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Abstract
The Quermass model is a generalization of the classical germ-grain Boolean model for

which a morphological interaction is added. It allows to model random structures with
specific morphologies which are unlikely to come from a Boolean model. The Quermass
model depends on three interacting parameters and on an intensity parameter. Since the
number of points is not observable from a germ-grain set, the estimation of all parameters
is not possible from classical likelihood or pseudo-likelihood approaches. In this paper, we
present a procedure based on the Takacs-Fiksel method which is able to fit all parameters
of the Quermass model, included the intensity. An intensive simulation study is conducted
to assess the efficiency of the procedure and to provide practical recommendations. An
application to heather data, initially studied by P. Diggle, is finally proposed.

KEY-WORDS: Gibbs Point Process, germ-grain model, Quermass-Interaction Process,
Area-Process, Perimeter-Process, Takacs-Fiksel estimator.
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1 Introduction

Physics, biology or agronomy are often confronted with problems involving complex ran-
dom sets like liquid-vapor interface structures, micro-emulsions, porous media or propaga-
tion domains of plants. Admissible models for these random structures are the germ-grain
models, which consist in the union of locally finite random sets called grains. The most
popular germ-grain model is certainly the Poisson Boolean model of balls. In this model,
the grains correspond to balls, whom centers are distributed as a Poisson point process
and the radii are independently and identically distributed. The probabilistic and statisti-
cal properties of the Boolean model have been widely studied (see for example [16], [27]).
However, the variety of morphological structures induced by the Boolean model is limited.
To reach more realistic morphologies, some Gibbs modifications of the Boolean model have
been developed. The rough idea is to introduce an interaction (or Hamiltonian) acting on
the morphology of the random set. This leads to a new random structure which tends to
minimize this Hamiltonian. In this way, some morphological features are more likely to
occur than for Boolean sets.

A first morphological interaction based on the area of the germ-grain structure has been
introduced in [30] to model phase transition phenomena in statistical mechanics. More
complex interactions appeared later in the nineties [1, 13, 14, 15]. Hadwiger’s theorem [10]
ensures, under mild conditions, that any function acting on an union of compact convex sets
can be decomposed into a linear combination of the Minkowski (or Quermass) functionals.
These functionals correspond in R2 to the area, the perimeter and the Euler-Poincaré
characteristic (number of connected components minus number of holes). Accordingly, any
morphological interaction in R2 can be written as a linear combination of these three
functionals. The Quermass model corresponds to the Gibbs modification of the Boolean
model based on such linear interactions. From Hadwiger’s theorem, it appears as a very
rich model to represent random structures.

The Quermass model in R2 depends on the law of the radii and on four parameters:
the three coefficients in the linear combination defining the Hamiltonian, and the intensity
parameter of the underlying Boolean model. The present paper deals with the estimation
of these four parameters.

The main difficulty comes from the nature of the observable data, which are the germ-
grain set. In particular the positions and the number of balls are not observed and can
not be used in the statistical procedure, which is untypical in estimation problems for
Gibbs point processes. Note that this specific issue already occurs for the estimation of the
intensity parameter of the classical Boolean model. In this case, some explicit estimating
equations have been found, that express the intensity parameter in terms of the specific
volume of the set, see [16]. In presence of Gibbs interactions as for the Quermass model, it
is well-known that the computation of macroscopic quantities is intractable, so a similar
explicit estimation procedure is not possible.

Assuming the intensity parameter of the underlying Boolean model is known, a maxi-
mum likelihood approach is investigated in [18] for the estimation of the three parameters
of the Quermass interaction. Unfortunately the intensity parameter can not be fitted by
this method due to the unobservability of the number of points. Section 3.1 gives more
details about this procedure and explain the serious consequences of a misspecification of
the intensity parameter in practice. In this paper, we fit all parameters of the Quermass
process, including the intensity, via a Takacs-Fiksel procedure ([28], [7], [3]). The Takacs-
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Fiksel contrast function is based on an empirical counterpart of the Georgii-Nguyen-Zessin
equilibrium equation (2.3), and depends on the choice of some test functions. Due to the
unobservability of points, the contrast function is not computable in general, but some
specific choices of test functions overcome this issue (see Section 3.2.2). This is the key
ingredient for the estimation of the Quermass model by the Takacs-Fiksel procedure. The
purpose of the present paper is to develop in details this method, to provide a simulation
study and to deduce some practical recommendations.

As an application, we finally fit a Quermass model to heather data. Heather dataset
has been initially studied by P. Diggle in [6], followed by many studies ([11], [12], [4], [19],
[18]). We show that our fitted model seems a better approximation of heather dataset,
both from a visual impression and from a stastical diagnostic inspection.

In Section 2, we introduce the Quermass model and we recall the fundamental Georgii-
Nguyen-Zessin equation. Section 3 presents the estimation procedures. The limitation in
using the maximum likelihood approach is explained in Section 3.1. Then in Section 3.2 we
present the general Takacs Fiksel procedure and its application to the Quermass model.
Practical aspects for the implementation of the procedure are given in Section 4. A simula-
tion study assessing the efficiency of the procedure is presented in Section 5. An application
to heather dataset is conducted in Section 6. Note finally that an appealing alternative
estimation procedure would consist in combining the likelihood and the Takacs-Fiksel ap-
proaches, to take advantages of both methods. Following this idea, we have developed a
mixed procedure. But it turns out to be very time consuming without being more efficient.
Its presentation is postponed to an appendix.

2 Quermass Model

2.1 Notations

We denote by E the space R2 × [0, R0] (where R0 > 0 is a fixed positive real number)
endowed with its natural Euclidean Borel σ-algebra. It is the space of marked points (x,R)
where x ∈ R2 is the centre of a ball and R its radius. We assume for simplicity that the
radii are uniformly bounded by R0. This assumption allows to define easily the Quermass
model on the full plane R2, see section 2.3, though this restriction is not mandatory (see
[5]). For any bounded set Λ in R2, we denote by EΛ := Λ× [0, R0] the restriction of E to Λ.

By definition, a configuration of points ω is a locally finite subset of E , which means that
the set ωΛ := ω ∩ EΛ is finite for any bounded set Λ in R2. The space of all configurations
of points in E is denoted by Ω, while for any bounded set Λ in R2, ΩΛ denotes the subspace
of configurations included in EΛ.

For x ∈ R2, we write for short x ∈ ω if there exists R ∈ [0, R0] such that (x,R) ∈ ω. For
(x,R) ∈ E we write ω∪ (x,R) in place of ω∪{(x,R)} and ω\(x,R) in place of ω\{(x,R)}.

For any configuration ω we denote by Uω its germ-grain representation defined by the
following set

Uω :=
⋃

(x,R)∈ω

B(x,R),

where B(x,R) is the closed ball centered at x with radius R.
Let µ be a reference probability measure on [0, R0]. We denote by λ the Lebesgue

measure on R2 and by πµ the marked Poisson process on E with intensity measure λ⊗ µ.
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For every bounded set Λ, the probability measure πµΛ denotes the marked Poisson process
on EΛ with intensity measure λΛ ⊗ µ. Recall that the law of the random set Uω under
the probability measure πµ is nothing else than the standard homogeneous Boolean model
with intensity one and distribution of radii µ.

2.2 Quermass model on a bounded window Λ

Following Kendall et al. [13], for any configuration ωΛ in a bounded window Λ in R2, the
Quermass-interaction (or Quermass Hamiltonian) is defined by

Hθ(ωΛ) = θ1 A(UωΛ) + θ2 L(UωΛ) + θ3 χ(UωΛ), (2.1)

where θ := (θ1, θ2, θ3) is a vector of real parameters. The functionals A, L and χ are
the three fundamental Minkowski (or Quermass) functionals: area, perimeter and Euler-
Poincaré characteristic (number of connected components minus the number of holes).

From Hadwiger’s Theorem [10], any additive functional F defined on the space of finite
unions of convex compact sets (i.e. F (A ∪B) = F (A) + F (B)− F (A ∩B)) and satisfying
some continuity assumption (see [10]) can be decomposed as in (2.1). This universal rep-
resentation explains the interest of the Quermass interaction for morphological model at
mesoscopic scale [14, 15].

Definition 2.1. The Quermass point process on a bounded set Λ in R2 for the parameter
θ, the intensity z > 0 and the distribution of radius µ is the probability measure P z,θΛ on ΩΛ

which is absolutely continuous with respect to the marked Poisson Process πµΛ with density

gΛ(ωΛ; z, θ) =
1

ZΛ(z, θ)
zn(ωΛ)e−H

θ(ωΛ),

where ZΛ(z, θ) :=
∫
zn(ωΛ)e−H

θ(ωΛ)πµΛ(dωΛ) is a normalizing constant called the partition
function.

Some simulations are displayed in Figure 1. They correspond to Quermass models
involving only one non-null interacting parameter: the Area process (θ2 = θ3 = 0), the
Perimeter process (θ1 = θ3 = 0), and the Euler-Poincaré process (θ1 = θ2 = 0). These
extreme situations show the rich variety of random sets that Quermass processes can
provide. Note that in the three situations displayed in Figure 1, the interacting parameter
is positive, so that the resulting random set is more likely to induce a lower Minkowski
functional (resp. A, L or χ) than in the Boolean case. These simulations have been done
by a birth-death Metropolis-Hasting algorithm as presented in [17].

2.3 The Gibbs property: Quermass model on the full plane

In this section the Gibbs (or Markov) property of the Quermass model is displayed via the
Georgii-Nguyen-Zessin (GNZ) equation. Another equivalent and certainly more natural
presentation could have been considered via the DLR equations. But the latter point view
requires to introduce more technical materials, that we do not use in this work, so we
decided to focus on the GNZ perspective. We refer to [8, 23, 25] for details about the
general theory of Gibbs point processes with, in particular, a presentation via the DLR
equations.
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Figure 1: Samples of: the Area process with z = 0.1, θ1 = 0.2 (left); the Perimeter process with
z = 0.2, θ2 = 0.4 (middle); the Euler-Poincaré process with z = 0.1, θ3 = 1 (right). The window is
[0, 50]2 and the radii are uniformly distributed on [.5, 2]2.

First, let us define the local energy of a marked point (x,R) with respect to a configu-
ration ω by the following expression

hθ((x,R), ω) := Hθ(ω∆ ∪ (x,R))−Hθ(ω∆), (2.2)

where ∆ is any bounded set containing the ball B(x, 2R0). Thanks to the additivity of the
functionals A, L and χ, this local energy does not depend on the choice of such ∆, so we
can simply choose ∆ = B(x, 2R0). Note that the local energy is related to the Papangelou
intensity

λ∗((x,R), ω) :=
g∆(ω∆ ∪ (x,R); z, θ)

g∆(ω∆; z, θ)
,

where ∆ satisfies the same condition as above, by λ∗((x,R), ω) = exp(−hθ((x,R), ω)).
We have the following characterisation of the Quermass process via the Georgii-Nguyen-

Zessin equation (GNZ equation).

Proposition 2.2 (Georgii [8], Nguyen-Zessin [21]). For any bounded set Λ, a probability
measure P on ΩΛ is the Quermass point process on Λ for the parameter θ, the intensity
z > 0 and the distribution of radius µ (i.e. P = P z,θΛ ) if and only if for any non-negative
function f from ΩΛ × E to R

E

(∑
x∈ωΛ

f ((x,R), ωΛ\(x,R))

)
= E

(∫ R0

0

∫
Λ
z e−h

θ((x,R),ωΛ)f ((x,R), ωΛ) dx µ(dR)

)
,

(2.3)
where E denotes the expectation with respect to P .

The GNZ-equation involves the expectation under the Quermass process of two com-
pletely different expressions. This equilibrium equation is the starting point of the Takacs-
Fiksel estimation procedure presented in Section 3.2.

In the present paper, we mainly consider Quermass processes on bounded windows as
presented in definition 2.1. However, it is necessary to consider Quermass processes on the
full plane R2 for questions involving asymptotic properties of estimators (as consistency
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or asymptotic normality). This extension is not trivial since the energy Hθ(ω) in (2.1) of
an infinite configuration ω in R2 does not exist in general and so the definition 2.1 makes
no sense in this case. A definition of the Quermass process on R2 is possible thanks to the
GNZ-equation (2.3).

Definition 2.3. A probability measure P z,θ on Ω is a Quermass point process on R2 for
the parameter θ, the intensity z > 0 and the distribution of radius µ if for any non-negative
function f from Ω× E to R, for any bounded set Λ in R2,

E

(∑
x∈ωΛ

f((x,R), ω\(x,R))

)
= E

(∫ R0

0

∫
Λ
ze−h

θ((x,R),ω)f((x,R), ω)dx µ(dR)

)
,

where E denotes the expectation with respect to P z,θ.

The existence of a measure P z,θ satisfying definition 2.3, its uniqueness or non-uniqueness
(i.e. the occurence of phase transition) are difficult problems of statistical physics. The ex-
istence has been proved recently for any z > 0 and any θ ∈ R3 in [5]. The uniqueness of
P z,θ depends on the values of the parameters and very few is known about this issue. For
the area process (i.e. θ2 = θ3 = 0) and when the radii are not random (i.e. µ({R0}) = 1),
a phase transition has been proved to occur in the very particular case where θ1 = z and
z is large enough ([2, 30]).

3 The estimation procedures

Let us consider a realisation ω of a Quermass point process P z∗,θ∗ defined on Λ′, where
Λ′ ⊆ R2, and where z∗ and θ∗ are unknown. In practice, one only observes the random set
Uω ∩ Λ in a bounded window Λ ⊆ Λ′, and not ωΛ. So the positions of the marked points
(x,R) in ωΛ are unknown. A challenging task is then to estimate the parameters z∗ > 0
and θ∗ = (θ∗1, θ

∗
2, θ
∗
3) in presence of this unobservability issue, which is an unusual problem

of inference for Gibbs point processes. The first subsection explains the limitation in using
the maximum likelihood procedure (MLE). The second subsection focuses on the main
approach of this paper which is the Takacs-Fiksel (TF) method. An attempt to combine
MLE and TF procedures is displayed in appendix. We assume all along this paper that
the distribution of the radii µ is known.

3.1 The maximum likelihood approach

When z∗ is known, the classical maximum likelihood approach let the estimation of the
parameter θ∗ possible. This has been investigated in [18], where the authors introduce an
original procedure based only on the connected components that are completely included
in the observation window. The boundary effects are then limited. However, the maximum
likelihood procedure does not allow us to fit the intensity parameter z∗ since the number
of points is unobservable. If z∗ is unknown, a two step procedure is proposed in [18]: first
estimating z∗ as if the observable data come from a Boolean model (various methods are
available in this setting), then, in a second step, applying the MLE procedure to estimate
θ∗.

Unfortunately, it seems that this two step procedure induces a strong restriction on the
possible values for the interacting parameter θ∗. Indeed, in the first step, the estimation ẑ is
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chosen such that the Boolean model with intensity ẑ has the same specific volume than the
observed real data. Similarly, in the second step, the MLE estimation of θ∗ ensures that the
corresponding Quermass process has the same specific volume than the real data. So, this
two step procedure concerns Quermass processes with intensity parameter ẑ, that exhibit
the same specific volume as the Boolean model with intensity ẑ. This turns out to be a
strong restriction. For example, it is well-known that the Area process (i.e. θ∗2 = θ∗3 = 0)
with parameters z∗ and θ∗1 > 0 is strictly stochastically dominated by the Boolean model
with intensity z∗ [9], which implies a strict comparison of their specific volumes. For this
example, the lonely possible value of θ∗1 following the previous restriction is thus θ∗1 = 0.

3.2 The Takacs-Fiksel approach

The possibility to use the Takacs-Fiksel procedure for fitting all parameters of the Quermass
process, including z∗, has been recently emphasized in [3]. In this section we recall the
procedure, which depends on the choice of some test functions. Next we display various
test functions, which allow to overcome the unobservability issue of the Quermass model.

3.2.1 The general procedure

Consider, for any non-negative function f from Ω× E to R, the random variable

Cz,θΛ (ω; f) =
∑
x∈ωΛ

f((x,R), ω\(x,R))−
∫ R0

0

∫
Λ
z e−h

θ((x,R),ω)f((x,R), ω)dx µ(dR). (3.1)

From the ergodic theorem, if Λ is large enough, Cz,θΛ (ω; f)/|Λ| is approximatively equal
to Ez∗,θ∗(Cz,θ

[0,1]2
(ω; f)), where Ez∗,θ∗ is the expectation with respect to P z∗,θ∗ . Moreover,

from the GNZ equation (2.3) it is easy to show that Ez∗,θ∗(Cz
∗,θ∗

[0,1]2
(ω; f)) = 0. Therefore,

for any function f , the random variable in (3.1) should be close to zero when z = z∗ and
θ = θ∗. This remark is the basis of the Takacs-Fiksel approach.

Let us give K functions (fk)1≤k≤K , the Takacs-Fiksel estimator is simply defined by

(ẑ, θ̂) := arg min
z,θ

K∑
k=1

(
Cz,θΛ (ω; fk)

)2
. (3.2)

The strong consistency and asymptotic normality of (ẑ, θ̂) when the observation window
Λ grows to R2 are discussed in [3]. The main ingredient for consistency is to ensure that
(z∗, θ∗) is the unique solution to the optimisation problem in (3.2) when Λ is large enough.
This identifiability is not easy to check. Some criteria are given in [3]. If p is the number
of parameters to estimate, it turns out that choosing K = p test functions may be not
sufficient to guaranty identifiability. If K > p, then identifiability is in general achieved.

In the setting of Quermass model, it is in general not possible to compute Cz,θΛ (ω; f)
given the observation Uω ∩ Λ. Consider for instance the pseudo-likelihood estimator. It is
a particular case of the Takacs Fiksel procedure where fk = ∂hθ((x,R), ω)/∂θk, k = 1, 2, 3
and f4 = 1/z (see section 3.2 in [3]). In this case the computation of (3.1) requires the
observation of all marked points in ωΛ and so the pseudo-likelihood procedure is not
feasible. However, it is possible to find some test functions f such that
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1. for all x ∈ Λ and R ∈ [0, R0], f((x,R), ω) is computable, making the integral term
in (3.1) calculable,

2. the sum term in (3.1) is computable from the observation of Uω ∩ Λ only.

Some examples are provided below.
Note finally that for any x ∈ Λ and any R ∈ [0, R0] the computation of the local energy

hθ((x,R), ω) is always possible (up to some possibly edge effects discussed in Section 4.3).
Indeed, denoting Ũ(x,R) = Uω ∩B(x,R), the additivity of A, L and χ implies that

hθ((x,R), ω) = θ1

[
πR2 −A(Ũ(x,R))

]
+ θ2

[
2πR− L(Ũ(x,R))

]
+ θ3

[
1− χ(Ũ(x,R))

]
.

(3.3)

3.2.2 Some well-adapted test functions

In this section, we introduce some test functions f that make Cz,θΛ (ω; f) in (3.1) computable
from the observation of Uω∩Λ only. This provides a solution for estimation in the Quermass
model in spite of its unobservability issue. We restrict our presentation here to the case
ω = ωΛ, or equivalently Λ′ = Λ, meaning that the observation window coincides with
the domain of definition of P z∗,θ∗ . The general case involves some edge effects which are
discussed in Section 4.3.

Let us first consider the test function f0 defined by

f0((x,R), ω) = Length
(
S(x,R) ∩ (Uω)c

)
, (3.4)

where S(x,R) is the sphere with centre x and radius R. The quantity f0((x,R), ω) is
actually the length of arcs from the sphere S(x,R) which are outside Uω. Although the
quantity f0((x,R), ω\(x,R)) is not observable for any (x,R) in ωΛ, the sum over (x,R) ∈
ωΛ is nothing else than the total perimeter of UωΛ :∑

x∈ωΛ

f0((x,R), ω\(x,R)) = L(UωΛ). (3.5)

Moreover, it is possible to compute f0((x,R), ω) for any x ∈ Λ and R ∈ [0, R0], making
the integral in (3.1) calculable. It follows that Cz,θΛ (ω; f0) is computable.

Similarly for any α > 0, we consider the test function

fα((x,R), ω) = Length
(
S(x,R+ α) ∩ (Uω ⊕B(0, α))c

)
, (3.6)

where Uω ⊕ B(0, α) denotes the α-parallel set of Uω defined by the Minkowski sum of
Uω and B(0, α). In this case (3.1) is also computable and the sum therein reduces to the
perimeter of the α-parallel set:∑

x∈ωΛ

fα((x,R), ω\(x, r)) = L (UωΛ ⊕B(0, α)) . (3.7)

In the same spirit as (3.5), it is natural to look for some test functions farea and fep such
that the sum in (3.1) respectively reduces to A(UωΛ) and χ(UωΛ), and on the other hand
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the integral term in (3.1) is calculable. Unfortunately, we have not found any. Nevertheless,
considering the test function

fsum =
∑
i

fαi , (3.8)

where the sum is done over some suitable finite set of non negative αi’s, we obtain∑
x∈ωΛ

fsum((x,R), ω\(x, r)) =
∑
i

L (UωΛ ⊕B(0, αi)) , (3.9)

which is closely related to the area of the complementary of UωΛ in Λ, see Figure 2. For
this reason, fsum can be viewed as a substitute for farea.

Figure 2: Left: UωΛ
in gray, as the union of the balls bordered with dashed lines; the length of the

solid black line is the quantity (3.5). Middle: same UωΛ
in gray; the length of the solid black line is

the quantity (3.7) for some α > 0. Right: same UωΛ
in gray; the sum of lengths of the solid black

lines is the quantity (3.9) for 7 αi’s.

Let us finally introduce the test function fiso which indicates, for any (x,R) ∈ ωΛ,
whether B(x,R) is an isolated ball in Uω:

fiso((x,R), ω) =

{
1 if S(x,R) ∩ Uω = ∅,
0 otherwise. (3.10)

In this case,
∑

x∈ωΛ
fiso((x,R), ω\(x,R)) is the number of isolated balls in UωΛ . Let us

note that an isolated ball can contain smaller balls completely included inside it.

Remark 3.1. The test functions f0, fα, fsum, fiso introduced above satisfy all the regularity
conditions assumed in [3], which implies consistency and asymptotic normality of associated
TF estimators, provided identifiability holds (see Section 4.4).

4 Practical aspects of TF estimation

4.1 Computation of the contrast function

The TF estimator in (3.2) requires to compute Cz,θΛ (ω; f) in (3.1) for the different well-
adapted test functions f introduced in Section 3.2.2. Note that Section 4.3 explains how
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handling edge effects in the computation of (3.1), so we don’t adress this question in this
section.

The integral term in (3.1) can be approximated by a Monte Carlo approach, based on N
independent points x1, . . . , xN uniformly distributed on Λ and N independent realisations
R1, . . . , RN from µ. This leads to the approximation

Cz,θΛ (ω; f) ≈
∑
x∈ωΛ

f((x,R), ω\(x,R))− 1

N

N∑
i=1

z e−h
θ((xi,Ri),ω)f((xi, Ri), ω). (4.1)

Let us focus on the computation of (4.1) for the test functions f0, fα, fsum and some
fixed values of z and θ. The first sum above reduces respectively to the perimeter of UωΛ ,
the perimeter of the α-parallel set of UωΛ , or the sum of such perimeters. The construc-
tion of α-parallel sets of UωΛ and the calculation of the above-mentionned perimeters may
be achieved using some mathematical morphology tools, see e.g. [22], [20], [26]. The sec-
ond sum in (4.1) involves the local energy of each new ball (xi, Ri), given by (3.3), and
f((xi, Ri), ω), for f = f0, fα, fsum. While for each i we can use again some mathematical
morphology tools to calculate these two terms, the computation for the whole sum, which
requires to repeat N times these calculations, may become difficult to implement.

An alternative procedure to compute (4.1) is to approximate the observed set Uω∩Λ by
any union of balls (e.g. by the procedure described in [29]) and to consider the associated
power tessellation (see [17]). Then the construction of approximated α-parallel sets of UωΛ

becomes straightforward since it suffices to increase the radius of each ball by α. Moreover,
the calculation of the above-mentionned perimeters, the calculation of the local energy of
any new ball (xi, Ri), and the calculation of f((xi, Ri), ω), for f = f0, fα, fsum, are easily
deduced from the associated power tesselations as described in [17].

We emphasize that the above procedure does not depend on the union of balls used to
approximate Uω∩Λ. In order to minimize the computational complexity, an approximation
involving a low number of balls is therefore preferable. Moreover, this union of balls is only
used for computational reasons and has nothing to play with the germ-grain representation
of Uω that we aim at fitting. In particular, the number of balls in this approximation is
not relevant to estimate z∗.

Finally, let us focus on the computation of (4.1) for the test function fiso. Contray to f0,
fα and fsum, the test function fiso is strongly related to the ball structure of the germ-grain
model, since the first sum in (4.1) corresponds to the number of isolated balls in UωΛ . In
this sense fiso seems less natural for applications. However, as it will be demonstrated in
Section 5, the test function fiso appears to provide a relevant information for the estimation
issue. For this reason, it can be important to include it in (3.2). In practice, we have then
to decide what is considered as an isolated ball. A solution can be to consider an isolated
component of UωΛ as an isolated ball, if its diameter is smaller than some constant chosen
a priori. Another solution is to use the approximation of Uω ∩ Λ by a union of balls, as
mentioned above: an isolated component can then be considered as an isolated ball if it is
approximated by an isolated ball.

In this work, the practical implementation of the TF procedure has been conducted
using an approximation of Uω∩Λ by a union of balls and the construction of the associated
power tesselation.
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4.2 Minimisation of the contrast function

As described in section 3.2.2, many computable test functions are available to implement
the TF procedure for the Quermass model: f0, fα for any α > 0, fsum, fiso.

In order to estimate p unknown parameters among z∗, θ∗1, θ∗2 and θ∗3, the law of the
radii µ being fixed, it suffices to choose K ≥ p test functions as above and to solve (3.2)
where θ = (θ1, θ2, θ3).

The TF optimization (3.2) in z can be done explicitely. We deduce that the solution
(ẑ, θ̂) of (3.2) necessarily belongs to the implicit manifold z = z̃(θ) where

z̃(θ) :=

∑K
k=1 SkIk(θ)∑K
k=1 Ik(θ)

, (4.2)

Sk =
∑
x∈ωΛ

fk((x,R), ω\(x,R))

and

Ik(θ) =

∫ R0

0

∫
Λ
e−h

θ((x,R),ω)fk((x,R), ω)dx µ(dR).

Therefore, in practice, θ is first estimated by the solution θ̂ of (3.2) where z is replaced by
z̃(θ), i.e.

θ̂ = arg min
θ

K∑
k=1

(
Sk − z̃(θ)Ik(θ)

)2
.

This solution may be obtained by a grid search optimization procedure. Then z is estimated
by ẑ = z̃(θ̂).

Note that the practical computation of all terms involved in (4.2) and (3.2) can be
conducted as explained in Section 4.1.

This procedure allows to consider several estimators, depending on the number and
the choice of test functions used in (3.2). It is not easy to find an optimal choice. The
asymptotic variance of TF estimators is known (cf [3]), but appears intractable to be
optimized. Some simulations are thus mandatory to provide some recommendations, see
Section 5.

4.3 Edge effects

Based on the observation of Uω∩Λ, two types of edge effects may occur in the computation
of (3.1) or (4.1).

First, edge effects may occur in the integral term in (3.1), or the second sum in (4.1),
for the computation of hθ((x,R), ω) and f((x,R), ω), for f = f0, fα, fsum, or fiso, when
x is close to the boundary of Λ. In view of (3.3), (3.4), (3.6), (3.8), (3.10), this type of
edge effects does not occur for the marked points (x,R) such that B(x,Rmax) ⊂ Λ, where
Rmax = R0 + maxi αi. Therefore, in practice, this first type of edge effects can be avoided
by considering the estimation on Λ−, where Λ− denotes the eroded set of Λ by Rmax. The
estimators are then defined by (3.2) where Λ is replaced by Λ−.

Second, edge effects can occur for the first sum term in (3.1) and (4.1). Let us consider
f = f0. If ω = ωΛ, as it was assumed for simplicity in Section 3.2.2, then from (3.5) this
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sum term reduces to L(UωΛ). As we only observe Uω ∩ Λ, an approximation in this case
could be L(Uω∩Λ) and we have L(Uω∩Λ) ≤ L(UωΛ), where the equality occurs if and only
if Uω ⊂ Λ. In the general case when ω 6= ωΛ, the equality (3.5) does not hold any more
and some extra terms due to edge effects have to be added in the right hand side of (3.5).
Furthermore, to avoid the first type of edge effects, the estimation procedure is implemented
on the eroded domain Λ−. In this general case we may also use the approximation∑

x∈ωΛ−

f0((x,R), ω\(x,R)) ≈ L(Uω ∩ Λ−), (4.3)

where the last perimeter can be computing by some mathematical morphology tools. Al-
ternatively, Uω ∩ Λ can be approximated by a union of balls, as suggested in Section 4.1,
namely for some integer n, Uω ∩ Λ ≈

⋃n
i=1B(yi, ri) where yi ∈ Λ and ri > 0, and we can

use the approximation

∑
x∈ωΛ−

f0((x,R), ω\(x,R)) ≈
∑
yi∈Λ−

Length
(
S(yi, ri) ∩

( n⋃
j=1
j 6=i

B(yj , rj)
)c)

. (4.4)

This last sum can easily be implemented from the power tesselation based on
⋃n
i=1B(yi, ri).

Note that error of approximations in (4.3) and (4.4) involve only edge effects that
become negligible when Λ tends to R2. Finally similar approximations can be used for
f = fα, fsum or fiso instead of f = f0 and we omit the details.

In this work, we have decided to handle edge effects by working in (3.2) with the eroded
domain Λ− instead of Λ, and by using the approximation (4.4), which is in agreement with
our choice made to compute easily in practice the contrast terms (4.1).

4.4 Identifiability

The consistency of the TF procedure crucially depends on an identifiability assumption
which basically implies that the contrast function in (3.2) has a unique minimum when
Λ tends to R2 (see [3]). This assumption is in general satisfied if K > p, where p is the
number of parameters to estimate. When K = p, identifiability is not easy to check, but
has been proved to hold in some cases (see Example 2 in [3]).

Nevertheless, these theoretical considerations only ensure asymptotic identifiability. In
practice, where Λ 6= R2, several local minima of the contrast function in (3.2) may arise
and the global minimum might lead to an improper estimation. To avoid such drawback,
a solution is to consider several TF contrast functions, coming from various choice of test
functions. They should all share a local minimum in the same region, which allows us to
restrict the domain of optimization.

5 Simulations

5.1 Estimation of the intensity parameter z∗

Let us first assume that θ∗1, θ∗2, θ∗3 are known and let us focus on the estimation of z∗, which
appears as the main challenge for the Quermass model. In this setting, the equation (4.2)
with θ = θ∗ provides an explicit estimator of z∗. The computation of (4.2) is conducted
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as explained in Section 4: we focus on an eroded domain to prevent edge effects and the
Monte Carlo approximation (4.1) is applied, where we choose N = 2500.

More specifically, we consider the estimators ẑ0, ẑα1 , · · · , ẑα10 , ẑiso and ẑsum, defined
by (4.2) where K = 1 and where fk is respectively f0, fα1 , · · · , fα10 , fiso and fsum. The
latest test function fsum is defined by the sum (3.8) over the ten previous αi, i = 1, . . . , 10.

Some results for the estimation of z∗ are displayed in Figure 3, based on 100 replicates of
the Area process (θ∗2 = 0, θ∗3 = 0) on [0, 50]2, when z∗ = 0.1, θ∗1 = 0.2 and µ is the uniform
law on [.5, 2]. The left plot is concerned with large parallel sets: αi = i/5, i = 1, . . . , 10,
while the right plot involves small parallel sets: αi = i/50, i = 1, . . . , 10.

Figure 3 confirms that our procedure allows to estimate z in presence of the unobserv-
ability issue. Moreover, it appears that small parallel sets seem to provide better estimates.
The same conclusion holds from intensive estimations of z∗ for other values of θ∗1, θ∗2 and
θ∗3 (omitted in this article).
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Figure 3: Estimations of z∗ = 0.1 from 100 replicates of an Area process (θ∗1 = 0.2). Left:
boxplots of ẑ0, ẑαi (αi = i/5), ẑiso and ẑsum. Right: same boxplots but with αi = i/50.

5.2 Estimation for the A, L and χ process

In this section, we consider estimation in the Area process (θ∗2 = θ∗3 = 0), in the Perimeter
process (θ∗1 = θ∗3 = 0) and in the Euler-Poincaré process (θ∗1 = θ∗2 = 0). In these cases, two
parameters have to be estimated: the interacting parameter (θ∗1, θ∗2 or θ∗3) and the intensity
parameter z∗.

Many TF estimators are conceivable. For instance, for the Area process, the estimation
of (z∗, θ∗1) can be achieved by the following TF estimators with K = 2: (ẑiso, θ̂iso) based on
(f0, fiso); (ẑα, θ̂α) based on (f0, fα) for some α > 0; (ẑsum, θ̂sum) based on (f0, fsum) where
the sum (3.8) is done over ten αi’s. It is also possible to consider more test functions, as
for example with K = 11: (ẑall, θ̂all) based on f0, fα1 , . . . , fα10 for ten different αi’s.

Some simulations (omitted here) show that the estimations (ẑα, θ̂α) may be very vari-
able depending on α for a given observation UωΛ , even when using small parallel sets as
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suggested in section 5.1. As far as we do not know which estimator is the most efficient,
we prefer to use estimators that combine several small parallel sets. For this reason, we
will concentrate on (ẑsum, θ̂sum) and (ẑall, θ̂all).

Another natural way to combine information coming from various parallel sets is to
consider an aggregated estimator. How to aggregate several estimators is an interesting
but difficult question, particularly in presence of strong dependent observations as in the
Quermass model. We simply consider here the median of several estimators, that provides
a natural robust combination:

(ẑmed, θ̂med) = median
(
(ẑα1 , θ̂α1), . . . , (ẑα10 , θ̂α10)

)
.

Therefore, the following simulations focus on the three estimators: (ẑsum, θ̂sum), (ẑmed, θ̂med)
and (ẑall, θ̂all), where αi = i/50, i = 1, . . . , 10. Moreover, since the test function fiso plays
a particular role as it is stronlgy related to the ball structure of the germ-grain model, we
also assess the performance of (ẑiso, θ̂iso), based on (f0, fiso).

All simulations are done on [0, 50]2. The law of radii µ is uniform on [.5, 2]. The practical
implementation is conducted as explained in Section 4, that includes erosion and the Monte
Carlo approximation (4.1). Figure 4 displays the estimation results on 100 replicates of,
respectively: the Area process with z∗ = 0.1, θ∗1 = 0.2; the Perimeter process with z∗ = 0.2,
θ∗2 = 0.4; and the Euler-Poincaré process with z∗ = 0.1, θ∗3 = 1.

As a first conclusion, we see from these simulations that all estimators considered in
these simulations allow to estimate the two parameters and perform more or less equiv-
alently. However, (ẑall, θ̂all) seems to slightly surpass the other estimators, in terms of
dispersion and outliers.

5.3 Estimation for the full Quermass process

To deal with the estimation of more interacting parameters, we proceed according to the
previous conclusion. Given ten small αi’s, we consider the TF estimator based on all
available test functions f0, fα1 , · · · , fα10 , fsum and fiso. Since fiso may be artificial to
compute in practice (see Section 4.1), we also consider the TF estimator based on all
previous test functions except fiso.

Some results of estimation are presented in Figure 6 for 100 replicates of the (A,L)-
process (θ∗3 = 0) on [0, 50]2, with z∗ = 0.1, θ∗1 = −0.2, θ∗2 = 0.3 and the law of radii is
uniform on [.5, 2]. The same kind of results are displayed in Figure 7 for the full Quermass
process with z∗ = 0.1, θ∗1 = −0.2, θ∗2 = 0.3 and θ∗3 = −1. See some examples of samples in
Figure 5.

While the quality of estimation turns to be satisfactory in presence of one interacting
parameter (i.e. for the A-process, the L-process or the E-process) as seen in Section 5.2,
it naturally decreases in presence of more interacting parameters (Figure 6), to become
very variable for the full Quermass model (Figure 7). Moreover, Figure 6 shows that the
presence of the test function fiso seems to improve the estimation, even if its computation
in practice might appear artificial.
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Figure 4: Estimations from 100 replicates of, from top to bottom: the A-process (z∗ =
0.1, θ∗1 = 0.2); the L-process (z∗ = 0.2, θ∗2 = 0.4); the χ-process (z∗ = 0.1, θ∗3 = 1).
The estimators are (ẑiso, θ̂iso) (green), (ẑall, θ̂all) (red), (ẑmed, θ̂med) (black) and (ẑsum, θ̂sum)
(blue). From left to right: scatterplot of (ẑ, θ̂); boxplots of ẑ; boxplots of θ̂.
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Figure 5: Samples of the (A,L)-process with z∗ = 0.1, θ∗1 = −0.2 and θ∗2 = 0.3 (left) and of the
Quermass process with z∗ = 0.1, θ∗1 = −0.2, θ∗2 = 0.3 and θ∗3 = −1 (right). The window is [0, 50]2

and the radii are uniformly distributed on [.5, 2]2.
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Figure 6: Estimation of z∗ (left), θ∗1 (middle) and θ∗2 (right) from 100 replicates of the
(A,L)-process with z∗ = 0.1, θ∗1 = −0.2 and θ∗2 = 0.3. In each plot, the estimator involves
fiso (on the left) or not (on the right).
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Figure 7: Estimation (from left to right) of z∗, θ∗1, θ∗2 and θ∗3 from 100 replicates of the
Quermass process with z∗ = 0.1, θ∗1 = −0.2, θ∗2 = 0.3 and θ∗3 = −1. In each plot, the
estimator involves fiso (on the left) or not (on the right).
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6 Application to heather data

The plot on the left hand of Figure 8 shows a binary image of the presence of heather
in a 10 × 20 m rectangular region at Jädraås, Sweden. This heather dataset has been
widely studied. It was first presented by P. Diggle in [6], where it has been modelled by
a stationary spherical Boolean model. This point of view has been considered further in
[11, 12] and in [4], where alternative estimation methods for the Boolean model have been
implemented.

Figure 8: Heather data (left) and its approximation by a union of balls (right)

Considering heather bushes as discs, the spherical germ-grain representation of the data
seems to be a natural approximation. However, the independance between the location of
the grains and their radii, implied by the Boolean model, appears more questionable. As a
matter of fact, simulations of the fitted Boolean models from the aforementioned studies do
not look visually similar to the heather dataset, as initially observed by P. Diggle in [6]. This
lack of fit has been confirmed in [18] by various diagnostic plots (as in Figure 9). The same
conclusion is made in [19], where a Matérn’s cluster model is proposed as an alternative
to the Boolean model. However no estimation procedure for this Matérn’s cluster model
is given in [19]. Instead, a brute-force approach is used to choose the parameters in order
to pass some diagnostic plots. While the latter model appears well adapted to the heather
dataset, a comparison between our statistical method and the approach in [19] is therefore
difficult and will not be conducted further.

Alternatively, a model of interacting discs has been fitted to the heather dataset in
[18]. The model is very similar to the Quermass model, except that in the Hamiltonian
(2.1), the Euler characteristic is replaced by the number of connected components. This
model has been fitted in [18] by a maximum likelihood approach as described in Section
3.1, where three reference measures µ have been tested. As a result, the best fitted model
was: µ is the uniform law on [0, 0.53], ẑ = 2.45 and the estimated Hamiltonian, denoted
H̃ θ̂, is

H̃ θ̂(ωΛ) = 4.91 A(UωΛ)− 1.18 L(UωΛ) + 2.25 Ncc(UωΛ), (6.1)

where Ncc(UωΛ) denotes the number of connected components of UωΛ .
As explained in Section 3.1, the estimation procedure used in [18] implies some rather

strong restriction on the parameter space. For comparison, we fit hereafter a Quermass
model to heather data using the TF approach.

Following the practical recommandations in Section 4, the binary image is first ap-
proximated by a union of balls, using the procedure described in [29]. The result of this
approximation is shown on the right plot of Figure 8. Second, we choose for the reference
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measure µ the uniform law on [0.05, 0.55], which is in agreement with the final choice made
in [18], except that a minimal value for the radii has been fixed to 0.05, corresponding to
the smallest radius of the spots observed in heather dataset.

The estimation of the full Quermass model (i.e. all parameters z, θ1, θ2, θ3 are unknown)
did not give satisfactory results. This is not very surprising in view of the strong variability
of the estimates observed in Figure 7. The contrast function in (3.2) computed from the
heather dataset actually exhibits in this general case a large amount of local minima,
leading to an identifiability issue. After a deeper insight, it appears that any value of the
intensity parameter z can somehow be compensated by some value of the area interaction
parameter θ1. This identifiability issue between the area interaction and the intensity is
well-known: it is already visible in the top-left plot of Figure 4, where we observe a strong
correlation between the two estimates in the A-process. Therefore, we have decided to focus
on a simpler model. Since the heather dataset seems not rich enough to distinguish the role
played by the intensity parameter z and the area interaction parameter θ1, a natural choice
is to fit a (L, χ)-process. As a matter of fact, fitting a (A,L)-process leads to the same kind
of identifiability issue as before. This basically means that only one parameter becomes
relevant in the (A,L)-process for the heather dataset, namely the perimeter interaction
parameter, which is not sufficient to obtain a good fit.

So, the estimation of the (L, χ)-process has been implemented on the balls approxima-
tions of heather dataset (right plot of Figure 8), using the TF procedure associated to the
test functions f0, fα1 , · · · , fα10 , fsum and fiso, where αi = 0.005 i, i = 1, . . . , 10 and where
µ is the uniform law on [0.05, 0.55]. As a result, we have obtained ẑ = 2.12 and

H θ̂(ωΛ) = 0.14 L(UωΛ) + 0.22 χ(UωΛ). (6.2)

In order to check the quality of fit of (6.2) to heather dataset, we propose some diagnos-
tic plots in Figure 9, where a comparison is also provided with the fitted model (6.1) of [18].
These plots are the same as in [18], they correspond to an estimation of the contact distribu-
tion function (top left): H(r) = P (D ≤ r|D > 0) where D = inf{ρ ≥ 0 : U ∩B(0, ρ) 6= ∅};
the covariance function (top right) C(r) = P (x ∈ U , y ∈ U , ‖x − y‖ = r); and some
shape-characterisitcs (see [24] or [18] for a definition): erosion er (middle left), dilatation
dr (middle right), opening or (bottom left) and closing cr (bottom right). More specifically,
all plots in Figure 9 show the simulated 95% envelopes obtained under (6.2) in solid black
lines, the simulated 95% envelopes obtained under (6.1) in dashed black lines, the empirical
estimates from heather dataset (in solid red lines) and from its balls approximation (red
lines with circles).

A slight better fit is observed for (6.2), in particular from the contact distribution
function, the erosion and the closing, even if the closing is not fitted very well. This con-
clusion seems confirmed by the visual impression from samples of (6.1) and (6.2), shown
respectively in Figure 10 and 11, next to the balls approximation of heather dataset.
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Figure 9: From top left to bottom right: contact distribution function, covariance function,
erosion, dilatation, opening, closing, for the empirical estimation from heather dataset
(solid red line), the empirical estimation for the balls approximation of heather dataset
(red line with circles), 95% envelopes under (6.2) (solid black line), 95% envelopes under
(6.1) (dashed black line)
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Figure 10: Heather data approximation (top left) and three samples from the fitted model
(6.1)

Figure 11: Heather data approximation (top left) and three samples from the fitted model
(6.2)
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Appendix: Combining MLE and TF approaches

The MLE is known to be an efficient method of estimation, but does not allow to estimate
the parameter z∗ in the Quermass model (see section 3.1). Moreover, the Takacs Fiksel
procedure allows to estimate all parameters, given well-adapted test functions (see section
3.2). A natural idea is to try to combine these two approaches. Roughly speaking, we would
like to first estimate z∗ by the Takacs-Fiksel method, then estimate θ∗ := (θ∗1, θ

∗
2, θ
∗
3) by

MLE.
Let us first recall that, givenK test functions, the solution (ẑ, θ̂) of the TF optimization

procedure (3.2) necessarily belongs to the implicit manifold z = z̃(θ) given by (4.2) (see
section 4).

On the other hand, the MLE (ẑ, θ̂) solves the estimating equations
Eẑ, θ̂ (n(ωΛ)) = n(ωΛ,obs)

Eẑ, θ̂ (A(UωΛ)) = A(UωΛ,obs)

Eẑ, θ̂ (L(UωΛ)) = L(UωΛ,obs)

Eẑ, θ̂ (χ(UωΛ)) = χ(UωΛ,obs)

(6.3)

where ωΛ,obs and UωΛ,obs respectively denote the observed point configuration and the
observed random set on Λ. Of course n(ωΛ,obs) is not available in practice and the system
cannot be solved.

A way to combine the two procedures is to look for the best solution of (6.3) restricted
to the implicit manifold z = z̃(θ). More specifically, θ∗ is estimated by

θ̂mix = arg min
θ

d
(
Ez̃(θ), θ

(
A(UωΛ), L(UωΛ), χ(UωΛ)

)
,
(
A(UωΛ,obs),L(UωΛ,obs), χ(UωΛ,obs)

))
,

(6.4)
where d is any distance function in R3, and z is estimated by ẑmix = z̃

(
θ̂mix

)
.

In practice, it is necessary to approximate the expectations in (6.4), since their close
expression is intractable. Let us focus on the expectation of A(UωΛ). A straightforward ap-
proach is to use Monte-Carlo approximations. GivenN independent realisations ω1, . . . , ωN
of a Quermass process on Λ with parameters z and θ, we have, for N large enough,

Ez,θ (A(Uω)) ≈ 1

N

N∑
k=1

A(Uωk). (6.5)

This approximation requires to simulate a large number of Quermass realisations for each
value of θ, which seems prohibitively time consuming in practice. An alternative approach is
to use MCMC approximation. Let ω0

1, . . . , ω
0
N be N independent realisations of a Quermass

process on Λ with fixed parameters z0 and θ0. Then from the ergodic theorem, for any z
and θ, it is not difficult to check that for N large enough

Ez,θ (A(Uω)) ≈
∑N

k=1A(Uω0
k
) (z/z0)n(ω0

k) exp[(θ − θ0)A(Uω0
k
)]∑N

k=1 (z/z0)n(ω0
k) exp[(θ − θ0)A(Uω0

k
)]

. (6.6)

This approach should be quicker in practice than (6.5) because the simulation of N Quer-
mass realisations has to be done only once and not for each value of θ. Unfortunately it
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appears that the variance of the right hand side in (6.6) becomes very large when (z, θ)
is not close to (z0, θ0), making the convergence prohibitively slow. A solution is to change
the initial value (z0, θ0) according to (z, θ), but then the procedure looses its advantages in
comparison with (6.5). Therefore, the approximations of the expectations in (6.4), whatever
(6.5) or (6.6) is used, appears as a strong restriction to apply this mix procedure.

To assess the quality of the mix procedure anyway, we focus on the estimation of z∗

and θ∗1 in the Area process. In (6.4), we simply choose the euclidean distance for d and the
expectation is approximated by (6.5) so that

θ̂1,mix = arg min
θ1

∣∣∣∣∣ 1

N

N∑
k=1

A(Uωk(z̃(θ1), θ1))−A(UωΛ,obs)

∣∣∣∣∣
where ωk(z̃(θ1), θ1), k = 1, . . . , N are independent realisations of an Area process with
parameters (z̃(θ1), θ1). The estimations have been implemented on the same realisations
than in Section 5.2, see the first row of Figure 4, and with N = 250. The results are
displayed in Figure 12.

As a conclusion, the mix procedure does not seem to perform better than the TF
estimators considered in section 5.2. In view of the calculation time required for the ap-
proximations (6.5) or (6.6), we did not give preference to this procedure in this paper.
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Figure 12: Estimations of z∗ (left) and θ∗1 (right) for the Area process as in the first row
of Figure 4 with, in addition, ẑmix and θ̂1,mix (in white).
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