
HAL Id: hal-00720675
https://hal.science/hal-00720675

Submitted on 25 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Speed and Low-Power PID Structures for
Embedded Applications.

Abdelkrim K. Oudjida, Nicolas Chaillet, Ahmed Liacha, Mustapha
Hamerlain, Mohamed L. Berrandjia

To cite this version:
Abdelkrim K. Oudjida, Nicolas Chaillet, Ahmed Liacha, Mustapha Hamerlain, Mohamed L. Berrand-
jia. High-Speed and Low-Power PID Structures for Embedded Applications.. 21st International
Workshop on Power And Time Modeling, Optimization and Simulation, PATMOS’11., Sep 2011,
Madrid, Spain. pp.257-266. �hal-00720675�

https://hal.science/hal-00720675
https://hal.archives-ouvertes.fr

High-Speed and Low-Power PID Structures

for Embedded Applications

Abdelkrim K. Oudjida1, Nicolas Chaillet2, Ahmed Liacha1,
Mustapha Hamerlain1, and Mohamed L. Berrandjia1

 1 Microelectronics and Nanotechnology Division, Centre de

Développement des Technologies Avancées (CDTA), Baba-Hassen, BP. 17,
16303 Algiers, Algeria

{a_oudjida, liacha, mhamerlain, mberrandjia}@cdta.dz
2 AS2M Department, FEMTO-ST Institute, Besançon, France

chaillet@ens2m.fr

Abstract. In embedded control applications, control-rate and energy-
consumption are two critical design issues. This paper presents a series of high-
speed and low-power finite-word-length PID controllers based on a new
recursive multiplication algorithm. Compared to published results into the same
conditions, savings of 431% and 20% are respectively obtained in terms of
control-rate and dynamic power consumption. In addition, the new
multiplication algorithm generates scalable PID structures that can be tailored
to the desired performance and power budget. All PIDs are implemented at
RTL level as technology-independent reusable IP-cores. They are
reconfigurable according to two compile-time constants: set-point word-length
and latency.

Keywords: Design-Reuse, Embedded Finite-Word-Length (FWL) Controllers,
Intellectual Property (IP) , Linear Time Invariant (LTI) Systems, Low-Power
and Speed Optimization, Proportional-Integral-Derivative (PID)

1 Background and Motivation

The PID is by far the most commonly used feedback controller due to its simple
structure and robust performance [1]. An important feature of this controller is that it
does not require a precise analytical model of the system that is being controlled,
which makes it very attractive for a large class of LTI dynamic systems. However,
despite the large popularity of PID controller, little attention has been paid to its
optimization, either for ASIC or for FPGA integration. In [2] low-power serial and
parallel multiple-channel PID architectures are proposed for small mobile robots. In
this work, the optimization was carried out at macro-level considering several PIDs,
rather than at micro-level (optimization of the PID itself). Nevertheless, the whole
architecture will deliver much more interesting results if combined with an optimized
PID. The second work [3] proposes serial, parallel, and mixed PID architectures
incorporating different number (1-3) of multiplication cores. High power

This work was supported by “Centre de Développement des Technologies Avancées”
(CDTA), Algiers, Algeria, in collaboration with FEMTO-ST institute, Besançon, France.

consumption, even with the serial architecture, and complex control-part are the two
major shortcomings of this proposal. Finally, in [4] an attractive optimized PID
structure based on distributed arithmetic (DA) is presented. Although this latter
exhibits interesting results in terms of resource utilization and power consumption, it
suffers from three serious drawbacks: high latency (n+1 clock-cycles for n bit set-
point word-length), FPGA technology-dependent as it’s essentially based upon FPGA
look-up-tables (LUTs), and inability to handle time-varying PID parameters since
they are precomputed and stored into LUTs. Nevertheless, it’s considered as a
reference design against which the obtained results are confronted into the same
conditions.

 The objective of this paper is to design optimized FWL-PID structures that
overcome all above-mentioned shortcomings, and which are especially dedicated to
embedded control applications. The PID cores are described at RTL level. They are
highly reconfigurable and technology-independent, offering the possibility to be
mapped both on FPGA and ASIC, using a foundry standard-cell-library.

To reach such a goal, a special focus was put on the optimization of the inner

arithmetic of PID. For that, we considered two discrete forms of PID algorithm: the
commercial form [5], called also the standard or ISA form, and the incremental form.
These two forms went through FPGA implementations, using a new recursive
multibit recoding multiplication algorithm (RMRMA). Results show clear superiority
over those provided in [4]. PID control-rate and energy-consumption savings are
respectively 431% and 20% . Furthermore, RMRMA algorithm generates scalable
PID structures which can be customized to fit the desired speed and power budget. Its
interesting feature as a low-power multiplication algorithm makes it useful for a wide
range of numeric applications.

The paper is organized as follows. In this section we outlined the main requirement
specifications for embedded PID controller. Section 2 presents the two most-used
discrete versions of PID algorithm. Section 3 introduces the new RMRMA algorithm
and its implementation. A discussion around the obtained results is given in section 4.
. And finally some concluding remarks.

2 The two most-used discrete versions of PID

In digital control, commercial and incremental forms are the two most-used discrete
PID versions [1][5]. They are respectively denoted by recurrent equations (1) and (2),
and their corresponding coefficients are grouped in Table 1. () () () ()kDkIkPku ++= (1) ; where () () ()kyBkuAkP c ⋅+⋅= ;

() () ()11 −⋅+−= keCkIkI ; and () () ()kfEkDDkD ⋅+−⋅= 1 .

 With () () ()111 −−−=− kykuke c
 and () () ()1−−= kykykf

And () () () () ()211 −⋅+−⋅+⋅+−= keCkeBkeAkuku (2)

Where () () ()kykuke c −= ; () () ()111 −−−=− kykuke c
 ;

 () () ()222 −−−=− kykuke c
.

The translation of equation (1) and (2) into architectures is depicted by Fig. 1 and
2, respectively.

Table 1. Coefficients of discrete recurrent equations.

Fig. 1. Commercial PID architecture.

Fig. 2. Incremental PID Architecture.

Coefficients
Commercial

PID
Incremental PID

A bK p
 ⎟⎟⎠

⎞⎜⎜⎝
⎛ ++

s

d

i

s

p
T

T

T

T
K 1

B
pK− ⎟⎟⎠

⎞⎜⎜⎝
⎛ +−

s

d

p
T

T
K 21

C
i

s
p

T

T
K

s

d

p
T

T
K

D
sd

d

TNT

T

+

_

E
sd

dp

TNT

NTK

+−
_

Kp is the proportional gain; Ti and Td are respectively the
integral and derivative times; N is the maximum
derivative gain; b is the fraction of set-point in
proportional term; and Ts is the sampling period.

To satisfy different application cases, two IP versions are developed for each

equation: with constant coefficients (PID1) and with varying coefficients (PID2). This
latter requires a host side interface (HIS) to handle the runtime change of the
coefficients.

 The commercial version allows the three standard PID functioning modes (P, PI,
PID) according to Mode input value. At the end of u(k) computation, the Done output
signal toggles during one clock cycle, and the PID enters into sleep mode (whole
internal activity stopped except for clocking and HIS) for maximum energy
conservation.

3 RMRMA based PID

Multiplication is a fundamental operation in digital design. Its speed and power
requirements are two critical factors limiting the whole system performances (PID in
our case). Since the publication of Booth’s algorithm in 1951, a huge number of
improvement attempts were proposed, especially after the publication of a generalized
version of modified Booth algorithm accompanied with its proof [6]. Most of the
proposals aimed to reduce the number of partial products either by employing digital
optimization techniques [7][8][9] or by using larger slices (higher radices) [10].
However, experience showed [11] that beyond 4-bit slices (radix 8), the complexity to
generate hard partial products can not be managed in a realistic way. In [11], three
metrics are provided for comparing the tradoffs when employing higher radix Booth
recodings: partial product compression factor (gain), the number of hard multiples
that must be precomputed (computation complexity), and partial product generation
fanin (routing complexity).

To circumvent the problem of hard partial products in higher radices, the idea
proposed in [12] consists in applying a recursive Booth recoding on the r-bit slice.
While the idea is interesting, it relies upon a complicated mathematical formulation,
leading to a complex control circuitry, and especially to an exaggerated latency (2n/r).

Based on the multibit recoding algorithm presented in [6], the equation (2.1.2) of
[6] is rewritten in a simpler hardware-friendly form as follows: (∑−

= ++− ⋅⋅⋅++++= 1)/(

0
2

2
1

10
1 2.22

rn

j

rjrjrjrj yyyyY

) ∑−

=−+−−+− =−+ 1)/(

0
1

1
2

2 2222
rn

j

rj

j

rj

rrj

r

rrj

r Qyy (3)

 Where 01 =−y ; *Ν∈r ; and { }11 2,...,0,...,2 −−−∈ rr

jQ

In this general case, the multiplier Y is divided into n/r slices, each of r+1 bits.
Each pair of two contiguous slices has one overlapping bit. To bypass the problem of
hard partial products, Qj terms are split into 3-bit slices (r=2) with one overlapping
bit. Thus, equation (3) takes the new simpler recursive form:

)([)(...2.22.2 2
321

1)/(

0

0
11 +−++−+= +++

−

= +−∑ rjrjrj

rn

j

rjrjrj yyyyyyY

)(+−++ −
−+−+−+

)2
2

(2

345 2.2
r

rrjrrjrrj yyy)(rj

r

rrjrrjrrj yyy 22.2
)1

2
(2

123 ⎥⎦
⎤−+ −

−+−+−+ (4)

() rj
rn

j

r

i

i

irjirjirj yyyY 22.2
1)/(

0

1)2/(

0

2
21221∑ ∑−

=

−

= ++++− ⎥⎦
⎤⎢⎣

⎡ −+= (5)

rj
rn

j

r

i

i

jiQY 22
1)/(

0

1)2/(

0

2∑ ∑−

=

−

= ⎥⎦
⎤⎢⎣

⎡= (6)

With }{ 2,1,0,1,2 −−∈jiQ

There is no need to prove equation (4) since it is a combination of equations (3)
and modified Booth algorithm (MBA) which were both already proven in [6] and
[13], respectively.

To avoid dealing with special cases, n and r must be chosen as even numbers, with
r as a divider of n. Thus, the DMAC equation becomes: () rj

rn

j

i
r

i

jiji TPXQZTYX 22....
1)/(

0

2
1)2/(

0
∑ ∑−

=

−

= ⎥⎦
⎤⎢⎣

⎡ +=+ (7)

Depending on r value ranging from 2 to n, PIDs with various levels of parallelism
and latencies (n/r+1) can be automatically generated with slight control complexity.
The special cases of r=n and r=2 correspond to fully-parallel and fully-sequential PID,
respectively. In between (r=4,n/2), partially-parallel PIDs are obtained. The
outstanding advantage of this algorithm (6) is that hard partial products are generated
using simple ones (2X, X) only. For a simplified hardware and lower power
consumption, the step-by-step sign-propagate technique is employed [14].

Obviously, equation (6) does not reduce the number of partial products, but allows
a modulable space-time partitioning of the multibit recoding algorithm (equation 3),
where n/r sets comprising each r/2 partial products can be generated and summed
either simultaneously or iteratively. Whilst the parallel implementation of equation (6)
allows an important reduction of the critical path (using a carry-save adder CSA), it
requires too much power. Therefore, only the serial implementation is retained. In this
case, latency drops from (n/2+1) to (n/r+1), whereas the overhead on the total critical
path, which goes through log2(r/2) adder levels and which is equal to D in the case of
MBA, is slightly increased D+d.log2(r/2), where d is a unit delay of 1-bit adder. Note
that we are using a logarithmic summation tree and not a linear one (CSA like).

An illustrative serial example with r=4 is described as follows:

 () j
n

j

jjjjj yyyyyY 4
1)4/(

0
34

3
24

2
14414 2222∑−

= +++− −+++= (8)

 () j
n

j i

i

ijijij yyyY 4
1)4/(

0

1

0

2
21424214 22.2∑ ∑−

= = ++++− ⎥⎦
⎤⎢⎣

⎡ −+= (9)

 [] j
n

j

jj QQY 4
1)4/(

0

2
10 22∑−

=
+= (10)

() ()[] j
n

j

jjjj TPXQTPXQZTYX 4
1)4/(

0

2
1100 22.. ∑−

=
+++=+ (11)

PID
 Core

Total Gate
Count

Power*
(mW)

Max. Clock
Freq. (MHz)

Latency

 PID [4] 16728 223 47 17
PID1_1 9286 (+44%) 167 (+25%) 62 (+32%) 17 (+00%)
PID1_2 10642 (+36%) 171 (+23%) 62 (+32%) 9 (+47%)
PID1_4 12443 (+26%) 191 (+14%) 53 (+13%) 5 (+71%)
PID1_8 15688 (+06%) 194 (+13%) 44 (-06%) 3 (+82%)
PID1_16 23545 (-41%) 217 (+03%) 26 (-45%) 2 (+88%)
PID2_1 10661 (36%) 176 (+21%) 61 (+30%) 17 (+00%)
PID2_2 11923 (29%) 179 (+19%) 61 (+30%) 9 (+47%)
PID2_4 22962 (-37%) 256 (-15%) 43 (-08%) 5 (+71%)
PID2_8 26073 (-56%) 204 (+08%) 37 (-21%) 3 (+82%)
PID2_16 40327 (-141%) 488 (-119%) 23 (-51%) 2 (+88%)

 *: Dynamic power consumption at 23MHz; PIDY_X: X = r
 (+XY%): saving; (-XY%): overhead

The mapping of equation (11) into a serial architecture is shown by Fig. 3. Such a
case (r=4) would have required the computation of hard partial products (7X, 6X, 5X,
3X) if the simple form of equation (8) was used. Notice that MBA is a special case of
RMRMA for r=2. For r=1, equation (10) corresponds to Booth algorithm (BA).

Fig. 3. Optimized double multiply-and-accumulate (ODMAC) architecture for r = 4

Table 2 comprises the implementation results of PIDs with n=16 and r=1,2,4,8,16.
For instance, PID1 with r=4 not only achieves high improvement in latency (71%),
but also maintains positive savings in power (14%) and speed (13%). These important
achievements are partially due to logic-trimming performed by the synthesis tool on
the constant coefficients. Such an operation is impossible in the case of PID [4] since
the coefficients are stored into LUTs.

At this stage, a key question arises: among this panoply of PIDs, which one fits the
best one’s application case? The answer to this question is given in the next section.

Table 2. Implementation result comparison of RMRMA-based PID.

4 Discussion

In embedded control, satisfactory control-rate (without performance degradation) at
minimum power consumption is the main requirement. To select the most adequate

PID
 Core

Power*
(mW)

Max. Clock
Freq. (MHz)

Latency Max. Control Loop
Cycle (MHz)

 PID [4] 456 47 17 2.76
PID1_1 342 (+25%) 62 17 3.65 (+32%)
PID1_2 350 (+23%) 62 9 7.66 (+177%)
PID1_4 431 (+05%) 53 5 10.60 (+284%)
PID1_8 365 (+20%) 44 3 14.67 (+431%)
PID1_16 244 (+46%) 26 2 13.00 (+371%)

*: Dynamic power consumption at maximum clock frequency; PID1_X: X = r
Maximum control loop cycle = Maximum clock frequency / Latency

PID
 Core

Power*
(mW)

Max. Clock
Freq. (MHz)

Latency Max. Control Loop
Cycle (MHz)

 PID [4] 456 47 17 2.76
PID2_1 466 (-02%) 61 17 3.59 (+30%)
PID2_2 475 (-04%) 61 9 6.78 (+146%)
PID2_4 479 (-05%) 43 5 8.60 (+211%)
PID2_8 328 (+28%) 37 3 12.33 (+347%)
PID2_16 488 (-07%) 23 2 11.50 (+317%)

 *: Dynamic power consumption at maximum clock frequency; PID2_X: X = r
Maximum control loop cycle = Maximum clock frequency / Latency

PID for a given application, it’s necessary to investigate how speed, power and
hardware resources scales versus r factor for a fixed word length n. Referring to
equation (7) and aided by Fig. 3, the ODMAC architecture scales as a binary tree with
one stage of r mux(8:1) followed by Log2(r)+1 stages of adders with a total of r
adders too. Thus, the total delay cumulated by the critical path which goes through
Log2(r)+2 stages increases with O(Log(r)) complexity, whilst latency (n/r+1)
decreases linearly O(r), which makes the maximum control-rate increases as r
increases. This is confirmed by implementation results shown in Table 3 and 4
corresponding to PID1 and PID2, respectively. The sole exception to this general rule
is PIDX_n/2 which always yields to the highest control-rate compared to PIDX_n
despite the numerous tests with various n values. This is justified since they exhibit
very close latencies (3 and 2, respectively) and one stage difference in the critical path
(n-1 and n, respectively), but an important multiplexer fanin difference (n/4 and n/2,
respectively).

Table 3. Maximum power-consumption and control-loop-cycle of PID1

Table 4. Maximum power-consumption and control-loop-cycle of PID2

In terms of resource occupation, the total complexity grows linearly O(r) as r
multiplexers and r adders are required by ODMAC which is the most resource
consuming block of PID architecture. This is also confirmed by the implementation
results shown in Table 2. Note that each adder of each level of MAC and ODMAC as
well as the two ones at the output of the PID (Fig. 1 and 2) are successively extended
by one bit so that the total bit size of the control output u(k) becomes 2n+log2(r)+2.
It’s necessary to do so to prevent the apparition of a possible overflow in the data-path
which can cause signal clipping, limit cycles, and instabilities in the closed loop
response [15].

As for power consumption, intuitively, one would expect to see PID1_16 of Table
3 as being the most rapid and the most power consumer too, for the reason that it

exhibits the smallest latency and the biggest total gate count! While it is almost true
for the latter (13 MHz, before the first), it is quite the opposite for the former (244
mW, the smallest one). The explanation is that power consumption
(

clkswdd FCVP 25.0=) depends linearly on the frequency (Fclk), which is in this case 26

MHz (the smallest one) and also on the switched capacitance (Csw) which describes
the average capacitance charged during each clock period (1/Fclk). In fact, Csw
depends on a number of parameter (circuit structure, logic function, input pattern
dependence…) and not only on the total gate count (more precisely, not only on the
total physical capacitance of the circuit). Furthermore, a study [16] that analyzed the
dynamic power consumption in Xilinx’s FPGA revealed the following share: 60% by
routing, 16% by logic, and 14% by clocking. The reason is that routing is intensively
segmented, using pass logic and buffers.

When both high control-rate close to 13MHz and low power are required, PID1_16
(244 mW at 13MHz) stands as the best candidate compared to PID1_8 (323 mW at
13MHz). However, it’s noteworthy to mention that this comparison stands valid only
for the special case of 16-bit word-length PID, for a given set of coefficients, mapped
on XC2S150E-7FT256 FPGA circuit and using Xilinx’s XST synthesis tool, version
9.2. Results could significantly change under other conditions, especially when
considering the logic trimming process which is essentially dependant on the bit-
arrangement of the coefficients. For a minimum influence of the trimming operation
on the synthesized results, appropriate coefficients were used such as all Qj terms are
represented except the null one to avoid generating null partial products that greatly
simplify the circuit logic. In fact, constant coefficients PIDs (PID1) are somehow
unpredictable with regard to r. They are coefficient dependant. Adversely, PID2 is not
involved with the trimming process since coefficients are time varying.
Implementation results comprised in Table 4 show that PID2_8 is the best at all
aspects for the same reasons cited above. In sum, when high control-rate is the
ultimate objective, PIDX_n/2 is the best candidate whatever n value. But in the case
where both high speed and low power are required, timing and power evaluations are
necessary to decide which PID to select: either PIDX_n/2 or PIDX_n.

Finally, when only low power is targeted, PIDX_1 is the best candidate. We dealt
here with extreme situations only, but for a given couple (cr, pc) of control-rate and
power consumption, several candidates are possible. Yet, the best PID is the one
which requires the smallest gate count.

So far, speed and power have been considered in isolation to area which becomes
critical, and sometimes prohibitive, for large word-length n due to the fact that PID is
basically built of a set of multipliers (three or five) that scale quadratically with word
length. The bigger is the area, the higher is the cost. Consequently, another advantage
of RMRMA algorithm is to cope also with the cost issue as an additional constraint to
speed and power.

We deliberately chose Spartan2e FPGA to compare our results with those provided
in [4]. A mapping on a recent FPGA circuit (Virtex6) using XST 12.1 version of
extreme PID2 delivered state-of-the-art results grouped in Table 5.

Note that control-rate scaled with an average factor of 2, while power dissipation
scaled with an average factor of 45. This is not surprising, since Spartan2e and
Virtex6 were fabricated with two differently scaled technology processes: 150 nm and
40 nm, respectively. Therefore, the physical capacitances of the circuit in Virtex6 are

PID
 Core

Number
of Slices

Power*
(mW)

Max. Clock
Freq. (MHz)

Latency Max. Control Loop
Cycle (MHz)

PID2_1 231 23 122 17 07.17
PID2_8 1060 04 90.5 3 30.16
PID2_16 1963 13 50.4 2 25.19

 *: Dynamic power consumption at maximum clock frequency; PID2_X: X = r
Maximum control loop cycle = Maximum clock frequency / Latency

relatively too much smaller. Additionally, the supply-voltages (Vdd) used for internal
core (Vccint) and for output blocks (Vcco) are respectively 1.8V and 3.3V for
Spartan2e, 1V and 2.5V for Virtex6. Furthermore, the efficient advances made in
CAD tools (from Xilinx ISE 9.1 to 12.1 versions) as well as in FPGA architecture,
such as advanced segmented-routing, much contributed to lower the power
consumption [17]. Power consumption evaluation studies [16][17] based on
simulation and measurements, targeting Virtex2 and Virtex6 families revealed the
following results: 5.9µW per CLB per MHz, and 1.09 mW per 100 MHz at 38%
toggle rate, respectively. These studies roughly confirm our power results as
proximate values are obtained.

Table 5. Maximum power-consumption and control-loop-cycle of PID2 mapped on Virtex6

Timing and power evaluations were performed in the following conditions. Delays
were calculated for two types of paths: Clock-To-Setup and all paths together (Pad-
To-Setup, Clock-To-Pad and Pad-To-Pad.) The Clock-To-Setup gives more precise
information on the delays than other remaining paths, which depend in fact on I/O
Block (IOB) configuration (low/high fanout, CMOS, TTL, LVDS…). Thus, all delays
(frequencies) presented so far are clock-to-setup delays with the highest speed grade
of the FPGA circuit. As for power, we chose the highest Vcco voltage value (3.3 for
Spartan2e and 2.5 for Virex6) with a maximum toggle activity of 50%, which means
that Flip-Flops (FFs) toggle one time during each clock cycle. The reason is that only
simple-edge triggered FFs are used for synthesis (no double-edge FFs).

5. Conclusion

Analytical scaling-complexity evaluations with respect to the couple (n,r), confirmed
also by software simulations, revealed useful information which is summarized as
follows:

• PIDX_n/2 is the fastest PID that yields to the highest control-rate (30 MHz for
PID2_8 mapped on Virtex6, with (n,r)=(16,8));

• PIDX_1 is the most power efficient PID when speed is not a concern;
• PIDX_n and PIDX_n/2 are the most efficient PIDs when both high control-rate

and low-power dissipation are required.
Further extension to the present work is to apply the same or appropriate

partitioning in conjunction with RMRMA algorithm to the set of recurrent equations
of an arbitrary number of multi-loop PID controllers taken as a whole.

References

1. Åström, K., Hägglund, T.: PID Controllers: Theory, Design, and Tuning. by the
Instrument Society of America, Research Triangle Park, NC, USA, 2nd Edition, ISBN: 1-
55617-516-7, Copyright (1995)

2. Zhao, W., et al: FPGA Implementation of Closed-Loop Control Systems for Small-Scale
Robot. Proceedings of the IEEE 12th International , on Advanced Robotics (ICAR), pp. 70-
77, (2005)

3. Samet, L., et al: A Digital PID Controller for Real-Time and Multi-Loop Control: a
Comparative Study. Proceedings of the IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), vol. 1, pp. 291-296, (1998)

4. Fong, Y., Moallem, M., Wang, W.: Design and Implementation of Modular FPGA-Based
PID Controllers. IEEE Trans. on Industrial Electronics, Vol. 54, N° 4, pp. 1898-1906,
August (2007)

5. Wittenmark, B., Astrom, K. J., Arzenin, K.E.: Computer control: An overview. Technical
Report of Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden, Apr.
(2003). Available: www.control.lth.se/kursdr/ifac.pdf

6. Sam, H., Gupta, A.: A Generalized Multibit Recoding of Two’s Complement Binary
Numbers and its Proof with Application in Multiplier Implementation. IEEE Trans. on
Computers, vol. 39, N° 8, August (1990)

7. Lamberti, F.: Reducing the Computation Time in (Short Bit-Width) Two’s Complement
Multiplier. IEEE Trans. on Computers, vol. 60, N° 2, pp. 148-156, February (2011).

8. Kuang, S.R., Wang, J.P., Guo, C.Y.: Modified Booth Multipliers with a Regular Partial
Product Array. IEEE Trans. on Circuit and Systems II, Express Brief, vol. 56, N° 5, May
(2009)

9. Kang, J.Y., Gaudiot, J.L.: A Simple High-Speed Multiplier Design,” IEEE Trans. on
Computers, vol. 55, N° 10, Oct. (2006)

10. Crookes, D., Jiang, M.: Using Signed Digit Arithmetic for Low-Power Multiplication.
Electronics Letters, vol. 43, N° 11, may (2007)

11. Seidel, P.M., McFearin, L. D., Matula, D.W.: Secondary Radix Recodings for Higher
Radix Multipliers. IEEE Trans. on Computers, vol. 54, N°2, February (2005).

12. North, R.C., Ku, W.H.: β-Bit Serial/Parallel Multipliers. Journal of VLSI Signal
Processing, Kluwer Academic Publishers, Boston, vol. 2, pp. 219-233, (1991)

13. Rubinfield,L.P.: A Proof of the Modified Booth Algorithm for Multiplication. IEEE Trans.
On Computers, C-24, (10), pp. 1014-1015, (1975)

14. Henlin, D.A., Fertsch, M.T., Mazin, M., Lewis, E.T.: A 16 bit x 16 bit Pipelined
Multiplier Marcrocell. IEEE Journal of Solid-State Circuits, vol. SC-20, no. 2, pp. 542-547,
(1985)

15. Kelly, J.S., et al: Design and Implementation of Digital Controllers for Smart Structures
Using Field Programmable Gate Arrays. Smart Material Structure Journal, PII: S0964-1726
(97) 87085-1, pp. 559-572, Printed in the UK, (1997)

16. Shang, L., Kaviani, A.S., Bathala, K.: Dynamic Power Consumption in Virtex-II FPGA
Family. Proceedings of FPGA Conference, pp. 157-164, Monterey, California, USA,
February (2002)

17. Xilinx Inc.: Virtex6 FPGA: Satisfying the Insatiable Demand for Higher Bandwidth. PN
2403, Printed in the USA, Copyright (2009)
Available: www.xilinx.com/publications/prod_mktg/Virtex6_Product_Brief.pdf

