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Abstract – Why did Darwin fail to develop his insights on kin selection into a proper 

theory of social adaptation? One suggestion has been that his inadequate 

understanding of heredity kept the problem out of focus. Here, I determine whether it 

is possible to develop a quantitative theory of kin selection upon the assumption of 

blending inheritance. I find that, whilst Hamilton’s rule of kin selection can be readily 

derived under the assumption of blending inheritance, this mechanism complicates the 

computation of relatedness coefficients, and can even cause them to fluctuate over 

generations. Nevertheless, I show that the ultimate criterion for selection to favour 

any social trait – i.e. a time-average of Hamilton’s rule – remains the same as under 

particulate inheritance. By eliminating the gene from the theory of kin selection, I 

clarify the role that it plays in the theory of social adaptation.  

 

Keywords – Hamilton’s rule, inclusive fitness, paint-pot theory, Price equation, 

relatedness 
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Darwinism is a theory of the process and purpose of biological adaptation. Natural 

selection leads to the accumulation of those traits whose heritable components are 

associated with greater individual reproductive success and so, Darwin (1859) argued, 

individual organisms will appear increasingly well adapted to maximize their personal 

reproductive success. This argument has been mathematically formalized by Grafen 

(2002). Although working in ignorance of the mechanism of heredity – indeed, 

assuming this to involve a type of blending of the characters of an individual’s parents 

– Darwin provided a convincing materialistic account of the origin of design in the 

living world, a phenomenon that had previously been attributed to the work of deities 

(Paley 1802). 

 

The only major revision to the theory of Darwinian adaptation has been to 

accommodate social interactions between relatives. Darwin (1859, Ch. 7) noted the 

“special difficulty” posed to his theory by sterile workers among the social insects: 

how can natural selection give rise to their adaptations, if they have no descendants? 

His solution was to point out that natural selection can operate both directly, upon the 

individual’s own reproductive success, and also indirectly, upon the reproductive 

success of the individual’s relatives, who may carry a heritable tendency for the 

individual’s characteristics in latent form (Darwin 1859, Ch. 7; see also Ratnieks et al 

2011). This theory of “kin selection” (Maynard Smith 1964) was developed by 

Hamilton (1963, 1964, 1970, 1996), who showed that natural selection should lead 

individuals to appear designed as if to maximize the sum of their direct and indirect 

fitness, i.e. their “inclusive fitness” (see also Grafen 2006a). This allows for altruistic 

adaptations, that lower the personal fitness of the individual, whilst providing a 

benefit to her relatives. 
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It is unclear why Darwin failed to develop his initial insights on kin selection into a 

proper theory of social adaptation. Hamilton (1972) suggested that Darwin’s 

inadequate understanding of heredity had kept the problem out of focus. Moreover, 

some have claimed that it was simply not possible to formulate a theory of kin 

selection prior to the discovery of classical genetics (e.g. Borrello 2010, p8; 

Cunningham 2010, p31). Is the logic of kin selection crucially founded upon 

particulate inheritance, so that elucidation of the true function of Darwinian 

adaptation was contingent upon the discovery of Mendelian genetics (Mendel 1866) 

and its reconciliation with Darwinism (Yule 1902; Fisher 1918, 1930)? In support of 

this idea is the fact that Hamilton (1963, 1964) approached the problem of altruism by 

taking a “gene’s eye” view, recognising that the ultimate beneficiary of natural 

selection is not the individual but the gene, which is stably inherited over generations.  

 

In opposition to this idea is the fact the canonical derivation of Hamilton’s rule of kin 

selection (Hamilton 1970; Frank 1998) makes use of Price’s (1970) equation, which 

can be applied to any system of inheritance (Price 1972, 1995; Frank 1995; Gardner 

2008; Helanterä & Uller 2010). Since Hamilton’s rule emerges as a simple partition 

of Price’s equation it should, in principle, also apply to any system of inheritance. 

However, the implications of non-particulate inheritance for the theory of kin 

selection remain obscure. How different would the theory of social adaptation have 

appeared, had it been founded upon a different mechanism of inheritance? 

 

In this article, I develop the theory of kin selection under the assumption of blending 

inheritance. My main aim is to assess what aspects of the modern theory of social 

adaptation could have been developed in the ignorance of classical genetics. To this 
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end, I review some basic results for the “paint-pot” theory of blending inheritance 

(Fisher 1930; Hardin 1959), and I derive Hamilton’s rule of kin selection in this 

context. I then examine the consequences of blending for relatedness coefficients of 

genealogical kin, revealing that these may differ from their Mendelian equivalents. 

Indeed, they may even fluctuate over time. However, I show that a time average of 

the evolutionary response to kin selection under blending coincides exactly with that 

derived under Mendelian considerations. By eliminating the gene from the theory of 

kin selection, I clarify its role in the theory of social adaptation. 

 

Models & Analysis 

 

Blending inheritance under neutrality 

 

Here I provide a basic treatment of blending inheritance – specifically, the paint-pot 

model of blending (Fisher 1930; Hardin 1959) – in a neutral population context. This 

analysis recovers results presented by Fisher (1930), although here the input of 

mutational variance is made mathematically more explicit.  

 

I assume an infinite population with discrete, non-overlapping generations. An 

individual’s phenotypic value can be written as p = h + e, where h is her heritable 

“breeding” value and e is an uncorrelated, unbiased environmental effect (i.e. cov(e,h) 

= E(e) = 0). Hence, the population-average phenotype is equal to the population-

average breeding value (i.e. E(p) = E(h)). An individual’s breeding value is the 

average of those of her mother and father (x & y, respectively), plus an uncorrelated, 

unbiased mutational effect (m, such that cov(m,x) = cov(m,y) = E(m) = 0). That is, h = 
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(x+y)/2 + m. Note that the population-average breeding value does not change over 

generations: 

 

E h( )=E x + y
2

+ m
⎛
⎝
⎜

⎞
⎠
⎟

= 1
2

E x( ) + E y( )( ) + E m( )

=E ′h( ),

                                                                                    (1) 

 

where E(h´) = E(x) = E(y) is the population-average breeding value for the previous 

generation (that is, the prime indicates a step back, rather than a step forward, in 

time). This simple result refutes the “swamping” argument of Jenkin (1867); there is 

no tendency for blending to favour wildtype over variant trait values (see also Davis 

1871 and Bulmer 2004).  

 

However, the population variance in breeding value may change, as shown by the fact 

that: 

 

var h( ) = var x + y
2

+ m
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

= 1
4

var x( ) + var y( ) + 2cov x, y( )( ) + var m( )

= 1+ f
2

var ′ h ( ) + var m( ),

                                                     (2) 

 

where f = cov(x,y)/var(x) is the coefficient of inbreeding.  

 

Assuming no mutational input (var(m)=0), the heritable variance in every phenotypic 

character is expected to decline geometrically, with its value in each generation being 
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a fraction (1+f)/2 of its value in the previous generation (Fisher 1930). In the absence 

of inbreeding (f = 0), this represents a halving of heritable variance. Heritability can 

only be maintained in the limit of full inbreeding (f = 1). This erosion of heritable 

variation is the main difficulty that blending inheritance posed for Darwin’s theory of 

natural selection (Fisher 1930). 

 

However, fresh mutational input can maintain heritability. For example, if there is a 

constant supply of variance var(m) in every generation, then dynamical equation (2) 

can be solved for equilibrium (var(h) = var(h´)) to obtain: 

 

var h( ) =
2 var m( )

1- f
,                                                                                                       (3) 

 

e.g., in the absence of inbreeding (f = 0), the equilibrium heritable variance is twice 

that of the mutational input added to the population in every generation. Note that this 

scenario is exactly equivalent to the “infinitesimal model” of Fisher (1918), if the 

mutational input is regarded as being analogous to the variation created by 

recombination. More generally, if the mutational input varies from generation to 

generation, the analogy with the infinitesimal model breaks down, and the heritable 

variance will fluctuate over time.  

 

Kin selection under blending inheritance 

 

The canonical derivation of Hamilton’s rule is based upon Price’s equation (Hamilton 

1970; Price 1970, 1972; Queller 1992; Frank 1998; Gardner et al. 2011). This 
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expresses the change in the average heritable component of any character between 

generations, that is ascribed to the action of natural selection, by: 

 

,                                                                                                      (4) 

 

i.e. the change is equal to the covariance between an individual’s breeding value h 

and her relative fitness v (i.e. number of offspring, relative to the population average 

of this quantity; Price 1970, 1972). Equation (4) explicitly neglects the impact of non-

selective evolutionary factors on change in heritable traits (e.g. biased mutation). For 

simplicity, I also neglect class structure, such that reproductive value coincides 

exactly with offspring number (Fisher 1930; Grafen 2006b). 

 

Assuming nonzero heritable variance, the covariance in equation (4) can be expressed 

as a product of the heritable variance var(h) and a coefficient β(v,h) ≡ cov(v,h)/var(h). 

This coefficient happens to be equal to the slope of the straight line fitted, by the 

method of least-squares, to the set of population data (v,h), i.e. it is a least-squares 

linear regression coefficient (Price 1970; Frank 1998; Gardner et al., 2011). This 

yields: 

 

,                                                                                               (5) 

 

which captures Darwin’s (1859) basic requirements for a response to natural 

selection: heritable variation (var(h) > 0) for a character that is correlated with relative 

fitness (β(v,h) ≠ 0). 
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Correlations between an individual’s heritable character and her fitness can occur for 

two reasons. First, the character may be expressed in the phenotype of the focal 

individual, and mediate her reproductive success (direct fitness effect). Secondly, the 

character may be carried by the individual’s social partners, expressed in their 

phenotypes, and mediate her reproductive success through their social interactions 

with her (indirect fitness effect; Fisher 1930; Hamilton 1964, 1970). For simplicity, 

assume that individuals are paired with a single social partner, whose breeding value 

for the character of interest may be denoted H. Then, the regression of relative fitness 

against breeding value can be partitioned, without loss of generality, into these direct 

and indirect fitness effects: 

 

,                                                        (6) 

 

where β(v,h|H) ≡ -c is the partial regression of the individual’s relative fitness against 

her own breeding value (i.e. holding fixed the effect of her social partner’s breeding 

value), β(v,H|h) ≡ b is the partial regression of the individual’s relative fitness against 

her social partner’s breeding value (i.e. holding fixed the effect of her own breeding 

value), and β(H,h) ≡ r is the kin selection coefficient of relatedness, which describes 

the statistical association between the breeding values of social partners (Hamilton 

1970; Queller 1992; Frank 1998; Gardner et al. 2011).  

 

Thus, assuming heritable variation upon which natural selection can act (var(h) > 0), 

the condition for a selective increase in the average heritable component of any 

character of interest is given by Hamilton’s rule: -c + b r > 0 (Hamilton 1963, 1964, 

1970). Although I have assumed only a single social partner, for ease of exposition, 

this derivation of Hamilton’s rule can be readily extended to multiple social partners 
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interacting in multiple roles (Grafen 2006a). Importantly, the present derivation has 

made no assumption of particulate inheritance, and hence applies equally to a 

blending scheme. Thus, kin selection operates – in outline – in the same way, 

irrespective of whether inheritance is particulate or blending. In the next section, I 

examine whether the details of the evolutionary response to kin selection differ 

between inheritance schemes, by examining the consequences of blending inheritance 

for the kin selection coefficient of relatedness. 

 

The correlation between relatives on the supposition of blending inheritance 

 

I now consider the consequences of blending inheritance for the kin selection 

coefficient of relatedness. A standard simplifying assumption often made by kin 

selection analyses is that selection is vanishingly weak, so that – to first order in the 

selection coefficient – Hamilton’s rule can be expressed in terms of relatedness 

coefficients that are calculated in a neutral population (Bulmer 1994). I make this 

weak selection assumption for the remainder of the analysis. I also continue to assume 

discrete, non-overlapping generations, with mating and social interaction occurring 

only between individuals belonging to the same generation, and avoidance of 

inbreeding (f = 0). Finally, I assume that the only cause of relatedness between social 

partners is coancestry. 

 

As under particulate inheritance, the coefficient of relatedness under blending 

inheritance is given by: 

 

r ≡
cov(H,h)

var(h)
.                                                                                                              (7) 
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Thus, the relatedness to self is found by substituting H = h, to obtain rSELF = 

cov(h,h)/var(h) = 1. Similarly, the relatedness to a full sibling is found by writing h = 

(x+y)/2 + m and H = (x+y)/2 + M, where M is the sibling’s mutational effect. 

Continuing with the assumption that mutation is random and unbiased, this gives rSIB 

= cov((x+y)/2, (x+y)/2)/var(h) = (1/2)×(var(h′)/var(h)). More generally, under the 

assumption of blending inheritance, the kin selection coefficient of relatedness r is 

equal to the product of two quantities, ρ × V (see Appendix for details). The first 

factor ρ is the traditional genealogical relationship of two individuals, i.e. ρ = 1 for 

self, ρ = ½ for a full sibling, ρ = ¼ for a half sibling and ρ = 1/8 for a cousin. The 

second factor V is computed by dividing the heritable variance of the most-recent 

common ancestor’s generation by that of the present generation.  

 

Thus, the coefficient of relatedness depends upon the dynamics of heritable variance 

between generations. If there is no input of novel mutation, then the heritable 

variation halves in every generation (i.e. var(h) = var(h′)/2 = var(h′′)/4, etc). This 

means that relatedness to self is rSELF = 1, relatedness to full siblings is rSIB = (1/2) × 

(var(h′)/var(h)) = 1, relatedness to half siblings is rHALFSIB = (1/4) × (var(h′)/var(h)) = 

½, and relatedness to cousins is rCOUSIN = (1/8) × (var(h′′)/var(h)) = ½, where var(h′′) is 

the heritable variance two generations prior to the focal generation. Certain of these 

coefficients differ from those obtained under Mendelian inheritance: rSELF = 1, rSIB = 

1/2, rHALFSIB = 1/4, and rCOUSIN = 1/8. The reason for this discrepancy is illustrated by 

considering the relatedness to full siblings. Under Mendelian inheritance, the genetic 

complements of full siblings reflect independent, partial samples of genes drawn from 

the same two parents, hence they will tend to differ genetically. In contrast, under 
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blending, full siblings share exactly the same inheritance and hence, in the absence of 

de novo mutation, they are identical in their heritable characteristics. 

 

However, under blending, natural selection can only have a sustained impact upon 

evolution if mutational variance is nonzero. In the simplest scenario, a constant 

supply of mutational variance is added in every generation, such that the heritable 

variation is maintained at some constant level (i.e. var(h) = var(h′) = var(h′′) = 2 

var(m)). In this scenario, V = 1 for all coefficients of relatedness, and hence r = ρ for 

all degrees of relationship, i.e. coefficients of relatedness under blending coincide 

exactly with those obtained under Mendelian inheritance. 

 

More generally, the input of mutational variance might vary between generations – 

indeed, this was Darwin’s (1859, Ch. 4) view – and hence the heritable variation will 

display more complicated dynamics through time. Thus, the response to kin selection 

quantified in equation (6) can be re-written as: 

 

ΔSE h( ) = −cvar h( ) + bρ var h *( ) ,                                                                                (8) 

 

where h* denotes a breeding value in the generation occupied by the most recent 

common ancestor of socially-interacting relatives (I assume, for simplicity, that 

individuals are paired according to their relationship, i.e. siblings, cousins, etc). This 

response to selection is expected to fluctuate across generations (owing to fluctuations 

in var(h) and var(h′)). However, since selection is weak, of most interest is the 

average response to selection occurring over a large number of generations. Taking a 

time average (denoted ET(.)) of the response to natural selection over a large number 
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of generations, assumed to be longer than the cycle period of the heritable variance 

dynamics, I obtain: 

 

                                                            (9) 

 

where, from equation (3), ET(var(h)) = 2×ET(var(m)). Hence, the condition for natural 

selection to favour the increase in the average value of any character of interest is –c 

+ bρ > 0, where ρ is the coefficient of genealogical relationship, which coincides 

exactly with the result obtained under the assumption of Mendelian inheritance 

(Hamilton 1963, 1964). 

 

Discussion 

 

I have developed a theory of kin selection under the assumption of blending 

inheritance. Specifically, I have: recovered and elaborated upon Fisher’s (1930) 

results for the evolution of the average and variance in heritable trait value in neutral 

populations, under the assumption of blending; used Price’s (1972) equation to derive 

Hamilton’s (1963, 1964, 1970) rule of kin selection, without reference to particulate 

inheritance; examined the impact of blending upon the kin selection coefficient of 

relatedness, showing that this may differ from its Mendelian counterpart, and may 

even fluctuate over generations; and shown that a time average of Hamilton’s rule 

yields the same selection criterion for traits, irrespective of whether inheritance is 

Mendelian or blending. 
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This analysis reveals that the theory of kin selection could, in principle, have been 

developed in ignorance of the particulate nature of inheritance. This refutes the 

suggestion that Darwin could not have known about kin selection – on the basis that 

this requires an understanding of classical genetics – which has recently been used to 

argue for the historical primacy of group selectionism (Borrello 2010, p8) and even 

against materialism in evolutionary biology (Cunningham 2010, p31)! Moreover, I 

have shown that the key predictions of kin selection are actually unaffected by this 

biological detail: an individual is still expected to value her own life as being equal to 

those of two siblings, or eight cousins.   

 

However, the analysis of kin selection is more tortuous under the assumption of 

blending, so it is likely that Darwin’s ignorance of the mechanism of heredity did 

present a real barrier to his development of a proper theory of social adaptation (cf. 

Hamilton 1972). Importantly, kin selection can only operate when there is both 

heritability of traits and relatedness between social partners, and the high rate of 

spontaneous mutation that is necessary to maintain heritability under the assumption 

of blending inheritance also erodes relatedness. Darwin assumed that heritable 

variation is introduced into natural populations in infrequent bursts, associated with 

environmental disturbance (“a change in the conditions of life, by specially acting on 

the reproductive system, causes or increases its variability”; Darwin 1859, Ch. 4). 

Accordingly, in the majority of generations there would be negligible response to any 

form of selection, and in those rare burst generations in which the response to 

selection would be strongest, the correlation between relatives would be greatly 

eroded. Under this scheme, an understanding of how kin selection mediates the design 

criterion for organismal adaptation is achieved only by careful tracking of the 
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dynamics of heritability and relatedness over multiple generations, which was 

certainly beyond Darwin’s mathematical ability. 

 

In contrast, particulate inheritance ensures a relatively high and relatively constant 

degree of heritability, even under very low rates of mutation that have minimal impact 

upon relatedness. Hence, it allows sustained selection, with a fixed valuation of one’s 

relatives, over multiple generations of evolutionary change. Accordingly, an analysis 

of genetic change across a single generation is often representative of the change that 

occurs over multiple generations, such that a quantitative theory of kin selection is 

very amenable to simple analysis. Furthermore, Hamilton’s (1963, 1964, 1972) 

elucidation of the theory of kin selection was spurred by taking a “gene’s-eye view” 

of the evolution of altruism. This does appear to have focused his thinking and, 

clearly, such an approach is only possible under the assumption of particulate 

inheritance.  

 

The term “blending inheritance” has been used to refer to a number of distinct ideas 

about heredity. For example, Bulmer (2003) has distinguished the idea of physical 

fusion of hereditary particles from that of phenotypic blending of parental characters, 

both of which have been described as blending inheritance. Darwin’s hypothesis of 

pangenesis involved only partial fusion, with a hybridization of patent gemmules and 

segregation of latent gemmules, in order to account for reversions to ancestral 

phenotypes (Bulmer 2003). The present analysis has focused upon the simpler “paint-

pot” model of blending inheritance, developed by Fisher (1930) and named by Hardin 

(1959). More generally, whilst mechanistic details impact upon the computation of 

relatedness coefficients and their dynamics over multiple generations, the action of 

kin selection can be expressed in purely phenomenological terms using Price’s (1970, 
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1972) equation, with Hamilton’s (1963, 1964) rule rb – c > 0 emerging irrespective of 

mode of inheritance. 

 

I have shown that the ultimate selection criterion for social characters – and hence the 

rationale for the design of organisms – remains the same irrespective of whether 

inheritance is particulate or blending. This leaves open several issues regarding the 

power of natural selection to drive phenotypic change under each inheritance scheme. 

Much attention has been given to the idea that the response to natural selection is 

vastly reduced under blending inheritance, owing to the rapid loss of heritable 

variation. This problem is resolved by invoking a high rate of mutation. The present 

analysis has assumed that mutation is unbiased, so that its sole contribution to 

evolutionary change is to fuel the response to selection. However, any mutational bias 

would introduce a further, non-selective component to evolutionary change. Since this 

could feasibly be of similar magnitude to the action of natural selection, the extent to 

which phenotypic evolution is driven by a Darwinian rationale (i.e. the “externalism” 

of Pigliucci & Müller 2010) appears much reduced under the assumption of blending 

inheritance. 

 

Finally, eliminating the gene from the present analysis has clarified its role in the 

standard theory of kin selection. In particular, the gene is neither a unit of selection 

nor a unit of adaptation in the standard theory, but merely provides a material basis 

for the inheritance of organismal characters. As a component of natural selection, kin 

selection is driven by the differential reproductive success of individual organisms 

(Darwin 1859; Fisher 1930; Price 1970). Hence, the individual is the unit of selection. 

Moreover, as a consequence of the action of natural selection (including kin 

selection), the individual organism appears adapted to maximize her inclusive fitness 
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(Hamilton 1963, 1964, 1970, 1996; Grafen 2006). Hence, the individual is the unit of 

adaptation. The idea that the gene can be considered an adaptive agent in its own right 

is the altogether separate notion of the “selfish gene” (Hamilton 1972; Dawkins 1976, 

1978, 1982; Gardner & Welch, 2011). 
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Appendix 

 

Here I derive the kin selection coefficient of relatedness in terms of the coefficient of 

genealogical relationship and the ratio of heritable variance in ancestral and present 

generations, as given in the main text.  

 

The relatedness between an individual and her social partner is defined as: 

 

r ≡
cov I hj, hi( )
covI hi, hi( )

,                                                                                                       (A1) 

 

where i ∈ I is the index of an individual chosen at random from the population, hi is 

this individual’s breeding value, j is the index of her social partner, and hj is the 

breeding value of her social partner. Note that an individual’s breeding value can be 
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expressed as a function of the breeding values of her ancestors in some past 

generation and all the mutational effects that have accrued within her more recent 

ancestry: 

 

hk =
x(k,l,n)

2n +
l=1

2n

∑ m(k,l,t )

2t
l=1

2t

∑
t=0

n−1

∑ ,                                                                                    (A2) 

 

where: x(k,l,n) is the breeding value of the kth individual’s lth ancestor in the nth 

generation prior to the focal one, and m(k,l,t) is the mutational effect occurring in the kth 

individual’s lth ancestor in the tth generation prior to the focal one. For example, 

setting n = 1 yields the individual’s breeding value in terms of those of her two 

parents and her own mutational effect: 

 

hk =
x(k,1,1) + x(k,2,1)

2
+ m(k,1,0).                                                                                     (A3) 

 

The numerator of the RHS of equation (A1) is given by: 

 

cov I hj, hi( ) = cov I
x( j,l,n)

2n +
l=1

2n

∑ m( j,l,t )

2t
l=1

2t

∑
t=0

n−1

∑ ,
x(i,l,n)

2n +
l=1

2n

∑ m(i,l,t )

2t
l=1

2t

∑
t=0

n−1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟.                    (A4) 

 

Let n = μ, where μ is the most recent generation in which the two individuals i and j 

share at least one common ancestor, and denote the number of their common 

ancestors in this generation by ν. The two individuals may either derive from a single 

common ancestor in this generation (in which case ν = 1) or else from a single mated 

pair (in which case ν = 2). Because they share no common ancestors in any of the 
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generations t < μ, all mutational effects are uncorrelated with any other variable, so 

equation (A4) can be simplified to:   

 

cov I hj, hi( ) = cov I
x( j,l,μ )

2μ
l=1

2μ

∑ ,
x(i,l,μ )

2μ
l=1

2μ

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 1
22μ covI x( j,l,μ )

l=1

2μ

∑ , x(i,l,μ )
l=1

2μ

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= ν
22μ var h(μ )( ),

                                                                        (A5) 

 

where var(h(μ)) is the heritable variance in generation μ. Noting that the denominator 

of equation (A1) is equal to var(h(0)), i.e. the heritable variation in the present 

generation, the kin selection coefficient of relatedness can be written in the form: 

 

r = ρV ,                                                                                                                     (A6) 

 

where ρ = ν/22μ is the genealogical relationship between two individuals (for 

example, ρ = 1 for self, ρ = ½ for full siblings, ρ = ¼ for half siblings, and so on) and 

V = var(h(μ))/var(h(0)) is the ratio of heritable variance in the most recent generation in 

which the two individuals share common ancestors and that of the present generation. 

 

• Hamilton’s rule holds even under the assumption of blending inheritance 
 

• In principle, kin selection theory could have been developed prior to the 
discovery of Mendelian genetics 

 
• Blending inheritance has no impact upon the rationale of social adaptations 

 




