowledge the effect of branching has never12

been studied theoretically. Therefore, we shall focus hereafter on brittle branched13

slender systems, which are ubiquitous in nature: trees [8], bushes, algae [6], corals14

[9] and corallines [10], to list a few. In the following we refer mainly to trees un-15

der wind loading, with the understanding that these results are also applicable to16

a large variety of other biological systems under fluid-loading.17

For a brittle branched system attached to a support, breakage under flow may18

occur in three distinct types: (i) base breakage, Fig. 1a, when the attachment to19
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the ground is broken, as in uprooting, (ii) trunk breakage, Fig. 1b, when the main20

element is broken, and (iii) branch breakage, Fig. 1c, when an upper element21

breaks, as in flow-induced pruning.22

[Figure 1 about here.]23

In fact, the distinction between trunk and branch breakage has a biological24

relevance, since breakage of the trunk is likely to be fatal, while re-growth is often25

possible after branch breakage. Moreover branch breakage does reduce loads26

on the trunk and the attachment, as in elastic reconfiguration, thereby delaying27

their breakage [6, 11]. Finally, branch breakage can also be part of the asexual28

reproduction process by propagation. This is observed in terrestrial plants such29

as willows and poplars [12], and in stony corals such as Acropora Cervicornis or30

Acropora Palmata [13, 14].31

Breakage is the consequence of an unacceptable stress level; it is therefore32

directly related to the stress state in the structure [11, 15]. In particular, the issue33

of whether the stress level is uniform or not in the tree is crucial, as breakage is34

expected to occur at the point of maximal stress. For instance, Niklas and Spatz35

[11] showed that in a cherry tree the stress level varies by one to two orders of36

magnitude within the tree and has a local maximum in the branches. On the other37

hand, Bejan et al. showed that the flow-induced stress is uniform for a tapered38

trunk when the taper is linear [16]. In fact the stem taper is an important parameter39

regarding the stress distribution; see the discussion in [17].40

Several questions remain however regarding the flow-induced breakage of41

tree-like structures: (i) what are the effects of the geometrical and physical pa-42

rameters on the occurrence of branch breakage? (ii) How do the breaking events43
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occur successively as the flow is increased? (iii) Assuming that branch break-44

age is favorable in biological terms, is it compatible with other constraints on the45

geometry? The aim of this paper is to address these questions, using simple nu-46

merical and analytical models for the mechanical behavior of slender and brittle47

structures. The modeling assumptions and framework used throughout the paper48

are first presented in Section 2. In Section 3, we compute the stress distribution49

and successive breaking events in a complex tree, using the geometry of an ac-50

tual walnut tree. Using an idealized branched system, we derive conditions for51

branch breakage in Section 4. These are further analyzed for a tapered beam, here52

referred to as the slender cone model, in Section 5. The corresponding three ge-53

ometries are sketched in Fig. 2. Finally a general discussion and conclusion are54

given in Section 6.55

[Figure 2 about here.]56

2. Mechanical model and parameters57

Throughout the paper, we consider a cross flow over the entire structure, uni-

form, as the dependence of the stress on the wind velocity profile was shown to be

small [11]. Also, only static loads are taken into account, and the corresponding

fluid force magnitude f per unit length reads

f =
1
2
ρCDDU2, (1)

where U is the free stream velocity, ρ its density, D the local branch diameter and58

CD the drag coefficient [3, 18]. The direction is assumed to be that of the flow59

velocity. The fluid load is here computed on a leafless branch, and the influence60

of leaves will be discussed in Section 6.61
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This load is applied on the whole branched system, which is held by a perfect62

clamping at the base. Because of the high slenderness of the system, we use63

a standard linear beam theory to derive the stress state, essentially the bending64

moment M. The maximum stress in the cross-section resulting from this bending65

moment is the skin stress, defined as Σ = 32M/πD3 [19, 20].66

The brittle behavior is introduced as follows: (i) the deformations are assumed67

to be negligible, so the stress state is computed on the initial configuration, without68

elastic reconfiguration, (ii) when increasing the flow velocity U, breakage occurs69

when and where the local skin stress Σ reaches a critical value, Σc. Then, the70

broken branch is removed, and this results in a new flow-induced stress state.71

Flow velocity may then be further increased until a new breaking event occurs.72

Throughout the paper, the relevant dimensionless number to scale the fluid-

loading ρCDU2 with respect to the critical stress Σc is the Cauchy number, defined

as

CY =
ρCDU2

Σc

G, (2)

where G is a geometrical factor introduced for comparison purpose and defined73

such that Σ = Σc at the base of the intact structure when CY = 1. Note that this74

Cauchy number is similar in principle but differs from that used in the analysis75

of flow-induced elastic deformation, namely CY = ρCDU2/E [3, 5]; the critical76

stress Σc simply replaces here the Young modulus E.77

The non-dimensional stress is defined as σ = Σ/Σc and the non-dimensional78

bending moment as m = M/Mc, with Mc = ΣcπD
3
B/32, DB being the base diameter79

[19]. This latter scaling is chosen so that failure occurs at the base of the trunk80

when m = 1. The non-dimensional vertical coordinate z is defined using H, the81

height of the structure, as a reference length scale.82
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3. Flow-induced pruning of a walnut tree83

The geometry of the branched system is expected to have a large influence84

on the stress state and thus on the location and timing of breaking events. We85

therefore first apply the procedure described above using the digitized geometry of86

an actual 20-yr-old walnut tree (Juglans Regia L.) described in [21] (Fig. 2a). This87

tree is 7.9 m high, 18 cm in diameter at breast height (dbh), and has a sympodial88

branching pattern [22] and about eight orders of branching. The stress state under89

flow is computed using a standard finite element software (CASTEM v. 3M [23]),90

and is presented in Fig. 3b for four different branching paths.91

[Figure 3 about here.]92

We observe that the stress level is not uniform but shows a maximum located93

in the branches, which is consistent with the results of Niklas and Spatz [11] which94

are sketched in Fig. 3a. Note that since σ varies linearly with the fluid-loading CY ,95

one needs only to focus on the critical situation where σ = 1 is first reached in96

the structure. In this tree, the criterion for breakage is satisfied first in a branch97

and not in the trunk. This corresponds to the mechanism of branch breakage, as98

defined in Section 1. If the fluid-loading is further increased after removal of the99

broken parts, successive breaking events are observed, in a flow-induced pruning100

sequence: Fig. 4a shows three states of the tree at increasing Cauchy number with101

branches progressively removed as they break off.102

During the sequence of breakage, the bending moment at the base of the tree,103

mb, evolves significantly with the Cauchy number, Fig. 4b. Up to the first break-104

age, the moment is proportional to the fluid-loading CY (zone I in Fig. 4b). Then,105

in a small range of load increase (zone II), all large branches are broken at an inter-106
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mediate level, resulting in a significant decrease of the bending moment. Breakage107

then continues but to a much smaller extent (zone III), while the moment increases108

almost linearly up to the value mb = 1 when the trunk breaks. Note that the benefit109

of this sequence of breaking events is that the critical value of the base moment110

mb = 1 is reached only at CY � 10 instead of CY = 1 if there was no branch break-111

age. This corresponds to more than a factor of 3 on the acceptable fluid velocity.112

For instance, for a critical stress Σc = 40 MPa, which is the order of magnitude of113

maximum acceptable bending stresses measured in trees [12, 24], the maximum114

sustainable fluid velocity before trunk breakage is increased from U � 30 m.s−1115

without branch breakage to U � 100 m.s−1 with branch breakage.116

[Figure 4 about here.]117

To summarize, this set of computations clearly shows that branch breakage118

can occur prior to trunk breakage, and that the sequence of flow-induced pruning119

results in a significant reduction in the load applied on the base of the tree, or120

equivalently, an increase in the sustainable fluid velocity. To further analyze this121

process, we turn to a simple model in the next section.122

4. The ideal tree model123

4.1. Infinite branched tree124

[Figure 5 about here.]125

To establish the relation between the parameters of the system and the flow-

induced pruning process, we simplify the problem to its essential elements: the

branched geometry and the slenderness of branches; we disregard here the ef-

fect of branch orientation relative to the flow. Similarly to [25], we consider first
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an infinitely iterated sympodial tree made of cylindrical branches (Fig. 5). Two

parameters only are needed to describe this ideal tree: (i) the branching ratio λ,

giving the reduction of diameter through branching, and (ii) the slenderness expo-

nent β, giving the relationship between length and diameter in branch segments of

the tree, so that

λ =

(
Dk+1

Dk

)2

,
Dk+1

Dk

=

(
Lk+1

Lk

)β
, (3)

where Dk and Lk are the diameter and length of a branch segment of order k, see126

Fig. 5a [25]. Typical values of these parameters are λ < 1 and 1 < β < 2. Note127

that the number of branches emerging from a branching point is typically equal to128

1/λ [26].129

We use now a scaling argument similar to that of [25] for the dynamics of

trees. On the ideal infinitely branched system of Fig. 5a, we can compare the

stress level in branch k = 1 (the trunk) and in branch k = 2. The sub-tree labeled

II in Fig. 5a is identical to the full tree, I, but for a change in length and diameter

scales. All diameters (resp. lengths) in II are reduced by a factor λ1/2 (resp. λ1/2β).

Let Σ1 be the maximum skin stress in the trunk (k = 1) under a given fluid-loading

U, and Σ2 the maximum skin stress in the branch k = 2. The relations between the

flow velocity and Σ1 or Σ2 are identical, but for the change of diameter and length

scales. The dependence of the stress on diameter and length is the following: (i)

Σ varies as M/D3, where M is the bending moment, (ii) M varies as f L2, where f

is the norm of the local fluid force, Eq. (1), (iii) f varies as ρU2D. Hence Σ varies

as ρU2(L/D)2. We therefore may state that

Σ2

Σ1
=

(
L2

D2

)2 (
D1

L1

)2

= λ
1−β
β . (4)
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Since λ < 1, the condition for the stress to be higher in branches than in the trunk

becomes

β > 1. (5)

Here the only parameter controlling the possibility of branch breakage is the130

slenderness exponent, a classical parameter in the allometry of trees. As β is131

typically greater than 1 for trees, branch breakage is expected to occur. This132

simplistic approach now deserves to be improved, as the assumption of an infinite133

number of branching levels is very strong, and may not be compatible with the134

constraint that the tree area has to be finite.135

4.2. Finite branched tree136

Let us consider now the same idealized tree, but with a finite number of

branching iterations (Fig. 5b). This structure has N levels, which are labeled in

this section from the top to the bottom. Note that n = N − k + 1, where n is the

label of the previous section from the base of the tree. The trunk corresponds now

to the last level, N. At each level n, we define the branch diameter Dn and length

Ln, which can be expressed as a function of the trunk diameter and length DN and

LN as

Dn = λ
N−n

2 DN , Ln = λ
N−n
2β LN . (6)

By a simple integration of the fluid force on the branches, the moment at the

base of a branch of order n may be derived, as well as the corresponding skin

stress, which is obtained in non-dimensional form as

σn = CYλ
1−β
β N

(
Aλ

β−1
β n + Bλ

n
2 +Cλ

β−1
2β n

)
, (7)
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where the Cauchy number CY is defined as

CY =

⎡⎢⎢⎢⎢⎣8
π

(
LN

DN

)2⎤⎥⎥⎥⎥⎦ ρCDU2

Σc

, (8)

and A, B and C are functions of β and λ only. The detailed derivation of Eq. (7) as137

well as the expression of A, B and C can be found in Appendix A.138

A systematic numerical exploration of the (λ, β) parameter space shows that139

when β < 1 the stress always increases from top to bottom. Conversely, for β > 1,140

the stress reaches a maximum at branch level nc and then decreases from top to141

bottom, provided that N > nc, where nc depends on λ and β. This dependence is142

given in Fig. 6. This analysis with a finite tree model gives a criterion consistent143

with that of the infinite tree model, namely β > 1. Moreover, the other parameter,144

λ, is found to affect only the location of possible breakage. This suggests that145

branching is not a key factor in the occurrence of branch or trunk breakage. In the146

next section we explore a simpler model of the slenderness effect.147

[Figure 6 about here.]148

5. The slender cone model149

5.1. Flow-induced stress150

The simplest model that allows one to take into account a relation between151

diameters and lengths through a slenderness exponent is a cone. This formulation152

is related to MacMahon and Kronauer’s equivalent geometry of a tree, a tapered153

beam with a rectangular cross-section of dimensions varying as power laws of154

height [8, 27].155
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The geometry considered here is a slender cone with a circular cross-section,

Fig. 7a, and we follow the same mechanical approach as for the previous geome-

tries. Let H be the cone height, dH = DH/H the dimensionless diameter at the

base and z the vertical coordinate which is orientated downwards in this section.

The cone dimensionless diameter is given by

d(z) = dHzβ. (9)

[Figure 7 about here.]156

Using the same formulation as in the previous section, the stress state along

the cone is obtained as

σ(z) = CYz2(1−β), (10)

where the Cauchy number is defined here as

CY =

[
16

(1 + β)(2 + β)πd2
H

]
ρCDU2

Σc

. (11)

From Eq. (10), we readily observe that: (i) for β = 1, the constant stress case of157

Bejan et al. [16] is found; (ii) for β < 1 the stress increases with z and is therefore158

maximum at the base, Fig. 7a; (iii) for β > 1 the stress decreases with z, and159

the maximum, discussed further, is not at the base, Fig. 7b-c. These results are160

consistent with the condition for branch breakage in the previous section.161

To avoid the singular case of infinite stress at z = 0 for β > 1, we use a cone

truncated at z = z0, Fig. 7c. The truncation z0 corresponds to the first breakage

occurring as soon as U � 0, and its value is chosen arbitrarily. The corresponding

stress state is then

σ(z)
CY

= z2(1−β) − (2 + β)z1+β
0 z1−3β + (1 + β)z2+β

0 z−3β, (12)
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which reduces to Eq. (10) when z0 = 0. The detailed derivation of this equation is162

given in Appendix B. For β > 1, the stress shows a maximum before decreasing163

downwards, as illustrated in Fig. 7c. The limit case z0 = 0 is in fact equivalent,164

in the ideal tree model of Section 4, to the limit as N goes towards infinity, which165

would lead to a vanishing diameter at the tip. There is therefore an analogy be-166

tween the cone truncation and the ideal tree with a finite number of branching167

levels.168

5.2. Sequence of breaking events169

Considering now the generic case of the truncated cone, Fig. 7c, we analyze170

the sequence of breaking events resulting from an increasing fluid-loading CY .171

The stress σ increases linearly with CY up to the point where its maximum value172

reaches the limit of breakage, σ = 1. This defines the first breaking event at173

CY = C1
Y occurring at z = z1. It results in a new truncated cone, and the process is174

repeated as CY is further increased. Eventually, when the cone becomes truncated175

close to the base, the maximum stress may be reached at the base itself, resulting176

finally in base breakage.177

This sequence of breaking events may be analyzed in terms of the maximum178

fluid-loading Cmax
Y that the cone can support before breaking at the base. As illus-179

trated in Fig. 8, this is strongly dependent on β. When β < 1, the first breaking180

event is at the base so that Cmax
Y = 1. Conversely when β > 1, breaking occurs181

progressively as CY is increased, and the base breakage is delayed, Cmax
Y > 1. The182

precise value of CY where the base breaks depends on the initial truncation z0, but183

is always higher than a lower bound that can be computed from Eq. (12), which is184

shown in Fig. 8. We observe a significant increase of the ability of the system to185

sustain fluid-loading when β > 1.186
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[Figure 8 about here.]187

In terms of base moment, the sequence of breaking events can be easily com-188

puted, Fig. 9. For β < 1 the base moment increases linearly with CY until base189

breakage occurs, mb = 1 for CY = 1. For β > 1 the sequence of breaking events190

results in sudden drops in base moment followed by linear increase up to the next191

breaking, as illustrated in Fig. 9. Since the sequence of breaking events is a dis-192

crete process that depends on the initial truncation z0, there exists, for a given193

Cauchy number CY , a wide range of acceptable cone heights and thereby a wide194

range of corresponding base moments. In practice, for all possible values of z0,195

the evolution of mb remains bounded between its values for the shortest and high-196

est cone that can exist at each Cauchy number. This is represented by the shaded197

region in Fig. 9.198

[Figure 9 about here.]199

These results show that the simple cone model contains the key elements to200

understand the effect of geometry on (i) the stress profile, (ii) the sequence of201

breaking events and (iii) the consequences on the evolution of base load when202

the fluid velocity is increased. Here again, the essential criterion concerns the203

slenderness exponent β.204

6. Discussion and conclusions205

Starting from the case of a full walnut tree geometry, we have used models of206

increasing simplicity. This allowed us to point out the role of various parameters207

on the process of breakage under fluid-loading. The first issue that had to be208

addressed was that of the flow-induced stress distribution. As noted by other209
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authors, the stress is not necessarily maximum at the base [11, 16]. In fact in210

the walnut tree of Section 3, the stress has a local maximum at about mid height.211

Using the ideal tree model in Section 4, we have shown that the existence of this212

maximum is related to the value of the slenderness exponent, β, being larger than213

one: in fact this allometry parameter is about 1.37 for this particular walnut tree214

[25]. Following Bejan et al. [16], we recover the critical value of β = 1 in the215

simplest model, that of a cone in Section 5.216

Actually, some refinement is needed here to understand the precise location217

of the maximum of stress. We have shown in Section 4 that the location of this218

maximum was also dependent on the branching parameter λ, in the form of the219

parameter nc, which is the number of branching levels from the top to this maxi-220

mum point. For our walnut tree, where λ � 0.25, we obtain nc = 6 using Fig. 6.221

This is smaller than the total number of branching levels in the walnut tree which222

is about 8 [21]. A local maximum of stress is therefore expected in the branches,223

and is actually observed in Fig. 3.224

The second issue was that of the sequence of breaking events occurring when225

the fluid-loading CY is increased. Using a brittle fracture model for the walnut tree226

in Section 3, we have shown that most large branches broke in a short range of227

flow velocity, and that breakage of the trunk occurred much later. The large size228

of broken branches can be explained by the value of nc = 6 found above. All large229

branches do not break exactly at the same value of the Cauchy number. This is230

due among other reasons to some variability in the allometry parameters λ and β231

within the tree. Once all large branches are broken, the remaining tree shape, C in232

Fig. 4a, does not have enough branching levels to have a local maximum, and the233

next breaking event occurs at the base of the trunk. Note that the process of branch234
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breakage in the walnut tree allowed the tree to have a much larger acceptable235

Cauchy number before breakage of the trunk. This can also be analyzed using the236

cone model as in Section 5, where the critical Cauchy number for base breakage237

is clearly dependent on β (Fig. 8).238

The third issue was that of the evolution of the load at the base of the tree. For239

the walnut tree, Fig. 4b, the sequence of successive breakage of the large branches240

results in a significant decrease of the drag-induced moment at the base. This can241

be understood using the cone model, where the sequence of breaking event and242

corresponding drops of base moment can be tracked, Fig. 9. We may therefore243

state that the essential characteristics of branch breakage and corresponding load244

evolution in the walnut tree can be understood using our simple ideal tree model245

and cone model.246

The analytical results of Sections 4 and 5 were obtained considering that all247

parameters have self-similar variations. However, this was not the case for the248

walnut tree computations of Section 3, which suggests that the behaviors pointed249

out in this study can be generalized to structures that do not necessarily have self-250

similar variations of their parameters. Moreover, the ideal tree and cone models251

can be easily extended to incorporate other features of the problem, such as a de-252

pendence of all parameters with z: the flow velocity U, the material properties253

through the critical parameter Σc, and even the drag coefficient CD, which allows254

one to take easily into account the additional drag of leaves. Preliminary results,255

not shown here for the sake of brevity, showed that the criterion for branch break-256

age takes the same form, but involves both β and the corresponding parameter257

related to the additional z-dependence. Taking into account a significant elastic258

deformation before load fracture, or incorporating dynamical effects, would be259
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much more complex.260

[Table 1 about here.]261

Considering the simplicity of the criterion that we have found for branch262

breakage, we can test whether it is generally satisfied. MacMahon and Kronauer263

[27] have noted that β is usually larger than 1 and typically around 1.5, while λ264

is typically close to 0.25. This leads to a maximum stress located at a branching265

level nc = 5 counting from top down. This is clearly in the branches as trees gen-266

erally have more than 5 orders of branching. We may therefore state that branch267

breakage can be expected in most sympodial trees. This is illustrated in Table 1,268

where the values of parameters are given for several trees.269

Clearly the possibility of branch breakage is favorable in terms of survival of270

an individual tree in the face of extreme fluid-loading. It may also be favorable in271

terms of tree development by removing the less vigorous branches. The question272

then arises as to whether this implies new constraints on the geometry of the tree.273

It appears from our results that the constraint β > 1 is not incompatible with274

other constraints such as the optimal resistance to buckling under gravity, which275

requires β = 3/2 [8]. The same result was obtained considering the wind effect on276

trees but for an overcrowded tree canopy [17]. Similarly β > 1 is compatible with277

a constraint for optimal dissipation [25, 28], that modal frequencies have a ratio278

of less than two, requiring that β > 1 for λ = 0.25.279

The particular case of branched corals [9, 13, 14] is somewhat different. The280

segments are similar in length and diameter, so that λ � 1 and β � 1 in our281

variables, but with a number of branches emerging from one branching not equal282

to 1/λ. An analysis similar to that of Section 4 shows that breakage is expected at283

the bottom. This is the case in most isolated corals.284
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More generally we may place these results in the overall context of reconfig-285

uration, as introduced by Vogel [4]. This originally referred to the reduction of286

loading made possible by elastic deformation. For a plant, it is a crucial mecha-287

nism to survive heavy fluid-loading. But plant tissues are not all very elastic, and288

plant parts are not all very flexible. Our results on the role of branch breakage in289

reducing loading show that, in parallel with elastic reconfiguration, there exists a290

mechanism of brittle reconfiguration. There are therefore two distinct strategies to291

overcome critical events. The first is evidently reversible in the short term by elas-292

ticity. The second is also reversible by re-growth, but only in the long term. Thus293

flow-induced pruning is possibly a widespread mechanism in plants or benthic294

organisms that support heavy loading by the surrounding fluid environment.295
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Appendix A. Stress derivation in finite branched tree model302

In order to compute the stress along the finite ideal tree, we introduce fn the

fluid force per unit length at level n, fn =
1
2ρCDU2Dn, with the same notations as

Eq. (1). At each level n, we consider two force components: (i) the shear force τn

in the flow direction and (ii) the bending moment Mn in the direction normal to

17



the flow. Due to the free condition at the top, τ0 = 0 and M0 = 0, and for n ≥ 1

τn = fnLn + pτn−1, (A.1)

Mn =
1
2

fnL2
n + p (Mn−1 + Lnτn−1) , (A.2)

where p is the number of branches emerging from one at a branching point (p = 1/λ).

The non-dimensional stress σn at level n reads

σn =
32Mn

πΣcD3
n

(A.3)

By integration of Eqs. (A.1) and (A.2), the stress at each level can be obtained,

σn = CYλ
1−β
β N

(
Aλ

β−1
β n + Bλ

n
2 +Cλ

β−1
2β n

)
, (A.4)

with

CY =

⎡⎢⎢⎢⎢⎣8
π

(
LN

DN

)2⎤⎥⎥⎥⎥⎦ ρCDU2

Σc

, (A.5)

and

A =
λ

1−β
2β + 1(

λ
1−β
2β − 1

) (
λ

2−β
2β − 1

) , (A.6)

B =
λ

1
2β + 1(

λ
2−β
2β − 1

) (
λ

1
2β − 1

) , (A.7)

C =
−2(

λ
1−β
2β − 1

) (
λ

1
2β − 1

) · (A.8)

Appendix B. Stress derivation in the slender cone model303

The stress state for the slender cone model is obtained by direct integration of

the fluid force defined in Eq. (1), using Eq. (9) for the diameter. The shear force

18



and resulting bending moment read

τ(z) =
∫ z

z0

f (z′)dz′, M(z) =
∫ z

z0

τ(z′)dz′, (B.1)

with z0 ≥ 0. The local non-dimensional skin stress reads

σ(z) =
32M(z)
πΣcd(z)3 . (B.2)

The integration of these equations give Eq. (10) and Eq. (12) depending on z0.304
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des structures et intelligence artificielle, Pluralis, Paris, France, 1988, pp.358

261–271.359

[24] T. Lundström, T. Jonas, A. Volkwein, Analysing the mechanical perfor-360

mance and growth adaptation of norway spruce using a non-linear finite-361

element model and experimental data, J. Exp. Bot. 59 (2008) 2513–2528.362

21



[25] M. Rodriguez, E. de Langre, B. Moulia, A scaling law for the effects of ar-363

chitecture and allometry on tree vibration modes suggests a biological tuning364

to modal compartmentalization, Am. J. Bot. 95 (2008) 1523–1537.365

[26] A. Lindenmayer, P. Prusinkiewicz, The algorithmic beauty of plants,366

Springer-Verlag, 1996.367

[27] T. A. McMahon, R. E. Kronauer, Tree structures: Deducing the principle of368

mechanical design, J. Theor. Biol. 59 (1976) 443–466.369

[28] B. Theckes, E. de Langre, X. Boutillon, Modal energy transfer from geomet-370

rical nonlinearities in a tree-like structure, Proceedings of the 7th European371

Nonlinear Dynamics Conference (Accepted) (2011).372

22



List of Figures373

1 Schematic view of breakage process in a branched brittle system374

under flow. (a) Base breakage, (b) Trunk breakage, (c) Branch375

breakage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25376

2 Geometries of the models used in the paper: (a) Section 3: Walnut377

tree, as in [21]; (b) Section 4: Idealized branched system, as in378

[25]; (c) Section 5: Tapered beam, as in [8, 16]. . . . . . . . . . . 25379

3 Non-dimensional stress profile σ in a tree under cross-flow. (a)380

Schematic view of the stress profiles given by Niklas and Spatz381

[11] for cherry trees, showing a local maximum near the top.382

(b) Computed stress profiles along four branching paths, A (×),383

B (�), C (�) and D (◦) in the digitized tree geometry shown in (c). 26384

4 Computed sequence of branch breakage in the walnut tree: (a) A:385

initial tree for CY ≤ 0.67; B: after breakage in large branches,386

CY = 1.7; C: just before trunk breakage, CY = 10.7. (b) Corre-387

sponding evolution of the bending moment at the base of the tree388

mb, in three distinct ranges. The dashed line shows the moment389

that would exist without breakage. The dotted line shows the crit-390

ical value mb that causes trunk breakage. . . . . . . . . . . . . . . 26391

5 Idealized branched system. (a) Infinite iterated tree. The sub-392

tree II is equivalent to the whole tree I but for a change of scales.393

(b) Finite iterated tree and corresponding notations. . . . . . . . . 27394

23



6 Location of the maximum of stress under cross-flow in an ideal-395

ized tree model, as a function of the slenderness exponent β and396

the branching parameter λ. The location is given in the form of397

the number of branching levels counted from the top of the tree,398

Fig. 5b. For β ≤ 1, the breakage is directly at the base of trunk. . . 27399

7 The slender cone model: geometry and stress profile under uni-400

form cross flow. (a) cone with β < 1 (here 0.75), showing a max-401

imum of stress at the base; (b) cone with β > 1 (here 2), showing402

a maximum at the top; (c) cone truncated arbitrarily at z0 = 0.3403

showing a local maximum. . . . . . . . . . . . . . . . . . . . . . 28404

8 Maximum fluid load that the cone can support as a function of the405

slenderness exponent. Note that for β > 1 the curve is the lower406

bound of all possible evolutions. . . . . . . . . . . . . . . . . . . 28407

9 Moment at the base of the cone as the fluid-loading is increased. (-408

- -) direct base breakage occurring when β < 1; (—) progressive409

breaking for β > 1 (here β = 2). The shaded region shows all410

possible values depending on the initial truncation z0. The cone411

state is shown for three values of CY . . . . . . . . . . . . . . . . . 29412

List of Tables413

1 Predicted breakage type using the results of Section 4. Branch414

breakage is predicted when nc ≤ N. . . . . . . . . . . . . . . . . . 30415

24



Figure 1: Schematic view of breakage process in a branched brittle system under flow. (a) Base
breakage, (b) Trunk breakage, (c) Branch breakage.

Figure 2: Geometries of the models used in the paper: (a) Section 3: Walnut tree, as in [21];
(b) Section 4: Idealized branched system, as in [25]; (c) Section 5: Tapered beam, as in [8, 16].
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Figure 3: Non-dimensional stress profile σ in a tree under cross-flow. (a) Schematic view of the
stress profiles given by Niklas and Spatz [11] for cherry trees, showing a local maximum near the
top. (b) Computed stress profiles along four branching paths, A (×), B (�), C (�) and D (◦) in the
digitized tree geometry shown in (c).

Figure 4: Computed sequence of branch breakage in the walnut tree: (a) A: initial tree for CY ≤
0.67; B: after breakage in large branches, CY = 1.7; C: just before trunk breakage, CY = 10.7.
(b) Corresponding evolution of the bending moment at the base of the tree mb, in three distinct
ranges. The dashed line shows the moment that would exist without breakage. The dotted line
shows the critical value mb that causes trunk breakage.
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Figure 5: Idealized branched system. (a) Infinite iterated tree. The sub-tree II is equivalent to the
whole tree I but for a change of scales. (b) Finite iterated tree and corresponding notations.

Figure 6: Location of the maximum of stress under cross-flow in an idealized tree model, as a
function of the slenderness exponent β and the branching parameter λ. The location is given in the
form of the number of branching levels counted from the top of the tree, Fig. 5b. For β ≤ 1, the
breakage is directly at the base of trunk.
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Figure 7: The slender cone model: geometry and stress profile under uniform cross flow. (a) cone
with β < 1 (here 0.75), showing a maximum of stress at the base; (b) cone with β > 1 (here
2), showing a maximum at the top; (c) cone truncated arbitrarily at z0 = 0.3 showing a local
maximum.

Figure 8: Maximum fluid load that the cone can support as a function of the slenderness exponent.
Note that for β > 1 the curve is the lower bound of all possible evolutions.

28



Figure 9: Moment at the base of the cone as the fluid-loading is increased. (- - -) direct base
breakage occurring when β < 1; (—) progressive breaking for β > 1 (here β = 2). The shaded
region shows all possible values depending on the initial truncation z0. The cone state is shown
for three values of CY .
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Ref. Tree Slenderness Branching Total orders of Predicted branch Predicted
exponent β parameter λ branching N breakage level nc breakage type

[21, 25] Walnut Tree 1.37 0.25 > 8 6 Branch
Juglans Regia L.

[27] Red Oak 1.51 0.41 > 6 7 Branch or
Quercus Rubra Trunk

- - White Oak 1 1.41 0.28 > 6 6 Branch
Quercus Alba

- - White Oak 2 1.66 0.29 > 6 5 Branch
Quercus Alba

- - Poplar Tree 1.5 0.29 > 6 5 Branch
Populus Tremoloides (estimated)

- - Pin Cherry 1.5 0.24 > 4 5 Branch or
Prunus Pensylvanica Trunk

- - White Pine 1.37 0.24 > 5 5 Branch
Pinus Strobus

Table 1: Predicted breakage type using the results of Section 4. Branch breakage is predicted when
nc ≤ N.
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� Flow-induced pruning of branched systems  may be predicted from of usual allometry 
parameters 

� Flow-induced pruning is  strongly beneficial to a living branched system 
� The condition for flow-induced pruning is compatible with other constraints on 

growth. 
 




