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Abstract

Homophily, or the fact that similar individuals tend to interact with each other, is a
prominent feature of economic and social networks. Most existing theories of homophily
are based on a descriptive approach and abstract away from equilibrium considerations. I
show that the equilibrium structure of homophily has empirical power, as it can be used
to recover underlying preference parameters.

I build a non-cooperative model of network formation, which produces a unique, em-
pirically realistic equilibrium network. Individuals have homophilic preferences and face
capacity constraints on the number of links. I develop a novel empirical method, based on
the shape of the equilibrium network, which allows for the identification and estimation of
the underlying homophilic preferences. I apply this new methodology to race-based choices
regarding friendship decisions among American teenagers.
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1 Introduction

The fact that similar individuals tend to interact with each other is a prominent feature of

social networks. The phenomenon, referred to as homophily, is increasingly being studied

by economists.1 Indeed, the structure of the social networks in which individuals interact

has been shown to significantly influence many social outcomes such as segregation,2 infor-

mation transmission and learning,3 and employment and wages.4 Being able to understand,

identify, and measure how the social characteristics of an individual influence network for-

mation is therefore of central importance. However, most studies to date overlook the

equilibrium implications of homophily, and disregard key factors such as the impact of

time constraints.

In this paper, I develop an empirically realistic model of strategic network formation

incorporating homophilic preferences and capacity constraints on the number of links.

My analysis uncovers novel structural predictions generated by the equilibrium interplay

between the individuals’ homophilic preferences and capacity constraints. Building on

the explicit structure of homophily obtained in equilibrium, I develop a new estimation

technique that allows one to recover underlying preferences parameters. I show as an

illustration that the formation of friendship networks among American teenagers is strongly

influenced by racial considerations. I also show that this preference bias toward individuals

of the same race varies considerably with respect to the racial group considered.

The emphasis on the equilibrium implications of homophilic preferences is new to the

literature. The equilibrium network resulting from the theoretical model exhibits more

structure than the known stylized facts regarding homophilic patterns in social networks.5

The equilibrium network architecture allows for an original empirical methodology using

a maximum likelihood approach. A key feature of the estimation strategy is that it recov-

ers explicit preference parameters characterizing homophily in social networks. In other

1See for example Currarini et al. (2009), Bramoullé et al. (2012), and Rivas (2009).
2Echenique and Fryer (2007), Watts (2007), and Mele (2010).
3Golub and Jackson (2010a,2010b).
4van der Leij et al. (2009) and Patacchini and Zenou (2009).
5See Bramoullé et al. (2012), and Currarini et al (2009).
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words, the estimation strategy allows for the identification of preference interactions from

constraint interactions.6

The theoretical framework produces sharp predictions. There exists a generically

unique, empirically realistic equilibrium network. A key assumption is that the homophilic

preferences of individuals can be represented by a distance function on the set of charac-

teristics of the individuals. This idea is implicitly or explicitly exploited by many papers

looking at homophily in social networks.7 This assumption allows me to introduce enough

heterogeneity in the model to generate empirically realistic equilibrium networks. I also

assume that individuals have link-separable utilities, and an explicit resource constraint,

such as time. For example, while a teenager may prefer to be friends with other teenagers

who have similar characteristics, he must take into account the fact that he has limited

time to spend with the friends he chooses to have. Hence, the resource constraint explicitly

introduces an upper bound on the number of bilateral relationships an individual can sus-

tain.8 The specific notion of homophily emerging in equilibrium results from the tension

between the individuals’ homophilic preferences and the individuals’ resource constraint.

These two premises imply a novel theoretical prediction on the shape of homophily in

equilibrium. I call this specific network architecture structural homophily.

Structural homophily describes an explicit relationship between individuals’ socioeco-

nomic characteristics and the network architecture. An individual is characterized by a

“social neighborhood” on the space of individual characteristics.9 This neighborhood ex-

plicitly determines the set of acceptable bilateral relationships. In a network characterized

by structural homophily, two individuals are linked if and only if they belong to the inter-

section of their neighborhoods. These neighborhoods are not directly observable, but are

implied by equilibrium predictions of the theoretical model for a given a distance function.

This novel theoretical prediction has empirical power.

6Manski (2000) distinguishes between three sources of social interactions: Preference interactions, Con-
straint interactions, and Expectations interactions.

7See for instance, Johnson and Gilles (2000), Marmaros and Sacerdote (2006), Iijima and Kamada
(2010), Mele (2010) and Christakis et al. (2010).

8It relates to the sociological and psychological observation referred to as the Dunbar’s number.
9It relates to the sociological notion of a “social niche”; see for instance McPherson et al. (2001)
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I use structural homophily to develop an original estimation strategy. This strategy is

based on the duality between the equilibrium network structure, and structural homophily.

Any equilibrium network exhibits structural homophily, and any observed network that ex-

hibits structural homophily is an equilibrium network. I develop a maximum likelihood ap-

proach, defined over a population of distinct social networks. The empirical method allows

for the identification and estimation of prominent socioeconomic characteristics affecting

the equilibrium network structure. This is relevant for policy making since it allows the

policy maker to target relevant socioeconomic characteristics. As an illustration, I use data

on the friendship networks of American teenagers provided by the Add Health database.10

I focus the analysis on race-based choices and show that the same-race preference bias

substantially varies with respect to racial group. Blacks have a stronger bias than Asians,

while Whites have the smallest bias. The estimated coefficients are preference parameters,

and hence do not depend on the distribution of the racial groups in the population, nor do

they depend on the individuals’ resource constraints.

This paper contributes to the theoretical and the empirical literature on network for-

mation. Most theoretical models of network formation produce relatively structured equi-

librium networks such as stars, circles or chains.11 These models, although highly relevant

from a theoretical perspective, are not well suited for empirical purposes. Indeed, the re-

sulting set of equilibrium networks is both too large (many equilibrium networks) and too

constraining (stars, chains, circles, etc.) to represent actual, observable, social networks.

Most theoretical models assume that payoffs depend on detailed features of the network

structure, but neglect the capacity constraints on the number of links an individual can

make.12 I show that the introduction of this constraint, combined with explicit ex-ante ho-

mophilic and link-separable utilities, implies the existence of a unique, empirically realistic

equilibrium network.13

10Carolina Population Center, University of North Carolina at Chapel Hill; see
http://www.cpc.unc.edu/projects/addhealth.

11Bala and Goyal (2000), Jackson (2008, chapter 6), Jackson and Rogers (1997), Jackson and Wolinsky
(1996), and Johnson and Gilles (2000).

12Exceptions include Bloch and Dutta (2009) and Rub́ı-Barceló (2010).
13I concentrate on strategic models of network formation. There exists a large literature on random

network formation, which is not directly concerned with the current setting. The interested reader can see
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Two alternative explanations of homophily have been proposed. The first is through

correlations in the meeting process:14 individuals have no preference bias, but individuals

with similar characteristics have a higher probability of meeting. The second is through

preference biases:15 individuals prefer to link with similar individuals. In this paper, I

assume that individuals have homophilic preferences, but evolve in a deterministic world. I

analyze the equilibrium implication of these preferences in a fully strategic, non-cooperative

setting.

The empirical literature on network formation is still in an early stage. The few existing

papers clearly identify homophily as a driving factor of the network formation process.16

This paper contributes to the literature on strategic network formation by providing an

estimation strategy based on the equilibrium structure of homophilic preferences. Equi-

librium considerations are important, as they imply a departure from link-level estimation

techniques. The model defines a precise dependence structure which allows for the defini-

tion of an explicit maximum likelihood estimator.17

The remainder of the paper is organized as follows. In section 2, I present the theoretical

model and key definitions. In section 3, I find and characterize the (unique) equilibrium

network. In section 4, I describe the empirical methodology and explore its properties using

Monte Carlo simulations. In section 5, I present an application of race-based homophily

in friendship networks using the Add Health database. I conclude in section 6.

2 The Theoretical Model

In this section, I present a non-cooperative model of network formation that characterizes

the equilibrium effects of homophily. The model generically produces a unique equilibrium.

I first provide a formal definition of Structural Homophily. Next, I outline the theoretical

for instance Jackson (2008, chapters 4 and 5) and the references therein.
14See for instance Bramoullé et al. (2012)
15See also Currarini et al. (2009), and Mele (2010)
16See for instance Christakis et al. (2010), Mele (2010), Currarini et al. (2010), and Franz et al. (2008)
17As opposed to the simulated maximum likelihood estimators, as in Christakis et al. (2010), and Mele

(2010).
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framework, and finally, I briefly present the main definitions and equilibrium concepts.

2.1 Structural Homophily

In order to introduce this new notion of homophily, we need some preliminary assumptions.

There is a finite set of individuals N . Individuals may be linked together through a network.

Let gi ⊆ N be the set of individuals linked to individual i for all i ∈ N . Each individual

i ∈ N is characterized by a type θi ∈ Θ, where Θ is the type space. An individual’s type

could represent, for instance, a series of socioeconomic characteristics. I consider a distance

d on Θ. For notational simplicity, let dij ≡ d(θi, θj) for any i, j ∈ N . Then, structural

homophily is defined as follows.

Definition 1 A network g exhibits structural homophily with respect to a distance

d(., .) if whenever two individuals, i and j, are not linked, either dij ≥ maxk∈gi{dik} or

dij ≥ maxk∈gj{djk}.

This definition formalizes the fact that two individuals that are “close” should be linked.

Intuitively, if two individuals are not linked, it is because, from the point of view of one

of the individuals, the other is located relatively too far. Notice that this definition only

makes sense when the creation of a link requires mutual consent. Figure 1 shows two

examples of networks for Θ = R2. The first network exhibits Structural Homophily, but

the second does not. In Figure 1b, the closest individuals (i.e. D and E) are not linked,

which is in contradiction with structural homophily since D is linked to C, and E is linked

to B.

More insight can be obtained by drawing the equivalence (or indifference) curves cor-

responding to the farthest link for each individuals considered (i.e. for B and D in Figure

2a, and for D and E in Figure 2b). These equivalence curves define neighborhoods; every

individual inside the neighborhood of i is at a distance smaller the distance between i

and his farthest link. If both individuals belong to the intersection of the two neighbor-

hoods generated by the equivalence curves (as in Figure 2b), then Structural Homophily
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Figure 1: Structural Homophily
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is violated.18

Figure 2: Structural Homophily: Equivalence curves
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Structural homophily has an interpretation in terms of revealed preferences. Suppose

that individuals have preferences over links with other individuals, and that such prefer-

ences are a function of the distance between the individuals. Suppose also that we observe

the network (i.e. the individuals and their links), and the types of the individuals in the

network (i.e. a series of individual characteristics). Then, under mutual consent, we should

not observe networks such as the one depicted in Figure 2b. That is, structural homophily

should hold.

18This closely relates to the cutoff rule of Iijima and Kamada (2010).
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It it interesting to note that small-worlds networks respect structural homophily for a

specific type space.19 In a small world model, individuals are located on islands. In that

setting, structural homophily implies that individuals are linked first with individuals of

the same island. Hence, if there is a link between two islands, those islands have to be fully

connected. I now present a social networking game, which produces Structural Homophily

at equilibrium.

2.2 The Game

There are n individuals, each of whom is endowed with a fixed amount of resources x̄i = κiξ,

where ξ ∈ R+ and κi ∈ N. We will see that, in equilibrium, κi is interpreted as the

maximum number of links that an individual i can have. A strategy for an individual i is

a vector xi = (x1i , ..., x
n
i ) ∈ Xi, where Xi = {xi ∈ Rn

+|x
j
i ≤ ξ, and

∑
j∈N x

j
i ≤ κiξ}. Then,

ξ plays the role of a link-level constraint. The introduction of the link-level constraint is

motivated by the empirical fact that the number of links varies across individuals. Let

X = ×i∈NXi. We say that there is a link between an individual i and an individual j iff

xji > 0 and xij > 0. Let gi = {j ∈ N |i and j are linked}, so j ∈ gi iff i ∈ gj. That is, a link

exists iff both individuals invest a strictly positive amount of resources in it. Notice that

individual i can be linked to himself.

The utility of an individual is given by the function ui : X → R. It is additive in the

different links he has, and it is represented by :

ui(x) =
∑

j∈N\{i}

vi(x
j
i , x

i
j, dij) · I{j∈gi} + wi(x

i
i) · I{i∈gi}

where I{P} is an indicator function that takes value 1 if P is true, and 0 otherwise. The

function vi(x, y, d) gives the value of any link for i. It is assumed to be twice continuously

differentiable with vx(x, y, d) > 0 if y > 0, vy(x, y, d) > 0 if x > 0, and vd(x, y, d) < 0 if

x, y > 0. The function wi(x
i
i) represents the payoff received from the private investment of

19See for instance Jackson and Rogers (2005) and Galeotti et al. (2006).
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i.20 It is also twice continuously differentiable with w′(x) > 0. I also allow for the presence

of fixed costs, i.e. vi(0, 0, d) ≤ 0 and wi(0) ≤ 0. Notice that an individual benefits from a

link only if both individuals invest in the link. The model induces a game Γ between the

n individuals. Formally, we have Γ = (N, {Xi}i∈N , {ui}i∈N).

The model has two important features. First, the initial endowment creates scarcity

and induces a feasibility constraint. This effect is typical of any matching model. If

some individual i invests resources in a link with individual j, he will have less available

resources to create a link with another individual. That is, the feasibility constraint implies

a tradeoff between the distance between two individuals, and the level of investment they

put in the link. This is what Manski (2000) refers to as “constraint interactions”. Second,

the preferences are affected by the presence of direct externalities. The amount of resources

invested by some individual in a given link directly affects the utility of the individuals

he links to. That is, in Manski’s terms, “preference interactions”. Those two features will

play an important role in equilibrium.

This completes the description of the game. I now present the main definitions.

2.3 Definitions

Before turning to the analysis of the model, I introduce some definitions. The collection of

links between individuals generates a network g = (N,E). A network is characterized by a

set of individuals (here, N), and a set E of links, which are (unordered) pairs of individuals.

The set of all possible networks is denoted by G. Any network g can be represented by

a n × n adjacency matrix A that takes values aij = 1 if j ∈ gi, and 0 otherwise, for all

i, j ∈ N . The degree δi(g) of an individual i is the number of links attached to i, i.e.

δi(g) = |gi|.

I am interested in the following solution concepts:

Definition 2 A Nash Equilibrium (NE) is a profile x∗ ∈ X such that ui(x
∗
i , x
∗
−i) ≥

ui(xi, x
∗
−i) for all xi ∈ Xi, and for all i ∈ N .

20The function wi can also be interpreted as the private value of the resource x for i
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The set of Nash equilibria is very large. Since an individual benefits only from a

collaborative link when both individuals invest in the link, it will never be profitable to

unilaterally start a new link. For this reason, I will focus on the following solution concept,

introduced by Goyal and Vega-Redondo (2007).

Definition 3 A Bilateral Equilibrium (BE) is a profile x∗ ∈ X such that :

(1) x∗ is a Nash Equilibrium

(2) There exists no i, j ∈ N , such that ui(xi, xj, x
∗
−i−j) > ui(x

∗) and uj(xi, xj, x
∗
−i−j) ≥

uj(x
∗) for some xi ∈ Xi and xj ∈ Xj.

This solution concept allows for bilateral deviations. This is a natural extension of

individual rationality, since individuals can benefit from the creation of links. For certain

economies, however, the BE concept will be too constraining. Accordingly, I also introduce

the following weakened equilibrium concept.

Definition 4 A Weak Bilateral Equilibrium (WBE) is a profile x∗ ∈ X such that :

(1) x∗ is a Nash Equilibrium

(2) There exists no i, j ∈ N , such that ui(xi, xj, x
∗
−i−j) > ui(x

∗) and uj(xi, xj, x
∗
−i−j) >

uj(x
∗) for some xi ∈ Xi and xj ∈ Xj.

In a WBE, a deviation must strictly increase the payoff of both individuals involved.

Notice that BE ⊆ WBE ⊆ NE. I discuss the distinction between these concepts in

section 3.1 (lemma 3.1 and proposition 3.5).

3 Equilibrium Characterization

I first show the existence of an equilibrium. Since the payoff functions are not continuous,

we cannot directly use the standard fixed-point arguments. The existence of a NE is

straightforward. Let xji = 0 for all j 6= i. Then, for every individual, the maximization

problem becomes: maxxi∈Xi
w(xii) · I{i∈gi}. The allocation x∗ ∈ X that maximizes this

problem for all i ∈ N is obviously a NE. In order to show the existence of a WBE (or a

BE), I will need to introduce additional assumptions. The next result provides an intuition
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on the additional restrictions imposed by the bilateral stability on the solution set. It

states that if a deviation is jointly profitable, but not unilaterally profitable, the deviating

individuals have to invest more in their collaborative link. All proofs can be found in

appendix A.

Lemma 3.1 If x∗ ∈ X is a NE, but not a WBE, given any deviating pair (i, j), with

profitable deviations xi ∈ Xi and xj ∈ Xj, we have xji > xj∗i and xij > xi∗j .

Since x∗ is a NE, it is individually rational. Also, since the utility functions are additive

in the different links, the action of individual j on individual i only affects i through the

link between i and j. If x∗ is not jointly rational for i and j, the incentive to deviate must

come from the link i and j have together.

Throughout this section, I consider two alternative assumptions:

Assumption 1 (Finiteness) For all i, j ∈ N , xji ∈ {0, ξ}

Assumption 2 (Convexity) For all i ∈ N , ∂2vi
∂x2 (x, y, d) ≥ 0, ∂2wi

∂x2 (x) ≥ 0

The finiteness assumption is extensively used in the literature.21 Convexity is often

assumed when the network formation process involves continuous strategies. For example,

Bloch and Dutta (2009) define the strength of a link between individuals i and j as the

sum of a (strictly) convex function of the individuals’ investment, i.e. sij = f(xji ) + f(xij),

with f ′ > 0 and f ′′ > 0. Rubi-Barceló (2010) uses a linear (hence convex) function

to represent the payoff from scientific collaboration between two researchers.22 I provide

existence results and show that those two assumptions imply that the equilibrium network

exhibits structural homophily.

The next results are based on an algorithm referred to as the assignment algorithm,

and formally defined in Appendix B. The assignment algorithm uses as inputs: (1) the

list of preferences {ui(x)}i∈N , (2) the individual characteristics {θi}i∈N , (3) the resource

21See for instance Jackson (2008) chapters 6 and 11.
22The value of a scientific collaboration as defined by Rubi-Barceló (2008, p.7) is interpreted as a distance

in my model.
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constraints {κi}i∈N , and (4) the distance function d on Θ. It produces at least one allocation

x ∈ X, and any allocation produced is such that xji ∈ {0, ξ} for all i, j ∈ N . When

xji ∈ {0, ξ}, the payoff that an individual receives from the links can be ranked using the

distance function (a small distance implies a big payoff). Accordingly, the assignment

algorithm proceeds first by linking the pairs of individuals with the smallest distances

(provided that the link is profitable for both individuals, and leads to a higher payoff than

the private investment). The following results show that any allocation constructed in that

fashion is a WBE, and induces a network that exhibits structural homophily.

Let’s start with the finite case. Under Finiteness, the involvement of an individual in

some link does not affect the amount of resources he invests in his other (existing) links.

The value of a link between two arbitrary individuals is then independent of the other

(potential) links. Consequently, we have the following:

Theorem 3.2 (Finite Strategy Space) Under Finiteness, an allocation is a WBE iff

it is produced by the assignment algorithm.

Under convexity, for a given link, it is also rational for both individuals to invest

resources until the link-level constraint ξ is met, provided that it leads to a positive payoff.

We then have the following:

Theorem 3.3 (Existence) Under Convexity, any allocation produced by the assignment

algorithm is a WBE.

Proposition 3.4 gives sufficient conditions so that any individual has to invest up to the

link-level constraint, in any WBE.

Proposition 3.4 (Uniqueness) Suppose that the inequalities in Assumption 2 are strict,

then any WBE can be produced by the assignment algorithm.

Then, under Finiteness or Strict Convexity, any equilibrium can be constructed through

the assignment algorithm. It is worth noting that under Finiteness, xji ∈ {0, ξ} by assump-

tion, while under Strict Convexity it must hold only in equilibrium.
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The above results show the existence of a WBE, but not of a BE. The intuition is the

following. Suppose that Finiteness holds, and that the economy contains only 3 individuals:

i, j, k. Suppose also that dij = dik < djk, and that x̄i = x̄j = x̄k = ξ. Finally, suppose

that vi(ξ, ξ, dij) = vj(ξ, ξ, dij) = vk(ξ, ξ, dik) > 0, while any other link has a negative value.

Then, in this example, there is no BE, but there are two WBE (see Figure 3). The reason

is that i is indifferent between a link with j or a link with k. So, if i is linked with j, but

receives a proposition from k, he will be indifferent between keeping his link with j and

replacing it with a link with k (while k would be strictly better off with such a deviation).

In many contexts, however, individuals have many characteristics, and the likelihood

of such a circumstance is small. In the absence of such a circumstance, we can show the

existence of a BE. Formally,

Proposition 3.5 Suppose that dij 6= dkl for any i 6= j and k 6= l, then any WBE produced

by the assignment algorithm is a BE. Moreover, this equilibrium is unique.

This implies that if for all i ∈ N , the types θi ∈ Θ are drawn from a distribution with

a dense support on Θ, then there exists a unique WBE, which is also a BE, [a.s.]

Figure 3: WBE and BE

(a) The First WBE (b) The Second WBE

Let’s now turn to the characterization of the equilibrium network. Since the level of

investment of an individual in a potential link does not depend on the number of links he

has, the payoffs are only influenced by the distance. Suppose i and j are linked. Then,

the creation of a new link between j and k has no spillover effects on i. This produces

important consequences on the shape of the equilibrium network. The next proposition

characterizes the allocations produced by the assignment algorithm.

12



Proposition 3.6 (Characterization) Let g∗ be the network generated by some allocation

produced by the assignment algorithm, then

(1) For all i ∈ N , δi(g
∗) ≤ κi.

(2) The network g∗ exhibits Structural Homophily.

The proof is immediate from the construction through the assignment algorithm. Since

investments are maximal in every link, the number of links an individual can have is

bounded by the resource constraint κi. Also, since the assignment algorithm creates links

starting from the ones associated with the smallest distances, the induced network exhibits

structural homophily. In essence, under Finiteness or (strict) Convexity, any equilibrium

network can be constructed through the assignment algorithm, hence satisfying structural

homophily.

Let’s now turn to efficiency issues. There are many ways to define efficiency. The first

one would be to consider the Pareto criterion. Given Finiteness or Convexity, any BE is

Pareto efficient. In fact, we have an even stronger result, which is the fact that any BE is

a Strong Nash equilibrium (Aumann, 1959).

Proposition 3.7 Under Finiteness or Strict Convexity, any BE is a Strong Nash equilib-

rium.

Since the utility functions are additive, bilateral stability implies stability in the sense

of a Strong Nash equilibrium. However, since the utility functions are non-continuous (and

utilities are not transferable), Pareto efficiency does not imply efficiency in the sense of the

utilitarian criterion. Consider the following social welfare function:

W (x) =
∑
i∈N

ui(x)

In this case, efficiency is not guaranteed. In particular, one can find examples of

economies where the unique BE is efficient (in the sense of the utilitarian and the Pareto

criterion), as well as examples of economies where the unique BE is inefficient (in the sense

of the utilitarian criterion). This inefficiency comes from two principle sources.

13



First, under the Finiteness assumption, any efficient allocation z ∈ X is such that

zji ∈ {0, ξ} for all i, j ∈ N (by assumption). Since an individual values only his own

payoff, while the social planner (SP) cares about all individuals, a collaborative link is

more valuable for the SP than it is for an individual. (It enters the utility function of both

the individuals involved.) The tradeoff between the individual and the collaborative links

is then different for an individual than for the SP.

Second, under the (strict) Convexity assumption, another issue arises. Since the SP is

willing to trade off the utilities of the individuals, an efficient allocation z ∈ X need not

be such that zji ∈ {0, ξ}. For example, suppose that there are no fixed costs, then any

network g∗ such that δi(g
∗) < κi for some i ∈ N is inefficient. The reason is that if δ∗i < κi

for some i ∈ N , the creation of a link with some agent j (who is willing to invest a small

amount ε) leads to vi(ξ, ε, dij) for i. If ε is small enough, the loss for j is compensated by

the discrete jump in the utility of i. Hence, g∗ is inefficient. However, it is possible that

such a network g∗ is induced by a BE.

This concludes the analysis of the theoretical model. In section 4, I develop an estima-

tion technique derived from structural homophily, and present Monte Carlo simulations.

4 The Econometric Model

In this section, I present the econometric model. I use Structural Homophily in order to

estimate the weights of the distance function.23 I would like to emphasize that the method

and results of this section are self-contained. If one was willing to assume structural

homophily (instead of viewing it as the equilibrium outcome of the non-cooperative game

presented in the last section), all the results of this section would apply.

In order to present the econometric model, I introduce the following definition:

Definition 5 An observation q is

1) a network g = (Nq, Eq), and

23Čopič et al. (2009) also exploit homophily, although in a very different setting, in order to develop
their estimation technique.
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2) for each individual i ∈ Nq, a vector of R individual socioeconomic characteristics, i.e.

{θi}i∈N , where θi is a 1×R vector.

For a given observation q ∈ 1, ..., Q, I note (gq, θq), where θq is nq × R. Definition 5

implies that an econometrician does not observe the specific level of investment in a link

(i.e the link-level constraint), nor does he observe the resource constraint κi.
24 Accordingly,

given a set of observations (gq, θq)
Q
q=1, we do not possess enough information to construct

the equilibrium network through the assignment algorithm, even assuming some structural

form for the utility functions. Specifically, a standard econometric model would be the

following. Given a parametric form for the payoff functions (i.e. {vi(x, y, d), wi(x)}i∈Nq),

and the distance function (i.e. d(i, j)), one would assume that the data is generated by:

gq = Λ(θq, κq, ξq, εq; β) (1)

where Λ is the assignment algorithm, κq is the nq × 1 vector of individual resource con-

straints, ξq is the link-level resource constraint, εq is the error term, and β is the vector of

parameters to be estimated. Provided that one observes θq, κq, ξq, one could, in principle,

estimate β. Since κq and ξ are typically unobserved in existing datasets, I use a different

approach.25 From section 3’s results, I have established that any allocation produced by

the assignment algorithm respects structural homophily.26 My approach will then be to

maximize the likelihood that the observed network exhibits structural homophily. Accord-

ingly, the distance function will play a central role. I assume the following structural form

for the distance function:

ln(dij) =
L∑
l=1

βlρl(θi, θj) + εij (2)

where ε ∼iid N(0, 1), and ρl(., .) is a dimension-wise distance function.27 The vector

24Notice that while κi is an upper bound to δi(g), they are not necessarily equals. See proposition 3.6.
25There are also severe computational and identification issues using the specification in (1).
26Also, by observing a network that exhibits structural homophily, one can always find some vi(x, y, d),

κi and ξ such that it is produced by the assignment algorithm.
27For instance, if Θ ∈ R2, one could choose ρl(θi, θj) = |θli − θlj |. The proposed structural form is by
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(β1, ..., βL) ∈ Ξ ⊂ RL are the weights of the distance function. Equation (2) highlights two

important features of the model.

First, instead of trying to specifically identify the parameters of the utility function,

I limit myself to the estimation of the relative importance of the social characteristics in

the network formation process. That is, I only seek to estimate the parameters of the

distance function, and not the parameters of the utility functions (for instance, I do not

estimate the value of the resource for the individuals). This is illustrated in Figure 4. In

Figure 4a, the individuals place more value on the characteristic on the horizontal axis.

Then, the “closest” individuals for the central node are the ones on the top and bottom.

Symmetrically, in Figure 4b, the individuals place more value on the characteristic on the

vertical axis. Then, the “closest” individuals for the central node are the ones on the left

and right. My aim is to estimate the relative weights placed on each characteristics.28

Figure 4: Changing the Weight of the Distance Function

(a) Relative Importance on
the Horizontal Characteris-
tic

(b) Relative Importance on
the Vertical Characteristic

Second, I assume that the distance function is observed with noise. That is, there

exists a set of variables, observed by the individuals within the model, but unobserved by

no means the only possibility. Any positive and symmetric function could be used. I prefer to use the
specification in 2 to simplify the exposition.

28Centered ellipses like those depicted in Figure 4 are implied by the additive form we assumed in (2).
The generalization to more general class of distance functions such as in Henry and Mourifie (2011) is
straightforward.
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an econometrician, that affects the distance function.29 This assumption is not standard

and deserves a discussion.

A typical method to introduce unobserved heterogeneity into this type of models would

be to assume that the value of a link depends on some unobserved set of characteristics,

i.e. vi(x, y, d) + εij. However, this cannot be identified from a model where the distance

is observed with noise, since we can always define a symmetric function d̃ : Θ2 → R such

that vi(ξ, ξ, d̃ij) = vi(ξ, ξ, dij) + εij for all i 6= j.30

Now, given (2), we can compute the probability (conditional on an observation) that a

network exhibits structural homophily. Let Ψ = 1−Φ, where Φ is the c.d.f. of the standard

normal distribution, and let γ =
(
β1/
√

2, ..., βL/
√

2
)
. The probability that a network g

(given a set of characteristics θ) exhibit Structural Homophily is (algebraic manipulations

can be found in appendix C) :

P(sh|g, θ, γ) = Πij /∈g
{

Πk∈giΨ [(sik − sij)γ′] + Πk∈gjΨ [(sjk − sij)γ′]

−Πk∈giΨ [(sik − sij)γ′] Πk∈gjΨ [(sjk − sij)γ′]
}

(3)

where sij is the 1× L vector of dimension-wise distance, i.e. slij = ρl(θi, θj).
31

Then, given that there are Q observations, I propose the following maximum likelihood

estimator:

`(β|θ) =
1

Q

Q∑
q=1

ln[P(sh|gq, θq, γ)] (4)

Provided that there exists a unique γ0 ∈ Ξ which maximizes (4), the maximum likeli-

hood estimator is well-behaved, and γ can be consistently estimated.32

29For instance, εij can be interpreted as a measurement error.
30If vi is quasi-linear in the distance, i.e. v(x, y, d) = f(x, y)− d, the two models are equivalent.
31Equation 3 assumes that there is no isolated individual (i.e. no individual i is such that gi ∈ {∅, {i}}).

This is done without loss of generality since for any pair of individuals in which one of the individual is
isolated, the condition imposed by structural homophily is trivially respected.

32Although the function in (3) looks peculiar, the MLE setting is standard and the estimation of (4)
requires only usual the usual set of assumptions. See for instance Cameron and Trivedi (2005, p. 142-143)
for the asymptotic properties of the maximum of likelihood estimator.
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The identification’s strategy is based on a link-deference approach. A link exists if no

individual refused it. There are two reasons for an individual to refuse a link: (1) because

he has no resources left (constraint interactions), or (2) because the other individual is too

distant (preference interactions). I want to identify the preference effect, given that the

resource constraint is unobserved. The estimation strategy can be viewed as to minimize

the probability that structural homophily is violated.

Lets consider two alternative parameters β and β′. Suppose that we observe two in-

dividuals, i and j, not linked together, as in Figure 5. According to β and β′, i is linked

to an individual, farther from him than j. This means that i would have been willing to

create a link with j, but that j refused. This implies that j cannot be linked to individuals

farther from him than i. If he does, structural homophily is violated. Thus, if j is linked to

farther individuals than i under β, but not under β′, then β′ is chosen over β to represent

individuals’ preferences.

Figure 5: Admissible Parameters, Θ = R2

(a) Distance Weights according to β

i

j

(b) Distance Weights according to β′

i

j

This shows why isolated individuals (i.e. individuals that have no link) provide no

information: whatever the parameters’ values, they never contradict structural homophily.

In other words, for isolated individuals, we cannot identify whether they are isolated be-
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cause they have limited resources, or because they have strong homophilic preferences.

From a revealed preference approach, we gain information about an individual’ preferences

by observing his choices. If an individual is not connected, he does not ”consume” any

resource. We therefore cannot say anything about his preferences.

I now explore the properties of this method through Monte Carlo simulations.

4.1 Monte Carlo Simulations

I now present some Monte Carlo simulations. One of the advantage of section 3 is that it

provides a simple algorithm allowing for the construction of the equilibrium network. Using

the assignment algorithm, I will explore the finite sample properties of the estimator defined

in the previous section. For simplicity and because of computational limitations, I assume

that Θ = R2 (this could represent, for example, the geographic position of the individuals),

and ρl(θi, θj) = |θli − θlj|. For all i ∈ N , I assume that θi ∼iid N(0, σ2I). Thus, σ2 controls

for the dispersion of the individuals on the plane. As assumed, I let εij ∼ N(0, 1). I

run 1000 replications of an economy composed of 150 independent populations (networks),

each of which has 20 individuals, and I vary κi and σ2 (I assume that κi is drawn from a

uniform distribution).

The simulated networks are generated using the assignment algorithm, assuming that

vi(ξ, ξ, dij) > 0 for all i, j ∈ N and that wi(ξ) < 0 for all i ∈ N . I assume that the weights

are β = (2, 6), so the distance is d(θi, θi) = 2|θ1i −θ1j |+6|θ2i −θ2j |. Figure 6 displays a typical

equilibrium network for this economy. Figure 6a shows the simulated network on the plane

while Figure 6b rearranges the individuals in order to see clearly the network structure.

Notice that the individuals value the vertical characteristic more than the horizontal one.

The small size of each observation (i.e. 20 individuals in every network) has an impact

on the precision of the estimator. Take the following limiting case. Suppose that, as in

the simulation framework, every link is profitable. Then, if the resource constraint is large

enough, the equilibrium network is the complete network, and Structural Homophily is

not binding. As a result, the model in (4) is not identified. I now explore the precision

33Using the Kamada-Kawai algorithm is a standard way of drawing networks on the plane.
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Figure 6: Typical network, with β = [2 6], and κi ∼ U [1, 4]

(a) In the type space

�1

�2

(b) K.K. representation33

of the estimator when individuals have a relatively large resource constraint, compared to

the size of the population. I find that the estimator performs better when the maximal

number of links is small compared to the size of the population, and that the precision of

the estimator can be improved by increasing the dispersion of the population on the type

space.

Table 1 and Figure 7 to 10 (Appendix D) show the simulation results. Since the

parameters are only scale-identified, I report only the relative estimates. Simulations show

that as the number of links increases (relative to the size of the population), the precision

of the estimator is increased, but the estimates can be slightly biased upward. However,

this problem vanishes as the distribution of the population over the type space increases.

I now turn to the implementation of the estimation technique. In the next section,

I use the Add Health database to address the role of race in the formation of friendship

networks.
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Table 1: Monte Carlo Simulations

Standard Deviation (σ)

κi 10 12 14 16
{1, 2} 3.031 3.024 3.02 3.01

( 0.026 ) ( 0.028 ) ( 0.02 ) ( 0.02 )
{3, 4} 3.077 3.045 3.03 3.02

( 0.027 ) ( 0.028 ) ( 0.03 ) ( 0.02 )
{5, 6} 3.089 3.050 3.03 3.03

( 0.029 ) ( 0.029 ) ( 0.03 ) ( 0.03 )
{7, 8} 3.104 3.069 3.05 3.03

( 0.032 ) ( 0.030 ) ( 0.03 ) ( 0.03 )
{9, 10} 3.107 3.081 3.05 3.04

( 0.033 ) ( 0.030 ) ( 0.03 ) ( 0.03 )
{11, 12} 3.112 3.082 3.05 3.04

( 0.034 ) ( 0.033 ) ( 0.03 ) ( 0.03 )
{13, 14} 3.117 3.082 3.05 3.04

( 0.044 ) ( 0.039 ) ( 0.04 ) ( 0.04 )
{15, 16} 3.122 3.090 3.06 3.05

( 0.047 ) ( 0.071 ) ( 0.06 ) ( 0.06 )

5 Empirical Application: High-School Friendship Net-

works

I wish to estimate the weights of the distance function that leads to the formation of the

friendship networks of American teenagers. I am particularly interested in the role of race,

as previous studies have suggested there is a significant race-based preference bias in the

choice of friendship relations among teenagers. Currarini et al. (2010) use a search model in

order to estimate the preference bias for Asians, Blacks, Hispanics and Whites. They show

that Asians have the largest preference bias, followed by Whites, Hispanics and Blacks.

Using a different approach, Mele (2011) estimates the role that homophilic preferences

toward race plays in the formation of friendship networks. He shows that all racial groups

have strong homophilic preferences, although he does not capture any strong differences

between groups. Interestingly, I find strong evidence that the racial preference bias varies

across racial groups, although I find that Blacks have the strongest bias, followed by Asians

and Whites.
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As in the two papers mentioned, I use the Add Health database as it is particularly

well suited for my model. Recall that the model presented in sections 2 and 3 assumes that

the individuals of the same population meet with probability one. A convincing empirical

implementation then requires that the observed populations are small enough. To that

effect, the Add Health database provides information on students’ high-schools, which are

quite small entities.34 Specifically sample includes the race, and the friendship networks of

5,466 teenagers, coming from 98 high schools in the U.S. The variable of interest is race.

I assume that a student’s type is his or her race. Thus the type space has 4 dimensions:

White, Black, Asian, Native. Formally, Θ = {0, 1}4, so a student who considers himself as

Black-Asian would be of type θ = (0, 1, 1, 0). I assume the following distance function:

ln d(xi, xj) =
4∑

r=1

βrI{xr
i 6=xr

j} + εij (5)

where I{P} is an indicator function that takes value 1 if P is true, and 0 otherwise. For

instance, the distance between a teenager i who is White, and a teenager j who is Black,

is d(xi, xj) = βwhite + βblack. The β’s measure the relative strength of the preference bias

toward individuals of the same racial group, e.g. being Black, v.s. being non-Black.

The Add Health questionnaire asks each teenager to identify their best friends (up to

10, and a maximum 5 males and 5 females). I assume that two individuals are friends only

if they attend the same school. This assumption is standard in the literature using Add

Health data. This allows each school (the set of teenagers and the network) to be treated

as an observation. Thus, the database contains 98 observations (i.e. 98 schools). Table 2

summarizes the data:

I estimate the model (4), using the distance function in (5). The estimated weights

(β̂1, ..., β̂4) and the corresponding standard errors are shown in Table 3. Since the weights

are only scale-identified, I report the relative effects. The estimation shows that the weight

associated with the Blacks’ dimension is the greatest (2.270 times greater than the Whites’,

34For that reason, and for computational reasons, I limit myself to schools for which I observe less than
300 students, which is about 68% of the schools in the database. I also remove the isolated individuals, as
they provide no relevant information (see p.18, last paragraph).
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Table 2: Descriptive Statistics

Variable Mean Standard Deviation
White 0.733 0.442
Black 0.150 0.357
Asian/Pacific 0.031 0.174
Native 0.062 0.242
Degree 2.064 1.284

and 1.796 times greater than the Asians’). The Asians’ dimension is the second in mag-

nitude (1.264 times greater than the Whites’). I find no statistically significant relative

weight for the Natives’ dimension. The interpretation is that the preference bias toward

same-race students is greater for Black than for Asians and Whites. Notice that this is

independent of the relative proportion of each racial group in the population, and the

(unobserved) individuals’ time constraints.

These results show that, even if the distance function is the same for every individual,

we can still represent situations where homophilic preferences differ with respect to an

individual’s type. In this application, for instance, everyone is weighting the dimension

Black/non-Black using the same function. However, structural homophily is binding only

for Blacks in that dimension of the type space. The estimated parameters can then be

interpreted as relative biases.

Table 3: Relative Estimated Weights (White normalized to 1)†

Black Asian Native
Estimate†† 2.270** 1.264** -0.199
SE (0.244) (0.157) (0,150)
Robust SE††† [0.304] [0.294] [0.171]

† S.E computed using the delta method.
†† ∗∗ for 1% significance level.
††† Robust SE using the (sandwich) variance-covariance matrix for pseudo-m.l.e.

Turning back to the distance functions, one can reconstruct the distance between the

different racial groups from the estimates in Table 3. Recall that, for instance, the distance

between a Black and a White is d(black, white) = βblack +βwhite. Then, according to Table
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3, the distance between Blacks and Asians is the greatest (d = 3.534), followed by the

distance between Blacks and Whites (d = 3.270) and the one between Whites and Asians

(d = 2.264). This shows that, in order to correctly specify the impact of homophilic

preferences on the creation of links, one has to take in to account the impact of the

preference biases of both individuals involved. Structural homophily allows to identify

those preference biases.

I now discuss the limitations of my approach and suggest some potential generalizations.

6 Going Further

I have shown that structural homophily can be obtained by a non-cooperative game of

network formation. Under Finiteness or (strict) Convexity, any Bilateral Equilibrium of

the game features structural homophily. I also have shown that structural homophily has

empirical implications. I develop an estimation technique that can be used to estimate

some parameters of the model, namely the weights of the distance function. I can then

identify which social characteristics significantly influence the network formation process.

Being able to estimate the magnitude of these relevant characteristics is an important step

in the process of designing efficient policies, as it allows the policy makers to target relevant

characteristics. To illustrate this method, I estimated the weights of the distance function

in the context of friendship networks for teenagers. I found significant differences in the

homophilic preference bias between racial groups.

The model developed in this paper is a first step toward a better understanding of net-

work formation processes under time constraints. However, there are still many unanswered

questions. For instance, the results in section 3 are based on the Finiteness or Convexity

assumption. Those are arguably strong assumptions as they imply that individuals invest

as much as they can in their existing links. This may not be true in general. However,

the study of the model under a concavity assumption faces difficult existence issues. One

could address this issue by considering weaker solution concepts such as Pairwise Sta-

bility (Jackson and Wolinsky, 1996) which potentially exhibit less structured equilibrium

networks.
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Another potential extension would be to introduce probabilities of meeting between in-

dividuals. Without meeting probabilities, the set of potential friends is the same for every

individuals, i.e. the whole population. In general, in large population, some individuals

may not know themselves, which would obviously prevent them from creating a link. A

simple way to introduce meeting probabilities would be to assume that the set of poten-

tial friends is limited to individuals that have “met”. Hence, individuals can only invest

resources in links with individuals in a subset of the population. In that case, the (ex-

post) strategy space would not be the same for every individual, but structural homophily

would still hold in equilibrium. More elaborate models could however assume that meeting

friends is a costly process. The individuals would then be allowed to endogenously choose

the amount of resource they spend searching for friends.35 As the estimation technique

does not require the observation of the time constraints, structural homophily is likely to

hold in equilibrium. However, in both extensions, the estimated parameters may not be

interpreted in terms of preferences. If homophily affects the preferences and the random

meeting process, it is unclear how those two effects can be identified.

35A nice example of a search model with homophilic preferences is Currarini et al. (2009).
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Appendix A

Proof of lemma 3.1

Let x∗ be some NE, and suppose that (i, j) is a deviating pair in the sense of a WBE. Let

(x̃i, x̃j) be some joint deviation for (i, j). We need to show that x̃ji > xj∗i and x̃ij > xi∗j .

Since (x̃i, x̃j) is a profitable deviation (in the sense of a WBE), we have

ui(x̃i, x̃j, x
∗
−i−j) > ui(x

∗) (6)

uj(x̃i, x̃j, x
∗
−i−j) > uj(x

∗)

Since x∗ is a NE, we have

ui(xi, x
∗
−i) ≤ ui(x

∗) (7)

uj(xj, x
∗
−j) ≤ uj(x

∗)

for all xi, and xj. In particular, condition (7) holds for xi = x̃i and xj = x̃j.

Putting conditions (6) and (7) together, we have : ui(x̃i, x̃j, x
∗
−i−j) > ui(x̃i, x

∗
−i) and

uj(x̃i, x̃j, x
∗
−i−j) > uj(x̃j, x

∗
−j). Since the utility function is linear in the links, this is

equivalent to vi(x̃
j
i , x̃

i
j, dij) > vi(x̃

j
i , x

i∗
j , dij) and vj(x̃

j
i , x̃

i
j, dij) > vj(x̃

i
j, x

j∗
i , dij). The pro-

duction functions are strictly increasing in the second argument, so we must have x̃ji > xj∗i

and x̃ij > xi∗j . (If xj∗i = xi∗j = 0, we have vi(x̃
j
i , x̃

i
j, dij) > 0 and vj(x̃

i
j, x̃

j
i , dij) > 0, and the

result is straightforward.) �

Proof of theorem 3.2

First, we show that x̃ produced by the assignment algorithm (see appendix B) is a NE.

By construction, we have vi(ξ, ξ, dij) ≥ 0, and wi(ξ) ≥ 0, hence removing a link is never

profitable. Now, the only link that an individual can unilaterally create is the individual

link. Suppose that it is profitable to do so for i ∈ N . Then either [δi < κi and wi(ξ) > 0],

or [δi = κi and wi(ξ) > minj∈gi vi(ξ, ξ, dij)]. By construction, both are impossible.
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Now, suppose that x̃ is a NE, but not a WBE. That is, there exists i, j ∈ N such that

j /∈ gi (from lemma 3.1, since xji ∈ {0, ξ}) who want to deviate, i.e. create a link between

them. There are 2 cases:

1. δi = κi. Then, i needs to remove a link in order to create a new link. (Since x̃ is a

NE, he won’t remove more than one link.) Then, this implies that there exists k ∈ gi
such that vi(ξ, ξ, dij) > vi(ξ, ξ, dik) ≥ 0. This implies that dij < dik.

We now turn to j. If δj = κj, the same argument applies for j, then vj(ξ, ξ, dij) >

vj(ξ, ξ, djl) for some l ∈ gj (and vi(ξ, ξ, dij) > vi(ξ, ξ, dik)). Since we have dij < dik and

dij < djl, this contradicts the fact that x̃ was created by the assignment algorithm.

If δj < κj, j has at least ξ to invest. Together with the fact that dij < dik, this

contradicts the fact that x̃ is produced by the assignment algorithm.

2. δi < ki and δj < kj. This is impossible since, from the assignment algorithm, it

implies that vi(ξ, ξ, dij) < 0 or vj(ξ, ξ, dij) < 0.

�

Proof of theorem 3.3

We need to show that the allocation x̃ ∈ X, which is produced by the assignment algorithm

(see appendix B), is a WBE of Γ.

We first show that x̃ is a NE. Suppose that it is not; that is, there exists i ∈ N such

that x̃i is not individually rational. Since for any i, j ∈ N , we have xji ∈ {0, ξ}. This means

that i wants to create an additional link. (Unilaterally reducing the investment in a link

necessarily lowers i’s payoff.) The only link that i can create on his own is the individual

link. There are two cases:

1. x̃ii = 0 and δi < κi. Then, by construction from the assignment algorithm, this implies

that wi(ξ) < 0. So i has no individual profitable deviation, since wi(x̃
j
i ) < wi(ξ).

2. x̃ii = 0 and δi = κi. Then, if i has a profitable deviation, there exists J ⊆ gi such

that wi(
∑

j∈J εj) >
∑

j∈J{vi(ξ, ξ, dij) − vi(ξ − εj, ξ, dij)}. That is, i is reducing his
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investments in links in J in order to invest in his individual link. Let d∗ = maxj∈J dij,

we have

wi(
∑
j∈J

εj) >
∑
j∈J

{vi(ξ, ξ, dij)− vi(ξ − εj, ξ, dij)}

≥
∑
j∈J

{vi(ξ, ξ, d∗)− vi(ξ − εj, ξ, d∗)} (8)

≥ vi(ξ, ξ, d
∗)− vi(ξ −

∑
j∈J

εj, ξ, d
∗) (9)

where (8) follows from vxd(x, ξ, d) ≤ 0, and (9) follows from vxx(x, ξ, d) ≥ 0. Now,

since vxx(x, ξ, d) ≥ 0, if (8) is true for
∑

j∈J εj < ξ, it is also true for
∑

j∈J εj =

ξ, hence wi(ξ) > vi(ξ, ξ, d
∗). This contradicts the fact that x̃ was created by the

assignment algorithm.

We still need to show that x̃ is a WBE. Suppose that it’s not, i.e. there exists (i, j)

and (xi, xj) such that ui(xi, xj, x̃−i−j) > ui(x̃) and uj(xj, xi, x̃−i−j) > uj(x̃). From the

construction of x̃, it must be the case that i, j are such that x̃ji = x̃ij = 0. Again, we have

2 cases:

1. δi < κi and δj < κj. This is impossible since, from the assignment algorithm, it

implies that vi(ξ, ξ, dij) < 0.

2. δi = κi. Then, if i has a profitable deviation, there exists K ⊆ gi such that

vi(
∑

k∈K εk, x
i
j, dij) >

∑
k∈K{vi(ξ, ξ, dik)−vi(ξ− εk, ξ, dik)}. Let d∗i = maxk∈K dik, we

have

vi(
∑
k∈K

εk, x
i
j, dij) >

∑
k∈K

{vi(ξ, ξ, dik)− vi(ξ − εk, ξ, dik)}

≥
∑
k∈K

{vi(ξ, ξ, d∗i )− vi(ξ − εk, ξ, d∗i )} (10)

≥ vi(ξ, ξ, d
∗
i )− vi(ξ −

∑
k∈K

εj, ξ, d
∗
i ) (11)

where (10) follows from vxd(x, ξ, d) ≤ 0, and (11) follows from vxx(x, ξ, d) ≥ 0. Now,

since vxx(x, ξ, d) ≥ 0, if (11) is true for
∑

k∈K εk < ξ, it is also true for
∑

k∈K εk = ξ,
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hence vi(ξ, x
i
j, dij) > vi(ξ, ξ, d

∗
i ).

We now turn to j. If δj = κj, the same argument applies for j; then vj(ξ, ξ, dij) >

vj(ξ, ξ, d
∗
j) (and vi(ξ, ξ, dij) > vi(ξ, ξ, d

∗
i )). Since we have dij < d∗i and dij < d∗j , this

contradicts the fact that x̃ was created by the assignment algorithm.

If δj < κj, j has at least ξ to invest (and it is profitable to invest up to ξ since

vx(x, y, d) > 0), then together with the fact that dij < d∗i , this contradicts the fact

that x̃ is produced by the assignment algorithm.

�

Proof of proposition 3.4

From theorem 3.3, it is sufficient to show that for any i, j ∈ N , xji ∈ {0, ξ}, at any NE.

Consider some i, j ∈ N , and suppose that xji ∈ (0, ξ). I show that this implies that

there exists k ∈ N such that xki ∈ (0, ξ). Suppose otherwise. Then, i still has resources

available. Since vx(x, y, d) > 0, i could increase xji and be better off. Hence, x is not a

NE, so it is not a WBE. Hence, there exists k ∈ N \ {i} such that xki ∈ (0, ξ). There are 2

cases:

1. [k = i]. Since x is a NE, we must have the following.

• If xii + xji ≥ ξ, then

wi(x
i
i) + vi(x

j
i , x

i
j, dij) ≥ wi(ξ) + vi(x

j
i + xii − ξ, xij, dij)

wi(x
i
i) + vi(x

j
i , x

i
j, dij) ≥ wi(x

j
i + xii − ξ) + vi(ξ, x

i
j, dij)

Rewriting, we have

wi(ξ)− wi(x
i
i) ≤ vi(x

j
i , x

i
j, dij)− vi(x

j
i + xii − ξ, xij, dij)

wi(x
i
i)− wi(x

j
i + xii − ξ) ≥ vi(ξ, x

i
j, dij)− vi(x

j
i , x

i
j, dij)
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Since vxx(x, y, d) > 0, we have vi(ξ, x
i
j, dij) − vi(x

j
i , x

i
j, dij) > vi(x

j
i , x

i
j, dij) −

vi(x
j
i + xii − ξ, xij, dij), and since w′′(x) > 0, we have wi(ξ) − wi(x

i
i) > wi(x

i
i) −

wi(x
j
i + xii − ξ). This is in contradiction with the above conditions, hence x is

not a NE.

• If xii + xji < ξ, then

wi(x
i
i) + vi(x

j
i , x

i
j, dij) ≥ wi(x

i
i + xji ) + vi(0, x

i
j, dij)

wi(x
i
i) + vi(x

j
i , x

i
j, dij) ≥ wi(0) + vi(x

i
i + xji , x

i
j, dij)

Rewriting, we have

wi(x
i
i + xji )− wi(x

i
i) ≤ vi(x

j
i , x

i
j, dij)− vi(0, xij, dij)

wi(x
i
i)− wi(0) ≥ vi(x

i
i + xji , x

i
j, dij)− vi(x

j
i , x

i
j, dij)

Since vxx(x, y, d) > 0, we have vi(x
j
i +xii, x

i
j, dij)−vi(x

j
i , x

i
j, dij) > vi(x

j
i , x

i
j, dij)−

vi(0, x
i
j, dij), and since w′′(x) > 0, we have wi(x

j
i +xii)−wi(x

i
i) > wi(x

i
i)−wi(0).

Again, this is in contradiction with the above conditions, hence x is not a NE.

i 6= k and i 6= j .

Since x is a NE, we must have the following:

• If xki + xji ≥ ξ, then

vi(x
k
i , x

i
k, dik) + vi(x

j
i , x

i
j, dij) ≥ vi(ξ, x

i
k, dik) + vi(x

j
i + xki − ξ, xij, dij)

vi(x
k
i , x

i
k, dik) + vi(x

j
i , x

i
j, dij) ≥ vi(x

j
i + xki − ξ, xik, dik) + vi(ξ, x

i
j, dij)

Rewriting, we have

vi(ξ, x
i
k, dik)− vi(xki , xik, dik) ≤ vi(x

j
i , x

i
j, dij)− vi(x

j
i + xki − ξ, xij, dij)

vi(x
k
i , x

i
k, dik)− vi(xji + xki − ξ, xik, dik) ≥ vi(ξ, x

i
j, dij)− vi(x

j
i , x

i
j, dij)
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Since vxx(x, y, d) > 0, we have vi(ξ, x
i
j, dij) − vi(x

j
i , x

i
j, dij) > vi(x

j
i , x

i
j, dij) −

vi(x
j
i +xki − ξ, xij, dij), and vi(ξ, x

i
k, dik)−vi(xki , xik, dik) > vi(x

k
i , x

i
k, dik)−vi(xji +

xki − ξ, xik, dik). This is in contradiction with the above conditions, hence x is

not a NE.

• If xii + xji < ξ, then

vi(x
k
i , x

i
k, dik) + vi(x

j
i , x

i
j, dij) ≥ vi(x

j
i + xki , x

i
k, dik) + vi(0, x

i
j, dij)

vi(x
k
i , x

i
k, dik) + vi(x

j
i , x

i
j, dij) ≥ vi(0, x

i
k, dik) + vi(x

j
i + xki , x

i
j, dij)

Rewriting, we have

vi(x
j
i + xki , x

i
k, dik)− vi(xki , xik, dik) ≤ vi(x

j
i , x

i
j, dij)− vi(0, xij, dij)

vi(x
k
i , x

i
k, dik)− vi(0, xik, dik) ≥ vi(x

j
i + xki , x

i
j, dij)− vi(x

j
i , x

i
j, dij)

Since vxx(x, y, d) > 0, we have vi(x
j
i +x

k
i , x

i
j, dij)−vi(x

j
i , x

i
j, dij) > vi(x

j
i , x

i
j, dij)−

vi(0, x
i
j, dij), and vi(x

j
i+x

k
i , x

i
k, dik)−vi(xki , xik, dik) > vi(x

k
i , x

i
k, dik)−vi(0, xik, dik).

This is in contradiction with the above conditions, hence x is not a NE.

�

Proof of proposition 3.5

The proof is obvious from the proof of theorem 3.2 and theorem 3.3. One only has to remark

that for any i, j, k ∈ N , vi(ξ, ξ, dij) ≥ vi(ξ, ξ, dik) implies that vi(ξ, ξ, dij) > vi(ξ, ξ, dik) if

we assume that dij 6= dkl. �

Proof of proposition 3.7

The fact that any Strong NE needs to be produced by the assignment algorithm follows

from propositions 3.2 and 3.4. Suppose that x∗ ∈ X is a BE, but not a Strong NE. There

exists S ⊂ N and xS ∈ ×i∈SXi such that ui(xS, x
∗
−S) > ui(x

∗) for all i ∈ S. We will
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show that under Strict Convexity or Finiteness, this implies that there exists a bilateral

deviation.

Under Finiteness, xi ∈ {0, ξ}n for all i ∈ S. Using the same argument as the one used in

lemma 3.1, there exist at least one project created under a deviation by coalition S. That is,

∃i, j ∈ S, such that xj∗i = xi∗j = 0 and xji = xij = ξ. Since the utility functions are additive,

this implies that i, j have a profitable bilateral deviation. Since resources invested in the

link (i, j) must have come either from unused resources or from the deleation of another

link since xji ∈ {0, ξ} for all i, j ∈ N .

Under Convexity, if it is profitable to withdraw resources from one link and invest in

two new links, it is even better to invest in only one of those links. (This is exactly the

argument used in proposition 3.3). Specifically, suppose that there exists i, j, k ∈ S such

that xji , x
k
i > 0, and xj∗i = xk∗i = 0. Then, either xji = ξ and xki = 0 or xji = 0 and xki = ξ

is better for i. Then, i is willing to make a bilateral deviation with j (wlog). Since the

utilities are linear, it is also profitable for k (since it is under a joint deviation in S). Hence,

there exists a bilateral deviation between i and j. �
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Appendix B

The Assignment Algorithm

I generate a network g (represented by the adjacency matrix A) in which every individual

invests as much as possible in every active link (i.e. xji ∈ {0, ξi} for all i, j ∈ N).

Let ηji = vi(ξ, ξ, dij) for all i, j ∈ N such that i 6= j, and ηii = wi(ξ), for all i ∈ N .

This function represents the value of a link between two individuals. Now, define the (not

necessarily unique) ordered list L0 as follows: L0 = (dij)i,j∈N :i<j, such that L0
1 ≤ L0

2 ≤

... ≤ L0
m. The list L0 is an ordered list of distance values, for all pairs of individuals. The

number of elements in L0 is the number of possible pairings between individuals in N , i.e.

n(n − 1)/2. Let L0
l be the element of position l in the list L0. I note (L0

l )
−1 = (i, j) if

L0
l = dij.

The algorithm computes g and takes Lt = L0 as inputs. It operates in two steps.

1 Take the first element of the list Lt, i.e. Lt
1. Let Lt

1 = dij.

If aii = 0 or ajj = 0,

1. If ηii ≥ ηji and ηii ≥ 0, then aii = 1

2. If ηjj ≥ ηij and ηjj ≥ 0, then ajj = 1

Otherwise,

1. If ηji ≥ 0 and ηij ≥ 0, then set aij = aji = 1.

2. If ηji < 0, then generate L∗i = Lt \ {dik}k∈N :dik∈Lt. (That is, remove all distances

associates with i, since all the following distances will be greater than dij.)

3. If ηij < 0, then generate L∗i = Lt \ {djk}k∈N :djk∈Lt, i.e. do the same for j as we did

for i.

Generate Lt+1 = {(d ∈ Li∗ ∩ Lj∗) \ dij}.
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2 Repeat (1) for t = 1, .... until |Lt| = 0 or until ∃i ∈ N such that δi = κi.

For all i ∈ N such that δi = κi, generate L∗i = Lt \{dik}k∈N :dik∈Lt. (That is, remove all

distances associated with i, since he has no resources left.) Then, generate Lt+1 = ∩i∈NLi∗

and repeat (1).

After the algorithm stops, I generate the allocation x̃ as follows. For all i, j ∈ N , if

aij = 1, x̃ji = ξ, otherwise x̃ji = 0. Notice that by definition x̃ ∈ X.
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Appendix C

The Likelihood Function

I assume that no individual is isolated. The definition of structural homophily is: For

all ij /∈ g, dij ≥ dik for all k ∈ gi or dij ≥ djk for all k ∈ gj. Then, since the εij are

independents, and ln(d) ≥ ln(d′) iff d ≥ d′, the probability that g exhibits structural

homophily is

Πij /∈g
{

Πk∈giP(dij ≥ dik) + Πk∈gjP(dij ≥ djk)− Πk∈giP(dij ≥ dik)Πk∈gjP(dij ≥ djk)
}

This gives:

P(dij ≥ dik) = P(
R∑

r=1

βrρr(θi, θj) + εij ≥
R∑

r=1

βrρr(θi, θk) + εik)

At this point, the normalization of ε is necessary for the identification of β. Simplifying

the last expression, we have:

P(dij ≥ dik) = P(Z ≥
R∑

r=1

βr[ρr(θi, θk)− ρr(θi, θj)])

= 1− Φ(
R∑

r=1

βr[ρr(θi, θk)− ρr(θi, θj)])
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Appendix D

Figure 7: Standard deviation: 10

Figure 8: Standard deviation: 12

39



Figure 9: Standard deviation: 14

Figure 10: Standard deviation: 16
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