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ABSTRACT Keywords

Data trees provide a standard abstraction of XML documents XML, tree languages, data values, Presburger arithmetic,
with data values: they are trees whose nodes, in addition toreasoning, integer linear programming

the usual labels, can carry labels from an infinite alphabet
(data). Therefore, one is interested in decidable formedis

for reasoning about data trees. While some are known —1
such as the two-variable logic — they tend to be of very high
complexity, and most decidability proofs are highly nontri
ial. We are therefore interested in reasonable complenity f
malisms as well as better techniques for proving decidgbili

INTRODUCTION

Traditional approaches to studying logics on trees usete fini
alphabet for labeling tree nodes. The interest in such $ogic
was reawakened by the development of XML as the standard
Here we show that many decidable formalisms for data treesfor data exchange on the Web. Logical formalisms provide
are subsumed — fully or partially — by the power of tree au- the basis for query languages as well as for reasoning tasks,
tomata together with set constraints and linear consgaint inc|uding many static ana|y5is questions such as ConWten

on cardinalities of various sets of data values. All these co  of specifications, query optimization, and typing [1, 2, 13,
straints can be translated into instances of integer lipear 14, 22, 29].

gramming, giving us an NP bound on the complexity of the ) ) )

reasoning tasks. We prove that this bound, as well as the keyhe simplest abstraction of XML documents is ordered un-
encoding technique, remain very robust, and allow the addi- ranked finite trees whose nodes are labeled by letters from a
tion of features such as counting of paths and patterns, andinite alphabet [23, 34]. This abstraction works well forrea
even a concise encoding of constraints, without increasing Soning about structural properties, but real XML documents
the complexity. We also relate our results to several rea- carry data which cannot be captured by a finite alphabet.
soning tasks over XML documents, such as satisfiability of Thus, there has been a consistent interesiaira treesi.e.,
schemas and data dependencies and satisfiability of the twotrees in which nodes carry both a label from a finite alphabet

variable logic.

Categories and Subject Descriptors

F.1.1 [Computation by Abstract Device§: Models of
Computation—Automata F.4.1 Mathematical logic and
formal languageg: Mathematical logic; G.1.6Numerical
Analysis]: Optimization—integer programming H.2.1
[Database Managemerijt Logical Design—bata Models

General Terms

Algorithms, Theory
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and a data value from an infinite domain [6, 7, 8, 12, 25, 17].
It seems natural to add at least the equality of data values
to a logic over data trees. But while for finitely-labelecdstse
many logical formalisms are decidable by converting formu-
lae to automata (e.g., the monadic second-order logic MSO),
adding data-equality makes even FO (first-order logic) un-
decidable.

This explains why the search for decidable reasoning for-
malisms over data trees has been a common theme in XML
research. Such a search has largely followed two routes. The
first takes a specific XML reasoning task, or a set of similar
tasks, and builds algorithms for them (see, e.g, [2, 3,539, 1
29, 14]). The second attempts to find a sufficiently general
logical formalism that is decidable, and can express some
XML reasoning tasks of interest (see, e.g, [12, 6, 16]).

While both approaches have yielded many nontrivial and in-
fluential results, they are not completely satisfactory.e Th
first approach gives us specialized algorithms for concrete
problems, but no general tools. The second approach tends
to produce extremely high complexity bounds, such as-4E
PTIME, or even non-primitive-recursive, and in addition, the



proofs are usually highly nontrivial and are very hard to tree automaton [21]. Or, formally: Given an unranked tree
adapt to other reasoning tasks. automaton4 and a collectiort of set and linear constraints,
does there exist a treeaccepted byA that satisfies all the

Instead we want a sufficiently general formalism —in fact, @ qnstraints irc?

family of formalisms, that are not extremely complicated to

deal with, and at the same time give us acceptable complex-We prove that this problem, and several of its variations,
ity bounds. For reasoning tasks (as opposed to, say, queryare all decidable in NP (the hardness result has been known
evaluation which we are used to in databases), acceptablesven for simple keys and inclusion constraints [13]). The
complexity is often viewed as single-exponential [28], or techniques are all based on reduction to instanceseger
better yet, NP (since SAT solvers are now a practical tool linear programming In fact, the basic result, unlike many
for many static analysis problems [20]). decidability proofs [6, 12, 13], is quite easy to establish.

The particular class of formalisms we deal with here is mo- Already our basic result subsumes, not only reasoning about
tivated by several concrete reasoning tasks studied in theintegrity constraints in XML (as in, e.g., [2, 13]), but alao
XML context, as well as some decidable logical formalisms. very large fragment ofMSO?. These relationships will be
We now briefly describe those. One of the earliest reason-made precise in Section 6. Note that even the decidability
ing problems studied in the XML context was the problem of the satisfiability problem doesot follow from known re-

of reasoning abowkeys and inclusion constraintdn XML sults such as [6] which are restricted to fragments of MSO;
key says that for a given labe) the data value of am-node in contrast, our formalism expresses many properties not de
(i.e., node labeled) uniquely determines the node. Anin- finable in MSO.

clusion constraint says that every data value ofzamde ) ) ) ) )

will occur in ab-node as well. Such constraints are typical One benefit of having simple proof techniques is that the
in databases, from which many XML documents are gener- basic result can be extended in several ways. One of the ex-
ated. The question is then whether they are consistent withtensions introduces variables that count not just the numbe
the schema of an XML document, usually given as a tree of nodes labeled, but also the number of such nodes that

automaton, or a DTD. This problem is decidable in NP [13]. Permit some paths starting from them. For example, we can
reason about the number@fodes that have@aparent and

On the logic side, there appear to be two main ideas leadinga c-sibling. By extending the translation into integer linear
to decidability. One starts with a temporal logic, and adds a programming, we obtain such extensions quite easily.
limited memory for keeping and comparing data values. Ex- . . ,

amples include [12, 16], but the logics, although decidable A More surprising extension is tmncisely representezbn-
have extremely high complexity (non-primitive-recurgive ~ Straints. One way to redqce the size of the rgpresentatlon_of
A different approach based on restricting the number of vari linear constraints is to discard all zero entries from matri
ables was followed by [6], which showed thB©?, first- ces defining them. This can shrink the size of the instance of
order logic with two variables, is decidable over data trees th€ Problem exponentially. A common phenomenonin com-
In fact, everdMSO?, its extension with existential monadic plexity theory is that such a shrinking increases the coraple

second-order quantifiers, is decidable. The complexitpsiro ity by an exponent. So more naturally, the expected bound

to elementary but is still extremely high: the decision groc Itrr]luls V\G?]lggrzeucwgc';gjé r(\a/verezr(.eor:/tzggr?té)fqggr?stsr:riEtrﬂ_'lss-t
dure runs in SNEPTIME. gy, P ’

problem stays in NP.

Our formalisms extend the specific constraints such as keysAS a final contribution. we make the entire aporoach com-
and inclusions, and yet come very close to subsuming the ’ PP

power of logics such agMSO?, while permitting many pletely algorithmic, by providing simple and self-contadh

. X . . . translations: (1) from an unranked tree automatbmo a
properues.whlch are not even definable in MSO. To moti- imple instan<(:e)IlA of linear programming, i.e. instances
vate the kind of constraints we use, let us restate keys ancﬁvith only 0, 1 or -1 coefficients; and (2) from a solution
inclusion constraints in a slightly different way. For thige : :

; of U 4 to a tree accepted hyl. Of course the existence of
neeq tWF ge}/v(glotaémng.ﬂ%) ;tatr1hds for tge sett of (éata val- translation (1) is known [33, 18]; the contribution hereds t
UES Ina-labeled Nodes, anga IS the NUMDEr Oi-Nodes. provide a simple algorithm for doing it, that also results in

simple formulae which could be used and implemented for
e A key simply states thagta = |V (a)|. We view this ~ concrete verification problems.
as alinear constraint and allow arbitrary linear con-
straints over the valuega and|V (a)|, for example,
[V (a)| > 2|V (b)| — #ec. Organization. Section 2 presents the main definitions. In
e An inclusion constraint states thit(a) C V (b), or, Section 3 we define the contraints and the problem we are
cquvalenty (o) 1 V() ~ 0. We generaize s METESd n. In Seclon & we establsh e bascreslt.
f:%ﬂgii;r;)ésneé}gzgig?isné%hﬂ} Ztr?]ti?g S??]to?l EI}Sr(T)]oItean set and Iineae constraints to XML réasoning tasks and the
P PY: logic IMSO? of [6]. We study the complexity of the prob-
lem in the case of concise representation of the constraints
We consider the problem of satisfiability of such constiaint in Section 7. Finally, the translation from unranked tree au
with respect to a schema declaration, given by an unrankedtomata to linear integer programming is provided in Section



8. Some proofs are only sketched, or completely omitted, sists of anm x k integer matrixA and a vectob € Z™. The

they will be available in the journal version. question is whether there iskavectorv over integers such
thatAv > b.
2. PRELIMINARIES The problem is well-known to be NP-complete. It is NP-

hard even when entries are restricted to be 0s and 1s. Mem-
bership in NP follows from the fact that Av > b has an
integer solution, then there is one in which all entries are
bounded by(ak)?(™, wherea is the maximum absolute
value that occurs i\ andb, andp is a polynomial [27].

Trees and automata. We start with the standard definitions
of unranked finite trees and logics and automata for them.
An unranked finite tree domain is a prefix-closed finite sub-
set D of N* (words overN) such thatv - ¢ € D implies

v-j € Dforall j < iandv € N*. Given a finite la-  We also consider existential Presburger formulae, i.ast; fir
beling alphabet’, a ¥-labeled unranked tree is a structure order formulae over the structutg, +,0, 1, <). Such for-
(D,E|,E_,{a(-)}aex), where mulae can always be converted to formulae of the form

e D is an unranked tree domain, p(7) = 3y PBOAD; 2 by), (1)

e E| is the child relation{v,v - i) € E| forv-i € D, Wher:XPiBg I;n_eans a tpositivef _BE[)oIear|1_ combination, and
. .- Lo . eachA;v; > b; is an instance of integer linear programming
¢ grf E?iqe;xé-sll)blzr?drelanor(v-z, ve(i+1)) € B with variablesy; coming fromz, 3. Whenever we refer to

" ) ] existential Presburger formulae, we assume that they are in
e thea(-)'s are labeling predicates, i.e. for each nade  the form (1). We also only work with non-negative integers
exactly one ofi(v), with a € ¥, is true. for z and, so we always assume that all the conditions
x; > 0,y > 0 are included in formulae. However, it is to
The label of the node in ¢ will be denoted b)(abt (U), and be noted that the entries &; andb; can be negative_
the domainD is denoted bypbom(t). . . N
Notice that we occasionally use conditions such as 0 or
Letr be a designated symbol .. We assume that the root 5 + 4 < b, orz = y, but these are easily put in the form
of the tree (i.e., the empty word) is labeledand no other (1) by changing them ta > 1, or —z — y > —b, or the
node is labeled. (This is not a restriction as we can always conjunction ofz > y andy > x, respectively.

put a new root with a given label.) o _ ) )
Satisfiability of existential Presburger formulae is knawn

An unranked tree automatdf0, 32] over-labeled treesis  be in NP. This follows from the bound of [27]. If we have
atupled = (Q,%,4, F), whereQ is a finite set of states,  a witness(z, ) for ¢ of the form (1), then it does so by

F C @ is the set of final states, ard: Q x ¥ — 2(@") making some of thé;z; > b; true. Using the bound of [27],
is a transition function; we require théfq, a)’s be regular we see that no matter which combination of these instances
languages ovep for all ¢ € @ anda € X.. of linear integer programming makes the formula true, there

is a witness that will require only polynomially many bits in

Arunof Aoveratredisafunctiorps : Dom(t) — QsUCh  yo1mg of the size of the formula. This implies the NP bound.

that for each node with n childrenv - 0,...,v - (n — 1),
the wordpa(v - 0)---pa(v - (n — 1)) is in the language
d(pa(v),Labs(v)). Of course, for a leab labeleda this 3. CONSTRAINTS AND THE SATISFIA-
means thav could be assigned stateiff the empty word BILITY PROBLEM

eisind(q,a). Arunis accepting ifp4(e) € F, i.e., if the

root is assigned an accepting state. A tressaccepted byl

if there exists an accepting rungfont. The set of all trees  In this section we give the precise definitions of set andiline
accepted byd is denoted byC(.A). constraints, and state the main satisfiability problem.

Data trees.In a data tree, besides carrying a label from Set constraints.Recall that® is the labeling alphabet with
the finite alphabeE each non-root node also carries a data a special symbot for the root. Data-terms(or just terms)
value from some countably infinite data domain (to be con- are given by the grammar

crete, we assume it to b¥). For a nodev of a data . _

treet, labeled with a symbok € ¥ — {r}, the assigned ri=Vie)[rur|rOT|7 fora €3 —{r}.
data value is denoted by véb). We also denote the set The semantic§r], is defined with respect to a data tree
of all data values assigned tenodes byV;(a). That is,

Vi(a) = {vak(v) | £abi(v) = a}. o [V(@)], = Vila);

Note that we assunié () = 0 (i.e., no data value assigned o [mN7], =[n], N el
to the root). This is done for convenience and is nota re- e [ U], = [n1], U [72],;
striction, as one can always add a new root without a data —1 .
value o [7], = Vi =[],

Integer linear programming and Presburger formulae. whereV; = ,cx_(, Vi(a) is the set of data values found
Recall that an instance of integer linear programming con- in the data tree.



A set constraints eitherr = () or 7 # (), wherer is a term.
A treet satisfiesr = ), written ast |= 7 = 0, iff [7], =0
(and likewise forr # ().

Note that set constraints C 7 andr; C 7» can be simi-
larly defined, but they are easily expressible with the empti
ness constraints (e.gy, C 72 means that; N 73 is empty).

In particular, the inclusion constraint from the introdoot

is an example of a set constraint: to say that all data values

of a-nodes occur as data valueshafiodes, we writd” (a) N

Vo) = 0.

Linear data constraints. Fix variablesz, for eacha € X
andzg for eachS C ¥ — {r}. Linear data constraints are
linear constraints over these variables.

The interpretation of,, is #a(t) — the number ofi-nodes
in ¢. The interpretation ofs is the cardinality of the set

[S]e = ) Vila) n () Vi ().
aes b¢S

That is,[S]; contains data values which are found amang
nodes for alk, € S but which are not attached to abwnodes
for the labelb ¢ S. Note that the setsS];’s are disjoint, and

that
U

S such thatae S

Vi(a) (STt

This gives us much more information that just the number of
data values im-nodes|V;(a)|, which is simply

>

S such thatae S

Vi(a)| zs.

in C, we writet = C. We study the following satisfiability
problem.

PROBLEM:  SAT(A,C)

INPUT: an unranked tree automatoh
a collectionC of set and
linear data constraints

QUESTION: is there a tree¢ accepted byd
such that |= C?

The problem of consistency of XML constraints and
schemas [2, 13] is a special instance of this problem. We
shall later see that other problems related to XML con-
straints, as well as a large fragment of the two-variablélog
can be formulated as special cases of SAIC). More-
over, SAT(A,C) includes many instances that cannot even
be formulated in MSO, which is the logic that typically sub-
sumes XML reasoning tasks (for example, the linear con-
straint which states thata(t) > 2-#b(t) is not expressible

in MSO, but is a simple linear data constraingt > 2x3).

4. DECIDING SATISFIABILITY

We shall now prove the decidability of SAR, C) problem.
In our first result, we assume a simple way of measuring the
size of the input:

e For the automatont, we take the size of the transition
table, where each transitiafig, a) is represented by
an NFA (or by a regular expression, since an NFA can
be computed from it in polynomial time).

For instance, with such constraints we can reason about data

values that occur im- and c-nodes but do not occur it
nodes: the number of those is sSimply{zs | a,c € S, b &
St.

Notice that key constraints from the introduction are exam-
ples of linear data constraints; that the data valuesruddes
form a key is that the number efnodes, which isz,, is
equal to the number of data values found in thaodes,
which is|V;(a)|. It is expressible by the linear constraint:

>

S suchthatae S

20 = |Vila)| = 2.

We shall view linear data constraints as an instance ofémteg
linear programming. 1 = {a;,...,a,} andSy,..., Sk

is an enumeration of nonempty subsets3df- {r} (thus

k = 2/*I=1 _ 1), then a set ofn linear data constraints is
Av > b, whereA is anm x (¢ + k)-matrix overZ and

b € Z™. Itis satisfied in a data treeif it is true whenv is
interpreted as the vector

(#ax(t), ..., #a(t), HSlH, ce |[Sk]t|)

Satisfiability problem. Let C denote a collection of set and
linear data constraints. If a treesatisfies all the constraints

e The size of each set constrainf=, #} () is measured
as the size of the parse-tree for the term

e The size of the linear data constrai®s > b is the
sum of sizes oA andb, with numbers represented in
binary.

THEOREM 4.1. The problemSAT(A,C) is solvable in
NP.

Before proving this result, we give a couple of remarks.
First, hardness for NP has been known, as it easily follows
from the hardness result for XML keys and foreign keys in
[13] and many other proofs can be adapted as well. In this
result the most important task is to prove the upper bound,
showing that reasoning tasks have acceptable complexity.

Second, extending the class of linear constraints by adding
multiplication leads to the immediate loss of decidabijlity
as Hilbert's 10th problem can be trivially encoded. This
remains undecidable even for quadratic equations. On the
other hand, if we extend the class of linear constrainByés
guadratic Diophantine Equatignvhere in addition to linear
constraint, constraints suchas< x;x,, are allowed, it be-
comes decidable in NEPTIME [15].



Proof of Theorem 4.1.Let ¥ = {ai,...,a,} and states the expected conditions on these variables, gieén th

S1,...,S, be the enumeration of non-empty subsets of intended interpretations. Second,
¥ — {r}. We fix the vectorst = (z4,,...,%,,) and .
2:(2317---725k)' X(U’I) = /\ (SCa:O\/’Ua>O)

) S . a€x—{r}
We first show how to express set constraints in terms of lin-
ear data constraints. For a termwe define a family§(7)
of subsets ok as follows.

ensures that ifi-nodes exist (i.ez, > 0), then at least one
data value is found in the-nodes.

We now consider a Presburger formula ¢ (7, 2)
o lIf 7 = V(a), thenS(7) = {S | a € SandS C

S — {r}}. W (Ye(,2) A pa(@) A x(0,2,2) A X' (T, 2)).
o If 7 =7, thenS(7) = 251"} — S(7y). To conver_‘L\IJ(AQ(:‘c, Z) in_tp th_e form (1), we simply move
o If 7 =171 %7, thenS(r) = S(71) * S(r2), wherex is all the existential quantifier ip 4(z) to the front. Each
noru. atomic predicate insid& 4 ¢)(z, z) can then be viewed as
an instance of integer linear programmiig; > b;.
It follows immediately that for every data treée we have LEMMA 4.3.Given tuples of non-negative integers
[7]; = Uses(r)[S]e- Recall that the sets],’s are disjoint. n = (Ra)ees and m = (ms)scs_{r}, the formula

Hence, the set constraint= () can be expressed as a linear ¥4 ¢)(n,m) holds iff there exists a data treeaccepted by
data constraind g,y zs = 0. Similarly, 7 # () can be A such that

expressed aESeS(T) zgs > 1. Since the size of linear con- 1. ng = #a(t) for eacha € & — {r};
straints is exponential ik, this transformation is polyno- 2. mg = |[S];| for eachS C ¥ — {r};
mial in the size of the whole inpdtHence, from now on, we - ’
can assume that the gkis of the formA(z, z) > b, and thus 3.tEC.

is given by a quantifier-free Presburger formy(z, ). PROOF The “if” part is immediate from the construc-

Next, we convert automata into linear constraints. In [33] tion of ¥4 ¢). We prove the “only if” direction. Suppose

it is shown that given a context free gramndarwhose ter- ¥ (n,m) holds. That is, there exists a witnessuch that
minals areuy, . . ., a,, ONe can construct in polynomial time —— _ o e

an existential Presburger formulg;(x1, . .., x,) such that . e, m) A pa(n) A x(0,1,m) A X @’m) holds
¢vc(m1,...,my) holds if and only if there exists a word ~ Sincep 4 holds, by Lemma 4.2, there exists a tree £(.A)

w € L(G) such that#ta; (w) = ma, ..., #a,(w) = mpy, such that#a1 (), ..., #a,(t)) = 7.

where#a;(w) denotes the number of occurrencesipin . .

the wordw. Then, in [18] it is observed that the method can '\rlggvtv‘;eo Stug\{v.gotvr\]’gor:sssl'tgr? dg;?av?rlgzs LO H;e:odes_ in the
be extended to ranked tree automata. Since unranked tree at{—s f ! Sy uiing Lot K — ye navems =
tomata can be easily converted to ranked tree automata with[Sle|: foreveryS € ¥ — {r}. LetK =3 scp_y,y ms,

additional new symbol, we can construct the existentiadPre and we shall use the sgt, ..., K} as the data values. Let
burgerformulap 4 (1, . . ., z,,) for unranked tree automaton £: {1 K} o5-{r} _y
A, with one extra existential quantifier for the new synfbol R
Hence, we have: be a function satisfyingt ~*(S)| = mg, for eachS C ¥ —
LEMMA 4.2. (See also Section 8{iven an unranked {r}. The witness fo0is (2a,cs ms: -+ 2a,es ™5)
tree automatonA, over alphabetX = {a1,...,an}, The data treet’ is obtained by letting Vi (a) be
one can construct in polynomial time an existential Pres- |J,.s& '(S). This is possible sincg(v,7,m) holds as
burger formulag.4(z1,...,x,) such that ifw € L(A), _ > ues 1E71(9)| = vo < #a(t) = n,. By definition
then g (#a1(w), ..., #an(w) holds; and conversely, if  of the function¢, we obtain that[S], = ¢~1(S), thus,
wa(ma,...,my,) holds, then there exists a treec L£(.A) [S]¢/| = ms, for eachS C ¥ — {r}. This proves the
such that#aq (t) = mq, ..., #an(t) = m,. lemma. [

Going back to the proof of Theorem 4.1, we introduce ad- We now have an NP algorithm for SAR, C): in polyno-
ditional variablesy, for eacha € ¥ — {r}. The intended  mial time we construct the formuld 4 c)(z, ) and then
meaning ofv, is the cardinality ofV;(a). Letv be the vec-  check for its satisfiability. It runs in NP, and Lemma 4.3
tor (va,, - - -, va, ). We next define two formulae that ensure  implies that it solves SATA, C). O

proper interaction betweefy andy 4. First, ) ) )
We shall see in the next section that our algorithm for

X(0,2,2) =\ (va=_ 25) A (va < 2a) SAT(A,C) gives some results obtained by using much
a€S—{r} aes harder techniques (such as reasoning about constraints in
In Section 7 when we look at the concise representationseof th XML), and comes very close to giving us results obtained

input, we will need a more refined technique for eliminatieg s PY Conside_rably much hardeechniques (_Iike the results of
constraints. [6]). The simpler structure of the proof will lead to some ex-

2We shall present a more thorough construction in Section 8. tensions that otherwise would have been very hard to obtain.




5. AN EXTENSION: COMPLEX PROPER-
TIES OF NODES

We now demonstrate how the simple structure of the proof

2. Moreover, it is decidable iNP if II is fixed, or even if
for each symbok € X the number of formulae; (z)
which can be true im-nodes is fixed.

as the non-

PROOF Item (1) is straightforward,

lets us obtain extensions for the main reasoning task almostelementary blow-up for SATA4, C) occurs in translating the

effortlessly.

So far we were counting numbers of nodgs(t) — i.e.,
nodes labeled. Checking whether a node is labeleds
a simple property expressed by a fixed MSO (in fact, by an
atomic FO) formula with one free variable. We now show

MSO formulae to query automata. However, the blow-up
from NP (complexity of SATA, C)) to NEXPTIME occurs
when moving from the alphab&to X x 2. Thus, ifII is
fixed, then the complexity remains in NP.

Moreover, if for each symbal € 3 the number of formulae

that we can count sets of nodes expressed by arbitrary fixedr; (z) which can be true im-nodes is fixed, we do not need

MSO formulae and use them in linear constraints.

More precisely, letr(x) be an MSO formula with one free
first-order variable in the usual vocabulary of unrankeegre
thatis,E |, E_., anda(-),ex for child and next-sibling edges
and labeling predicates.
trees. We let#n(t) be the cardinality of the set of nodes
in ¢ that satisfyr.

Using our proof, we can extend the decidability result to-con
straints that include “counting” the number of nodes output
selected by such formulag«). Note that unary MSO sub-
sumes many XML formalisms, for example node formulae
of XPath (or even conditional XPath).

If IT = {m(x),...,ms(x)} is collection of such MSO for-
mulae, then we refer ti-linear constraints: these are linear
constraints over the usual variabless andzgs’s, as well as
wx,'s, interpreted agtm; (¢). We then deal with the problem
II-SAT(A, C): its input is an automatod and a collection

C of set andI-linear constraints, and the question is whether
these are satisfiable.

Our proof immediately implies that the problem is decid-
able:

COROLLARY 5.1. The problemII-SAT(A,C) is decid-
able.

ProOOFR We can embed the formulag, ..., n, into the
automaton4 and check the existence of a tree over the al-
phabetX x 2T, where(i) its ¥ projection is accepted by
A and (i) for each node labeled witfu, P) € ¥ x 2!, a
formular is satisfied iffr € P is satisfied. The linear con-
straints inC over the variables,’'s andzg’s can be easily
converted into the variables, p’s andzr, whereP C ol
andT C (¥ x 2. O

The complexity oflI-SAT(.A, C) of course depends on how
the formulaery, . .., 7, are given. If they are given as MSO
formulae, then it is immediately known that the complexity

These formulae select nodes in

to move to the alphabét x 2. We can stay in the alphabet
3, and embed each € II inside the automatol. The
automatonA4 can remember the fixed number of nodes that
satisfy and verify that indeed such is the case. This way
we avoid the exponential blow-up and remains in NP1

While converting from MSO to query automata is non-
elementary, for some other formalisms that complexity is
much lower: for example, [19] shows how to convert
conditional-XPath to query automata in single-exponéntia
time.

6. COMPARISON WITH OTHER FOR-
MALISMS

We now show how the satisfiability problem S/, C) re-
lates to reasoning tasks for XML with data.

6.1 XML constraints

As we already noticed, keys and inclusion constraints,-stud
ied extensively in the XML context (and included in the stan-
dards) are modeled with set and linear constraints. A simple
key, saying that data values determim@odes, is a linear
constraintr, = ) ¢ 25, and an inclusion constraint say-
ing that data values ai-nodes occur as data values tef
nodes isV (a) N V(b) = . Similarly, one can handigenial
constraints often used in dealing with inconsistent data. An
example of a denial constraint is saying that the same data
value cannot appear in both amode and a-node; this is
expressible a¥ (a) NV (b) # 0.

Our result implies that the satisfiability problem for kay i
clusion, and denial constraints wrt an automaton is soévabl
in NP. Note however that to express a key as a linear con-
straint one needs exponentially many §in variableszg,
while we can compactly encode keys simply by letters in-
volved in them, requirindog || bits instead. It turns out

is non-elementary. But these formulae are also captured bythat this does not change the bound for keys and inclusion
the query automataf [24]: these are automata that also se- constraints; our proof can easily be adjusted to show:

lect nodes in their accepting runs. With query automata, the  CoroLLARY 6.1. The satisfiability problem for key (en-

complexity drops to NEPTIME, and in some cases to NP.

COROLLARY 5.2. 1. If the formulae inIl are given
as query automata, thdii-SAT(A, C) is decidable in
NEXPTIME.

coded hylog |X| bits) and inclusion constraints wrt an au-
tomaton is solvable ilNP.

PROOF Let A be an automaton over the alphaliét
and letC be a collection of keys and inclusion constraints,



where elements of are written asV'(a) — a (for keys)
andV(a) C V(b) (for inclusion constraints). LeE =
A1y...,0n¢.

Our algorithm to decide whether there exists a datattree
L(A) such that = C works as follows.

1. Construct the existential Presburger formula
oa(z1,...,z,) for the automatonA according
to Lemma 4.2.

2. Letpe(xq,...,x) be the formula3vy - - - Juy

/\Uigxi A\ /\(’Ul:OH.Tl:O)

A

A

V(a;)CV(aj)eC

(A

V(a;)—a; €C

’Ui:l'i)/\ UZ‘SUJ‘).

3. Let QDA,c(CCl,...,:Ek) = @A(xl,...,xk) A
we(z1, ..., xp).
Test the satisfiability ob 4 c(x1, ..., zx).

Note that here we do not use the variabig's.

We claim that for each data treet € £(A) andt = C if
and only ifo 4 c(#a1(t),. .., #ax(t)) holds.

We start with the “only if” part. Let € £(A) andt | C.
Thatp 4 (#a1(t), .. ., #ax(t)) follows from Lemma 4.2. To
show thatye (#a1(t),. .., #ax(t)) holds, we let the wit-
nesses for each as the cardinalityV;(a;)|, the number of
data values found in the-nodes irt. Then, it is straightfor-
ward to show thape (#a1(t), . . ., #ar(t)) holds.

Now we show the “if” part. Suppose.c(ni,...,nk)
holds. By Lemma 4.2, there exists a treee L£(.A) such
that for eachu; € X, n; = #a;(t). Let(mq,...,my) be
the witness fol(vy, ..., vg) thatpe(x1, ..., x;) holds. We
assign the values, . .., m; as data values for the;-nodes
in t such that;(a;) = {1, ..., m;}, for eacha; € ¥. Such
assignment is always possible sinee < #a;(t). That
the keys and inclusion constraints@rare satisfied follows
immediately from the constrainis = x; andv; < v;, re-
spectively. O

This extends the results of [2, 13] which showed an NP
bound for keys and a special form of inclusions (whose right-
hand-sides are keys as well); but in addition our proof is
much more streamlined compared to the proofs there.

Furthermore, it is easy to extend these results to more com-
plex constraints studied in the XML context. For example,
consider key constraints given by regular expressions over
Y. Such a constrairit' (e) — e, for a regular expression

is satisfied in a treeif nodes reachable from the root by fol-
lowing a path frome are uniquely determined by their data
values. These constraints, common in XML schema speci-
fications, are easily described by our formalism: one simply
marks the nodes with states of an automatoref@nd uses

the tree automatod to ensure that the marking is correct.

6.2 Two-variable logic

As mentioned already, out main result doest follow
from the decidability of the two-variable existential malia
second-order logic over data trees [6]. We now shall make
precise the relationship between the two formalisms. When
we talk about logics over data trees, we view them as struc-
tures

t = <DaEi7E~>7{a(')}a627N>v (2)

which extend unranked trees with the binary predicata-
terpreted as ~ v’ < val,(v) = val,(v').

The sentences of the logi@MSO? are of the form
31X, ...3X,, ¢, wherey is an FO formula over the vocab-
ulary extended with the unary predicat&s, ..., X,, that
uses only two variables; andy. Every MSO sentence that
does not mention data values is equivalent tasis O sen-
tence. Other examples are keysu(vy (a(x) A a(y) Az ~

y — x = y)), inclusion constraintsWz3y (a(x) —
b(y) Az ~ y)), and denial constraints{Vy (a(z) Ab(y) —
—(z ~y))).

It was shown in [6] that evergMSO? formula over data
trees is equivalent to a formula

3X5 . 3X (e A /\SOi A /\1/’.7')
i J
where

1. x describes a behavior of an automaton that can make
“local” data comparisons (i.e., whether a data value in
a node is equal/not equal the data value of its parent,
left- or right-sibling);

. eachyp; is of the formVaVy(a(z) N a(y) Nz ~y —
x = y), wherea is a conjunction of labeling predi-
cates,X}'s, and their negations; and

. eachy; is of the formvVa3y a(z) — (x ~ y Ad/(y)),
with a, ¢’ as in item 2.

If we extend the alphabet tB x 2* so that each label also
specifies the family of theX;’s the node belongs to, then
formulae in items 2 and 3 can be encoded by constraints.

e Formulae in item 2 become conjunctions of keys and
denial constraints over the extended alphabet. That is,
it becomes a formula

vavy(\/ a@) A \/ aly) A~y — 2 =1y),
aey’ aeX’

for someX’ C ¥ x 2F, which is equivalent to:
— ais a key for each, € ¥’, and
- V(a) NV (b) =0, for everya,b € ¥/ anda # b.
e Formulae in item 3 become

vady(\/ al@) =z ~yA \/ ay)),

acx’ acy”’



for someX’, ¥ C ¥ x 2%, which is equivalent to gen-
eralized inclusion constraints of the form

Uvec v,

acx’ bex”

NEXPTIME, and it is tempting to think that @NCISESAT
is NExPTIME-complete.

This, however, is not the case. Quite surprisingly, the con-
cise representation doest increase the complexity of the
problem. To show this, we need to design the decision pro-
cedure in a much more careful way.

or, equivalentlyl J .5, V(a) N (Nyesr V(D) = 0.

Hence, [6] and our results imply the following. THEOREM 7.1. The problem CONCISE-SAT(A,C) is

P solvable inNP.
COROLLARY 6.2. e (corollary of [6]) Satisfiability

of 3MSO? formulae over data trees is equivalent to o

satisfiability of keys, denial constraints, and general- We now indicate where the proof of Theorem 4.1 falls short
ized inclusions constraints with respect to an automa- When we have concise representations. First, the transfor-
ton with local data comparisons. mation from set to linear constraints is polynomial in the

P . i i [z is di
e (corollary of Theorem 4.1patisfiability of keys, denial number of variabless, i.e., O(2"™'). This did not cause
constraints, and generalized inclusions constraints problems before, but now we may not have all the variables

; ) i )

with respect to an automaton is solvableNiP. zs, S0 the input may be of the siz@(|x|") for a fixedk.
Then the algorithm for eliminating set constraints becomes

exponential. Second, the introduction of new variahlgs

for Zaesg zg used in the proqf may Iikewi;e induce an

exponential blow-up when considering concise representa-

tion.

While our main result and the decidability 8k1SO? are in-
comparable, in essence we subsiHhESO? minus the local
data comparisorconstraints. Note that our proof is concep-
tually much simpler than the 30+ page proof of [6] that goes o )
via more than a dozen reductions. Unlike [6], we fail to cap- The main aim is to show thahere exists a subset C 2*
ture local data comparisons in automata; on the other hand 0f polynomial size such that there exists a ttee £(A)
we add many properties (e.g., linear constraints) which areandt = C iff there exists a tre¢’ € L(A) andt’ |~ C and
not even expressible in MSO. Sly = 0, forall S ¢ Z. For this we introduce another
extension of the ILP problem.

We give the sketch of the proof in the following subsection.
The full proof will be available in the full version.

7. CONCISE REPRESENTATIONS OF
THE SATISFIABILITY PROBLEM

7.1 Sketch of Proof of Theorem 7.1

Recall that we measure the size of the linear data constraint
Av > b as the sum of sizes &f andb, with numbers repre-

sented in binary. Let X be a finite alphabet and is a collection of set and

linear constraints. In the following we say that a terma C
This could be a rather inefficient way of representing lin- if and only if C contains a set constraint of the form= () or
ear constraints. Since the number of variabigsin the 7 # (0. Similarly we say that a variablg; € C if and only if
constraints i2!”/~! — 1, we may achieve a more compact there is a linear data constraintdrthat uses:s. We denote

representation if only few of those variables are used in the by v, (C) the set of linear data constraints foundin
constraints. Namely, we can safely disregard all the zero-

columns inA, and keep only the columns that correspond

DEFINITION 7.2 (C-FUNCTIONS). Given an alphabet

to variables actually used in constraints. This representa ¥ and a collectionC of data constraints, &@-function is a

tion can be exponentially smaller than the full represéomat
of the constraints (sincE is a part of the input, we cannot

achieve a smaller reduction even if there are no linear con-

straints).

We call this aconcise representatiorand consider the cor-
responding ONCISE-SAT(A,C): it is the same as the
SAT(A,C) problem before, except we use a concise rep-
resentation of linear constraints.

It is a very common phenomenon in complexity theory

that going to concise representation increases the complex

ity by an exponent; in fact doing so is a common way of
getting NExPTIME-complete problems from NP-complete

functionF from X U {r|7 € C} U { 25|25 € C} to 2* such
that:

e foreacha € %, eitherF(a) = or a € F(a);
e for eachzg € C, eitherF(zg) = 0 or F(zg) = S;
e for each constraint # () € C, we haveF(r) € S(7);

e for each constraint = () € C, we haveF(r) = () and
Im(F)NS(r) = 0;

wherelm(F) denotes the image df, andS(r) was defined

in the proof of Proposition 8.4.

problems. Of course given a concise representation of con-

straints, we can always convert it into the usual represen-The intuition of F is such thatfm(F) is the desired sef.

tation in at most exponential time, and then apply Theo- Given a collectiorC of data constraints and@&function F,

rem 4.1. This immediately tells us thaD@CISESAT is in we call U'(C, F) the system obtained frog by adding the
following constraints talj, (C):



25 > 1 for eachS € Im/(F) — 0
Za =0 for eacha € ¥ such thatF(a) = 0
25 =0 for eachzs € C such thatF(zs) = 0

>

aeSEIM(F)—0

zs <z, foreacha €3

Notice that the size o¥ (C, F) is polynomial in the size of
bothC and the alphabet.

In the rest of the proof, all instances of ILP we refer to are
instances over the variables, zs, v,.

DEFINITION 7.3 (ILPUNDERC-CONDITION). An in-
stance of ILP problem unde&f-condition is given by an in-
stanceV of ILP together with a collectio@ of data con-
straints. We say that it has a non-negative solution if there
exists aC-functionF such that the instance of ILP given by
¥ and ¥ (F, C) has a non-negative solution.

We shall now state the two main lemmas from which Theo-
rem 7.1 follows immediately. The proofs will be available in
the full version.

LEMMA 7.4. Checking whether an instance of ILP with
C-condition has a non-negative solution can be dons

LEMMA 7.5. Given an automatopl and a setC of data
constraints in concise representation, one can constinct,
polynomial time, an instance of ILP withrcondition so that
there exists a treé € £L(.A) such that = C iff the instance
of ILP with C-conditions has a non-negative solution.

8. CONVERTING AUTOMATA TO PRES-
BURGER FORMULA

andq is a conjunction of formulae of the form:

e A(Z,y) > b, where all the entries ok andb are either
Oorlor—1,

e formulae(w = 0V u > 1) wherew, u are variables
amongz, y; and

e disjunctions\/;(w; > 1Au; = 1), wherew,’s andu;’s
are variables among, .

Moreover, from every solutiortky, ..., k,) and witness
tuple m such thata(ks,...,k,,m) holds, we can con-
struct effectively a tree¢ € L£(A) such thatParikh(t) =
(k1y ..oy kn).

8.1 Proof of Proposition 8.1

The general outline is as follows: we first replace an au-
tomaton by an extended DTD (Proposition 8.2), and then by
a DTD of a special form, which we calmpleDTD (Propo-
sition 8.3). We then show the construction of the Presburger
formula for such simple DTDs (Proposition 8.4). The first
two reductions are standard. The crucial one is the last one.

Recall that an extended document type definition (EDTD)
is a context-free grammar in which the right-hand sides of
productions can be regular expressions. Formally, an ex-
tended DTD over the alphab&f U A) of nonterminald’,
with a distinguished symbaf for the root, and terminal&

is® = (T, A, A), whereA assigns to each symbele T" a
regular expression ov¢l' UA) — {r}. The set of trees a

is denoted byZ (). That is, an unranked treds in 7 (®)

if its root is labeledr, for each node labeleda € I' with
childrenv - 0,...,v - (n — 1), the word of their labels, i.e.,
labe(v - 0)---Lab(v - (n — 1)), isin the language oA (a),

and each node labeled withe A is a leaf.

The first reduction is stated as a proposition below. The

To make our proof completely algorithmic, in this section proof will be available in the full version.
we spell out the translation from automata to a Presburger
formula defining Parikh images of trees, used as a black box
(Lemma 4.2) in the proof of Theorem 4.1. Moreover, we

also present an algorithm, that given a solution to the Pres-
burger formula, constructs a tree accepted by the original

PROPOSITION 8.2. Given an automatomd with the set
Q of states over alphabet, one can construct, in quadratic
time, an extended DT = (I,X — {r},A) withT" =
Q x X U {r} such that the following holds.

automaton.

We recall that the Parikh image of a tree over
b)) {aj,...,an} is an n-tuple Parikh(t)
(#a1(t),...,#a,(t)), and the Parikh image of a tree
language. is Parikh(L) = {Parikh(¢) | t € L} C N".

PROPOSITION 8.1. There is a quadratic time algorithm
that, given an unranked tree automatoh over ¥ =
{ai,...,ay}, returns a formula

@A(xla .. .,.’L'n) = Eg a(j7g)
of at most quadratic size such that

o ift € L(A), thenp4(#a1(t),...
conversely,

, #ay(t)) holds; and

o if oa(k1,...,ky,) holds, then there exists a treec
L(A) such that#ay(t) = k1, ..., #an(t) = ky

1. For all treet € L(A), there exists a tre¢ € T (®)
such thatforalle € X, #a(t) = #a(t').

2. Vice versa, for all tre¢’ € T(®), there exists a tree
t € L(A) such that for alla € X, #a(t) = #a(t').

Moreover, every tre¢ € T (&) can be converted effectively
into atreet € L(A).

Next, we definesimple DTDsasG = (T', A, A) with a des-
ignated terminal symbol € A. In them,A(a) is one of the
following: b, or be, orb|c, or A\, whereb,c € (TUA) — {r}.

We denote the set of parse treesdoby 7 (G). Note that
trees in7(G) can have only unary or binary branching.
We make the standard assumption that all symbols @me
reachable from the root symbel If a CFG has unreach-
able symbols, they can be eliminated without affecting the
set7(G).



The second reduction is stated as proposition below. TheNote that by default, we sé;, = —1, if there is no path from

proof will be available in the full version.

PrRoOPOSITION 8.3. Given an extended DTD® =
(T, A, A), one can construct, in linear time, a simple DTD
G = (I", AU {\}, A’) such that the following holds.

1. For all treet € 7(®), there exists a tre€ € 7(G)
such that for alla € A, #a(t) = #a(t').

2. Vice versa, for all tree’ € 7(G), there exists a tree
t € T(®) suchthatforalla € A, #a(t) = #a(t').

Moreover, every tre€ € 7(G) can be converted effectively
into the treet € 7(&).

The last reduction is stated as proposition below.

PROPOSITION 8.4. Given a simple DTDG = (I',A U
{A\},A), where A = {ai,...,a,}, One can con-
struct, in linear time, an existential Presburger formula
wg(x1,...,x,) := Jy(Z,y) such that for every tree,

t € T(9)iff pg(#ai1(t),...,#as(t)) holds.

Moreover, from every solutiofky, . . ., k,) andm such that
Y(k, ..., k,,m) holds, we can construct effectively a tree
t € 7(G) such thatarikh(t) = (k1, ..., kn).

We devote the rest of this subsection to the proof of Propo-

sition 8.4. We need a new notation here. For a tree
over the alphabef U A U {\}, we define airectedgraph
Gt = (W, E), where the set of vertices1§ = TUAU{\};
and for every:, b € TUAU{\}, thereis an edgé:, b) € E,

if there exists a node inlabeled withb and whose parent is
labeled witha. If a symbola does not appear in the tree
then it is an isolated vertex i@;.

The main idea is to prove that a tree 7 (G) iff the follow-
ing quantities:
1. n, = #af(t), foreacha e TUA U {)\};

2. ngyp is the number ob-nodes whose parents inis
labeled withga;

3. d, is the length ofsomepath from the root- to the
symbola in the graphz,,

satisfy the following relations:

® g = ycrun Mbla, TOreacha € TUA U {A}.

o —ng=Ngp+ Naje if Ala) =ble.
— TI,a = naib = naic: |f A(a) = bc,
— Ng = Nabs if A(a) = b,

o 5r = 01
e foreacha e TUA U {\} anda # r,

0g=—1<n,=0

V

nbia;ﬁO and Jb;é—l

and
0o =0p+1

the root to the symbat in the graph’;, which means that
the symbol does not appear in

Then, the construction of the desired formylais straight-
forward. It uses the variables,’s, y,’s andz,;'s, for all

a € I'U A andb appears il\(a). The intended meaning of
each variable is as follows:, is for ng; x4s is for ngs; yq

is for 4.

The formulayg is the conjunction of the following:

e 1, =1;

® Ty =) ycrua Tola fOreacha € T UA;
® Ty = Tg|p = Tq|c fOreachA(a) = be;
® Xy = Ta|p + Talc fOreachA(a) = blc;
® 1, = Zq|p fOr eachA(a) = b;

*y =0,

e foreacha e T UA U {\},

Yo= 1= 24=0

\

V

a appears inA(b)

Yo=Y+ 1Az ZO0Ny, # —1.

The total number of variables,’s andz,;’s andy,’s is
linear in the size ofA. We do not need the variableg;'s,
if b does not appear i (a).

By existentially quantifying all the variables,|;'s andy,’s,
we can then viewpg as an existential Presburger formula
with z,'s as the free variables.

Proposition 8.4 follows immediately from the lemma below.

LEMMA 85.LetG = (I', A, A) be a simple CFG. The
formula g (n) holds — wherdn) = (n,)q.ex and the wit-
nesses fotr,|,’s and y,'s are: x4, = nqp € N, and
Yo = dg € N, fora,b € ' U A — if and only if there ex-
ists a treet € 7(G) such that

(1) n, = #a(t) foreacha € T U A,
(2) nayp is the number ob-nodes whose parents are
nodes, and

(3) d, is the length of some path from the raoto the
symbola in the graphG,.

PrROOFE From the definition ofl'(G), the “if” part is im-
mediate. We prove the other implication. liet= (n,).ex
such thatpg(7) holds. Letn,;, be the witness fox,;, for
a,b e TUA, andd, for y,, fora e TUA. LetG = (V, E)
be a directed graph where the $éf nodes is[' U A and
the setF of edges is defined agu, b) € E iff nq, # 0.

We shall construct a tree € 7(G) that satisfies (1) and

(2) and thatG, = G. First, we construct directedgraph
G = (V, E) with the following properties.



(i) Foreachn € T'UA, there are exactly,, nodes labeled
a.

(i) For eacha,b € I' U A, there are exactly,, |, edges
going from anaz-node to a&-node.

(iii) There is exactly one node labeledand it has no in-
coming edges (the root node).

(iv) All nodes, except the root node, have exactly one in-
coming edge.

(v) For all nodes, outgoing edges conformo That is,
foreacha € I, the outgoing edges fromrnodes are as
follows: if A(a) = b-¢, there are exactly two outgoing
edges: one to &node and one to enode; ifA(a) =
blc, there is exactly one outgoing edge going to a node
labeled byb or ¢; and if A(a) = b, there is exactly one
outgoing edge that goes tdanode.

Procedure 1 shows the construction of the gr&phSince
n, = 1, there is only one root node i&@. The steps 7, 8,

graph is a tree [35]. The root (thelabeled node) gives the
tree a unique orientation; we must show that it is the same
one asthe one i@¥. For this, consider any path from the root
to a leaf in the tree, and suppose one edge has an orientation
differentfromG. Let (u, v) be the first such edge; that is, in
G we have an edgév,u). This cannot be the first edge of
the path, as the root has no incoming edg€irHenceu has

a parent. in the oriented tree, and the ed@€, u) has the
same orientation in both the oriented tree andirBut this
tells us thatu has two incoming edges, which contradicts
(iv). o O

We shall use Claim 8.7 to prove Claim 8.8.

CLAIM 8.7. In the directed graphG, a nodea is con-
nected from the root symbeliff d, # —1, or equivalently,
nge 7 0. Moreover,d, is the length of some path from the
root symbol- to a, if d, # —1.

12, 13 and 17 of the procedure are possible due to the equal- ProoF The proof is by straightforward induction on the

ity zp = > gcrua Tale IN ¥(G). Properties (i)-(v) follow
directly from the construction and the constraints given in
U (G).

Procedure 1Construct Graph G = (V, E)

1: The sef consists ofy_ ., 7o NOdeS.
For eachu € I' U A, we labeln, nodes witha.

2. E:=0.

3: forall a e T'do

4:  Letws,...,ws,, bethea-nodes.

5. if A(a) =b-cthen

6: Letn =ng = nap = Naje-

7 Pick a sequence, . . ., u, of n distinctb-nodes with no
incoming edges iE.

8: Pick a sequence, . . ., v, of n distinctc-nodes with no

incoming edges it

9: E = EU{(wi,ui), (wi,vi) i=1,...n

10:  endif

11:  if A(a) =bUcthen

12: Pick a sequence, . .., un, , Of nayp distinct b-nodes
with no incoming edges .

13: Pick a sequence, . .., v, Of ny . distinct c-nodes
with no incoming edges .

14: E = E U {(wi,u)}i=1,..,n,, U
{(Wny p45,V5) Fim1,ng o

15:  endif

16: if A(a) = bthen

17: Pick a sequence, . .., un, , Of nqyp distinctb-nodes
with no incoming edges itf.

18: E = EU{(wi,ui)}i=1,....nq,,-

19: endif

20: end for

If G were a tree, we would be done: membershifi(¥;)
would follow from (v), property (1) from (i), and property
(2) from (ii) and (v). Therefore, to finish the proof of Lemma
8.5, we show Claim 8.6 and Claim 8.8 below.

CLaiM 8.6. A connected directed graght = (V, E) that
satisfies (i)-(v) is a tree.

PrROOF From Properties (iii) and (iv), we can see that the
graphG satisfies the equatiofy| = |V| — 1. If we for-
get about orientation, this equation implies that a coretect

valued,. The base casd,, = 0, is trivial as it meang = r.
The induction hypothesis is that for each nedeith d, =
k # —1 is connected from the root symbolby a path of
lengthk.

Supposé is a node such that, = k& + 1. By the construc-
tion of g, there exists a node such thatn,;, # 0 and

d, = k. By the induction hypothesig, is connected from
the root symbol- with a path of lengtht, and by the con-
struction ofG, there exists an edge fromto b. Thus, our
claim holds. O

CLaiM 8.8. From a directed graph? = (V, E) that
satisfies (i)-(v), one can compute in polynomial time a con-
nected directed grap&y’ = (V, E’) that also satisfies (i)-(v).

PROOF The idea is to change a few edgesGhin or-
der to connect all components to the connected compo-
nent that contains the-node. We first observe the follow-
ing. Suppos&- consists of several connected components:
Gy, Gy, ..., Gy, whereGy is the component that contains
the root node. Then, there exist a nada Gy and a node
v in one of Gy, ..., G; such that, andv are labeled by the
same symbol fromx.

By Claim 8.7, ifd, # —1 (thus,n, # 0), the symbola
is connected to the root symbolin~G, and thatd, is the
length of some path from to a in G. So, for every sym-

bol a that appears id7, there exists a sequence of symbols
bo, b1, ..., b;, respectively, where

® by =r,
e by = a,and
o foreachi =0,...,5 —1,n4,1p,,, #O.
If the symbola does not appear i¥y, then there are a node

u in Gy and a node in one ofGy, ..., G, such that both:
andv are labeled with the same symligle {b;,...,b;}.
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