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Abstract
The Quermass-interaction model allows to generalise the classical germ-grain Boolean

model in adding a morphological interaction between the grains. It enables to model ran-
dom structures with specific morphologies which are unlikely to be generated from a
Boolean model. The Quermass-interaction model depends in particular on an intensity
parameter, which is impossible to estimate from classical likelihood or pseudo-likelihood
approaches because the number of points is not observable from a germ-grain set. In this
paper, we present a procedure based on the Takacs-Fiksel method which is able to estimate
all parameters of the Quermass-interaction model, including the intensity. An intensive sim-
ulation study is conducted to assess the efficiency of the procedure and to provide practical
recommendations. It also illustrates that the estimation of the intensity parameter is cru-
cial in order to identify the model. The Quermass-interaction model is finally fitted by our
method to P. Diggle’s heather dataset.

KEY-WORDS: Gibbs Point Process, germ-grain model, Quermass-Interaction Process,
Area-interaction Process, Perimeter-interaction Process, Takacs-Fiksel estimator.
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1 Introduction

Physics, biology or agronomy are often confronted with problems involving complex ran-
dom sets like liquid-vapour interface structures, micro-emulsions, porous media or propaga-
tion domains of plants. Admissible models for these random structures are the germ-grain
models. These random set models are constructed from a point process (the germs), where
each point is associated with a random set (the grain). The union of grains forms the final
random structure. The most popular germ-grain model is certainly the Boolean model
of balls. In this model, the grains correspond to balls, whose centres are distributed as
a Poisson point process and the radii are independently and identically distributed. The
probabilistic and statistical properties of the Boolean model are well known (see for ex-
ample [18, 30]). However, considering the Boolean model as a random set (see [33]), the
variety of morphological structures that it generates is limited. To reach more realistic
morphologies, some Gibbs modifications of the Poisson point process defining the germs
of the Boolean model have been developed. The idea is to introduce an interaction (or
Hamiltonian) between the points, where the interaction depends on geometrical features
of the associated union of grains. The density of this new process is maximal when the
Hamiltonian is minimal. So, the random structures generated by the model tend to min-
imise the Hamiltonian and this produces geometrical features that are unlikely to occur
for Boolean models.

In the following the grains are assumed to be balls. A first model, based on the area
of the union of grains, has been introduced in [34], known as the penetrable sphere model,
or Widom-Rowlinson model. This model was not designed to model random sets, but was
introduced as a marked point process with attraction, to model liquid-vapour phase tran-
sitions. The so-called area-interaction process [2] is an extension of the Widom-Rowlison
model to both the attractive and repulsive case. The area-interaction process can be viewed
either as a marked point process, in which case it aims at modelling interactions between
points, or as a random set model, which we consider in the present paper. Motivated by
the former point of view, multi-scales area-interaction processes have been considered in
[1, 9, 25]. Other extensions, more adapted to the random geometry setting, can be found
in [14, 15, 16, 17]. These works consider a Hamiltonian that relies not only on the area
but also on other functionals of the union of grains. Hadwiger’s theorem [11] ensures, un-
der mild conditions, that any function acting on an union of compact convex sets can be
decomposed into a linear combination of the Minkowski (or Quermass) functionals. These
functionals correspond in R2 to the area, the perimeter and the Euler-Poincaré character-
istic (number of connected components minus number of holes). Accordingly, any function
of the union of balls in R2 can be written as a linear combination of these three functionals.
A Quermass-interaction model [14, 15] corresponds to the choice of a Hamiltonian equal to
some linear combination of the area, the perimeter and the Euler-Poincaré characteristic of
the union of grains. From Hadwiger’s theorem, it appears as a very rich model to represent
random structures.

The Quermass-interaction model in R2 (also called Quermass model for short in the
following) is entirely specified by the law of the radii and by four parameters: the three
coefficients in the linear combination defining the Hamiltonian, and the intensity parameter
of the underlying Poisson point process. The present paper deals with the estimation of
these four parameters, while the law of the radii is assumed to be known and is included
in the reference measure. Note that it is also possible to consider a parametric law for the
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radii, e.g. a continuous parametric law or a multi-scale discrete law as in [1, 9, 25], provided
some modifications in the definition of the model, see Remark 2.2. The estimation of these
extra parameters can be conducted with the same procedure as described in this paper,
but we do not consider this generalisation in this work.

The main difficulty for inference comes from the nature of the observable data. Since
we use the Quermass germ-grain model to model random sets, we assume that we observe
the union of grains only. In particular the germs and the number of balls are not observed
and cannot be used in the statistical procedure, which is untypical in estimation problems
for Gibbs point processes. Note that this specific issue already occurs for the estimation
of the intensity parameter of the classical Boolean model (viewed as a random set). In
this case, some explicit estimating equations have been found, that express the intensity
parameter in terms of the specific volume of the set, see [18]. In the presence of Gibbs
interactions as for the Quermass-interaction model, it is well-known that the computation
of macroscopic quantities is intractable, so a similar explicit estimation procedure is not
possible.

Assuming the intensity parameter of the underlying Poisson point process is known,
a maximum likelihood approach has been investigated in [20] for the estimation of the
three other parameters of the Quermass interaction. Unfortunately the intensity parameter
cannot be estimated by this method due to the unobservability of the number of points.
Section 3.1 gives more details about this procedure and explains the serious consequences
of a misspecification of the intensity parameter in practice. In this paper, we estimate all
parameters of the Quermass process, including the intensity, via a Takacs-Fiksel procedure
([31, 7, 3]). The Takacs-Fiksel contrast function is based on an empirical counterpart of
the Georgii-Nguyen-Zessin equation ([8, 23]), and depends on the choice of test functions.
In the context of point processes, the performance of the procedure depends on the latter
choice. But in our setting of random sets, the contrast function is not computable in general
due to the unobservability of germs. However, some specific choices of test functions lead
to a contrast function that does not depend on the number of points (see Section 3.2.2).
This particular case of the Takacs-Fiksel procedure allows the estimation of the Quermass
model. The purpose of the present paper is to provide these relevant test functions, to
present a simulation study and to give some practical recommendations.

As an application, we finally fit a Quermass model to heather data. The heather dataset
was initially analysed by P. Diggle in [6], followed by many studies ([12, 13, 4, 21, 20]).
We show that our model seems to be a better approximation of this heather dataset, both
from a visual impression and from a statistical diagnostic inspection.

In Section 2, we introduce the Quermass-interaction model and we recall the fun-
damental Georgii-Nguyen-Zessin equation. Section 3 presents the estimation procedures.
The limitation in using the maximum likelihood approach is explained in Section 3.1. Then
in Section 3.2 we present the general Takacs-Fiksel procedure and its application to the
Quermass-interaction model. Practical aspects for the implementation of the procedure are
given in Section 4. A simulation study assessing the efficiency of the procedure is presented
in Section 5. A fit to the heather dataset is conducted in Section 6. Finally, note that an ap-
pealing alternative estimation procedure would consist of combining the likelihood and the
Takacs-Fiksel approaches, to take advantages of both methods. We have implemented such
a mixed procedure (not shown in this paper), but it turns out to be very time consuming
without being more efficient than the Takacs-Fiksel procedure.
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2 Quermass-interaction model

2.1 Notations

We denote by E the space R2 × [0, R0] (where R0 > 0 is a fixed positive real number)
endowed with its natural Euclidean Borel σ-algebra. It is the space of marked points (x,R)
where x ∈ R2 is the centre of a ball and R its radius. We assume for simplicity that the
radii are bounded by R0. This assumption allows to define properly the Quermass model
on the whole plane R2, see Section 2.3, though this restriction is not mandatory (see [5]).
For any bounded set Λ ⊂ R2, we denote by EΛ := Λ× [0, R0] the restriction of E to Λ.

By definition, a configuration of points ω is a locally finite subset of E , which means that
the set ωΛ := ω ∩ EΛ is finite for any bounded set Λ ⊂ R2. The space of all configurations
of points in E is denoted by Ω, while for any bounded set Λ ⊂ R2, ΩΛ denotes the subspace
of configurations in EΛ.

For x ∈ R2, we write for short x ∈ ω if there exists R ∈ [0, R0] such that (x,R) ∈ ω. For
(x,R) ∈ E we write ω ∪ (x,R) instead of ω ∪ {(x,R)} and ω\(x,R) instead of ω\{(x,R)}.

For any configuration ω we denote by Uω its germ-grain representation defined by the
following set

Uω :=
⋃

(x,R)∈ω

B(x,R),

where B(x,R) is the closed ball centred at x with radius R.
Let µ be a reference probability measure on [0, R0]. We denote by λ the Lebesgue

measure on R2 and by πµ the marked Poisson process on E with intensity measure λ⊗ µ.
For every bounded set Λ, the probability measure πµΛ denotes the marked Poisson process
on EΛ with intensity measure λΛ ⊗ µ. Recall that the law of the random set Uω under
the probability measure πµ is nothing else than the standard homogeneous Boolean model
with intensity one and distribution of radii µ.

2.2 Quermass-interaction model on a bounded window

Following Kendall et al. [15], for any configuration ωΛ in a bounded window Λ ⊂ R2, the
Quermass interaction (or Quermass Hamiltonian) is defined by

Hθ(ωΛ) = θ1 A(UωΛ) + θ2 L(UωΛ) + θ3 χ(UωΛ), (2.1)

where θ := (θ1, θ2, θ3) is a vector of real parameters. The functionals A, L and χ are
the three fundamental Minkowski (or Quermass) functionals: area, perimeter and Euler-
Poincaré characteristic (the number of connected components minus the number of holes).

From Hadwiger’s Theorem [11], any additive functional defined on the space of finite
unions of convex compact sets and satisfying some continuity assumption (see [11]) can be
decomposed as in (2.1). This universal representation explains the interest of the Quermass
interaction for morphological modelling at mesoscopic scale [16, 17].

Definition 2.1. The Quermass point process on a bounded set Λ ⊂ R2 with parameter
θ ∈ R3, intensity z > 0 and distribution µ of the radii, is the probability measure P z,θΛ

on ΩΛ which is absolutely continuous with respect to the marked Poisson Process πµΛ with
density
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gΛ(ωΛ; z, θ) =
1

ZΛ(z, θ)
zn(ωΛ)e−H

θ(ωΛ), (2.2)

where n(ωΛ) denotes the cardinality of ωΛ and ZΛ(z, θ) :=
∫
zn(ωΛ)e−H

θ(ωΛ)πµΛ(dωΛ) is a
normalising constant called the partition function.

Some simulations are shown in Figure 1. They correspond to Quermass-interaction
models involving only one non-null interaction parameter: the area-interaction process
(θ2 = θ3 = 0), the perimeter-interaction process (θ1 = θ3 = 0), and the Euler-Poincaré-
interaction process (θ1 = θ2 = 0). These particular situations show the rich variety of
random sets that the Quermass-interaction model can provide. Note that in the three
situations displayed in Figure 1, the interaction parameter is positive, so that the resulting
random set is more likely to induce a lower value of Minkowski functional (resp. A, L or
χ) than in the Boolean case. These simulations have been done by a Metropolis-Hasting
algorithm as presented in [19].

Figure 1: Samples of: the area-interaction process with z = 0.1, θ1 = 0.2 (left); the perimeter-
interaction process with z = 0.2, θ2 = 0.4 (middle); the Euler-Poincaré-interaction process with
z = 0.1, θ3 = 1 (right). The window is [0, 50]2 and µ is the uniform law on [0.5, 2].

Remark 2.2. Let us mention some possible generalisations of Definition 2.1.
Consider first the case of a continuous distribution for the radii. To avoid an arbitrary

choice of µ, it is possible to simply choose µ as the uniform distribution on [0, R0] and then
consider an extra term in the density (2.2) for the law of the radii. For example, assume
we would like to fit a beta distribution to the radii, then gΛ would become proportional to

zne−H
θ(ωΛ) Rn0

B(ν1, ν2)n

n∏
i=1

(
1− Ri

R0

)ν1−1(Ri
R0

)ν2−1

where ωΛ = {(x1, R1), . . . , (xn, Rn)}, ν1 > 0, ν2 > 0 and B(ν1, ν2) denotes the beta func-
tion. Then the parameters ν1, ν2 can be estimated along with θ thanks to the Takacs-Fiksel
procedure described in Section 3, even if the germs are not observed. For simplicity of
presentation, we do not include this generalisation in the following.

A second generalisation concerns the multi-scale setting (see [1, 9, 25]), where µ is
a discrete measure, leading to different types of balls. The interaction may then differ
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according to the type of balls. For example, in presence of two types of balls with respective
radius R1 and R2, we choose µ = δR1 + δR2. Then the density gΛ for an area interaction
becomes proportional to

zn1
1 zn2

2 e−θ1A(Uω1 )−θ2A(Uω2 )+θ12A(Uω1∩Uω2 )

where ω1 (resp. ω2) denotes the set of grains with radius R1 (resp. R2) in Λ, n1 (resp. n2)
denotes their number, and Uω1 (resp. Uω2) denotes their union. Here again, the parameters
z1, z2, θ1, θ2 and θ12 can be estimated with the procedure described in Section 3, provided
the two sets Uω1 and Uω2 are observed.

2.3 Quermass model on the whole plane: The Markov property

In this section the Markov property of the Quermass model is displayed via the Georgii-
Nguyen-Zessin (GNZ) equation ([8, 23]). An alternative presentation, from a statistical
physics point of view, can be found in [5].

First, let us define the local energy of a marked point (x,R) with respect to a configu-
ration ω by the following expression

hθ((x,R), ω) := Hθ(ωBx ∪ (x,R))−Hθ(ωBx), (2.3)

whereBx denotes the ballB(x, 2R0). The local energy is related to the Papangelou intensity

λ∗((x,R), ω) :=
gBx(ωBx ∪ (x,R); z, θ)

gBx(ωBx ; z, θ)
,

by λ∗((x,R), ω) = z exp(−hθ((x,R), ω)). Note that the above relation makes sense from
Definition 2.1 since the set Bx is bounded.

We have the following characterisation of the Quermass process via the GNZ equation.

Proposition 2.3 (Georgii [8], Nguyen-Zessin [23]). For any bounded set Λ ⊂ R2, a proba-
bility measure P on ΩΛ is the Quermass point process on Λ with parameter θ ∈ R3, intensity
z > 0 and distribution µ of the radii (i.e. P = P z,θΛ ) if and only if for any non-negative
function f from E × ΩΛ to R

E

(∑
x∈ωΛ

f ((x,R),ωΛ\(x,R))

)
= E

(∫ R0

0

∫
Λ
z e−h

θ((x,R),ωΛ)f ((x,R),ωΛ) dx µ(dR)

)
,

(2.4)
where E denotes the expectation with respect to P and ω follows the distribution P .

The GNZ equation involves the expectation under the Quermass process of two com-
pletely different types of expressions. This equation is the starting point of the Takacs-
Fiksel estimation procedure to be presented in Section 3.2.

In the present paper, we mainly consider Quermass processes on bounded windows
as presented in Definition 2.1. However, it is necessary to consider Quermass processes
on the full plane R2 for questions involving asymptotic properties of estimators (such as
consistency or asymptotic normality). This extension is not trivial because for an infinite
configuration ω in Ω, A(Uω) and L(Uω) are infinite while χ(Uω) can be infinite, minus infi-
nite or an indeterminate form. So the energy Hθ(ω) in (2.1) is in general an indeterminate
form and the definition 2.1 makes no sense in this case. Nevertheless, a definition of the
Quermass process on R2 is possible due to the GNZ equation (2.4).
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Definition 2.4. A probability measure P z,θ on Ω is a Quermass point process on R2 with
parameter θ ∈ R3, intensity z > 0 and distribution µ of the radii if for any non-negative
function f from E × Ω to R, for any bounded set Λ ⊂ R2,

E

(∑
x∈ωΛ

f((x,R),ω\(x,R))

)
= E

(∫ R0

0

∫
Λ
ze−h

θ((x,R),ω)f((x,R),ω)dx µ(dR)

)
,

where E denotes the expectation with respect to P z,θ and ω follows the distribution P z,θ.

The existence of a measure P z,θ (for any z > 0 and any θ ∈ R3) satisfying Definition 2.4
was proved recently in [5].

3 The estimation procedures

Let us consider a realisation ω of a Quermass point process defined on a set Λ′, where
Λ′ ⊆ R2. We assume that we observe the random set Uω ∩ Λ, where Λ is the observation
window, i.e. Λ is a bounded set and Λ ⊆ Λ′. In practice two typical cases occur: Λ′ = Λ,
i.e. the observation window coincides with the domain of definition of ω (which is therefore
bounded in this case), or Λ′ = R2 and Λ ⊂ Λ′. We denote by z∗ and θ∗ the true parameters
defining the law of the observed Quermass process in Definitions 2.1 and 2.4. Since ωΛ is not
observed, but only Uω ∩Λ, the positions of the marked points (x,R) in ωΛ, i.e. the germs,
are unknown. A challenging task is to estimate the parameters z and θ = (θ1, θ2, θ3) while
the germs are not observed, which is not a typical problem of inference for Gibbs point
processes. The first subsection explains the limitation in using the maximum likelihood
procedure (MLE). The second subsection presents the main approach of this paper which
is the Takacs-Fiksel (TF) method.

3.1 The maximum likelihood approach

When z∗ is known, the classical maximum likelihood approach to estimation of the pa-
rameter θ is possible. This has been investigated in [20], where the authors introduce an
original procedure based only on the connected components that are completely included
in the observation window. The edge effects are then reduced. However, the maximum like-
lihood procedure does not allow us to estimate the intensity parameter z since the number
of points is not observed. If z∗ is unknown, a two step procedure is proposed in [20]: first
estimating z as if the observable data come from a Boolean model (various methods are
available in this setting), then, in a second step, applying the MLE procedure to estimate
θ.

Unfortunately, it seems that this two step procedure induces a strong restriction on
the possible values for the interaction parameter θ. Indeed, in the first step, the estimation
ẑ is chosen such that the Boolean model with intensity ẑ has the same specific volume
as the observed real data. Similarly, in the second step, the MLE estimation of θ ensures
that the corresponding Quermass process has the same specific volume as the real data.
So, this two step procedure concerns Quermass processes with intensity parameter ẑ, that
exhibit the same specific volume as the Boolean model with intensity ẑ. This turns out
to be a strong restriction. For example, it is well-known that the area-interaction process
(i.e. θ2 = θ3 = 0) with parameters z and θ1 > 0 is strictly stochastically dominated by
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the Boolean model with intensity z [10], which implies a strict comparison of their specific
volumes. For this example, the lonely possible value of θ1 following the previous restriction
is thus θ1 = 0. Therefore the two step procedure of [20] may imply a strong bias of the
estimates, as confirmed in Figure 5.

3.2 The Takacs-Fiksel approach

The possibility to use the Takacs-Fiksel procedure for estimating all parameters of the
Quermass process, including z, was recently emphasised in [3]. In this section we recall the
procedure, which depends on the choice of some test functions. Next we propose various
test functions, which allow to circumvent the unobservability issue of the Quermass random
set.

3.2.1 The general procedure

Consider, for any non-negative function f from E × Ω to R, and any z > 0, θ ∈ R3, the
random variable

Cz,θΛ (ω; f) =
∑
x∈ωΛ

f((x,R),ω\(x,R))−
∫ R0

0

∫
Λ
z e−h

θ((x,R),ω)f((x,R),ω)dx µ(dR), (3.1)

where ω follows the distribution P z
∗,θ∗ . From the ergodic theorem, if Λ is sufficiently

large, Cz,θΛ (ω; f)/|Λ| is approximatively equal to Ez∗,θ∗(Cz,θ
[0,1]2

(ω; f)), where Ez∗,θ∗ is the
expectation with respect to P z∗,θ∗ . Moreover, from the GNZ equation (2.4) it is easy to
show that Ez∗,θ∗(Cz

∗,θ∗

[0,1]2
(ω; f)) = 0. Therefore, for any function f , the random variable

Cz,θΛ (ω; f) should be close to zero when z = z∗ and θ = θ∗. This remark is the basis of the
Takacs-Fiksel approach.

Given K functions (fk)1≤k≤K , the Takacs-Fiksel estimator is simply defined by

(ẑ, θ̂) := arg min
z,θ

K∑
k=1

(
Cz,θΛ (ω; fk)

)2
, (3.2)

where ω is a realisation of ω. The strong consistency and asymptotic normality of (ẑ, θ̂)
when the observation window Λ grows to R2 are discussed in [3]. The main ingredient for
consistency is to ensure that (z∗, θ∗) is the unique solution to the optimisation problem in
(3.2) when Λ is large enough. This identifiability is not easy to check. Some criteria are
given in [3]. If p is the number of parameters to estimate, it turns out that choosing K = p
test functions may be not sufficient to ensure identifiability. If K > p, then identifiability
is in general achieved.

In the setting of Quermass model, it is in general not possible to compute Cz,θΛ (ω; f)
given the observation Uω ∩ Λ. Consider for instance the pseudo-likelihood estimator. It is
a particular case of the Takacs-Fiksel procedure where fk = ∂hθ((x,R), ω)/∂θk, k = 1, 2, 3
and f4 = 1/z (see section 3.2 in [3]). In this case the computation of (3.1) requires the
observation of all germs in ωΛ and so the pseudo-likelihood procedure is not feasible.
However, it is possible to find some test functions f such that

1. for all x ∈ Λ and R ∈ [0, R0], f((x,R), ω) is computable, making the integral term
in (3.1) calculable,
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2. the sum term in (3.1) is computable from the observation of Uω ∩ Λ only.

Some examples are provided below.
Note finally that for any x ∈ Λ and any R ∈ [0, R0] the computation of the local energy

hθ((x,R), ω) is always possible (up to some possibly edge effects that will be discussed in
Section 4.3). Indeed, denoting Ũ(x,R) = Uω∩B(x,R), the additivity of A, L and χ implies
that

hθ((x,R), ω) = θ1

[
πR2 −A(Ũ(x,R))

]
+ θ2

[
2πR− L(Ũ(x,R))

]
+ θ3

[
1− χ(Ũ(x,R))

]
.

(3.3)

3.2.2 Some well-adapted test functions

In this section, we introduce some test functions f that make Cz,θΛ (ω; f) in (3.1) computable
from the observation of Uω∩Λ only. This provides a solution for estimation in the Quermass
model when the germs are not observed. We restrict our presentation here to the case
ω = ωΛ, or equivalently Λ′ = Λ, meaning that the observation window coincides with
the domain of definition of P z∗,θ∗ . The general case involves some edge effects which are
discussed in Section 4.3.

Let us first consider the test function f0 defined by

f0((x,R), ω) = Length
(
S(x,R) ∩ (Uω)c

)
, (3.4)

where S(x,R) is the sphere with centre x and radius R. The quantity f0((x,R), ω) is
actually the length of arcs from the sphere S(x,R) which are outside Uω. Although the
quantity f0((x,R), ω\(x,R)) is not observable for any (x,R) in ωΛ if R 6= 0, its sum over
(x,R) ∈ ωΛ is nothing else than the total perimeter of UωΛ :∑

x∈ωΛ

f0((x,R), ω\(x,R)) = L(UωΛ). (3.5)

Moreover, it is possible to compute f0((x,R), ω) for any x ∈ Λ and R ∈ [0, R0], making
the integral in (3.1) calculable. It follows that Cz,θΛ (ω; f0) is computable.

Similarly for any α > 0, we consider the test function

fα((x,R), ω) = Length
(
S(x,R+ α) ∩ (Uω ⊕B(0, α))c

)
, (3.6)

where Uω ⊕ B(0, α) denotes the α-parallel set of Uω defined by the Minkowski sum of
Uω and B(0, α). In this case (3.1) is also computable and the sum therein reduces to the
perimeter of the α-parallel set:∑

x∈ωΛ

fα((x,R), ω\(x, r)) = L (UωΛ ⊕B(0, α)) . (3.7)

In the same spirit as (3.5), it is natural to look for some test functions farea and fep

such that the sum in (3.1) reduces to A(UωΛ) and χ(UωΛ) respectively, and the integral
term in (3.1) is calculable. However, we have not found any. Nevertheless, considering the
test function

fsum =
∑
i

fαi , (3.8)
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where the sum is over some suitable finite set of non negative αi’s, we obtain∑
x∈ωΛ

fsum((x,R), ω\(x, r)) =
∑
i

L (UωΛ ⊕B(0, αi)) , (3.9)

which is closely related to the area of the complementary set of UωΛ in Λ, in agreement
with the so-called Cavalieri estimator in stereology, see Figure 2. For this reason, fsum can
be viewed as a substitute for farea.

Figure 2: Left: UωΛ
in grey, as the union of the balls bordered with dashed lines; the length of the

solid black line is the quantity (3.5). Middle: the same UωΛ
in grey; the length of the solid black

line is the quantity (3.7) for some α > 0. Right: the same UωΛ
in grey; the sum of lengths of the

solid black lines is the quantity (3.9) for 7 αi’s.

Let us finally introduce the test function fiso which indicates, for any (x,R) ∈ ωΛ,
whether B(x,R) is an isolated ball in Uω:

fiso((x,R), ω) =

{
1 if S(x,R) ∩ Uω = ∅,
0 otherwise. (3.10)

In this case,
∑

x∈ωΛ
fiso((x,R), ω\(x,R)) is the number of isolated balls in UωΛ . Note

that an isolated ball can contain smaller balls completely included inside it.

Remark 3.1. The test functions f0, fα, fsum, fiso introduced above satisfy the regular-
ity conditions assumed in [3], which imply consistency and asymptotic normality of the
associated TF estimators, provided identifiability holds (see Section 4.4).

4 Practical aspects of Takacs-Fiksel estimation

4.1 Computation of the contrast function

The TF estimator in (3.2) requires to compute Cz,θΛ (ω; f) defined in (3.1) for the different
well-adapted test functions f introduced in Section 3.2.2. Note that in Section 4.3, we will
explain how to handle edge effects in the computation of (3.1), so we do not address this
question in this section.

The integral term in (3.1) can be approximated by a Monte Carlo approach, based on N
independent points x1, . . . , xN uniformly distributed on Λ and N independent realisations
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R1, . . . , RN from µ. This leads to the approximation

Cz,θΛ (ω; f) ≈
∑
x∈ωΛ

f((x,R), ω\(x,R))− 1

N

N∑
i=1

z e−h
θ((xi,Ri),ω)f((xi, Ri), ω). (4.1)

Let us consider the computation of (4.1) for the test functions f0, fα, fsum and some
fixed values of z and θ. The first sum above reduces respectively to the perimeter of UωΛ ,
the perimeter of the α-parallel set of UωΛ , or the sum of such perimeters. The construction
of α-parallel sets of UωΛ and the calculation of the above-mentioned perimeters may be
achieved using some mathematical morphology tools, see e.g. [24, 22, 29]. The second sum
in (4.1) involves the local energy of each new ball (xi, Ri), given by (3.3), and f((xi, Ri), ω),
for f = f0, fα, fsum. While for each i we can use again some mathematical morphology tools
to calculate these two terms, the computation for the whole sum, which requires to repeat
N times these calculations, may become difficult to implement.

An alternative procedure to compute (4.1) is to approximate the observed set Uω∩Λ by
any union of balls (e.g. by the procedure described in [32]) and to consider the associated
power tessellation (see [19]). Then the construction of approximated α-parallel sets of UωΛ

becomes straightforward since it suffices to increase the radius of each ball by α. Moreover,
the calculation of the above-mentioned perimeters, the calculation of the local energy of
any new ball (xi, Ri), and the calculation of f((xi, Ri), ω), for f = f0, fα, fsum, are easily
deduced from the associated power tessellation as described in [19].

We emphasise that the above procedure does not depend on the union of balls used to
approximate Uω∩Λ. In order to minimise the computational complexity, an approximation
involving a low number of balls is therefore preferable. Moreover, this union of balls is only
used for computational reasons and is not related to the germ-grain representation of Uω.
In particular, the number of balls in this approximation is not relevant to estimate z.

Finally, let us turn to the computation of (4.1) for the test function fiso. Contrary to f0,
fα and fsum, the test function fiso is strongly related to the ball structure of the germ-grain
model, since the first sum in (4.1) corresponds to the number of isolated balls in UωΛ . In
this sense fiso seems less natural for applications. However, as it will be demonstrated in
Section 5, the test function fiso appears to provide a relevant information for the estimation
of the parameters. For this reason, it can be important to include it in (3.2). In practice,
we have then to decide what can be considered as an isolated ball. A solution can be to
view an isolated component of UωΛ as an isolated ball, if its diameter is smaller than some
constant chosen a priori. Another solution is to use the approximation of Uω∩Λ by a union
of balls, as mentioned above: An isolated component can then be considered as an isolated
ball if it is approximated by an isolated ball.

In this work, the practical implementation of the TF procedure has been conducted
using an approximation of Uω∩Λ by a union of balls and the construction of the associated
power tessellation.

4.2 Minimisation of the contrast function

As described in Section 3.2.2, many computable test functions are available to implement
the TF procedure for the Quermass model: f0, fα for any α > 0, fsum, fiso.

In order to estimate p unknown parameters among z, θ1, θ2 and θ3, it suffices to choose
K ≥ p test functions as above and to solve (3.2) where θ = (θ1, θ2, θ3).
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The TF optimisation (3.2) in z can be done explicitly. We deduce that the solution
(ẑ, θ̂) of (3.2) necessarily belongs to the implicit manifold z = z̃(θ) where

z̃(θ) :=

∑K
k=1 SkIk(θ)∑K
k=1 I

2
k(θ)

, (4.2)

with
Sk =

∑
x∈ωΛ

fk((x,R), ω\(x,R))

and

Ik(θ) =

∫ R0

0

∫
Λ
e−h

θ((x,R),ω)fk((x,R), ω)dx µ(dR).

Therefore, in practice, θ is first estimated by the solution θ̂ of (3.2) where z is replaced by
z̃(θ), i.e.

θ̂ = arg min
θ

K∑
k=1

(
Sk − z̃(θ)Ik(θ)

)2
.

This solution may be obtained by a grid search optimisation procedure. Then z is estimated
by ẑ = z̃(θ̂).

Recall that the practical computation of all terms involved in (4.2) and (3.2) can be
conducted as explained in Section 4.1.

This procedure allows to consider several estimators, depending on the number and
the choice of test functions used in (3.2). It is not easy to find an optimal choice. The
asymptotic variance of TF estimators is known (cf [3]), but appears intractable to be
optimised. Some simulations are thus mandatory to provide some recommendations, see
Section 5.

4.3 Edge effects

Based on the observation of Uω∩Λ, two types of edge effects may occur in the computation
of (3.1) or (4.1).

First, edge effects may occur in the integral term in (3.1), or the second sum in (4.1),
for the computation of hθ((x,R), ω) and f((x,R), ω), for f = f0, fα, fsum, or fiso, when
x is close to the boundary of Λ. In view of (3.3), (3.4), (3.6), (3.8), (3.10), this type of
edge effects does not occur for the marked points (x,R) such that B(x,Rmax) ⊂ Λ, where
Rmax = R0 + maxi αi. Therefore, in practice, this first type of edge effects can be avoided
by considering minus sampling, i.e. the estimation on Λ−, where Λ− denotes the eroded
set of Λ by Rmax. The estimators are then defined by (3.2) where Λ is replaced by Λ−.

Second, edge effects can occur for the first sum term in (3.1) and (4.1). Let us consider
f = f0. If ω = ωΛ, as it was assumed for simplicity in Section 3.2.2, then from (3.5) this
sum term reduces to L(UωΛ). As we only observe Uω ∩ Λ, an approximation in this case
could be L(Uω ∩ Λ) and we have L(Uω ∩ Λ) ≤ L(UωΛ), where the equality occurs if and
only if Uω ⊂ Λ. In the general case when ω 6= ωΛ, meaning that the domain of definition of
ω strictly contains Λ, the equality (3.5) does not hold any more and some extra terms due
to edge effects have to be added in the right hand side of (3.5). Furthermore, to avoid the
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first type of edge effects, the estimation procedure is implemented on the eroded domain
Λ−. In this general case we may also use the approximation∑

x∈ωΛ−

f0((x,R), ω\(x,R)) ≈ L(Uω ∩ Λ−), (4.3)

where the last perimeter can be computed by some mathematical morphology tools. Al-
ternatively, Uω ∩ Λ can be approximated by a union of balls, as suggested in Section 4.1,
namely for some integer n, Uω ∩ Λ ≈

⋃n
i=1B(yi, ri) where yi ∈ Λ and ri > 0, and we can

use the approximation∑
x∈ωΛ−

f0((x,R), ω\(x,R)) ≈
∑
yi∈Λ−

Length
(
S(yi, ri) ∩

( n⋃
j=1
j 6=i

B(yj , rj)
)c)

. (4.4)

This last sum can easily be implemented from the power tessellation based on
⋃n
i=1B(yi, ri).

Note that error of approximations in (4.3) and (4.4) involve only edge effects that
become negligible when Λ tends to R2. Finally similar approximations can be used for
f = fα, fsum or fiso instead of f = f0 and we omit the details.

In this work, we have decided to handle edge effects by working in (3.2) with the eroded
domain Λ− instead of Λ, and by using the approximation (4.4), which is in agreement with
our choice in Section 4.1.

4.4 Identifiability

The consistency of the TF procedure crucially depends on an identifiability assumption
which basically implies that the contrast function in (3.2) has a unique minimum when
Λ tends to R2 (see [3]). This assumption is in general satisfied if K > p, where p is the
number of parameters to estimate. When K = p, identifiability is not easy to check, but
has been proved to hold in some cases (see Example 2 in [3]).

Nevertheless, these theoretical considerations only ensure asymptotic identifiability. In
practice, where Λ 6= R2, several local minima of the contrast function in (3.2) may arise
and the global minimum might lead to an improper estimation. To avoid this problem, a
solution is to consider several TF contrast functions, coming from various choices of test
functions. They should all share a local minimum in the same region, which allows us to
restrict the domain of optimisation.

5 Simulations

5.1 Estimation of the intensity parameter z

Let us first assume that θ∗1, θ∗2, θ∗3 are known and let us consider the estimation of z, which
appears as the main challenge for the Quermass-interaction model when the germs are not
observed. In this setting, the equation (4.2) with θ = θ∗ provides an explicit estimator of
z. The computation of (4.2) is conducted as explained in Section 4: we use minus sampling
and the Monte Carlo approximation (4.1) is applied, where we choose N = 2500.

More specifically, we consider the estimators ẑ0, ẑα1 , · · · , ẑα10 , ẑiso and ẑsum, defined
by (4.2) where K = 1 and where fk is respectively f0, fα1 , · · · , fα10 , fiso and fsum. The
latest test function fsum is defined by the sum (3.8) over the ten previous αi, i = 1, . . . , 10.
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Some results for the estimation of z are displayed in Figure 3, based on 100 replicates
of the area-interaction process (θ2 = 0, θ3 = 0) on [0, 50]2, when z∗ = 0.1, θ∗1 = 0.2 and µ
is the uniform law on [0.5, 2]. In the left plot, large parallel sets have been used: αi = i/5,
i = 1, . . . , 10, while the right plot shows the results with smaller parallel sets: αi = i/50,
i = 1, . . . , 10.

Figure 3 confirms that our procedure allows to estimate z, even if the germs are not
observed. Moreover, it appears that small parallel sets seem to provide better estimates.
The same conclusion holds from intensive estimations of z for other values of θ∗1, θ∗2 and
θ∗3 (not presented in this article).
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Figure 3: Estimations of z∗ = 0.1 from 100 replicates of an area-interaction process (θ∗1 =
0.2). Left: Boxplots of ẑ0, ẑαi (αi = i/5), ẑiso and ẑsum. Right: The same boxplots but with
αi = i/50.

5.2 Estimation for the A, L and χ process

In this section, we consider the estimation of the area-interaction process, for short A-
process (θ2 = θ3 = 0), of the perimeter-interaction process, for short L-process (θ1 = θ3 =
0) and of the Euler-Poincaré-interaction process, for short χ-process (θ1 = θ2 = 0). In
these cases, two parameters have to be estimated: the interaction parameter (θ1, θ2 or θ3)
and the intensity parameter z.

Many TF estimators are conceivable. For instance, for the area-interaction process, the
estimation of (z, θ1) can be done by the following TF estimators with K = 2: (ẑiso, θ̂iso)
based on (f0, fiso); (ẑα, θ̂α) based on (f0, fα) for some α > 0; (ẑsum, θ̂sum) based on (f0, fsum)
where the sum (3.8) is done over ten αi’s. It is also possible to consider more test functions,
as for example with K = 11: (ẑall, θ̂all) based on f0, fα1 , . . . , fα10 for ten different αi’s.

Some simulations (omitted here) show that given an observation UωΛ , the estimations
(ẑα, θ̂α) may be very variable with α, even when using small parallel sets as suggested in
Section 5.1. As far as we do not know which estimator is the most efficient, we prefer to
use estimators that combine several small parallel sets. For this reason, we will concentrate
on (ẑsum, θ̂sum) and (ẑall, θ̂all).
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Another natural way to combine information coming from various parallel sets is to
consider an aggregated estimator. How to aggregate several estimators is an interesting
but difficult question, particularly in presence of strong dependent observations as in the
Quermass model. We simply consider here the median of several estimators, that provides
a natural robust combination:

(ẑmed, θ̂med) = median
(
(ẑα1 , θ̂α1), . . . , (ẑα10 , θ̂α10)

)
.

Therefore, the following simulations concern the three estimators: (ẑsum, θ̂sum), (ẑmed, θ̂med)
and (ẑall, θ̂all), where αi = i/50, i = 1, . . . , 10. Moreover, since the test function fiso is pe-
culiar as it is strongly related to the ball structure of the germ-grain model, we also assess
the performance of (ẑiso, θ̂iso), based on (f0, fiso).

All simulations are done on [0, 50]2. The reference law of radii µ is uniform on [0.5, 2].
The practical implementation is conducted as explained in Section 4, that includes minus
sampling and the Monte Carlo approximation (4.1). Figure 4 displays the estimation results
on 100 replicates of: The area-interaction process with z∗ = 0.1, θ∗1 = 0.2, the perimeter-
interaction process with z∗ = 0.2, θ∗2 = 0.4, and the Euler-Poincaré-interaction process
with z∗ = 0.1, θ∗3 = 1, respectively.

As a first conclusion, we see from Figure 4 that all estimators allow to estimate the
two parameters and perform more or less equivalently. However, (ẑall, θ̂all) seems to slightly
surpass the other estimators, in terms of dispersion and outliers.

Finally, in Figure 5, the fluctuations of (ẑall, θ̂all) are compared to the behaviour of
the MLE (ẑMLE, θ̂MLE), for the three examples explained above. The MLE is computed in
assuming that the centres of the balls are known (recall that this is not possible in practice
for a germ-grain set). So Figure 5 shows what we lose when we do not observe the germs
of the Quermass-interaction process and we use the TF procedure. On the right hand side
of each plot of Figure 5, the boxplot of the two-step estimator (ẑ[20], θ̂[20]) considered in
[20] is also represented (see Section 3.1 for a discussion). The strong bias of this procedure
is clearly illustrated.

5.3 Estimation of several interaction parameters

In the previous section, we have considered models with two parameters : the intensity and
one interaction parameter. To fit models with more interaction parameters, we follow the
conclusion of the previous section: Given ten small αi’s, we consider the TF estimator based
on all available test functions f0, fα1 , · · · , fα10 , fsum and fiso. Since fiso is strongly related
to the ball structure of the germ-grain model, which might be a restriction for practical
computation, we also consider the TF estimator based on all previous test functions except
fiso.

Some results of estimation are presented in Figure 7 for 100 replicates of the (A,L)-
process (θ3 = 0) on [0, 50]2, with z∗ = 0.1, θ∗1 = −0.2, θ∗2 = 0.3 and the reference law
of radii is uniform on [0.5, 2]. The same kind of results are displayed in Figure 8 for the
Quermass-interaction process with z∗ = 0.1, θ∗1 = −0.2, θ∗2 = 0.3 and θ∗3 = −1. See some
examples of samples in Figure 6.

While the quality of estimation turns out to be satisfactory in the presence of one
interaction parameter (i.e. for the A-process, the L-process or the χ-process) as seen in
Section 5.2, it naturally decreases in the presence of more interaction parameters (Figure 7),
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Figure 4: Estimations from 100 replicates of, from top to bottom: An A-process (z∗ =
0.1, θ∗1 = 0.2); An L-process (z∗ = 0.2, θ∗2 = 0.4); A χ-process (z∗ = 0.1, θ∗3 = 1).
The estimators are (ẑiso, θ̂iso) (green), (ẑall, θ̂all) (red), (ẑmed, θ̂med) (black) and (ẑsum, θ̂sum)
(blue). From left to right: scatterplot of (ẑ, θ̂); boxplots of ẑ; boxplots of θ̂.
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0.
05

0.
10

0.
15

0.
20

A-process L-process χ-process

●

●

θ̂MLE θ̂all θ̂[20]

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

●
●

●

●

●●●

θ̂MLE θ̂all θ̂[20]

0.
1

0.
2

0.
3

0.
4

0.
5

●

●

●

θ̂MLE θ̂all θ̂[20]

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Figure 5: Comparison of three estimators of z (top) and θ (bottom) for the examples
considered in Figure 4, i.e. 100 replicates of an A-process, an L-process and a χ-process.
For each plot: boxplot of the MLE assuming the centres of the balls are known (left); ẑall
or θ̂all (middle); the two-step estimator considered in [20] (right).

17



to become poor for the full Quermass-interaction model (Figure 8). Moreover, Figures 7
and 8 show that using the test function fiso seems to improve the estimation, but its
computation in practice requires to decide which components can be considered as isolated
balls.

Figure 6: Samples of the (A,L)-process with z∗ = 0.1, θ∗1 = −0.2 and θ∗2 = 0.3 (left) and of the
Quermass process with z∗ = 0.1, θ∗1 = −0.2, θ∗2 = 0.3 and θ∗3 = −1 (right). The window is [0, 50]2

and µ is the uniform law on [0.5, 2].
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Figure 7: Estimation of z (left), θ1 (middle) and θ2 (right) from 100 replicates of the (A,L)-
process with z∗ = 0.1, θ∗1 = −0.2 and θ∗2 = 0.3. In each plot, the estimator involves fiso
(on the left) or not (on the right).
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Figure 8: Estimation (from left to right) of z, θ1, θ2 and θ3 from 100 replicates of the
Quermass-interaction process with z∗ = 0.1, θ∗1 = −0.2, θ∗2 = 0.3 and θ∗3 = −1. In each
plot, the estimator involves fiso (on the left) or not (on the right).

6 Application to heather data

The plot on the left hand side of Figure 9 shows a binary image of the presence of heather
in a 10×20 m rectangular region at Jädraås, Sweden. This heather dataset has been widely
studied. It was first presented by P. Diggle in [6], where it was modelled by a stationary
spherical Boolean model. This point of view has been considered further in [12, 13] and in
[4], where alternative estimation methods for the Boolean model have been implemented.

Figure 9: Heather data (left) and its approximation by a union of balls (right)

Considering heather bushes as discs, the spherical germ-grain representation of the data
seems to be a natural approximation. However, the independence between the location of
the grains and their radii, implied by the Boolean model, appears more questionable. As a
matter of fact, simulations of the fitted Boolean models from the aforementioned studies
do not look visually similar to the heather dataset, as initially observed by P. Diggle in [6].
This lack of fit was confirmed in [20] by various diagnostic plots (as in Figure 10). The same
conclusion is drawn in [21], where a Matérn’s cluster model is proposed as an alternative
to the Boolean model. However no estimation procedure for this Matérn’s cluster model
is given in [21]. Instead, a brute-force approach is used to choose the parameters in order
to pass some diagnostic plots. While the latter model appears to be well adapted to the
heather dataset, a comparison between our statistical method and the approach in [21] is
difficult and therefore will not be conducted further.

Moreover, a model of interacting discs has been fitted to the heather dataset in [20]. The
model is very similar to the Quermass-interaction model, except that in the Hamiltonian
(2.1), the Euler characteristic is replaced by the number of connected components. This
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model has been fitted in [20] by a maximum likelihood approach as described in Section 3.1,
where three reference measures µ have been tested. As a result, the best fitted model was:
µ is the uniform law on [0, 0.53], ẑ = 2.45 and the estimated Hamiltonian, denoted H̃ θ̂, is

H̃ θ̂(ωΛ) = 4.91 A(UωΛ)− 1.18 L(UωΛ) + 2.25 Ncc(UωΛ), (6.1)

where Ncc(UωΛ) denotes the number of connected components of UωΛ .
As explained in Section 3.1, the estimation procedure used in [20] implies some rather

strong restriction on the parameter space. For comparison, we fit hereafter a Quermass-
interaction model using the TF approach.

Following the practical recommendations in Section 4, the binary image is first ap-
proximated by a union of balls, using the procedure described in [32]. The result of this
approximation is shown on the right plot of Figure 9. Second, we choose for the reference
measure µ the uniform law on [0.05, 0.55], which is in agreement with the final choice
made in [20], except that a minimal value for the radii is fixed to 0.05, corresponding to
the smallest radius of the spots observed in the heather dataset.

The estimation of the full Quermass model (i.e. all parameters z, θ1, θ2, θ3 are un-
known) did not give satisfactory results. This is not very surprising in view of the strong
variability of the estimates shown in Figure 8. The contrast function in (3.2) computed
from the heather dataset actually exhibits in this general case many local minima, leading
to an identifiability issue. Actually, it appears that any value of the intensity parameter
z can somehow be compensated by some value of the area interaction parameter θ1. This
identifiability issue between the area interaction and the intensity was already visible in the
top-left plot of Figure 4, where we observe a strong correlation between the two estimates
in the A-process. Therefore, we have decided to choose a simpler model. Since the heather
dataset seems not rich enough to distinguish the role played by the intensity parameter
z and the area interaction parameter θ1, a natural choice is to fit an (L, χ)-process. In
fact, fitting an (A,L)-process leads to the same kind of identifiability issue as before. This
basically means that only one parameter becomes relevant in the (A,L)-process for the
heather dataset, namely the perimeter interaction parameter, which is not sufficient to
obtain a good fit.

So, the estimation of the (L, χ)-process has been implemented on the balls approxima-
tions of the heather dataset (right plot of Figure 9), using the TF procedure associated to
the test functions f0, fα1 , · · · , fα10 , fsum and fiso, where αi = 0.005 i, i = 1, . . . , 10, and
where µ is the uniform law on [0.05, 0.55]. As a result, we obtained ẑ = 2.12 and

H θ̂(ωΛ) = 0.14 L(UωΛ) + 0.22 χ(UωΛ). (6.2)

In order to check the quality of fit of (6.2) to the heather dataset, we use some diagnostic
plots in Figure 10, where a comparison is also provided with the fitted model (6.1) of [20].
These plots are the same as in [20], they correspond to an estimation of the contact
distribution function (top left): H(r) = P (D ≤ r|D > 0) where D = inf{ρ ≥ 0 : U ∩
B(0, ρ) 6= ∅}; the covariance function (top right) C(r) = P (x ∈ U , y ∈ U , ‖x − y‖ = r);
and some shape-characteristics (see [27] or [20] for a definition): erosion er (middle left),
dilatation dr (middle right), opening or (bottom left) and closing cr (bottom right).

A slightly better fit is observed for (6.2), in particular from the contact distribution
function, the erosion and the closing, even if the closing is not fitted very well. This con-
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clusion seems confirmed by the visual impression from samples of (6.1) and (6.2), shown
respectively in Figure 11 and 12, next to the balls approximation of the heather dataset.
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Figure 10: From top left to bottom right: contact distribution function, covariance function,
erosion, dilatation, opening, closing, for the estimation from the heather dataset (solid red
line), the estimation for the balls approximation of the heather dataset (red line with
circles), 95% envelopes under (6.2) (solid black line), 95% envelopes under (6.1) (dashed
black line)
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