
HAL Id: hal-00720672
https://hal.science/hal-00720672

Submitted on 25 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Reasoning about Data Trees via Integer Linear
Programming

Claire David, Leonid Libkin, Tony Tan

To cite this version:
Claire David, Leonid Libkin, Tony Tan. Efficient Reasoning about Data Trees via Integer Linear
Programming. International Conference on Database Theory (ICDT), Mar 2011, Uppsala, Sweden.
pp.18-29, �10.1145/1938551.1938558�. �hal-00720672�

https://hal.science/hal-00720672
https://hal.archives-ouvertes.fr

Efficient Reasoning about Data Trees via
Integer Linear Programming

Claire David
Université Paris-Est

Claire.David@univ-mlv.fr

Leonid Libkin
University of Edinburgh
libkin@inf.ed.ac.uk

Tony Tan
University of Edinburgh
ttan@inf.ed.ac.uk

ABSTRACT

Data trees provide a standard abstraction of XML documents
with data values: they are trees whose nodes, in addition to
the usual labels, can carry labels from an infinite alphabet
(data). Therefore, one is interested in decidable formalisms
for reasoning about data trees. While some are known –
such as the two-variable logic – they tend to be of very high
complexity, and most decidability proofs are highly nontriv-
ial. We are therefore interested in reasonable complexity for-
malisms as well as better techniques for proving decidability.

Here we show that many decidable formalisms for data trees
are subsumed – fully or partially – by the power of tree au-
tomata together with set constraints and linear constraints
on cardinalities of various sets of data values. All these con-
straints can be translated into instances of integer linearpro-
gramming, giving us an NP bound on the complexity of the
reasoning tasks. We prove that this bound, as well as the key
encoding technique, remain very robust, and allow the addi-
tion of features such as counting of paths and patterns, and
even a concise encoding of constraints, without increasing
the complexity. We also relate our results to several rea-
soning tasks over XML documents, such as satisfiability of
schemas and data dependencies and satisfiability of the two-
variable logic.

Categories and Subject Descriptors

F.1.1 [Computation by Abstract Devices]: Models of
Computation—Automata; F.4.1 [Mathematical logic and
formal languages]: Mathematical logic; G.1.6 [Numerical
Analysis]: Optimization—Integer programming; H.2.1
[Database Management]: Logical Design—Data Models

General Terms

Algorithms, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2011March 21-23, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00.

Keywords

XML, tree languages, data values, Presburger arithmetic,
reasoning, integer linear programming

1. INTRODUCTION

Traditional approaches to studying logics on trees use a finite
alphabet for labeling tree nodes. The interest in such logics
was reawakened by the development of XML as the standard
for data exchange on the Web. Logical formalisms provide
the basis for query languages as well as for reasoning tasks,
including many static analysis questions such as consistency
of specifications, query optimization, and typing [1, 2, 13,
14, 22, 29].

The simplest abstraction of XML documents is ordered un-
ranked finite trees whose nodes are labeled by letters from a
finite alphabet [23, 34]. This abstraction works well for rea-
soning about structural properties, but real XML documents
carry data, which cannot be captured by a finite alphabet.
Thus, there has been a consistent interest indata trees, i.e.,
trees in which nodes carry both a label from a finite alphabet
and a data value from an infinite domain [6, 7, 8, 12, 25, 17].
It seems natural to add at least the equality of data values
to a logic over data trees. But while for finitely-labeled trees
many logical formalisms are decidable by converting formu-
lae to automata (e.g., the monadic second-order logic MSO),
adding data-equality makes even FO (first-order logic) un-
decidable.

This explains why the search for decidable reasoning for-
malisms over data trees has been a common theme in XML
research. Such a search has largely followed two routes. The
first takes a specific XML reasoning task, or a set of similar
tasks, and builds algorithms for them (see, e.g, [2, 3, 5, 9, 13,
29, 14]). The second attempts to find a sufficiently general
logical formalism that is decidable, and can express some
XML reasoning tasks of interest (see, e.g, [12, 6, 16]).

While both approaches have yielded many nontrivial and in-
fluential results, they are not completely satisfactory. The
first approach gives us specialized algorithms for concrete
problems, but no general tools. The second approach tends
to produce extremely high complexity bounds, such as 4EX-
PTIME, or even non-primitive-recursive, and in addition, the

proofs are usually highly nontrivial and are very hard to
adapt to other reasoning tasks.

Instead we want a sufficiently general formalism – in fact, a
family of formalisms, that are not extremely complicated to
deal with, and at the same time give us acceptable complex-
ity bounds. For reasoning tasks (as opposed to, say, query
evaluation which we are used to in databases), acceptable
complexity is often viewed as single-exponential [28], or
better yet, NP (since SAT solvers are now a practical tool
for many static analysis problems [20]).

The particular class of formalisms we deal with here is mo-
tivated by several concrete reasoning tasks studied in the
XML context, as well as some decidable logical formalisms.
We now briefly describe those. One of the earliest reason-
ing problems studied in the XML context was the problem
of reasoning aboutkeys and inclusion constraints. An XML
key says that for a given labela, the data value of ana-node
(i.e., node labeleda) uniquely determines the node. An in-
clusion constraint says that every data value of ana-node
will occur in a b-node as well. Such constraints are typical
in databases, from which many XML documents are gener-
ated. The question is then whether they are consistent with
the schema of an XML document, usually given as a tree
automaton, or a DTD. This problem is decidable in NP [13].

On the logic side, there appear to be two main ideas leading
to decidability. One starts with a temporal logic, and adds a
limited memory for keeping and comparing data values. Ex-
amples include [12, 16], but the logics, although decidable,
have extremely high complexity (non-primitive-recursive).
A different approach based on restricting the number of vari-
ables was followed by [6], which showed thatFO2, first-
order logic with two variables, is decidable over data trees.
In fact, even∃MSO2, its extension with existential monadic
second-order quantifiers, is decidable. The complexity drops
to elementary but is still extremely high: the decision proce-
dure runs in 3NEXPTIME.

Our formalisms extend the specific constraints such as keys
and inclusions, and yet come very close to subsuming the
power of logics such as∃MSO2, while permitting many
properties which are not even definable in MSO. To moti-
vate the kind of constraints we use, let us restate keys and
inclusion constraints in a slightly different way. For this, we
need two new notations:V (a) stands for the set of data val-
ues ina-labeled nodes, and#a is the number ofa-nodes.

• A key simply states that#a = |V (a)|. We view this
as alinear constraint, and allow arbitrary linear con-
straints over the values#a and |V (a)|, for example,
|V (a)| ≥ 2|V (b)| − #c.

• An inclusion constraint states thatV (a) ⊆ V (b), or,
equivalently,V (a) ∩ V (b) = ∅. We generalize this
to arbitraryset-constraints[26], stating that a Boolean
combination ofV (a)’s is either empty or nonempty.

We consider the problem of satisfiability of such constraints
with respect to a schema declaration, given by an unranked

tree automaton [21]. Or, formally: Given an unranked tree
automatonA and a collectionC of set and linear constraints,
does there exist a treet accepted byA that satisfies all the
constraints inC?

We prove that this problem, and several of its variations,
are all decidable in NP (the hardness result has been known
even for simple keys and inclusion constraints [13]). The
techniques are all based on reduction to instances ofinteger
linear programming. In fact, the basic result, unlike many
decidability proofs [6, 12, 13], is quite easy to establish.

Already our basic result subsumes, not only reasoning about
integrity constraints in XML (as in, e.g., [2, 13]), but alsoa
very large fragment of∃MSO2. These relationships will be
made precise in Section 6. Note that even the decidability
of the satisfiability problem doesnot follow from known re-
sults such as [6] which are restricted to fragments of MSO;
in contrast, our formalism expresses many properties not de-
finable in MSO.

One benefit of having simple proof techniques is that the
basic result can be extended in several ways. One of the ex-
tensions introduces variables that count not just the number
of nodes labeleda, but also the number of such nodes that
permit some paths starting from them. For example, we can
reason about the number ofa-nodes that have ab-parent and
a c-sibling. By extending the translation into integer linear
programming, we obtain such extensions quite easily.

A more surprising extension is toconcisely representedcon-
straints. One way to reduce the size of the representation of
linear constraints is to discard all zero entries from matri-
ces defining them. This can shrink the size of the instance of
the problem exponentially. A common phenomenon in com-
plexity theory is that such a shrinking increases the complex-
ity by an exponent. So more naturally, the expected bound
thus would be NEXPTIME. We prove that, quite surpris-
ingly, under such concise representation of constraints, the
problem stays in NP.

As a final contribution, we make the entire approach com-
pletely algorithmic, by providing simple and self-contained
translations: (1) from an unranked tree automatonA to a
simple instanceΨA of linear programming, i.e. instances
with only 0, 1 or -1 coefficients; and (2) from a solution
of ΨA to a tree accepted byA. Of course the existence of
translation (1) is known [33, 18]; the contribution here is to
provide a simple algorithm for doing it, that also results in
simple formulae which could be used and implemented for
concrete verification problems.

Organization. Section 2 presents the main definitions. In
Section 3 we define the contraints and the problem we are
interested in. In Section 4 we establish the basic result. An
extension is presented in Section 5. In Section 6 we relate
set and linear constraints to XML reasoning tasks and the
logic ∃MSO2 of [6]. We study the complexity of the prob-
lem in the case of concise representation of the constraints
in Section 7. Finally, the translation from unranked tree au-
tomata to linear integer programming is provided in Section

8. Some proofs are only sketched, or completely omitted,
they will be available in the journal version.

2. PRELIMINARIES

Trees and automata.We start with the standard definitions
of unranked finite trees and logics and automata for them.
An unranked finite tree domain is a prefix-closed finite sub-
setD of N

∗ (words overN) such thatv · i ∈ D implies
v · j ∈ D for all j < i andv ∈ N

∗. Given a finite la-
beling alphabetΣ, a Σ-labeled unranked tree is a structure
〈D,E↓, E→, {a(·)}a∈Σ〉, where

• D is an unranked tree domain,

• E↓ is the child relation:(v, v · i) ∈ E↓ for v · i ∈ D,

• E→ is the next-sibling relation:(v · i, v ·(i+1)) ∈ E→

for v · (i+ 1) ∈ D, and

• thea(·)’s are labeling predicates, i.e. for each nodev,
exactly one ofa(v), with a ∈ Σ, is true.

The label of the nodev in t will be denoted byℓabt(v), and
the domainD is denoted byDom(t).

Let r be a designated symbol inΣ. We assume that the root
of the tree (i.e., the empty word) is labeledr, and no other
node is labeledr. (This is not a restriction as we can always
put a new root with a given label.)

An unranked tree automaton[10, 32] overΣ-labeled trees is
a tupleA = (Q,Σ, δ, F), whereQ is a finite set of states,
F ⊆ Q is the set of final states, andδ : Q × Σ → 2(Q∗)

is a transition function; we require thatδ(q, a)’s be regular
languages overQ for all q ∈ Q anda ∈ Σ.

A run ofA over a treet is a functionρA : Dom(t) → Q such
that for each nodev with n childrenv · 0, . . . , v · (n − 1),
the wordρA(v · 0) · · ·ρA(v · (n − 1)) is in the language
δ(ρA(v), ℓabt(v)). Of course, for a leafv labeleda this
means thatv could be assigned stateq iff the empty word
ǫ is in δ(q, a). A run is accepting ifρA(ǫ) ∈ F , i.e., if the
root is assigned an accepting state. A treet is accepted byA
if there exists an accepting run ofA on t. The set of all trees
accepted byA is denoted byL(A).

Data trees. In a data tree, besides carrying a label from
the finite alphabetΣ each non-root node also carries a data
value from some countably infinite data domain (to be con-
crete, we assume it to beN). For a nodev of a data
tree t, labeled with a symbola ∈ Σ − {r}, the assigned
data value is denoted by valt(v). We also denote the set
of all data values assigned toa-nodes byVt(a). That is,
Vt(a) = {valt(v) | ℓabt(v) = a}.

Note that we assumeVt(r) = ∅ (i.e., no data value assigned
to the root). This is done for convenience and is not a re-
striction, as one can always add a new root without a data
value.

Integer linear programming and Presburger formulae.
Recall that an instance of integer linear programming con-

sists of anm×k integer matrixA and a vectorb ∈ Z
m. The

question is whether there is ak-vectorv̄ over integers such
thatAv̄ ≥ b.

The problem is well-known to be NP-complete. It is NP-
hard even when entries are restricted to be 0s and 1s. Mem-
bership in NP follows from the fact that ifAv̄ ≥ b has an
integer solution, then there is one in which all entries are
bounded by(ak)p(m), wherea is the maximum absolute
value that occurs inA andb, andp is a polynomial [27].

We also consider existential Presburger formulae, i.e., first-
order formulae over the structure〈Z,+, 0, 1, <〉. Such for-
mulae can always be converted to formulae of the form

ϕ(x̄) = ∃ȳ PBC(Aiv̄i ≥ bi), (1)

where PBC means a positive Boolean combination, and
eachAiv̄i ≥ bi is an instance of integer linear programming
with variablesv̄i coming fromx̄, ȳ. Whenever we refer to
existential Presburger formulae, we assume that they are in
the form (1). We also only work with non-negative integers
for x̄ and ȳ, so we always assume that all the conditions
xj ≥ 0, yl ≥ 0 are included in formulae. However, it is to
be noted that the entries inAi andbi can be negative.

Notice that we occasionally use conditions such asx > 0 or
x + y ≤ b, or x = y, but these are easily put in the form
(1) by changing them tox ≥ 1, or −x − y ≥ −b, or the
conjunction ofx ≥ y andy ≥ x, respectively.

Satisfiability of existential Presburger formulae is knownto
be in NP. This follows from the bound of [27]. If we have
a witness(x̄, ȳ) for ϕ of the form (1), then it does so by
making some of theAiv̄i ≥ bi true. Using the bound of [27],
we see that no matter which combination of these instances
of linear integer programming makes the formula true, there
is a witness that will require only polynomially many bits in
terms of the size of the formula. This implies the NP bound.

3. CONSTRAINTS AND THE SATISFIA-
BILITY PROBLEM

In this section we give the precise definitions of set and linear
constraints, and state the main satisfiability problem.

Set constraints.Recall thatΣ is the labeling alphabet with
a special symbolr for the root. Data-terms(or just terms)
are given by the grammar

τ := V (a) | τ ∪ τ | τ ∩ τ | τ for a ∈ Σ − {r}.

The semanticsJτKt is defined with respect to a data treet:

• JV (a)Kt = Vt(a);

• Jτ1 ∩ τ2Kt = Jτ1Kt ∩ Jτ2Kt;

• Jτ1 ∪ τ2Kt = Jτ1Kt ∪ Jτ2Kt;

• JτKt = Vt − JτKt;

whereVt =
⋃

a∈Σ−{r} Vt(a) is the set of data values found
in the data treet.

A set constraintis eitherτ = ∅ or τ 6= ∅, whereτ is a term.
A tree t satisfiesτ = ∅, written ast |= τ = ∅, iff JτKt = ∅
(and likewise forτ 6= ∅).

Note that set constraintsτ1 ⊆ τ2 andτ1 ⊂ τ2 can be simi-
larly defined, but they are easily expressible with the empti-
ness constraints (e.g.,τ1 ⊆ τ2 means thatτ1 ∩ τ2 is empty).

In particular, the inclusion constraint from the introduction
is an example of a set constraint: to say that all data values
of a-nodes occur as data values ofb-nodes, we writeV (a)∩

V (b) = ∅.

Linear data constraints. Fix variablesxa for eacha ∈ Σ
andzS for eachS ⊆ Σ − {r}. Linear data constraints are
linear constraints over these variables.

The interpretation ofxa is #a(t) – the number ofa-nodes
in t. The interpretation ofzS is the cardinality of the set

[S]t =
⋂

a∈S

Vt(a) ∩
⋂

b/∈S

Vt(b).

That is,[S]t contains data values which are found amonga-
nodes for alla ∈ S but which are not attached to anyb-nodes
for the labelb 6∈ S. Note that the sets[S]t’s are disjoint, and
that

Vt(a) =
⋃

S such thata∈S

[S]t.

This gives us much more information that just the number of
data values ina-nodes,|Vt(a)|, which is simply

|Vt(a)| =
∑

S such thata∈S

zS .

For instance, with such constraints we can reason about data
values that occur ina- and c-nodes but do not occur inb-
nodes: the number of those is simply

∑

{zS | a, c ∈ S, b 6∈
S}.

Notice that key constraints from the introduction are exam-
ples of linear data constraints; that the data values ofa-nodes
form a key is that the number ofa-nodes, which isxa, is
equal to the number of data values found in thea-nodes,
which is|Vt(a)|. It is expressible by the linear constraint:

xa = |Vt(a)| =
∑

S such thata∈S

zS .

We shall view linear data constraints as an instance of integer
linear programming. IfΣ = {a1, . . . , aℓ} andS1, . . . , Sk

is an enumeration of nonempty subsets ofΣ − {r} (thus
k = 2|Σ|−1 − 1), then a set ofm linear data constraints is
Av̄ ≥ b, whereA is anm × (ℓ + k)-matrix overZ and
b ∈ Z

m. It is satisfied in a data treet if it is true whenv is
interpreted as the vector

(

#a1(t), . . . ,#aℓ(t),
∣

∣[S1]t
∣

∣, . . . ,
∣

∣[Sk]t
∣

∣

)

.

Satisfiability problem. Let C denote a collection of set and
linear data constraints. If a treet satisfies all the constraints

in C, we writet |= C. We study the following satisfiability
problem.

PROBLEM: SAT(A, C)
INPUT: an unranked tree automatonA;

a collectionC of set and
linear data constraints

QUESTION: is there a treet accepted byA
such thatt |= C?

The problem of consistency of XML constraints and
schemas [2, 13] is a special instance of this problem. We
shall later see that other problems related to XML con-
straints, as well as a large fragment of the two-variable logic
can be formulated as special cases of SAT(A, C). More-
over, SAT(A, C) includes many instances that cannot even
be formulated in MSO, which is the logic that typically sub-
sumes XML reasoning tasks (for example, the linear con-
straint which states that#a(t) > 2 ·#b(t) is not expressible
in MSO, but is a simple linear data constraintxa > 2xb).

4. DECIDING SATISFIABILITY

We shall now prove the decidability of SAT(A, C) problem.
In our first result, we assume a simple way of measuring the
size of the input:

• For the automatonA, we take the size of the transition
table, where each transitionδ(q, a) is represented by
an NFA (or by a regular expression, since an NFA can
be computed from it in polynomial time).

• The size of each set constraintτ {=, 6=} ∅ is measured
as the size of the parse-tree for the termτ .

• The size of the linear data constraintsAv̄ ≥ b is the
sum of sizes ofA andb, with numbers represented in
binary.

THEOREM 4.1. The problemSAT(A, C) is solvable in
NP.

Before proving this result, we give a couple of remarks.
First, hardness for NP has been known, as it easily follows
from the hardness result for XML keys and foreign keys in
[13] and many other proofs can be adapted as well. In this
result the most important task is to prove the upper bound,
showing that reasoning tasks have acceptable complexity.

Second, extending the class of linear constraints by adding
multiplication leads to the immediate loss of decidability,
as Hilbert’s 10th problem can be trivially encoded. This
remains undecidable even for quadratic equations. On the
other hand, if we extend the class of linear constraints toPre-
quadratic Diophantine Equation, where in addition to linear
constraint, constraints such asxi ≤ xjxk are allowed, it be-
comes decidable in NEXPTIME [15].

Proof of Theorem 4.1. Let Σ = {a1, . . . , an} and
S1, . . . , Sk be the enumeration of non-empty subsets of
Σ − {r}. We fix the vectorsx̄ = (xa1

, . . . , xan
) and

z̄ = (zS1
, . . . , zSk

).

We first show how to express set constraints in terms of lin-
ear data constraints. For a termτ , we define a familyS(τ)
of subsets ofΣ as follows.

• If τ = V (a), thenS(τ) = {S | a ∈ S andS ⊆
Σ − {r}}.

• If τ = τ1, thenS(τ) = 2Σ−{r} − S(τ1).

• If τ = τ1 ⋆ τ2, thenS(τ) = S(τ1) ⋆ S(τ2), where⋆ is
∩ or∪.

It follows immediately that for every data treet, we have
JτKt =

⋃

S∈S(τ)[S]t. Recall that the sets[S]t’s are disjoint.
Hence, the set constraintτ = ∅ can be expressed as a linear
data constraint

∑

S∈S(τ) zS = 0. Similarly, τ 6= ∅ can be
expressed as

∑

S∈S(τ) zS ≥ 1. Since the size of linear con-
straints is exponential inΣ, this transformation is polyno-
mial in the size of the whole input.1 Hence, from now on, we
can assume that the setC is of the formA(x̄, z̄) ≥ b, and thus
is given by a quantifier-free Presburger formulaψC(x̄, z̄).

Next, we convert automata into linear constraints. In [33]
it is shown that given a context free grammarG, whose ter-
minals area1, . . . , an, one can construct in polynomial time
an existential Presburger formulaϕG(x1, . . . , xn) such that
ϕG(m1, . . . ,mn) holds if and only if there exists a word
w ∈ L(G) such that#a1(w) = m1, . . . ,#an(w) = mn,
where#ai(w) denotes the number of occurrences ofai in
the wordw. Then, in [18] it is observed that the method can
be extended to ranked tree automata. Since unranked tree au-
tomata can be easily converted to ranked tree automata with
additional new symbol, we can construct the existential Pres-
burger formulaϕA(x1, . . . , xn) for unranked tree automaton
A, with one extra existential quantifier for the new symbol2.
Hence, we have:

LEMMA 4.2. (See also Section 8.)Given an unranked
tree automatonA, over alphabetΣ = {a1, . . . , an},
one can construct in polynomial time an existential Pres-
burger formulaϕA(x1, . . . , xn) such that ifw ∈ L(A),
then ϕA(#a1(w), . . . ,#an(w) holds; and conversely, if
ϕA(m1, . . . ,mn) holds, then there exists a treet ∈ L(A)
such that#a1(t) = m1, . . . ,#an(t) = mn.

Going back to the proof of Theorem 4.1, we introduce ad-
ditional variablesva for eacha ∈ Σ − {r}. The intended
meaning ofva is the cardinality ofVt(a). Let v̄ be the vec-
tor (va1

, . . . , van
). We next define two formulae that ensure

proper interaction betweenψC andϕA. First,

χ(v̄, x̄, z̄) =
∧

a∈Σ−{r}

(va =
∑

a∈S

zS) ∧ (va ≤ xa)

1In Section 7 when we look at the concise representations of the
input, we will need a more refined technique for eliminating set
constraints.
2We shall present a more thorough construction in Section 8.

states the expected conditions on these variables, given their
intended interpretations. Second,

χ′(v̄, x̄) =
∧

a∈Σ−{r}

(xa = 0 ∨ va > 0)

ensures that ifa-nodes exist (i.e.,xa > 0), then at least one
data value is found in thea-nodes.

We now consider a Presburger formulaΨ(A,C)(x̄, z̄)

∃v̄
(

ψC(x̄, z̄) ∧ ϕA(x̄) ∧ χ(v̄, x̄, z̄) ∧ χ′(x̄, z̄)
)

.

To convertΨ(A,C)(x̄, z̄) into the form (1), we simply move
all the existential quantifier inϕA(x̄) to the front. Each
atomic predicate insideΨ(A,C)(x̄, z̄) can then be viewed as
an instance of integer linear programmingAȳi ≥ bi.

LEMMA 4.3. Given tuples of non-negative integers
n̄ = (na)a∈Σ and m̄ = (mS)S⊆Σ−{r}, the formula
Ψ(A,C)(n̄, m̄) holds iff there exists a data treet accepted by
A such that

1. na = #a(t) for eacha ∈ Σ − {r};

2. mS = |[S]t| for eachS ⊆ Σ − {r};

3. t |= C.

PROOF. The “if” part is immediate from the construc-
tion of Ψ(A,C). We prove the “only if” direction. Suppose
Ψ(n̄, m̄) holds. That is, there exists a witnessv̄ such that

ϕC(n̄, m̄) ∧ ϕA(n̄) ∧ χ(v̄, n̄, m̄) ∧ χ′(n̄, m̄) holds.

SinceϕA holds, by Lemma 4.2, there exists a treet ∈ L(A)
such that(#a1(t), . . . ,#an(t)) = n̄.

Now we show how to assign data values to the nodes in the
tree t so that in the resulting data treet′ we havemS =
|[S]t′ |, for everyS ⊆ Σ − {r}. LetK =

∑

S⊆Σ−{r}mS ,
and we shall use the set{1, . . . ,K} as the data values. Let

ξ : {1, . . . ,K} 7→ 2Σ−{r} − ∅

be a function satisfying|ξ−1(S)| = mS , for eachS ⊆ Σ −
{r}. The witness for̄v is (

∑

a2∈S mS , . . . ,
∑

an∈S mS).

The data tree t′ is obtained by letting Vt′(a) be
⋃

a∈S ξ
−1(S). This is possible sinceχ(v̄, n̄, m̄) holds as

∑

a∈S |ξ−1(S)| = va ≤ #a(t) = na. By definition
of the functionξ, we obtain that[S]t′ = ξ−1(S), thus,
|[S]t′ | = ms, for eachS ⊆ Σ − {r}. This proves the
lemma.

We now have an NP algorithm for SAT(A, C): in polyno-
mial time we construct the formulaΨ(A,C)(x̄, z̄) and then
check for its satisfiability. It runs in NP, and Lemma 4.3
implies that it solves SAT(A, C). ✷

We shall see in the next section that our algorithm for
SAT(A, C) gives some results obtained by using much
harder techniques (such as reasoning about constraints in
XML), and comes very close to giving us results obtained
by considerably much hardertechniques (like the results of
[6]). The simpler structure of the proof will lead to some ex-
tensions that otherwise would have been very hard to obtain.

5. AN EXTENSION: COMPLEX PROPER-
TIES OF NODES

We now demonstrate how the simple structure of the proof
lets us obtain extensions for the main reasoning task almost
effortlessly.

So far we were counting numbers of nodes#a(t) – i.e.,
nodes labeleda. Checking whether a node is labeleda is
a simple property expressed by a fixed MSO (in fact, by an
atomic FO) formula with one free variable. We now show
that we can count sets of nodes expressed by arbitrary fixed
MSO formulae and use them in linear constraints.

More precisely, letπ(x) be an MSO formula with one free
first-order variable in the usual vocabulary of unranked trees,
that is,E↓, E→, anda(·)a∈Σ for child and next-sibling edges
and labeling predicates. These formulae select nodes in
trees. We let#π(t) be the cardinality of the set of nodes
in t that satisfyπ.

Using our proof, we can extend the decidability result to con-
straints that include “counting” the number of nodes output
selected by such formulaeπ(x). Note that unary MSO sub-
sumes many XML formalisms, for example node formulae
of XPath (or even conditional XPath).

If Π = {π1(x), . . . , πs(x)} is collection of such MSO for-
mulae, then we refer toΠ-linear constraints: these are linear
constraints over the usual variablesxa’s andzS ’s, as well as
wπi

’s, interpreted as#πi(t). We then deal with the problem
Π-SAT(A, C): its input is an automatonA and a collection
C of set andΠ-linear constraints, and the question is whether
these are satisfiable.

Our proof immediately implies that the problem is decid-
able:

COROLLARY 5.1. The problemΠ-SAT(A, C) is decid-
able.

PROOF. We can embed the formulaeπ1, . . . , πs into the
automatonA and check the existence of a tree over the al-
phabetΣ × 2Π, where(i) its Σ projection is accepted by
A and(ii) for each node labeled with(a, P) ∈ Σ × 2Π, a
formulaπ is satisfied iffπ ∈ P is satisfied. The linear con-
straints inC over the variablesxa’s andzS ’s can be easily
converted into the variablesxa,P ’s andzT , whereP ⊆ 2Π

andT ⊆ (Σ × 2Π).

The complexity ofΠ-SAT(A, C) of course depends on how
the formulaeπ1, . . . , πn are given. If they are given as MSO
formulae, then it is immediately known that the complexity
is non-elementary. But these formulae are also captured by
thequery automataof [24]: these are automata that also se-
lect nodes in their accepting runs. With query automata, the
complexity drops to NEXPTIME, and in some cases to NP.

COROLLARY 5.2. 1. If the formulae inΠ are given
as query automata, thenΠ-SAT(A, C) is decidable in
NEXPTIME.

2. Moreover, it is decidable inNP if Π is fixed, or even if
for each symbola ∈ Σ the number of formulaeπi(x)
which can be true ina-nodes is fixed.

PROOF. Item (1) is straightforward, as the non-
elementary blow-up for SAT(A, C) occurs in translating the
MSO formulae to query automata. However, the blow-up
from NP (complexity of SAT(A, C)) to NEXPTIME occurs
when moving from the alphabetΣ to Σ × 2Π. Thus, ifΠ is
fixed, then the complexity remains in NP.

Moreover, if for each symbola ∈ Σ the number of formulae
πi(x) which can be true ina-nodes is fixed, we do not need
to move to the alphabetΣ× 2Π. We can stay in the alphabet
Σ, and embed eachπ ∈ Π inside the automatonA. The
automatonA can remember the fixed number of nodes that
satisfyπ and verify that indeed such is the case. This way
we avoid the exponential blow-up and remains in NP.

While converting from MSO to query automata is non-
elementary, for some other formalisms that complexity is
much lower: for example, [19] shows how to convert
conditional-XPath to query automata in single-exponential
time.

6. COMPARISON WITH OTHER FOR-
MALISMS

We now show how the satisfiability problem SAT(A, C) re-
lates to reasoning tasks for XML with data.

6.1 XML constraints

As we already noticed, keys and inclusion constraints, stud-
ied extensively in the XML context (and included in the stan-
dards) are modeled with set and linear constraints. A simple
key, saying that data values determinea-nodes, is a linear
constraintxa =

∑

a∈S zS , and an inclusion constraint say-
ing that data values ofa-nodes occur as data values ofb-
nodes isV (a) ∩ V (b) = ∅. Similarly, one can handledenial
constraints, often used in dealing with inconsistent data. An
example of a denial constraint is saying that the same data
value cannot appear in both ana-node and ab-node; this is
expressible asV (a) ∩ V (b) 6= ∅.

Our result implies that the satisfiability problem for key, in-
clusion, and denial constraints wrt an automaton is solvable
in NP. Note however that to express a key as a linear con-
straint one needs exponentially many (inΣ) variableszS ,
while we can compactly encode keys simply by letters in-
volved in them, requiringlog |Σ| bits instead. It turns out
that this does not change the bound for keys and inclusion
constraints; our proof can easily be adjusted to show:

COROLLARY 6.1. The satisfiability problem for key (en-
coded bylog |Σ| bits) and inclusion constraints wrt an au-
tomaton is solvable inNP.

PROOF. Let A be an automaton over the alphabetΣ
and letC be a collection of keys and inclusion constraints,

where elements ofC are written asV (a) 7→ a (for keys)
and V (a) ⊆ V (b) (for inclusion constraints). LetΣ =
{a1, . . . , an}.

Our algorithm to decide whether there exists a data treet ∈
L(A) such thatt |= C works as follows.

1. Construct the existential Presburger formula
ϕA(x1, . . . , xk) for the automatonA according
to Lemma 4.2.

2. LetϕC(x1, . . . , xk) be the formula:∃v1 · · · ∃vk

∧

i

vi ≤ xi ∧
∧

i

(vi = 0 ↔ xi = 0)

∧
(

∧

V (ai) 7→ai∈C

vi = xi

)

∧
(

∧

V (ai)⊆V (aj)∈C

vi ≤ vj

)

.

3. Let ϕA,C(x1, . . . , xk) := ϕA(x1, . . . , xk) ∧
ϕC(x1, . . . , xk).
Test the satisfiability ofϕA,C(x1, . . . , xk).

Note that here we do not use the variableszS ’s.

We claim that for each data treet, t ∈ L(A) andt |= C if
and only ifϕA,C(#a1(t), . . . ,#ak(t)) holds.

We start with the “only if” part. Lett ∈ L(A) andt |= C.
ThatϕA(#a1(t), . . . ,#ak(t)) follows from Lemma 4.2. To
show thatϕC(#a1(t), . . . ,#ak(t)) holds, we let the wit-
nesses for eachvi as the cardinality|Vt(ai)|, the number of
data values found in theai-nodes int. Then, it is straightfor-
ward to show thatϕC(#a1(t), . . . ,#ak(t)) holds.

Now we show the “if” part. SupposeϕA,C(n1, . . . , nk)
holds. By Lemma 4.2, there exists a treet ∈ L(A) such
that for eachai ∈ Σ, ni = #ai(t). Let (m1, . . . ,mk) be
the witness for(v1, . . . , vk) thatϕC(x1, . . . , xk) holds. We
assign the values1, . . . ,mi as data values for theai-nodes
in t such thatVt(ai) = {1, . . . ,mi}, for eachai ∈ Σ. Such
assignment is always possible sincemi ≤ #ai(t). That
the keys and inclusion constraints inC are satisfied follows
immediately from the constraintsvi = xi andvi ≤ vj , re-
spectively.

This extends the results of [2, 13] which showed an NP
bound for keys and a special form of inclusions (whose right-
hand-sides are keys as well); but in addition our proof is
much more streamlined compared to the proofs there.

Furthermore, it is easy to extend these results to more com-
plex constraints studied in the XML context. For example,
consider key constraints given by regular expressions over
Σ. Such a constraintV (e) → e, for a regular expressione,
is satisfied in a treet if nodes reachable from the root by fol-
lowing a path frome are uniquely determined by their data
values. These constraints, common in XML schema speci-
fications, are easily described by our formalism: one simply
marks the nodes with states of an automaton fore, and uses
the tree automatonA to ensure that the marking is correct.

6.2 Two-variable logic

As mentioned already, out main result doesnot follow
from the decidability of the two-variable existential monadic
second-order logic over data trees [6]. We now shall make
precise the relationship between the two formalisms. When
we talk about logics over data trees, we view them as struc-
tures

t = 〈D,E↓, E→, {a(·)}a∈Σ,∼〉, (2)

which extend unranked trees with the binary predicate∼ in-
terpreted asv ∼ v′ ⇔ valt(v) = valt(v′).

The sentences of the logic∃MSO2 are of the form
∃X1 . . .∃Xm ψ, whereψ is an FO formula over the vocab-
ulary extended with the unary predicatesX1, . . . , Xm that
uses only two variables,x andy. Every MSO sentence that
does not mention data values is equivalent to an∃MSO2 sen-
tence. Other examples are keys (∀x∀y (a(x) ∧ a(y) ∧ x ∼
y → x = y)), inclusion constraints (∀x∃y (a(x) →
b(y)∧x ∼ y)), and denial constraints (∀x∀y (a(x)∧b(y) →
¬(x ∼ y))).

It was shown in [6] that every∃MSO2 formula over data
trees is equivalent to a formula

∃X1 . . .∃Xk(χ ∧
∧

i

ϕi ∧
∧

j

ψj)

where

1. χ describes a behavior of an automaton that can make
“local” data comparisons (i.e., whether a data value in
a node is equal/not equal the data value of its parent,
left- or right-sibling);

2. eachϕi is of the form∀x∀y(α(x) ∧ α(y) ∧ x ∼ y →
x = y), whereα is a conjunction of labeling predi-
cates,Xk ’s, and their negations; and

3. eachψj is of the form∀x∃y α(x) → (x ∼ y ∧α′(y)),
with α, α′ as in item 2.

If we extend the alphabet toΣ × 2k so that each label also
specifies the family of theXi’s the node belongs to, then
formulae in items 2 and 3 can be encoded by constraints.

• Formulae in item 2 become conjunctions of keys and
denial constraints over the extended alphabet. That is,
it becomes a formula

∀x∀y(
∨

a∈Σ′

a(x) ∧
∨

a∈Σ′

a(y) ∧ x ∼ y → x = y),

for someΣ′ ⊆ Σ × 2k, which is equivalent to:

– a is a key for eacha ∈ Σ′, and

– V (a) ∩ V (b) = ∅, for everya, b ∈ Σ′ anda 6= b.

• Formulae in item 3 become

∀x∃y(
∨

a∈Σ′

a(x) → x ∼ y ∧
∨

a∈Σ′′

a(y)),

for someΣ′,Σ′′ ⊆ Σ× 2k, which is equivalent to gen-
eralized inclusion constraints of the form

⋃

a∈Σ′

V (a) ⊆
⋃

b∈Σ′′

V (b),

or, equivalently
⋃

a∈Σ′ V (a) ∩
⋂

b∈Σ′′ V (b) = ∅.

Hence, [6] and our results imply the following.

COROLLARY 6.2. • (corollary of [6]) Satisfiability
of ∃MSO2 formulae over data trees is equivalent to
satisfiability of keys, denial constraints, and general-
ized inclusions constraints with respect to an automa-
ton with local data comparisons.

• (corollary of Theorem 4.1)Satisfiability of keys, denial
constraints, and generalized inclusions constraints
with respect to an automaton is solvable inNP.

While our main result and the decidability of∃MSO2 are in-
comparable, in essence we subsume∃MSO2 minus the local
data comparisonconstraints. Note that our proof is concep-
tually much simpler than the 30+ page proof of [6] that goes
via more than a dozen reductions. Unlike [6], we fail to cap-
ture local data comparisons in automata; on the other hand,
we add many properties (e.g., linear constraints) which are
not even expressible in MSO.

7. CONCISE REPRESENTATIONS OF
THE SATISFIABILITY PROBLEM

Recall that we measure the size of the linear data constraints
Av̄ ≥ b as the sum of sizes ofA andb, with numbers repre-
sented in binary.

This could be a rather inefficient way of representing lin-
ear constraints. Since the number of variableszS in the
constraints is2|Σ|−1 − 1, we may achieve a more compact
representation if only few of those variables are used in the
constraints. Namely, we can safely disregard all the zero-
columns inA, and keep only the columns that correspond
to variables actually used in constraints. This representa-
tion can be exponentially smaller than the full representation
of the constraints (sinceΣ is a part of the input, we cannot
achieve a smaller reduction even if there are no linear con-
straints).

We call this aconcise representation, and consider the cor-
responding CONCISE-SAT(A, C): it is the same as the
SAT(A, C) problem before, except we use a concise rep-
resentation of linear constraints.

It is a very common phenomenon in complexity theory
that going to concise representation increases the complex-
ity by an exponent; in fact doing so is a common way of
getting NEXPTIME-complete problems from NP-complete
problems. Of course given a concise representation of con-
straints, we can always convert it into the usual represen-
tation in at most exponential time, and then apply Theo-
rem 4.1. This immediately tells us that CONCISE-SAT is in

NEXPTIME, and it is tempting to think that CONCISE-SAT
is NEXPTIME-complete.

This, however, is not the case. Quite surprisingly, the con-
cise representation doesnot increase the complexity of the
problem. To show this, we need to design the decision pro-
cedure in a much more careful way.

THEOREM 7.1. The problem CONCISE-SAT(A, C) is
solvable inNP.

We now indicate where the proof of Theorem 4.1 falls short
when we have concise representations. First, the transfor-
mation from set to linear constraints is polynomial in the
number of variableszS , i.e., O(2|Σ|). This did not cause
problems before, but now we may not have all the variables
zS , so the input may be of the sizeO(|Σ|k) for a fixedk.
Then the algorithm for eliminating set constraints becomes
exponential. Second, the introduction of new variablesva

for
∑

a∈S⊆Σ zS used in the proof may likewise induce an
exponential blow-up when considering concise representa-
tion.

The main aim is to show thatthere exists a subsetZ ⊆ 2Σ

of polynomial size such that there exists a treet ∈ L(A)
andt |= C iff there exists a treet′ ∈ L(A) and t′ |= C and
[S]t′ = ∅, for all S /∈ Z. For this we introduce another
extension of the ILP problem.

We give the sketch of the proof in the following subsection.
The full proof will be available in the full version.

7.1 Sketch of Proof of Theorem 7.1

Let Σ be a finite alphabet andC is a collection of set and
linear constraints. In the following we say that a termτ ∈ C
if and only if C contains a set constraint of the formτ = ∅ or
τ 6= ∅. Similarly we say that a variablezS ∈ C if and only if
there is a linear data constraint inC that useszS. We denote
by Ψlin(C) the set of linear data constraints found inC.

DEFINITION 7.2 (C-FUNCTIONS). Given an alphabet
Σ and a collectionC of data constraints, aC-function is a
functionF from Σ ∪ {τ |τ ∈ C} ∪ { zS |zS ∈ C} to 2Σ such
that:

• for eacha ∈ Σ, eitherF(a) = ∅ or a ∈ F(a);

• for eachzS ∈ C, eitherF(zS) = ∅ or F(zS) = S;

• for each constraintτ 6= ∅ ∈ C, we haveF(τ) ∈ S(τ);

• for each constraintτ = ∅ ∈ C, we haveF(τ) = ∅ and
Im(F) ∩ S(τ) = ∅;

whereIm(F) denotes the image ofF , andS(τ) was defined
in the proof of Proposition 8.4.

The intuition ofF is such thatIm(F) is the desired setZ.
Given a collectionC of data constraints and aC-functionF ,
we callΨ(C,F) the system obtained fromC by adding the
following constraints toΨlin(C):

zS ≥ 1 for eachS ∈ Im(F) − ∅
xa = 0 for eacha ∈ Σ such thatF(a) = ∅
zS = 0 for eachzS ∈ C such thatF(zS) = ∅

X

a∈S∈Im(F)−∅

zS ≤ xa for eacha ∈ Σ;

Notice that the size ofΨ(C,F) is polynomial in the size of
bothC and the alphabetΣ.

In the rest of the proof, all instances of ILP we refer to are
instances over the variablesxa, zS , va.

DEFINITION 7.3 (ILP UNDER C-CONDITION). An in-
stance of ILP problem underC-condition is given by an in-
stanceΨ of ILP together with a collectionC of data con-
straints. We say that it has a non-negative solution if there
exists aC-functionF such that the instance of ILP given by
Ψ andΨ(F , C) has a non-negative solution.

We shall now state the two main lemmas from which Theo-
rem 7.1 follows immediately. The proofs will be available in
the full version.

LEMMA 7.4. Checking whether an instance of ILP with
C-condition has a non-negative solution can be done inNP.

LEMMA 7.5. Given an automatonA and a setC of data
constraints in concise representation, one can construct,in
polynomial time, an instance of ILP withC-condition so that
there exists a treet ∈ L(A) such thatt |= C iff the instance
of ILP withC-conditions has a non-negative solution.

8. CONVERTING AUTOMATA TO PRES-
BURGER FORMULA

To make our proof completely algorithmic, in this section
we spell out the translation from automata to a Presburger
formula defining Parikh images of trees, used as a black box
(Lemma 4.2) in the proof of Theorem 4.1. Moreover, we
also present an algorithm, that given a solution to the Pres-
burger formula, constructs a tree accepted by the original
automaton.

We recall that the Parikh image of a treet over
Σ = {al, . . . , an} is an n-tuple Parikh(t) =
(#a1(t), . . . ,#an(t)), and the Parikh image of a tree
languageL is Parikh(L) = {Parikh(t) | t ∈ L} ⊆ N

n.

PROPOSITION 8.1. There is a quadratic time algorithm
that, given an unranked tree automatonA over Σ =
{al, . . . , an}, returns a formula

ϕA(x1, . . . , xn) = ∃ȳ α(x̄, ȳ)

of at most quadratic size such that

• if t ∈ L(A), thenϕA(#a1(t), . . . ,#an(t)) holds; and
conversely,

• if ϕA(k1, . . . , kn) holds, then there exists a treet ∈
L(A) such that#a1(t) = k1, . . . ,#an(t) = kn

andα is a conjunction of formulae of the form:

• A(x̄, ȳ) ≥ b, where all the entries ofA andb are either
0 or 1 or −1;

• formulae(w = 0 ∨ u ≥ 1) wherew, u are variables
amongx̄, ȳ; and

• disjunctions
∨

i(wi ≥ 1∧ui = 1), wherewi’s andui’s
are variables amonḡx, ȳ.

Moreover, from every solution(k1, . . . , kn) and witness
tuple m̄ such thatα(k1, . . . , kn, m̄) holds, we can con-
struct effectively a treet ∈ L(A) such thatParikh(t) =
(k1, . . . , kn).

8.1 Proof of Proposition 8.1

The general outline is as follows: we first replace an au-
tomaton by an extended DTD (Proposition 8.2), and then by
a DTD of a special form, which we callsimpleDTD (Propo-
sition 8.3). We then show the construction of the Presburger
formula for such simple DTDs (Proposition 8.4). The first
two reductions are standard. The crucial one is the last one.

Recall that an extended document type definition (EDTD)
is a context-free grammar in which the right-hand sides of
productions can be regular expressions. Formally, an ex-
tended DTD over the alphabet(Γ ∪ Λ) of nonterminalsΓ,
with a distinguished symbolr for the root, and terminalsΛ
is G = (Γ,Λ,∆), where∆ assigns to each symbola ∈ Γ a
regular expression over(Γ∪Λ)−{r}. The set of trees ofG
is denoted byT (G). That is, an unranked treet is in T (G)
if its root is labeledr, for each nodev labeleda ∈ Γ with
childrenv · 0, . . . , v · (n − 1), the word of their labels, i.e.,
ℓabt(v · 0) · · · ℓabt(v · (n− 1)), is in the language of∆(a),
and each node labeled withb ∈ Λ is a leaf.

The first reduction is stated as a proposition below. The
proof will be available in the full version.

PROPOSITION 8.2. Given an automatonA with the set
Q of states over alphabetΣ, one can construct, in quadratic
time, an extended DTDG = (Γ,Σ − {r},∆) with Γ =
Q× Σ ∪ {r} such that the following holds.

1. For all tree t ∈ L(A), there exists a treet′ ∈ T (G)
such that for alla ∈ Σ, #a(t) = #a(t′).

2. Vice versa, for all treet′ ∈ T (G), there exists a tree
t ∈ L(A) such that for alla ∈ Σ, #a(t) = #a(t′).

Moreover, every treet′ ∈ T (G) can be converted effectively
into a treet ∈ L(A).

Next, we definesimple DTDsasG = (Γ,Λ,∆) with a des-
ignated terminal symbolλ ∈ Λ. In them,∆(a) is one of the
following: b, or bc, or b|c, orλ, whereb, c ∈ (Γ ∪Λ)− {r}.
We denote the set of parse trees ofG by T (G). Note that
trees inT (G) can have only unary or binary branching.
We make the standard assumption that all symbols inΓ are
reachable from the root symbolr. If a CFG has unreach-
able symbols, they can be eliminated without affecting the
setT (G).

The second reduction is stated as proposition below. The
proof will be available in the full version.

PROPOSITION 8.3. Given an extended DTDG =
(Γ,Λ,∆), one can construct, in linear time, a simple DTD
G = (Γ′,Λ ∪ {λ},∆′) such that the following holds.

1. For all tree t ∈ T (G), there exists a treet′ ∈ T (G)
such that for alla ∈ Λ, #a(t) = #a(t′).

2. Vice versa, for all treet′ ∈ T (G), there exists a tree
t ∈ T (G) such that for alla ∈ Λ, #a(t) = #a(t′).

Moreover, every treet′ ∈ T (G) can be converted effectively
into the treet ∈ T (G).

The last reduction is stated as proposition below.

PROPOSITION 8.4. Given a simple DTDG = (Γ,Λ ∪
{λ},∆), where Λ = {a1, . . . , an}, one can con-
struct, in linear time, an existential Presburger formula
ϕG(x1, . . . , xn) := ∃ȳψ(x̄, ȳ) such that for every treet,
t ∈ T (G) iff ϕG(#a1(t), . . . ,#an(t)) holds.
Moreover, from every solution(k1, . . . , kn) andm̄ such that
ψ(k1, . . . , kn, m̄) holds, we can construct effectively a tree
t ∈ T (G) such thatParikh(t) = (k1, . . . , kn).

We devote the rest of this subsection to the proof of Propo-
sition 8.4. We need a new notation here. For a treet
over the alphabetΓ ∪ Λ ∪ {λ}, we define adirectedgraph
Gt = (Vt, Et), where the set of vertices isVt = Γ∪Λ∪{λ};
and for everya, b ∈ Γ∪Λ∪{λ}, there is an edge(a, b) ∈ Et

if there exists a node int labeled withb and whose parent is
labeled witha. If a symbola does not appear in the treet,
then it is an isolated vertex inGt.

The main idea is to prove that a treet ∈ T (G) iff the follow-
ing quantities:

1. na = #a(t), for eacha ∈ Γ ∪ Λ ∪ {λ};

2. na↓b is the number ofb-nodes whose parents int is
labeled witha;

3. δa is the length ofsomepath from the rootr to the
symbola in the graphGt,

satisfy the following relations:

• na =
∑

b∈Γ∪Λ nb↓a, for eacha ∈ Γ ∪ Λ ∪ {λ}.

• – na = na↓b + na↓c, if ∆(a) = b|c.

– na = na↓b = na↓c, if ∆(a) = bc,

– na = na↓b, if ∆(a) = b,

• δr = 0;

• for eacha ∈ Γ ∪ Λ ∪ {λ} anda 6= r,

δa = −1 ↔ na = 0

and
∨

nb↓a 6=0 andδb 6=−1

δa = δb + 1

Note that by default, we setδa = −1, if there is no path from
the root to the symbola in the graphGt, which means that
the symbola does not appear int.

Then, the construction of the desired formulaϕG is straight-
forward. It uses the variablesxa’s, ya’s andxa↓b’s, for all
a ∈ Γ ∪ Λ andb appears in∆(a). The intended meaning of
each variable is as follows:xa is forna; xa↓b is forna↓b; ya

is for δa.

The formulaϕG is the conjunction of the following:

• xr = 1;

• xa =
∑

b∈Γ∪Λ xb↓a for eacha ∈ Γ ∪ Λ;

• xa = xa↓b = xa↓c for each∆(a) = bc;

• xa = xa↓b + xa↓c for each∆(a) = b|c;

• xa = xa↓b for each∆(a) = b;

• yr = 0;

• for eacha ∈ Γ ∪ Λ ∪ {λ},

ya = −1 ↔ xa = 0

∨
∨

a appears in∆(b)

ya = yb + 1 ∧ xb↓a 6= 0 ∧ yb 6= −1.

The total number of variablesxa’s andxa↓b’s and ya’s is
linear in the size of∆. We do not need the variablesxa↓b’s,
if b does not appear in∆(a).

By existentially quantifying all the variablesxa↓b’s andya’s,
we can then viewϕG as an existential Presburger formula
with xa’s as the free variables.

Proposition 8.4 follows immediately from the lemma below.

LEMMA 8.5. Let G = (Γ,Λ,∆) be a simple CFG. The
formulaϕG(n̄) holds – where(n̄) = (na)a∈Σ and the wit-
nesses forxa↓b’s and ya’s are: xa↓b = na↓b ∈ N, and
ya = da ∈ N, for a, b ∈ Γ ∪ Λ – if and only if there ex-
ists a treet ∈ T (G) such that

(1) na = #a(t) for eacha ∈ Γ ∪ Λ,

(2) na↓b is the number ofb-nodes whose parents area-
nodes, and

(3) da is the length of some path from the rootr to the
symbola in the graphGt.

PROOF. From the definition ofΨ(G), the “if” part is im-
mediate. We prove the other implication. Letn̄ = (na)a∈Σ

such thatϕG(n̄) holds. Letna↓b be the witness forxa↓b for
a, b ∈ Γ ∪ Λ, andda for ya, for a ∈ Γ ∪ Λ. Let G̃ = (Ṽ , Ẽ)

be a directed graph where the setṼ of nodes isΓ ∪ Λ and
the setẼ of edges is defined as:(a, b) ∈ Ẽ iff na↓b 6= 0.

We shall construct a treet ∈ T (G) that satisfies (1) and
(2) and thatGt = G̃. First, we construct adirectedgraph
G = (V,E) with the following properties.

(i) For eacha ∈ Γ∪Λ, there are exactlyna nodes labeled
a.

(ii) For eacha, b ∈ Γ ∪ Λ, there are exactlyna↓b edges
going from ana-node to ab-node.

(iii) There is exactly one node labeledr and it has no in-
coming edges (the root node).

(iv) All nodes, except the root node, have exactly one in-
coming edge.

(v) For all nodes, outgoing edges conform to∆. That is,
for eacha ∈ Γ, the outgoing edges froma-nodes are as
follows: if ∆(a) = b ·c, there are exactly two outgoing
edges: one to ab-node and one to ac-node; if∆(a) =
b|c, there is exactly one outgoing edge going to a node
labeled byb or c; and if∆(a) = b, there is exactly one
outgoing edge that goes to ab-node.

Procedure 1 shows the construction of the graphG. Since
nr = 1, there is only one root node inG. The steps 7, 8,
12, 13 and 17 of the procedure are possible due to the equal-
ity xb =

∑

d∈Γ∪Λ xd↓b in Ψ(G). Properties (i)-(v) follow
directly from the construction and the constraints given in
Ψ(G).

Procedure 1Construct Graph G = (V,E)

1: The setV consists of
P

a∈Γ∪Λ na nodes.
For eacha ∈ Γ ∪ Λ, we labelna nodes witha.

2: E := ∅.
3: for all a ∈ Γ do
4: Letw1, . . . , wna be thea-nodes.
5: if ∆(a) = b · c then
6: Letn = na = na↓b = na↓c.
7: Pick a sequenceu1, . . . , un of n distinctb-nodes with no

incoming edges inE.
8: Pick a sequencev1, . . . , vn of n distinctc-nodes with no

incoming edges inE.
9: E := E ∪ {(wi, ui), (wi, vi)}i=1,...,n.

10: end if
11: if ∆(a) = b ∪ c then
12: Pick a sequenceu1, . . . , una↓b

of na↓b distinct b-nodes
with no incoming edges inE.

13: Pick a sequencev1, . . . , vna↓c
of na↓c distinct c-nodes

with no incoming edges inE.
14: E := E ∪ {(wi, ui)}i=1,...,na↓b

∪
{(wna↓b+j , vj)}j=1,...,na↓c

.
15: end if
16: if ∆(a) = b then
17: Pick a sequenceu1, . . . , una↓b

of na↓b distinct b-nodes
with no incoming edges inE.

18: E := E ∪ {(wi, ui)}i=1,...,na↓b
.

19: end if
20: end for

If G were a tree, we would be done: membership inT (G)
would follow from (v), property (1) from (i), and property
(2) from (ii) and (v). Therefore, to finish the proof of Lemma
8.5, we show Claim 8.6 and Claim 8.8 below.

CLAIM 8.6. A connected directed graphG = (V,E) that
satisfies (i)-(v) is a tree.

PROOF. From Properties (iii) and (iv), we can see that the
graphG satisfies the equation|E| = |V | − 1. If we for-
get about orientation, this equation implies that a connected

graph is a tree [35]. The root (ther-labeled node) gives the
tree a unique orientation; we must show that it is the same
one as the one inG. For this, consider any path from the root
to a leaf in the tree, and suppose one edge has an orientation
different fromG. Let (u, v) be the first such edge; that is, in
G we have an edge(v, u). This cannot be the first edge of
the path, as the root has no incoming edge inG. Henceu has
a parentu′ in the oriented tree, and the edge(u′, u) has the
same orientation in both the oriented tree and inG. But this
tells us thatu has two incoming edges, which contradicts
(iv). ✷

We shall use Claim 8.7 to prove Claim 8.8.

CLAIM 8.7. In the directed graphG̃, a nodea is con-
nected from the root symbolr iff da 6= −1, or equivalently,
na 6= 0. Moreover,da is the length of some path from the
root symbolr to a, if da 6= −1.

PROOF. The proof is by straightforward induction on the
valueda. The base case,da = 0, is trivial as it meansa = r.
The induction hypothesis is that for each nodea with da =
k 6= −1 is connected from the root symbolr by a path of
lengthk.

Supposeb is a node such thatdb = k + 1. By the construc-
tion of ϕG , there exists a nodea such thatna↓b 6= 0 and
da = k. By the induction hypothesis,a is connected from
the root symbolr with a path of lengthk, and by the con-
struction ofG̃, there exists an edge froma to b. Thus, our
claim holds.

CLAIM 8.8. From a directed graphG = (V,E) that
satisfies (i)-(v), one can compute in polynomial time a con-
nected directed graphG′ = (V,E′) that also satisfies (i)-(v).

PROOF. The idea is to change a few edges inG in or-
der to connect all components to the connected compo-
nent that contains ther-node. We first observe the follow-
ing. SupposeG consists of several connected components:
G0, G1, . . . , Gl, whereG0 is the component that contains
the root node. Then, there exist a nodeu in G0 and a node
v in one ofG1, . . . , Gl such thatu andv are labeled by the
same symbol fromΣ.

By Claim 8.7, if da 6= −1 (thus,na 6= 0), the symbola
is connected to the root symbolr in G̃, and thatda is the
length of some path fromr to a in G̃. So, for every sym-
bol a that appears inG, there exists a sequence of symbols
b0, b1, . . . , bj , respectively, where

• b0 = r,

• bl = a, and

• for eachi = 0, . . . , j − 1, nbi↓bi+1
6= 0.

If the symbola does not appear inG0, then there are a node
u in G0 and a nodev in one ofG1, . . . , Gl such that bothu
andv are labeled with the same symbolbi ∈ {b1, . . . , bl}.

LetG1 be the component that contains that nodev. By (v),
the nodev has as many children asu (and it has at least one
child as it is not labeled byλ).

If u andv have one child each, then letw1 andw2 be their re-
spective children. We can then connectG0 andG1 by replac-
ing the edges(u,w1) and(v, w2) with (u,w2) and(v, w1).
If u andv have two children each, then letw1, w

′
1 andw2, w

′
2

be their respective children. We can then connectG0 andG1

by replacing the edges(u,w1), (u,w
′
1) and(v, w2), (v, w

′
2)

with (u,w2), (u,w
′
2) and(v, w1), (v, w

′
1).

It is straightforward to see that after such edge replacement
the graph still satisfies properties (i)-(v), and each edge re-
placement reduces the number of connected components, so
eventually this algorithm produces a treet that satisfies (i)-
(v). Moreover, the numbersna↓b do not change during the
process, thus,Gt = G̃.

This completes the proof of Lemma 8.5. ✷

9. CONCLUSIONS

We have studied the consistency problem of set and linear
constraints with respect to regular tree languages given by
an automata. We prove that this problem is solvable in NP
(the hardness result has been known even for simple keys
and inclusion constraints [13]).

At least as important as the result itself, we provide an orig-
inal and modular proof using simple proof techniques as in
particular linear integer programming. This unable us to ex-
tend the result to more complicated path constraints. Sur-
prisingly, we can use the same techniques to show that the
complexity of the problem remains NP even when consider-
ing concise representation of the constraints.

In terms of expressivity, our formalism subsumes many in-
teresting formalism such as keys, inclusions and denial con-
straints. Our formalism is also closely related to the exten-
sion of∃MSO2 presented in [6], as it subsumes∃MSO2 mi-
nus the local data comparisonconstraints. In addition, it is
also able to express many non-MSO properties.

Acknowledgment.We thank the anonymous referees for
their comments. This work was supported by the FET-Open
project FoX (Foundations of XML), grant agreement FP7-
ICT-233599, and by EPSRC grant G049165. This work was
done when the first author was at the University of Edin-
burgh.

10. REFERENCES

[1] N. Alon, T. Milo, F. Neven, D. Suciu, V. Vianu. XML with data
values: typechecking revisited.J. Comput. Syst. Sci.66(4): 688-727
(2003).

[2] M. Arenas, W. Fan, L. Libkin. On the complexity of verifying
consistency of XML specifications.SIAM J. Comput.38(3): 841-880
(2008).

[3] M. Arenas, L. Libkin. XML data exchange: consistency andquery
answering.J. ACM55(2): (2008).

[4] H. Björklund, M. Bojanczyk. Bounded depth data trees. In
ICALP’07, pages 862–874.

[5] H. Björklund, W. Martens, T. Schwentick. Optimizing conjunctive
queries over trees using schema information.MFCS’08, pages
132–143.

[6] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin.
Two-variable logic on data trees and XML reasoning.J. ACM56(3):
(2009).

[7] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin.
Two-variable logic on words with data. InLICS’06, pages 7-16.

[8] P. Bouyer, A. Petit, D. Thérien. An algebraic characterization of data
and timed languages.CONCUR’01, pages 248–261.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
Regular XPath: constraints, query containment and view-based
answering for XML documents. InLID’08, 2008.

[10] H. Comon, et al.Tree Automata: Techniques and Applications.
October 2007.

[11] S. Dal-Zilio, D. Lugiez, C. Meyssonnier. A logic you cancount on.
POPL 2004, 135–146.

[12] S. Demri, R. Lazic. LTL with the freeze quantifier and register
automata.ACM TOCL10(3): (2009).

[13] W. Fan, L. Libkin. On XML integrity constraints in the presence of
DTDs.J. ACM49(3): 368–406 (2002).

[14] D. Figueira. Satisfiability of downward XPath with dataequality
tests.PODS’09, 197-206.

[15] R. Givan, D. A. McAllester, C. Witty, and D. Kozen. Tarskian set
constraints.Inform. and Comput., 174 (2002), pp. 105–131.

[16] M. Jurdzinski, R. Lazic. Alternation-free modal mu-calculus for data
trees. InLICS’07, pages 131–140.

[17] M. Kaminski, T. Tan. Tree automata over infinite alphabets. In
Pillars of Computer Science, 2008, pages 386–423.

[18] E. Kopczynski, A. Widjaja To. Parikh Images of Grammars:
Complexity and Applications. InLICS 2010.

[19] L. Libkin, C. Sirangelo. Reasoning about XML with temporal logics
and automata.J. Applied Logic, 8:2, 210–232 (2010).

[20] S. Malik and L. Zhang. Boolean satisfiability: from theoretical
hardness to practical success.CACM52(8), 76–82, 2009.

[21] W. Martens, F. Neven, T. Schwentick. Simple off the shelf
abstractions for XML schema.SIGMOD Record36(3): 15-22 (2007).

[22] T. Milo, D. Suciu, V. Vianu. Typechecking for XML transformers.J.
Comput. Syst. Sci.66(1): 66-97 (2003).

[23] F. Neven. Automata, logic, and XML. InCSL 2002, pages 2–26.
[24] F. Neven, Th. Schwentick. Query automata over finite trees.Theor.

Comput. Sci.275(1-2):633-674 (2002).
[25] F. Neven, Th. Schwentick, V. Vianu. Towards regular languages over

infinite alphabets.MFCS 2001, pages 560–572.
[26] L. Pacholski, A. Podelski. Set constraints: a pearl in research on

constraints. InCP’97, pages 549–562.
[27] C. Papadimitriou. On the complexity of integer programming.J.

ACM, 28 (1981), 765–768.
[28] A. Robinson, A. Voronkov, eds.Handbook of Automated Reasoning.

The MIT Press, 2001.
[29] Th. Schwentick. XPath query containment.SIGMOD Record33(1):

101-109 (2004).
[30] H. Seidl, Th. Schwentick, A. Muscholl. Numerical document

queries.PODS’03, 155–166.
[31] H. Seidl, Th. Schwentick, A. Muscholl, P. Habermehl. Counting in

trees for free. InICALP 2004, pages 1136–1149.
[32] J.W. Thatcher. Characterizing derivation trees of context-free

grammars through a generalization of finite automata theory. JCSS1
(1967), 317–322.

[33] K. N. Verma, H. Seidl, T. Schwentick On the Complexity of
Equational Horn Clauses. InCADE 2005, pages 337–352.

[34] V. Vianu. A web Odyssey: from Codd to XML. InPODS’01, pages
1–15.

[35] D. West.Introduction to Graph Theory. Prentice Hall, 2001.

