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Chapter 1

Asymptotic and non asymptotic approximations

for option valuation

R. Bompis and E. Gobet∗

Centre de Mathématiques Appliquées, Ecole Polytechnique and CNRS,
Route de Saclay, 91128 Palaiseau cedex, France

romain.bompis@polytechnique.edu, emmanuel.gobet@polytechnique.edu

We give a broad overview of approximation methods to derive analytical for-
mulas for accurate and quick evaluation of option prices. We compare different
approaches, from the theoretical point of view regarding the tools they require,
and also from the numerical point of view regarding their performances. In the
case of local volatility models with general time-dependency, we derive new for-
mulas using the local volatility function at the mid-point between strike and spot:
in general, our approximations outperform previous ones by Hagan and Henry-
Labordère. We also provide approximations of the option delta.

1. Introduction

In the two last decades, numerous works have been devoted to designing efficient

methods in order to give exact or approximative pricing formulas for many financial

products in various models. This quest of efficiency originates in the need for more

and more accurate methods, when one takes into account an increasing number of

sources of risk, while maintaining a competitive computational time. The current

interest in real-time tools (for pricing, hedging, calibration) is also very high.

Let us give a brief overview of different computational approaches. While ex-

plicit formulas are available in simple models (Black-Scholes model associated to

log-normal distribution, or Bachelier model related to normal distributions for in-

stance), in general no closed forms are known and numerical methods have to be

used. As a numerical method, it is usual to perform PDE solvers for one or two-

dimensional sources of risk (see [1] for instance) or Monte Carlo methods for higher

dimensional problems [2]: both approaches are popular, efficiently developed and

many improvements have been proposed for years. However, these methods are not

intrinsically real-time methods, due to the increasing number of points required in

the PDE discretization grid or due to the increasing number of paths needed in the

Monte Carlo procedure. Not being real-time method means, for example, that when
∗This research is part of the Chair Financial Risks of the Risk Foundation, the Chair Derivatives

of the Future and the Chair Finance and Sustainable Development.
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used for calibration routine based on data consisting of (say) 30 vanilla options, it

usually takes more than one minute (in the most favorable situation) to achieve the

calibration parameters. The approaches presented below are aimed at reducing this

computational time to less than one second.

The class of affine models (such as Heston model, exponential Levy model . . . )

offers an alternative approach related to Fourier computations: on the one hand,

in such models the characteristic function of the marginal distribution of the log-

asset is explicitly known; on the other hand, there are general relations between

Call/Put prices and the characteristic function of the log-asset. These relations

write as follows.

• Following Carr and Madan [3], consider the difference zT (k) between the

Call price in a given model and that price in an arbitrary Black-Scholes

model (with volatility σ), both with maturity T and log-strike k. For zero

interest rate (to simplify), it is equal to zT (k) = E(eXT − ek)+ −CallBS(k),

where X is the logarithm of the asset. A direct computation gives explicitly

the Fourier transform ẑT (v) in the log-strike variable:

ẑT (v) =

∫

R

eivkzT (k)dk =
ΦX

T (1 + iv) − ΦBS
T (1 + iv)

iv(1 + iv)
,

where ΦX,BS
T (u) := E(euXT ) is either computed in the X model or in the

Black-Scholes model. Since ΦX
T (·) is required to be known, we get the X-

model Call price zT (k) + CallBS(k) simultaneously for any log-strike using

a Fast Fourier Transform.

• Alternatively, following the Lewis approach [4, Chapter 2], let α > 0

be a damping constant, set h(y) = (ey − K)+e−(1+α)y which belongs

to L2(R,Leb.) and assume that E(e(1+α)XT ) < +∞: from the Parceval-

Plancherel identity, assuming that the density pXT
of XT w.r.t. the

Lebesgue measure exists, we obtain

E(eXT − K)+ =

∫

R

h(y)e(1+α)ypXT
(y)dy

=
1

2π

∫

R

ĥ(−ξ) ̂[e(1+α)·pXT
(·)](ξ)dξ

=
1

2π

∫

R

e−(α+iξ) log(K)

(iξ + α)(iξ + α + 1)
ΦX

T (1 + α + iξ)dξ.

The final identity still holds without assuming the existence of density:

this can be proved by adding a small Brownian perturbation (considering

XT + εWT instead of XT ), and taking the limit as the perturbation ε goes

to 0. From the above formula, using an extra numerical integration method

(to compute the ξ-integral), we recover Call prices. For higher numerical

performance, Lewis recommends a variant of the formula above, obtained

through the decomposition (eXT − K)+ = eXT − min(eXT , K): it finally



July 25, 2012 11:53 World Scientific Review Volume - 9.75in x 6.5in BompisGobet˙ws-rv975x65˙final˙2

Asymptotic and non asymptotic approximations for option valuation 3

writes

E(eXT − K)+ = S0 −
1

2π

∫

R

e( 1
2−iξ) log(K)

1
4 + ξ2

ΦX
T (

1

2
+ iξ)dξ. (1)

Regarding computational time, both Fourier-based approaches perform well, since

they are essentially reduced to a one-dimensional integration problem. But they can

be applied only to specific models for which the characteristic function is given in

an explicit and tractable form: in particular, it rules out the local volatility models,

the local and stochastic volatility models.

The last approach consists of explicit analytical approximations and this is the

main focus of this paper: it is based on the general principle of expanding the quan-

tity of interest (price, hedge, implied volatility. . . ) with respect to some small/large

parameters (possibly multidimensional). The parameters under consideration may

be of very different nature: for instance in the case of Call/Put options of strike

K and maturity T , it ranges from the asymptotic behavior as K is small or large,

to the case of short or long maturity T , passing through coupled asymptotics, or

small/fast volatility variations, and so on... A detailed description with references

is presented in Section 2. Due to the plentiful and recent litterature on the subject,

it is likely that we will not be exhaustive in the references. But we will do our

best to give the main trends and to expose whenever possible what are the links

between different viewpoints; we will compare the mathematical tools to achieve

these approximations (rather PDE techniques or stochastic analysis ones), in order

to provide to the reader a clarified presentation of this prolific topic.

The paper is organized as follows. Section 2 gives an overview of asymptotic

and non-asymptotic results: wing formulas, long maturity behavior, large deviations

type results, regular and singular perturbation for PDEs, asymptotic expansions of

Wiener functionals and other stochastic analysis approaches. The choice of the

small/large parameter is of course crucial and is usually left to the expertise of

the user. In particular, we show that there might be a competition between differ-

ent small/large parameters and the accuracy order might not be the natural one.

This motivates for deriving non asymptotic results and this is our emphasize in

the next sections. We develop the principle of high order approximations related

to an intuitive proxy. In Section 3, we consider the simplest case of second order

approximation in local volatility models, using log-normal or normal proxys. We

give pedagogic proofs. Section 4 is devoted to a more detailed analysis: we first

give arguments based on stochastic analysis (martingales, Malliavin calculus). We

compare this derivation with a method mixing stochastic analysis and PDE, and

with a pure PDE approach: we show in which respect our methodology is different.

In Section 5, we provide various high-order approximation using proxys. In Section

6, approximations of the option delta are provided. Section 7 is gathering numeri-

cal experiments illustrating the performance of our formulas compared to those of

Hagan etal. [5] and of Henry-Labordère [6]. Some intermediate and complementary

results are postponed to Appendix (Section 8).
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Notation used throughout the paper.

⊲ Models. In all this work, financial products are written w.r.t. a single asset,

which price at time t is denoted by St. The dynamics of S is modeled through a

filtered probability space (Ω,F , (Ft)t≥0, P) where (Ft)t≥0 is the natural filtration of

a standard linear Brownian motion W , augmented by the P-null sets. The risk-free

rate is seta to 0; most of the time and unless stated otherwise, S follows a local

volatility model, i.e. it is solution of the stochastic diffusion equation

dSt = Stσ(t, St)dWt, (2)

where the dynamics is directly under the pricing measure. Assumptions on the local

volatility σ are given later. We assume that the complete market framework holds

and that an option with payoff h(ST ) paid at maturity T has a fair value at time 0

equal to E(h(ST )).

For positive S, we define the log-asset X = log(S) which satisfies

dXt = a(t, Xt)dWt −
1

2
a2(t, Xt)dt, (3)

where a(t, x) = σ(t, ex).

⊲ Call options. Let us denote by Call(S0, T, K) the price at time 0 of a Call option

with maturity T and strike K, written on the asset S. ”Price” usually means the

price given by a model on S, that is

Call(S0, T, K) = E(ST − K)+. (4)

This Model Price should equalize the Market Price taken from Market datas (cali-

bration step). As usual, ATM (At The Money) Call refers to S0 ≈ K, ITM (In The

Money) to S0 ≫ K, OTM (Out The Money) to S0 ≪ K.

⊲ Black-Scholes Call price function. For convenience of the reader, we give

the Black-Scholes Call price function depending on log-spot x, total variance y and

log-strike z:

CallBS(x, y, z) = exN (d1(x, y, z)) − ekN (d2(x, y, z)) (5)

where:

N (x) =

∫ x

−∞
N ′(u)du, N ′(u) =

e−u2/2

√
2π

,

d1(x, y, z) =
x − z√

y
+

1

2

√
y, d2(x, y, z) =d1(x, y, z) −√

y.

This value CallBS(x, y, z) equals Call(ex, T, ez) in (4) when the volatility in (2) is

only time-dependent and y =
∫ T

0
σ2(t)dt. Note that CallBS is a smooth function

(for y > 0) and there is in addition a simple relation between its partial derivatives:

∂yCallBS(x, y, z) =
1

2
(∂2

x2 − ∂x)CallBS(x, y, z) =
1

2
(∂2

z2 − ∂z)CallBS(x, y, z). (6)

afor non-zero but deterministic risk-free rate, we are reduced to the previous case by considering

the discounted asset; see also the discussion in [7] for stochastic interest rates.
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In the following, x0 = log(S0) (which is the initial value of the process X defined

in (3)) will represent the log-spot, k = log(K) the log-strike, xav = (x0 + k)/2 =

log(
√

S0K) the mid-point between the log-spot and the log-strike, m = x0 − k =

log(S0/K) the log-moneyness.

The reader can find in Proposition 32 the definition of VegaBS, VommaBS and

UltimaBS which are the first three derivatives of CallBS w.r.t. a volatility parameter.

For (x, T, z) given, the implied Black-Scholes volatility of a price Call(ex, T, ez)

is the unique non-negative parameter σI(x, T, z) such that

CallBS
(
x, σ2

I (x, T, z)T, z
)

= Call(ex, T, ez). (7)

⊲ Bachelier Call price function. We now recall the Bachelier Call price as a

function of spot S, total variance Y and strike Z:

CallBA(S, Y, Z) =(S − Z)N
(S − Z√

Y

)
+
√

Y N ′
(S − Z√

Y

)
, (8)

which coincides with Call(S, T, Z) when the volatility in (2) is such that xσ(t, x) =

Σ(t) and Y =
∫ T

0
Σ2(t)dt. The function CallBA is smooth (for Y > 0) and we have:

∂Y CallBA(S, Y, Z) =
1

2
∂2

S2CallBA(S, Y, Z) =
1

2
∂2

Z2CallBA(S, Y, Z).

We frequently use the notation Sav = (S0+K)/2 and M = S0−K for the Bachelier

moneyness. Proposition 37 defines the sensibilities of CallBA w.r.t. the volatility

parameter: VegaBA, VommaBA and UltimaBA.

For (S, T, Z) given, the implied Bachelier volatility of a price Call(S, T, Z) is the

unique non-negative parameter ΣI(S, T, Z) such that

CallBA
(
S, Σ2

I (S, T, Z)T, Z
)

= Call(S, T, Z). (9)

Black-Scholes and Bachelier implied volatilities are compared in [8].

2. An overview of approximation results

The increasing need in evaluating financial risks at a very global level and in a

context of high-frequency market exchanges is a significant incentive for the com-

putational methods to be efficient in evaluating the exposure of large portfolio to

market fluctuations (VaR computations, sensitivity analysis), in quickly calibrating

the models to the market data. Hence, in the two last decades, many numerical

methods have been developed to meet these objectives: in particular, regarding the

option pricing, several approximation results have been derived, following one or an-

other asymptotic point of view. We give a summary of these different approaches,

stressing the limits of applicability of the methods.
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2.1. Large and small strikes, at fixed maturity

The Call price Call(S0, T, K) as a function of strike is convex and its left/right

derivatives are related to the distribution function of ST [9, Chapter 7]:

∂−
KCall(S0, T, K) = −P(ST ≥ K) and ∂+

KCall(S0, T, K) = −P(ST > K). Beyond

the important fact that the family of Call prices {Call(S0, T, K) : K ≥ 0} com-

pletely characterizes the marginal distribution of ST , this relation also shows that

the tails of the law of ST are intrinsically related to the decay of Call(S0, T, K) as

K → +∞. In terms of implicit volatility, the heuristics is the following: the larger

the implied volatility of OTM options, the larger the right tail of ST . This is similar

for small strikes K, using Put options. Lee [10] has been the first one to quantify

these features relating the behavior of implied volatility to the tails of ST , with an

encoding of the tails through the existence of positive/negative moments. These

are model-free relations, that can be applied to any model with E(ST ) < +∞ and

not only to local volatility ones like in (2). The well-known Lee moment formulas

write as follows, using the log-variables x0 = log(S0) and m = log(S0/K) = x0 − k.

Theorem 1. Define

• the maximal finite positive moment order pR := sup{p ≥ 0 : E(S1+p
T ) < +∞},

• the maximal finite negative moment orderb pL := sup{p ≥ 0 : E(S−p
T ) < +∞}.

Then, the right tail-wing of the Black-Scholes implied volatility defined in (7) is

such that

lim sup
m→−∞

Tσ2
I (x0, T, x0 − m)

|m| = φ(pR) := βR,

while the left tail-wing is such that

lim sup
m→+∞

Tσ2
I (x0, T, x0 − m)

m
= φ(pL) := βL,

where φ(x) = 2 − 4(
√

x2 + x − x) ∈ [0, 2].

Proof. We refer to [10] for a detailed proof. We only give the two main arguments

for proving the right tail-wing, the left one being similar.

• The first argument relies on a tight connection between moments and asymptotics

of Call/Put as K → +∞. Indeed, on the one hand, convexity inequalities give

(s − K)+ ≤ sp+1

p+1

(
p

p+1

)p 1
Kp (for p ≥ 0), and taking the expectation yields

Call(S0, T, K) ≤ E(Sp+1
T )

p + 1

( p

p + 1

)p 1

Kp
. (10)

In other words, the more integrability of ST , the faster the decay of Call(S0, T, K)

as K → +∞. Conversely, the Carr formula states that the Call/Put prices form a

b1 + pR and pL are respectively called right-tail and left-tail indices.
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pricing generating system for any payoff equal to a difference of convex functions:

making this principle particular to the power payoff, we obtain

E(S1+p
T ) =

∫ ∞

0

p(p + 1)Kp−1Call(S0, T, K)dK, (11)

i.e. the faster the decreasing of Call(S0, T, K) as K → +∞, the higher the integra-

bility of ST .

• The second argument is based on exponential decreasing behaviors of Call/Put

in terms of Black-Scholes implied volatility, as the log-moneyness m → ±∞. Repa-

rameterizing the implied volatility σI(x0, T, x0 − m) =
√

β|m|/T with β ∈ (0, 2] (β

is interpreted as a slope of the total variance per log-moneyness), we obtain

CallBS(x0, β|m|, x0 − m) = S0N (−
√

f−(β)|m|) − S0e
−mN (−

√
f+(β)|m|)

where f±(β) = 1
β + β

4 ±1. Then, a direct computation shows a dichotomic behavior

related to β:

lim
m→−∞

e−cmCallBS(x0, β|m|, x0 − m) = +∞1c>f−(β)/2. (12)

Comparing (10-11-12) and setting pR := f−(βR)/2 (or equivalently βR = φ(pR))

yields the tail-wing formulas.

Since the original contribution of Lee, several improvements to Theorem 1 have

been established. For instance, the lim sup can be removed by a simple limit, under

the additional assumptions that ST has a regularly varying density, see [11]. More

recently, Gulisashvili [12] and his co-authors have proved refined expansions of the

form

σI(x0, T, k) =

√
2√
T

[√
log K + log

1

Call(S0, T, K)
− 1

2
log log

1

Call(S0, T, K)

−
√

log
1

Call(S0, T, K)
− 1

2
log log

1

Call(S0, T, K)

]
+ O

((
log

1

Call(S0, T, K)

)− 1
2
)

as K becomes large, which allows precise asymptotics of σI(x0, T, k) through those

of Call(S0, T, K).

These kinds of asymptotics are now well-known for most of the usual models,

like CEV models (no right tail-wing), Heston model (tail-wing depending on the

maturity). . . see [13] for more references. Different models may have the same strike

asymptotics. We can use this information on extreme strikes in different manners:

first, comparing with the asymptotic market implied volatility smile, it allows for

selecting a coherent model. Second, it helps the calibration procedure by setting

approximately some parameter values (those having an impact on the tails). Third,

it can be used to appropriately extrapolate market data.

In practice, these asymptotic formulas refer to far OTM or ITM options, for

which the accuracy of market data is really questionable (large bid-ask spread, low

liquidity). Thus, a direct application is usually not straightforward.
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2.2. Long maturities, at fixed strike

Another asymptotics is large maturity. It has been studied by Rogers and Tehranchi,

see [14] and [15], proving the following.

Theorem 2. Assume that S remains positive with probability 1. Then, for any

λ > 0, limT→+∞ sup|m|≤λ

∣∣∣σI(x0, T, x0 − m) −
√

8
T | ln(E(ST ∧ S0))|

∣∣∣ = 0.

As before, the proof is based on the careful derivation of asymptotics of Black-

Scholes formula (5). The above limit states that for strikes in a fixed neighborhood

of the spot S0, the implied volatility behaves like
√

8
T | ln(E(ST ∧ S0))| for large

maturity, and thus it does not depend on the strike. In other words, the implied

volatility surface flattens as maturity becomes large, which is coherent with market

data. There are also some refined and higher order asymptotics: assuming that the

a.s. large-time limit of the martingale S is 0, then

Tσ2
I (x0, T, k) =8| ln(E(ST ∧ K

S0
))| − 4 ln(| ln(E(ST ∧ K

S0
))|) + 4 ln(

K

πS0
) + o(1),

where the reminder is locally uniform in the log-moneneyss m = x0 − k.

2.3. Long maturities, with large/small strikes

In view of the preceeding results, the asymptotics of the smile for large maturity

becomes very simple regarding the strike variable, unless one allows the strike to be

large/small together with the maturity. Indeed to recover interesting information

at the limit, we should consider strikes of the form K = S0e
xT with x 6= 0, or

equivalently k = x0 + xT . From the linearization of the payoff, one obtains

Call(S0, T, S0e
xT ) = E

(
ST 1ST ≥S0exT

)
− S0e

xT
P(ST ≥ S0e

xT )

= S0P
S
( 1

T
log(ST /S0) ≥ x

)
− S0e

xT
P

( 1

T
log(ST /S0) ≥ x

)

where the new measure PS is the one associated to the numéraire S. Under this

form, it appears clearly that for x large enough (say larger than the asymptotic

P-mean or PS-mean of 1
T log(ST /S0) whenever it exists), both probabilities above

correspond to the evaluation of large deviation events. The role of Large Devia-

tion Principle satisfied by the sequence ( 1
T log(ST /S0))T≥0 as T → +∞ has been

outlined in [16] in the case of Heston model, and in [17] for more general affine

models. Saddle point arguments combined with Lewis formula (1) have been per-

formed in [18] for the Heston model, to recover the Stochastic Volatility Inspired

parameterization of Gatheral [19]: the squared implied volatility σ2
I (x0, T, x0 +xT )

has the simple asymptotic shape

σ2
∞(x) =

ω1

2

(
1 + ω2ρx +

√
(ω2x + ρ)2 + 1 − ρ2

)
. (13)

For more general affine models like Heston model, without or with jumps, or Bates

model, or Barndorff-Nielsen-Shephard model (see [20] and [17]), it is possible to
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derive similar limits. Let Λt(u) = log(E(Su
t )) be the exponent of the moment

generating function, which is convex in u: in the aforementioned model we can define

and compute its asymptotic average Λ(u) = limt→∞
1
t Λt(u), which still satisfies

to the convexity feature. We associate its Fenchel-Legendre transform Λ∗(x) =

supu∈R(ux − Λ(u)) and it turns out that ( 1
T log(ST /S0))T≥0 satisfies a LDP under

P (resp. PS) with rate function x 7→ Λ∗(x) (resp. x 7→ Λ∗(x) − x).

Theorem 3. Under some assumptions (see [17]), for any x ∈ R, the asymptotic

implied volatility σ∞(x) is given by

lim
T→∞

σI(x0, T, x0 +xT ) =
√

2
[
sgn(Λ′(1)−x)

√
Λ∗(x) − x+sgn(x−Λ′(0))

√
Λ∗(x)

]
.

In the Black-Scholes model with constant volatility σ, one has Λ(u) = σ2

2 (u2 − u),

Λ∗(x) = 1
2σ2

(
x + σ2

2

)2
, and we get obviously σ∞(x) = σ. For Heston model, Λ is

explicit as well and we finally recover the SVI parsimonious parameterization (13).

Here again, different models may have the same asymptotic smiles, see [17].

2.4. Non large maturities and non extreme strikes

To obtain approximation formulas in that situation, the asymptotics should origi-

nate from different large/small parameters that are rather related to the model and

not to the contract characteristics (maturity and strike). These different asymp-

totics are generally well intuitively interpreted. For the sake of clarity, we spend

time to detail a bit the arguments, in order to make clearer the differences between

the further expansion results and the tools to obtain them. To the best of our

knowledge, such comparative presentation does not exist in the literature and the

reader may find it interesting.

2.4.1. Small noise expansion

This is inspired by the Freidlin-Wentzell approach [21] in which the noise in the

Stochastic Differential Equation of interest is small. Denote by Y the scalar SDE

under study (which can be X or S in our framework), solution of

dYt = µ(t, Yt)dt + ν(t, Yt)dWt, Y0 given. (14)

Assume that ν is small, or equivalently that ν becomes εν with ε → 0: after making

this small noise parameterization, the model writes

dY ε
t = µ(t, Y ε

t )dt + εν(t, Y ε
t )dWt, Y ǫ

0 = Y0.

For ε = 0, it reduces to an ODE

Y 0
t = y0,t = Y0 +

∫ t

0

µ(s, y0,s)ds (15)
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and this deterministic model serves as a zero-order approximation for the further

expansion. Under smooth coefficient assumptions [21], we can derive a stochastic

expansion of Y ε in powers of ε:

Y ε
t = y0,t + εY1,t +

1

2
ε2Y2,t + o(ε2). (16)

For instance Y1 solves a linear Gaussian SDE

Y1,t =

∫ t

0

∂xµ(s, y0,s)Y1,sds +

∫ t

0

ν(s, y0,s)dWs =

∫ t

0

e
R

t

s
∂xµ(r,y0,r)drν(s, y0,s)dWs.

Similarly, Y2 solves

Y2,t =

∫ t

0

[∂xµ(s, y0,s)Y2,s + ∂2
xµ(s, y0,s)Y

2
1,s]ds +

∫ t

0

2∂xν(s, y0,s)Y1,sdWs

=

∫ t

0

e
R

t

s
∂xµ(r,y0,r)dr

(
∂2

xµ(s, y0,s)Y
2
1,sds + 2∂xν(s, y0,s)Y1,sdWs

)
.

Higher order expansions are available under higher smoothness assumptions. The

notation o(ε2) in (16) means that the related error term has a Lp-norm (for any

p) that can be neglected compared to ε2 as ε → 0. The stochastic expansion (16)

becomes a weak expansion result when we compute E(h(YT )) for a test function h.

⊲ The case of smooth h. If h is smooth enough, we obviously obtain

E(h(YT )) =h(y0,T ) + εh′(y0,T )E(Y1,T )

+ ε2
(
h′(y0,T )E(

Y2,T

2
) +

1

2
h′′(y0,T )E(Y 2

1,T )
)

+ o(ε2).

Observe that E(Y1,T ) = 0 since Y1,T is a Wiener integral. To make the above ex-

pansion fully effective in practice, it is necessary to make the coefficients E(Y2,T )

and E(Y 2
1,T ) explicit: this is quite straightforward thanks to the linear equa-

tions solved by Y1,. and Y2,.. The L2-isometry property of the Wiener integral

yields E(Y 2
1,t) =

∫ t

0
e2

R

t

s
∂xµ(r,y0,r)drν2(s, y0,s)ds. In addition, we have E(Y2,t) =∫ t

0
e

R

t

s
∂xµ(r,y0,r)dr∂2

xµ(s, y0,s)E(Y 2
1,s)ds. The coefficients computation is reduced to

the evaluation of nested time-integrals which are simple to compute using stan-

dard n-points integral discretization, with a computational complexityc of order n.

The above expansion analysis is a regular perturbation analysis, using a stochastic

analysis point of view.

To derive this expansion in powers of ε, we could alternatively use a PDE point

of view based on Feynman-Kac representation, which states that uε : (t, x) 7→
uε(t, x) = E(h(Y ε

T )|Y ε
t = x) solves the perturbed PDE

{
∂tu

ε(t, x) + µ(t, x)∂xuε(t, x) + 1
2ε2ν2(t, x)∂2

xuε(t, x) = 0 for t < T ,

uε(T, x) = h(x).

cObserve that although the time integrals are multidimensional, we are reduced to iterative one-

dimensional computations since the function to integrate is separable in all its variables.
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Setting Lε = ∂t + µ∂x + 1
2ε2ν2∂2

x := L0 + ε2L2, the above PDE writes Lεuε = 0

plus boundary conditions at time T . Seeking an expansion of the form uε = u0 +

εu1 + 1
2ε2u2 + o(ε2), we obtain

L0u0 + εL0u1 + ε2[
1

2
L0u2 + L2u0] + o(ε2) = 0.

A formal identification of each coefficient of εi (i = 0, 1 . . . ) to 0, we obtain a system

of PDEs:

L0u0 = 0, L0u1 = 0,
1

2
L0u2 + L2u0 = 0,

with the boundary conditions u0(T, .) = h(.), u1(T, .) = u2(T, .) = 0. The justi-

fication of this kind of expansion and its related error analysis can be made un-

der appropriate smoothness assumptions on h, µ and ν; we refer to [22, Theorem

5.1], [23, Theorem 3.1] or [24, Chapter 4] where a similar error analysis is made.

The PDE solutions are then given by

u0(t, x) = h(yt,x
T ), u1 ≡ 0, u2(t, x) =

∫ T

t

2L2u0(s, y
t,x
s )ds

where (yt,x
s )s≥t stands for the solution of the ODE (15) with initial condition (t, x).

Under this form of system of PDEs, the derivation of an explicit expression for u2

is not as easy as within the stochastic analysis approach. However, we can obtain

the same expansion (fortunately!), i.e. the same formula for u2 at (0, Y0):

u2(0, Y0) = h′(y0,T )E(Y2,T ) + h′′(y0,T )E(Y 2
1,T ) (17)

with E(Y2,T ) and E(Y 2
1,T ) given as before. To see this, start from L2 and write

u2(t, x) =
∫ T

t
ν2(s, yt,x

s )∂2
yu0(s, y

t,x
s )ds. We have ∂xu0(t, x) = h′(t, yt,x

T )∂xyt,x
T and

∂2
xu0(t, x) = h′(t, yt,x

T )∂2
xyt,x

T + h′′(t, yt,x
T )(∂xyt,x

T )2. Then to recover (17), use the

notation y0,t = y0,Y0

t , the flow property y
t,y0,t
s = y0,s for s ≥ t, and the explicit

expressions for ∂xyt,x
s and ∂2

xyt,x
s : for instance ∂xyt,x

s = 1+
∫ s

t
∂xµ(r, yt,x

r )∂xyt,x
r dr =

e
R

s

t
∂xµ(r,yt,x

r )dr. We skip further details. This completes the PDE approach to derive

a regular perturbation analysis. Observe that the derivation of explicit formula is

delicate because of the system of PDEs to solve (more complicate than solving the

system of SDEs arising within the stochastic analysis approach).

⊲ The case of non-smooth h. The previous derivation which involves h′, h′′ and

possibly higher derivatives is mathematically incorrect if h is not smooth. This fact

is clear using the stochastic analysis approach. It is also clear using PDE arguments:

indeed, it would involve the perturbed PDE solution (t, x) 7→ E(h(Y ε
T )|Y ε

t = x), that

is not uniformly smooth (because the regularization parameter ε shrinks to 0). If

h(x) = 1x≥K (like digital payoff), i.e. we evaluate pε = P(Y ε
T ≥ K), and y0,T 6= K,

large deviation arguments [25] show that the probability pε is exponentially close

to 0 or 1 w.r.t. 1/ε2 (i.e. log(pε) ≈ −c/ε2 if y0,T < K), and thus an expansion

in power of ε provides zero coefficients at any order. To get a non degenerate and
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interesting situation, we should consider the case K is close to y0,T in the sense

K = y0,T + λ ε, that is

pε = P(Y ε
T ≥ y0,T + λ ε) = P(

Y ε
T − y0,T

ε
≥ λ).

In other words, to overcome the difficulty of the singularity of h, we have leveraged

a homogenization argument (singular perturbation), by considering the rescaled

variable (usually called fast variable) Zε
t =

Y ε
t −y0,t

ε = Y1,t + 1
2εY2,t +o(ε). If the law

of Y1,T is non degenerate (for instance Gaussian law with non-zero variance), the

latter quantity can be expanded in powers of ε. Actually, for less specific functions

h, Watanabe [26] has developed a Malliavin calculus-based machinery to establish

a general expansion result of E(h(Zε
T )) in powers of ε, available even for Schwartz

distributions h, assuming stochastic expansions in Malliavin sense of

Zε
T = Z0,T + εZ1,T + ε2Z2,T + · · · + εnZn,T + O(εn+1)

for any n ≥ 1 and asymptotic (in ε) non-degeneracy in Malliavin sense of Zε
T :

lim sup
ε→0

‖1/det(γZε
T )‖p < +∞ (18)

for any p ≥ 1, where γZ is the Malliavin covariance matrix of a random variable Z.

The Watanabe result states the existence of random variables (πk)k≥1 such that for

any polynomially bounded function h, we have

E(h(Zε
T )) = E(h(Z0,T )) +

n∑

k=1

εk
E(h(Z0,T )πk) + O(εn+1), ∀n ≥ 1. (19)

Compared to the non-smooth case, the possibility to get an expansion result is due to

the non-degeneracy condition which has a (asymptotic) regularization effect on the

non-smooth function h. With our previous notation Zε
T =

Y ε
T −y0,T

ε = Y1,T + 1
2εY2,T +

o(ε), the asymptotic non-degeneracy (18) implies that the Gaussian random variable

Y1,T has a non-zero variance, i.e.
∫ T

0
e2

R

T

s
∂xµ(r,y0,r)drν2(s, y0,s)ds > 0: in the case of

time-independent coefficient µ(s, y) = µ(y), ν(s, y) = ν(y), it reads ν(y0,T ) 6= 0. The

converse result (ν(y0,T ) 6= 0 implies (18)) holds true in the case of time-independent

coefficient and in a multidimensional setting, see [26, Theorem 3.4]. Yoshida [27,

Theorem 2.2] has weakened the assumption (18) into a localized version allowing

degeneracy on a set of polynomially small probability measure. This approach

has been successfully applied to different pricing problems in finance, mainly by

Yoshida, Takahashi and their co-authors: see [28, 29, 30] or the unpublished work

[31]. Their methodology consists in expanding the density of the random variable

Zε
T =

Y ε
T −y0,T

ε using the Gaussian density as the zero-order term, and then going

back to E(h(Y ε
T )) by suitable integration computations. The advantage of this

approach is that the expansion result (19) holds in a large generality, provided

that we assume infinitely differentiable coefficients and uniform non degeneracy.

However, observe two difficulties or restrictions:
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• within usual financial models like Heston model, the required regularity

assumption is not satisfied and we even know that the Malliavin differen-

tiability of high order may fail, see [32].

• the existence of the Malliavin weights (πk)k does not provide an explicit

and numerically computable expansion: very involved additional computa-

tions are required to obtain explicit formulas. One might compare these

tricky computations to those necessary to solve the aforementioned system

of PDEs.

Last, this approach usually leads to normal approximations of financial models

(Bachelier prices) whereas log-normal approximations (Black-Scholes prices) might

be more accurate (numerical evidences are given in Section 7).

After this presentation of singular perturbation using stochastic analysis, we now

turn to the PDE approach. It has been developed in the financial context by Hagan

and co-authors [5, 33]. To be as close as possible to the quoted work, assume that

the drift coefficient is µ ≡ 0. In the case of Call payoff, the original valuation PDE

uε writes
{

∂tu
ε(t, x) + 1

2ε2ν2(t, x)∂2
xuε(t, x) = 0 for t < T ,

uε(T, x) = (x − K)+;

now, if we consider ATM strikes (K − Y0 = O(ε) similarly to before), we should

consider the fast variable y = (x − K)/ε and the rescaled solution vε(t, y) =
1
εuε(t, K + εy) which solves

{
∂tv

ε(t, y) + 1
2ν2(t, K + εy)∂2

yvε(t, y) = 0 for t < T ,

vε(T, y) = y+.
(20)

At this stage, the analysis follows the routine similar to before, by seeking a solution

under the form

vε = v0 + εv1 + o(ε) (21)

solving Lεvε = 0 where Lε = ∂t + 1
2ν2(t, K + εy)∂2

y = L0 + εL1 + o(ε) with

L0 = ∂t + 1
2ν2(t, K)∂2

y , L1 = νν′(t, K)y∂2
y . A formal identification leads to a

system of PDEs:

L0v0 = 0, v0(T, y) = y+ and L0v1 + L1v0 = 0, v1(T, y) = 0.

The solution v0 is obviously given by the Call price in a Bachelier model (8)

dXBA
t = ν(t, K)dWt with time-dependent diffusion coefficient, and the first cor-

rection is given by v1(t, y) = E(
∫ T

t
L1v0(s, X

BA
s )ds|XBA

t = y). Although the new

terminal function h(y) = y+ is not infinitely smooth, non-zero function ν induces

a smoothing effect due to a non-degenerate heat kernel (this feature is analogous

to the previous non-degeneracy in the Malliavin sense): hence, v0 is smooth with

derivatives possibly blowing up as time gets close to T and a careful analysis shows

that v1 is well defined too. Here again, the explicit computation of v1 is not an easy
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exercise and it requires some tricks. Finally v1 can be written as the weighted sum

of derivatives of v0 (interpreted as Greeks). In Sections 3 and 5, we provide a more

direct and generic way to compute this kind of correction terms using stochastic

analysis instead of PDE arguments.

Regarding the careful justification of the above PDE regular expansion with error

estimates, quite surprisingly we have not been able to find literature references when

the terminal condition is non-smooth (like y 7→ y+).

Once obtained the expansion of vε for a given local volatility function σ(., .) (i.e.

ν(t, y) = y σ(t, y)), one can derive an expansion of the Black-Scholes implied volatil-

ity σI by identifying the previous expansion with that in the case (νI(t, y) = y σI):

see [5] where the analysis is successfully performed for time-independent volatility

σ(t, y) = σ(y) (or separable function σ(t, y) = σ(y)α(t) by a simple time-change). It

is possible that the case of general time-dependent volatility has been considered out

of reach by the authors of [5, 33] using PDE arguments, whereas we will see later

how much stochastic analysis tools are suitable even in the case time-dependent

coefficients.

2.4.2. Short maturity

In this asymptotics, the terminal time T is small. When one has to evaluate

E(h(YT )) for Y solution of the SDE (14) and for h smooth (say infinitely differ-

entiable with bounded derivatives), iterative applications of Itô’s formula give

E(h(YT )) = h(Y0) +

∫ T

0

E([Lh](t, Yt))dt

= h(Y0) + T [Lh](0, Y0) +

∫ T

0

∫ t

0

E([L2h](s, Ys))dsdt

where L is the infinitesimal generator associated to Y . Iterating the procedure, we

obtain an expansion in powers of T :

E(h(YT )) =

n∑

k=0

T k

k!
[Lkh](0, Y0) + O(Tn+1), n ≥ 0.

The numerical evaluation of such formula is straightforward. We refer the reader

to [34, Chap. 5] for a more comprehensive exposure of related Itô-Taylor expansions.

As in the case of small noise expansion, the case of non-smooth h requires a

different treatment because Lkh is not defined. For this, we transform the problem

of small terminal time with fixed coefficients into a problem of fixed terminal time

with small coefficients, by leveraging the scaling property of the Brownian motion.

Actually, having T small is equivalent to replace T by ε2T with ε → 0: then, starting

from the SDE (14), we consider the time-rescaled process (Yε2t)0≤t≤T which has the

same distribution as (Y ε
t )0≤t≤T defined as the solution of

dY ε
t = ε2µ(ε2t, Y ε

t )dt + εν(ε2t, Y ε
t )dWt, Y ǫ

0 = Y0, (22)



July 25, 2012 11:53 World Scientific Review Volume - 9.75in x 6.5in BompisGobet˙ws-rv975x65˙final˙2

Asymptotic and non asymptotic approximations for option valuation 15

see [26, p.17]. Observe that this leads to a different parameterization compared to

the small noise case (in particular, the drift coefficient is multiplied by ε2). However

the expansion methodology is similar: in the case of non-smooth function, it is more

appropriate to rescale the process by setting Zε
t =

Y ε
t −y0,t

ε = Y1,t + 1
2εY2,t + o(ε),

where

Y1,t = ∂εY
ε
t |ε=0 = ν(0, Y0)Wt,

Y2,t = ∂2
εY ε

t |ε=0 = 2µ(0, Y0)t + 2∂yν(0, Y0)

∫ t

0

Y1,sdWs

= 2µ(0, Y0)t + ∂yν(0, Y0)ν(0, Y0)(W
2
t − t).

Once the fast variable is selected, observe that we are reduced to a regular perturba-

tion problem, that can be handled using stochastic analysis tools (namely Watanabe

approach [26]) or using PDE tools. We skip details since it is similar to what have

been presented before. See also the book by Henry-Labordère [6], where short-time

asymptotics of density functions are derived through geometry considerations.

2.4.3. Fast volatility

Since the end of the nineties, another popular approximation approach has been

developed by Fouque, Papanicolaou and Sircar, see [35, 36]. It emphasizes that the

asset volatility (σt)t≥0 has usually slow variations compared to the variations of the

asset itself (multiscale modeling). This is achieved in two different ways.

• Either the natural time scale of stochastic volatility is short, which leads

to a model of the form (22) for (σt)t, while the asset dynamics is un-

changed. Thus, at order zero, we obtain a Black-Scholes model with a

constant volatility equal to the initial stochastic volatility σ0, see [35, Sec-

tion 2].

• Or the fluctuations of the stochastic volatility (σt)t are so fast that they

give the appearance of a constant (in time) volatility, when considered at a

longer time scale. This second point of view has been much developed by

Fouque, Papanicolaou and Sircar and their co-authors, in many respects,

and this is presented below.

As an illustration of their methodology, we consider the asset model dSt = StσtdWt

and an Ornstein-Uhlenbeck process for modeling (σt = f(Σt))t with

dΣt =
1

ε
(Σ∞ − Σt)dt + v

√
2

ε
dBt.

For instance in the Scott model [37], f(x) = ex and (W, B) is a standard bi-

dimensional correlated Brownian motion (d〈W, B〉t = ρdt). As time goes to infinity,

the random variable Σt weakly converges to the stationary Gaussian distribution

with mean Σ∞ and variance (v
√

2
ε )2/(2 1

ε ) = v2. In other words, although the fluc-

tuations are fast (the characteristic time being ε), the distribution remains the
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same (at least for time larger than ε). It allows the application of ergodic theo-

rem to obtain large-time asymptotics of integrals of the realized volatility: for any

polynomially bounded function Ψ, we have

lim
T→+∞

1

T

∫ T

0

Ψ(σs)ds =

∫

R

Ψ(ey)
1√

2πv2
e−(y−Σ∞)2/(2v2)dy := σ2

BS

in the almost sure sense and in the L1 sense. For Ψ(y) = y2, we obtain a constant

large-time approximation of 1
T

∫ T

0
σ2

sds to be used as a zero-order approximation in

a Black-Scholes formula. To derive correction terms, the authors employ singular

pertubation PDE techniques: indeed, the price function uε(t, x, y) = E(h(ST )|St =

x,Σt = y) solves Lεuε = 0 with

Lǫ = ∂t +
1

2
x2f2(y)∂2

xx +

√
2

ε
ρvxf(y)∂2

xy +
1

ε
(v2∂2

y + (Σ∞ − y)∂y)

:= L0 +
1√
ε
L1 +

1

ε
L2.

As in the previous approaches, by decomposing uε in powers of
√

ε and by gathering

the contributions of the same order, we obtain a system of PDEs characterizing the

main order term and the correction terms. Actually the analysis is quite intricate

because one has to take into account the ergodic property of σ (which leads to

solving elliptic PDEs of the form of Poisson equation): see [36, Chapter 5] where

the error analysis is made for smooth payoffs and [38] for the Call option case. The

final approximation pricing formula writes

E(ST − K)+ = CallBS(log(S0), Tσ2
BS , log(K))

+
√

ε × linear combination of ∂i
SCallBS(log(S0), Tσ2

BS , log(K)) for i = 2, 3 + . . .

with some explicit coefficients as the factors for the Greeks. Consequently, the

approximation formula is straightforward to evaluate on a computer since Black-

Scholes price and Greeks are known in closed form and available in any pricing

software. In this analysis and similarly to any PDE approaches, assuming time

homogeneous coefficients simplifies much the derivation of explicit formula. In the

context of fast volatility, some extensions are possible, see [39].

2.4.4. Proxy expansion

We complete our overview section by presenting a different point of view, which is

going to be developed further in the next sections. As a difference with previous

works, this is rather a non-asymptotic approach, relying on the a priori knowledge of

proxy of the model to handle; for this reason, it may appear as more understandable

and more intuitive for practioners. Consider the model (2) on S:

dSt = Stσ(t, St)dWt,
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and assume that by expertise, S behaves closely to a Gaussian model, i.e. the

fluctuations of Stσ(t, St) are small. Then, it is reasonable to take the Bachelier

model SP with parameter (Σt = S0σ(t, S0))t as a proxy, that is

dSP
t = ΣtdWt, SP

0 = S0. (Normal Proxy)

The Call price in S model should be close to that in the proxy; since this approxi-

mation may be too crude, it is recommended to add correction terms.

Alternatively, one could guess that S rather behaves as a log-normal model with

parameter (at)t, i.e. X = log(S) may be approximated by

dXP
t = −1

2
a2

t dt + atdWt, XP
0 = x0. (Log-Normal Proxy)

The proxy volatility may be taken to at = a(t, x0) = σ(t, S0) for instance, but

another point could be chosen (for instance, the strike K or the mid-point (K +

S0)/2). This description does not put an emphasize on a specific asymptotic, but

one has to quantify how Stσ(t, Xt) ≈ Σt or a(t, Xt) ≈ at.

To compute correction terms to the relation E(ST − K)+ ≈ E(SP
T − K)+ or

E(eXP
T −K)+, it is necessary to derive a convenient representation of the distance to

the proxy ST −SP
T or XT −XP

T . The linear interpolation Xη
T = XP

T + η(XT −XP
T )

does not lead to illuminating computations. It is much better to consider the

following interpolation: for η ∈ [0, 1], define

dXη
t = η(−1

2
a2(t, Xη

t )dt + a(t, Xη
t )dWt), Xη

0 = x0. (23)

Note that η is not a small parameter but an interpolation parameter. Observe

also that this parameterization is different from that in small time or small noise

asymptotics.

A direct computation shows that X1
t = Xt, X0

t = x0 and ∂ηXη
t |η=0 =∫ t

0
a(s, x0)[dWs − 1

2a(s, x0)ds]: this shows that Xt − XP
t = X1

t − (X0
t + ∂ηXη

t |η=0)

writes as a Taylor formula at order 1. Thus, the natural candidate for the first

contribution in Xt − XP
t is 1

2∂2
ηXη

t |η=0. The above interpolation is equivalent to

dX̂η
t = −1

2
a2(t, x0 + η(X̂η

t − x0))dt + a(t, x0 + η(X̂η
t − x0))dWt, X̂η

0 = x0, (24)

which is related to Xη
t by the relation Xη

t = x0 + η(X̂η
t − x0).

2.5. Asymptotic expansion versus non-asymptotic expansion

Deriving an asymptotic expansion sheds the light on the crucial role of one model

parameter compared to the other ones, to explain and approximate the option prices:

for instance, in small noise expansion, we focus only on the volatility by putting an

ε in front of the dW -term, and so on. It finally leads to a generic expansion of the

form

uε = u0 + εu1 +
1

2
ε2u2 + . . . (25)
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or in powers of
√

ε in the fast volatility framework. Our previous discussion has

shown how this expansion is obtained in a Markovian framework using PDE (regular

or singular pertubations), or more generally using Malliavin calculus (Watanabe

approach).

Actually, it is important to observe that writing such an expansion implicitly

means that apart of the parameter related to ε, the other parameters have no im-

portant asymptotics for the problem under consideration. Below we consider a

simple toy example to show that there might be a competition between all the

model parameters, and moreover there is a necessary trade-off with the payoff reg-

ularity. In other words, deriving (25) does not necessarily mean that the first order

approximation u0 + εu1 is really accurate and taking more terms do not necessarily

improve the accuracy, because of the possible crucial influence of other large or

small parameters. Our toy example is the following perturbed Brownian model:

Xε
1 = σW1 +

√
εB1

where (W, B) is a two-dimensional Brownian motion, and σ is positive. This toy

model can be viewed as the simplest way to perturb a volatility model (we could

have taken B = W without changing the conclusion of the discussion below) and

thus, it is quite realistic compared to the further situations to handle.

(1) Case h(x) = 1 + x2. We have E[h(Xε
1)] = 1 + σ2 + ε = E[h(X0

1 )] + ε.

(2) Case h(x) = 1 + x+. By a scaling argument, we have:

E[h(Xε
1)] = 1 +

√
σ2 + εE[(W1)

+] =E[h(X0
1 )] +

1

2

ε

σ
E[(W1)

+] + O(
ε2

σ3
).

(3) Case h(x) = 1x≤x0 . We have:

E[h(Xε
1)] = N

(
x0√

σ2 + ε

)
= N

(x0

σ

)
−N ′

(x0

σ

) x0

σ

ε

2σ2
+ O(

ε2

σ4
).

These simple computations show that the expansion order depends on the relative

magnitude of ε and σ, and also on the regularity of the function h. For instance, if

σ is also small, say ε = σ3 → 0, then the expansion order w.r.t. σ in the case (1),

(2), (3) is respectively equal to 3, 2 and 1. These subtleties do not appear in the

expansions (19) of Watanabe type or (21) of PDE type, because the focus is made

only on a single small parameter ε.

It means that in some situations, asymptotic expansions may be misleading or

may not give the best possible approximations; then, we should take into account

the influence of all (or many) model parameters. In the context of fast volatility,

multi-scale modeling and its related asymptotic analysis are very recently developed

in [24, Chapter 4]; see also [40, Chapter 3 and Section 4.4].

In the sequel of this work, we consider non asymptotic expansions, mainly for

local volatility models, and analyse the approximation error taking into account sev-

eral parameters at the same time, in order to determine in which extent they play
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complementary or opposite roles. For instance, it is informative to see the simul-

taneous influences of maturity, of volatility amplitude or of derivatives of volatility

function on the option prices. Their impacts depend on the payoff smoothness: the

accuracy is expected to be improved for smooth payoff compared to non-smooth

payoffs.

Final considerations. After this (hopefully complete) overview, the reader may

wonder what is the best approximation method among those presented. Of course,

it depends on the required accuracy and the computational time allowed for the

numerical evaluation. From this point of view, all methods are not equivalent.

The choice of relevant asymptotics/approximations guarantees to catch the main

features of the pricing problem, and as a consequence, it will likely lead to an

expansion of low order to achieve a good accuracy (with low computational time or

complexity). In these respects, the proxy expansion has immediate advantages: the

better or the more intuitive the proxy, the smaller the number of correction terms.

One should also take care of the preservation of some model properties in the

approximation.

• One of them is the martingale property of S = eX (serving as a base for Call/Put

parity relation). For instance, a small noise approximation of X defined in (3)

does not maintain the martingale property since the volatility coefficient is

scaled by ε while the drift remains unchanged: as a result, the final approxima-

tion may suffer from numerical arbitrage.

• Another property is positivity of S. Taking a Normal Proxy for S may give

wrong results if the values of S close to 0 have a prominent role in the compu-

tation of E(h(ST )) (for instance, Call/Put with small strikes).

These kinds of consideration may help to choose between different methods, with

the additional help of comparative numerical tests.

3. Approximation based on proxy

3.1. Notations and definitions

The following notations and definitions are repeatedly used in this work.

⊲ Differentiation. If these derivatives have a meaning, we write l
(i)
t (x) = ∂i

xi l(t, x)

for any function l of two variables.

⊲ Integral Operator. The integral operator ωT is defined as follows: for any

measurable and bounded function l, we set

ω(l)T
t =

∫ T

t

ludu,
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for t ∈ [0, T ]. Its n-times iteration is defined analogously: for any measurable and

bounded functions (l1, · · · , ln), we set

ω(l1, · · · , ln)T
t = ω(l1ω(l2, · · · , ln)T

. )T
t ,

for t ∈ [0, T ].

⊲ Time reversal. For any measurable and bounded function l, we denote by l̃ the

function l̃t = lT−t for any t ∈ [0, T ]. Notice the relation

ω(l̃1, l̃2, .., l̃n)T
0 = ω(ln, ln−1, .., l1)

T
0 (26)

available for any measurable and bounded functions (l1, · · · , ln): in other words,

reversing the time of integrands is equivalent to change the order of integration.

⊲ Quadratic mean on [0, T ]. For any measurable function (l(t, x))(t,x)∈[0,T ]×R of

two variables, bounded w.r.t. the time variable for any x ∈ R, we denote by lz its

quadratic mean on [0, T ] at the spatial point z defined by:

lz =

√
1

T

∫ T

0

l2t (z)dt.

This notation is frequently used for the function a at the points z = x0, k, xav and

for the function Σ at z = S0, K, Sav.

⊲ Assumptions on a and Σ.

• (Ha): a is a bounded measurable function of (t, x) ∈ [0, T ] × R, and five times

continuously differentiable in x with boundedd derivatives. Set

M1(a) = max
1≤i≤5

sup
(t,x)∈[0,T ]×R

|∂i
xa(t, x)| and M0(a) = max

0≤i≤5
sup

(t,x)∈[0,T ]×R

|∂i
xa(t, x)|.

In addition, there exists a constant ca > 0 such that |a(t, x)| ≥ ca for any

(t, x) ∈ [0, T ] × R.

• (Ha
z): assume (Ha) by replacing the last uniform ellipticity by the single con-

dition
∫ T

0
|a(t, z)|2dt > 0.

The above hypothesis will be considered at z = x0, z = k or z = xav.

We define similarly (HΣ) or (HΣ
z ) by replacing a by Σ in (Ha) and (Ha

z). Then

the hypothesis will be considered at z = S0, z = K or z = Sav.

⊲ Constants. Our next error estimates are stated following the notation below.

• ”A = O(B)” means that |A| ≤ CB: here, C stands for a generic constant that

is a non-negative increasing function of T , M1(a), M0(a) and of the oscillation

ratio M0(a)
ca

(if (Ha) is fulfilled) or [M0(a)]2T
R

T

0
|a(t,z)|2dt

(if (Ha
z) is fulfilled).

If (HΣ) or (HΣ
z ) is satisfied, in the above dependence a has to replaced by Σ.

dthe boundedness assumption of a and its derivatives could be weakened to Lp-integrability con-

ditions, up to extra works.
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Usually, a generic constant may depend on S0, x0, K and k; nevertheless, it

remains uniformly bounded in these variables: it is possible to derive exact

dependency but we skip it to keep the analysis short.

• Similarly, if A is positive, A ≤c B means that A ≤ CB for a generic constant

C.

3.2. Proxy approximation: a primer using the local volatility at spot

⊲ Log-normal proxy. Assume by expertise that the model (2) behaves closely

to a log-normal model, in the sense that a log-normal approximation seems to be

reasonable. For instance, in the case of CEV type model

Sσ(t, S) = νtS
βt , (27)

a log-normal heuristics is associated to β close to 1. Some numerical illustrations

are given later.

As a first log-normal approximation, we freeze the volatility in space to the

initial spot value: regarding the log-asset X defined in (3), it writes

dXP
t = −1

2
a2(t, x0)dt + a(t, x0)dWt, XP

0 = x0.

We refer to this proxy model as log-normal proxy with volatility at spot. The evalu-

ation of the next correction terms requires a suitable representation of the distance

between the model and the proxy: for this, we use the interpolated process (23)

given by

dXη
t = η(−1

2
a2(t, Xη

t )dt + a(t, Xη
t )dWt), Xη

0 = x0.

for an interpolation parameter η ∈ [0, 1]. Under (Ha
x0

), the three first derivatives

of η 7→ Xη
t are well defined (a.s. simultaneously for any t, see [41, Theorem 2.3]).

Denote by Xη
i,t and Xi,t the i-th derivative respectively at η and η = 0. Direct

computations yield

dXη
1,t = − 1

2
a2(t, Xη

t )dt + a(t, Xη
t )dWt

+ ηXη
1,t(−[a∂xa](t, Xη

t )dt + ∂xa(t, Xη
t )dWt), Xη

1,0 = 0. (28)

dXη
2,t =2Xη

1,t(−[a∂xa](t, Xη
t )dt + ∂xa(t, Xη

t )dWt)

+ ηXη
2,t(−[a∂xa](t, Xη

t )dt + ∂xa(t, Xη
t )dWt)

+ η[Xη
1,t]

2(−∂x[a∂xa](t, Xη
t )dt + ∂2

xa(t, Xη
t )dWt), Xη

2,0 = 0. (29)

dXη
3,t =3Xη

2,t(−[a∂xa](t, Xη
t )dt + ∂xa(t, Xη

t )dWt)

+ 3[Xη
1,t]

2(−∂x[a∂xa](t, Xη
t )dt + ∂2

xa(t, Xη
t )dWt),

+ ηXη
3,t(−[a∂xa](t, Xη

t )dt + ∂xa(t, Xη
t )dWt)

+ 3η[Xη
1,t][X

η
2,t](−∂x[a∂xa](t, Xη

t )dt + ∂2
xa(t, Xη

t )dWt)

+ η[Xη
1,t]

3(−∂2
x[a∂xa](t, Xη

t )dt + ∂3
xa(t, Xη

t )dWt), Xη
3,0 = 0. (30)
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Observe that Xη
t |η=0 = x0, thus the derivatives at η = 0 have simpler expressions:

dX1,t = − 1

2
a2(t, x0)dt + a(t, x0)dWt = dXP

t ,

dX2,t =2X1,t(−[a∂xa](t, x0)dt + ∂xa(t, x0)dWt),

with Xi,0 = 0 for i ≥ 1. Then notice that XP
t = x0 + X1,t: hence

XT − XP
T = X1

T − (x0 + X1,T ) =

∫ 1

0

(1 − λ)Xλ
2,T dλ (31)

=
1

2
X2,T +

∫ 1

0

(1 − λ)2

2
Xλ

3,T dλ (32)

using the Taylor expansion formula. As a consequence of the above representation,

we obtain an approximation of E(h(XT )) for a smooth function h:

E[h(XT )] = E[h(XP
T +

X2,T

2
+ ...)] = E[h(XP

T )] + E[h(1)(XP
T )

X2,T

2
] + ... (33)

The first term is related to a log-normal model and thus, it is expected to be easily

computable numerically. The second term is more delicate: actually, we transform

it into a weighed sum of sensitivities of E[h(XP
T + ε)] w.r.t. ε = 0. To achieve this

transformation, we use a key lemma which proof is given in Subsection 8.4

Lemma 4. Let ϕ be a C∞
b function and (λt)t be a measurable and bounded deter-

ministic function. Let N ≥ 1 be fixed, and consider measurable and bounded deter-

ministic functions t 7→ li,t for i = 1, . . . , N . Then, using the convention dW 1
t = dWt

and dW 0
t = dt, for any (I1, . . . , IN ) ∈ {0, 1}N we have:

E

(
ϕ(

∫ T

0

λtdWt)

∫ T

0

lN,tN

∫ tN

0

lN−1,tN−1 . . .

∫ t2

0

l1,t1dW I1
t1 . . .dW

IN−1

tN−1
dW IN

tN

)

= ω(l̂1, . . . , l̂N )∂I1+···+IN

εI1+···+IN
E

(
ϕ(

∫ T

0

λtdWt + ε)
)
|ε=0, (34)

where l̂k,t := lk,t if Ik = 0 and l̂k,t := λtlk,t if Ik = 1.

Now, apply the above identity to ϕ(·) = h(1)(x0− 1
2

∫ T

0
a2(t, x0)dt+ ·), λt = a(t, x0)

and

X2,T

2
=

∫ T

0

(∫ t2

0

(−1

2
a2(t1, x0)dt1 + a(t1, x0)dWt1)

)

× (−[a∂xa](t2, x0)dt2 + ∂xa(t2, x0)dWt2),

to get

E[h(1)(XP
T )

X2,T

2
] = C1(a;x0)

T
0 (∂3

ε3 − 3

2
∂2

ε2 +
1

2
∂ε)E

(
h(XP

T + ε)
)
|ε=0

where the operator C1 is defined by:

C1(l; z)T
0 = ω(l2(z), l(z)l(1)(z))T

0 =

∫ T

0

l2t (z)

∫ T

t

ls(z)l(1)s (z)dsdt. (35)
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Combine this with (33) to obtain that E(h(XT )) can be approximated by

E[h(XP
T )] + C1(a;x0)

T
0 (∂3

ε3 − 3

2
∂2

ε2 +
1

2
∂ε)E

(
h(XP

T + ε)
)
|ε=0.

So far, the payoff function h is smooth and this does not fit the Call/Put setting;

actually, an extra regularization argument and a careful passing to the limit enables

to extend the previous formula to any locally Lipschitz h. Additionally, some error

estimates are available (see [42, Theorem 2.2]). All the results are gathered in the

following theorem.

Theorem 5. (2nd order log-normal approximation with local volatility at

spot). Assume (Ha
x0

). Assume that h is locally Lipschitz in the following sense:

for some constant Ch ≥ 0,

|h(x)| ≤ CheCh|x|, |h(y) − h(x)

y − x
| ≤ CheCh(|x|+|y|) (∀y 6= x).

Then

E[h(XT )] = E[h(XP
T )]+C1(a;x0)

T
0 (∂3

ε3 − 3

2
∂2

ε2 +
1

2
∂ε)E

[
h(XP

T + ε)
]
|ε=0

+ O(M1(a)[M0(a)]2T
3
2 ).

where the operator C1 is defined in (35) and O depends notably of the constant Ch.

This formula is referred to as a second order approximation because the residual

term is of order three with respect to the amplitude of the volatility coefficient.

Remark 6. The reader should notice that the expansion formulas are exact

for the particular payoff function h(x) = ex (indeed E[h(XT )] = E[h(XP
T )] =

∂i
εiE

[
h(XP

T + ε)
]
|ε=0 = ex0 and the sum of the corrective terms is equal to zero).

This notably implies that the Call/Put parity relationship is preserved within these

approximations, which is an essential property. The reader can verify in Section 5

that this martingale property is preserved for higher order approximation formulas.

Under the current assumptions (
∫ T

0
a2(t, x0)dt > 0), the law of XP

T is a non-

degenerate Gaussian r.v. and thus, the above derivatives are meaningful even for

non-smooth h. Following [42], the Lipschitz regularity can be weakened to Holder

regularity but error estimates in the case of discontinuous function h are not avail-

able so far under the current set of assumptions.

⊲ Normal proxy. Alternatively to a log-normal proxy, we could prefer the use

of normal proxy on the asset S: for CEV-type model described in (27), it can be

justified for β close to 0. The same analysis can be done by considering the normal

proxy with diffusion coefficient computed at spot: it writes

dSP
t = Σ(t, S0)dWt, SP

0 = S0.

Then, the distance to the proxy is represented through the interpolation process

dSη
t = ηΣ(t, Sη

t )dWt, Sη
0 = S0.
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All the previous computations are very similar, and even simpler because there is

no dt-term. We skip details and state directly the result (see [42, Theorem 2.1]).

Theorem 7. (2nd order normal approximation with local volatility at

spot). Assume (HΣ
S0

). Assume that h is locally Lipschitz in the following sense:

for some constant Ch ≥ 0,

|h(x)| ≤ Ch(1 + |x|Ch), |h(y) − h(x)

y − x
| ≤ Ch(1 + |x|Ch + |y|Ch) (∀y 6= x).

Then

E[h(ST )] = E[h(SP
T )] + C1(Σ; S0)

T
0 ∂3

ε3E
[
h(SP

T + ε)
]
|ε=0 + O(M1(Σ)[M0(Σ)]2T

3
2 ).

Remark 8. As for the log-normal proxy (see Remark 6), the approximation formu-

las involving the normal proxy does not suffer from numerical arbitrage when using

Call/Put payoffs: indeed they are exact for the particular payoff function h(x) = x

(indeed E[h(ST )] = E[h(SP
T )] = S0 and ∂i

εiE
[
h(SP

T + ε)
]
|ε=0 = 0, ∀i ≥ 2). This

property holds again when considering higher order expansions (see Section 5).

Applying two previous results to the pricing of Call option (i.e. h(x) = (ex−K)+
in the case of log-normal proxy, and h(x) = (x−K)+ in the case of normal proxy),

we obtain two different expansions using respectively Black-Scholes formula and

Bachelier formula.

Theorem 9. (2nd order approximations for Call options with local volatil-

ity at spot). Assuming (Ha
x0

) and using the log-normal proxy, one has

Call(ex0 , T, ek) =CallBS(x0, ā
2
x0

T, k)

+ C1(a;x0)
T
0 (∂3

x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
x0

T, k)

+ O(M1(a)[M0(a)]2T
3
2 ).

Assuming (HΣ
S0

) and using the normal proxy, one has

Call(S0, T, K) =CallBA(S0, Σ̄
2
S0

T, K) + C1(Σ; S0)
T
0 ∂3

S3CallBA(S0, Σ̄
2
S0

T, K)

+ O(M1(Σ)[M0(Σ)]2T
3
2 ).

3.3. Towards Call option approximations with the local volatility at

strike and at mid-point

For general payoff functions, the most natural choice seems to choose a proxy with

the local volatility frozen at spot. When we are dealing with Call or Put payoffs, the

spot and strike variables play a symmetrical role [43], and there is a priori no reason

to advantage one or the other one. A first attempt to exploit this duality in proxy

expansion is analysed in [44]. In this subsection, we briefly recall the expansion

formulas with a local volatility at strike and then we present new expansion formulas
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with a local volatility at mid-point xav = (x0 + k)/2 = log
√

S0K or Sav = (S0 +

K)/2. We detail the analysis only for the log-normal proxy. The proofs for the

normal proxy are very similar and are left as an exercise to the reader.

To directly obtain expansions formulas with local volatility frozen at strike, the

idea is to follow the Dupire approach [43], using explicitly the PDE satisfied by the

Call price function (T, K) → Call(S0, T, K) = E[(ST − K)+]. Indeed we have that:
{

∂T Call(S0, T, K) = 1
2σ2(T, K)K2∂2

K2Call(S0, T, K),

Call(S0, 0, K) = (S0 − K)+.

Thus we do not consider anymore a PDE in the backward variables (t, S) with

a Call payoff as a terminal condition, but we now handle a PDE in the forward

variables (T, K), with a put payoff condition. This dual PDE has a probabilistic

Feynman-Kac representation:

Call(S0, T, K) = E[(S0 − ekT )+], (36)

where (kt)t∈[0,T ] is the diffusion process defined by:

dkt = a(T − t, kt)dWt −
1

2
a2(T − t, kt)dt, k0 = k = log(K),

where we recall that a(t, z) = σ(t, ez). Thus we are in a position to apply Theorem

5 for the Put payoff function h(z) = (ex0 − ez)+ with log-strike x0 = log(S0), with

a log-normal proxy starting from K = ek and with the local volatility ã(t, z) =

a(T − t, z). In the same way, we can apply Theorem 7 with a normal proxy. As a

result, we obtain a variant of Theorem 9 where the Greeks w.r.t. the kT -variable are

naturally transformed into Greeks w.r.t. the strike variable. The final statement is

the following result.

Theorem 10. (2nd order approximations for Call options with local

volatility at strike). Assuming (Ha
k) and using the log-normal proxy, one has

Call(ex0 , T, ek) =CallBS(x0, ā
2
kT, k)

+ C1(ã; k)T
0 (∂3

z3 − 3

2
∂2

z2 +
1

2
∂z)CallBS(x0, ā

2
kT, k)

+ O(M1(a)[M0(a)]2T
3
2 ).

Assuming (HΣ
K) and using the normal proxy, one has

Call(S0, T, K) =CallBA(S0, Σ̄
2
KT, K) + C1(Σ̃; K)T

0 ∂3
Z3CallBA(S0, Σ̄

2
KT, K)

+ O(M1(Σ)[M0(Σ)]2T
3
2 ).

Now, in order to obtain approximation formulas for the mid-points xav or Sav,

we perform a Taylor expansion of the local volatility function around these mid-

points. We start from the expansions at spot and strike given in Theorems 9 and 10,

we consider the average of these expansions and we transform each term to freeze
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the local volatility function at xav or Sav. We only give details for the log-normal

proxy. We first analyze the corrective terms.

Lemma 11. Assume (Ha
x0

)-(Ha
k)-(Ha

xav
). We have:

1

2
C1(a;x0)

T
0 (∂3

x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
x0

T, k)

+
1

2
C1(ã; k)T

0 (∂3
z3 − 3

2
∂2

z2 +
1

2
∂z)CallBS(x0, ā

2
kT, k)

=
1

2

[
C1(a;xav)

T
0 − C1(ã;xav)

T
0

]
(∂3

x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+ O(M1(a)[M0(a)]2T
3
2 ).

Proof. We begin with the x0-Greeks. Perform a zero order Taylor formula for the

function y → (∂3
x3 − 3

2∂2
x2 + 1

2∂x)CallBS(x0, y, k) at y = ā2
x0

T = ω(a2(x0))
T
0 around

y = ā2
xav

T = ω(a2(xav))
T
0 and ∀t ∈ [0, T ], for the function x → a2

t (x) at x = x0

around x = xav to obtain:

C1(a;x0)
T
0 (∂3

x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
x0

T, k)

=[C1(a;xav)
T
0 + R1][(∂

3
x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
xav

T, k) + R2

]

=C1(a;xav)
T
0 (∂3

x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+ (∂3
x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
xav

T, k)R1 + C1(a;x0)
T
0 R2,

where:

R1 =
(x0 − k)

2

∫ 1

0

(∂xC1(a;x)T
0 )|x=λx0+(1−λ)xav

dλ,

R2 = T (ā2
x0

− ā2
xav

)

×
∫ 1

0

(∂4
yx3 − 3

2
∂3

yx2 +
1

2
∂2

yx)CallBS(x0, y, k)|y=T (λā2
x0

+(1−λ)ā2
xav

)dλ,

T (ā2
x0

− ā2
xav

) =
(x0 − k)

2

∫ 1

0

(∂xω(a2(x))T
0 )|x=λx0+(1−λ)xav

dλ.

In view of the definition (35) of C1, the identity (6), Corollary 30 and (Ha
x0

)-(Ha
xav

),

we readily obtain

∣∣(∂3
x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
xav

T, k)R1

∣∣

≤1

2

∣∣(∂3
x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
xav

T, k)(x0 − k)
∣∣

×
∣∣
∫ 1

0

(∂xC1(a;x)T
0 )|x=λx0+(1−λ)xav

dλ
∣∣

≤c[ā
2
xav

T ]−
1
2M1(a)[M0(a)]3T 2 ≤c M1(a)[M0(a)]2T

3
2 ,



July 25, 2012 11:53 World Scientific Review Volume - 9.75in x 6.5in BompisGobet˙ws-rv975x65˙final˙2

Asymptotic and non asymptotic approximations for option valuation 27

∣∣C1(a;x0)
T
0 R2

∣∣

≤c[M0(a)]3M1(a)T 2M0(a)M1(a)T

∫ 1

0

[T (λā2
x0

+ (1 − λ)ā2
xav

)]−
3
2 dλ

≤cM1(a)[M0(a)]2T
3
2 .

Similarly, using in addition (Ha
k) we show that:

C1(ã; k)T
0 (∂3

z3 − 3

2
∂2

z2 +
1

2
∂z)CallBS(x0, ā

2
kT, k)

= C1(ã;xav)
T
0 (∂3

z3 − 3

2
∂2

z2 +
1

2
∂z)CallBS(x0, ā

2
xav

T, k) + O(M1(a)[M0(a)]2T
3
2 ),

= −C1(ã;xav)
T
0 (∂3

x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
xav

T, k) + O(M1(a)[M0(a)]2T
3
2 ),

where we have used at the last equality the relation (72) in Proposition 34. That

completes the proof.

Second, we analyze the leading order of the formula given in Theorems 9 and

10:

Lemma 12. Assume (Ha
x0

)-(Ha
k)-(Ha

xav
). We have:

1

2
[CallBS(x0, ā

2
x0

T, k) + CallBS(x0, ā
2
kT, k)] =CallBS(x0, ā

2
xav

T, k)

+ O(M1(a)[M0(a)]2T
3
2 ).

Proof. Apply a first order Taylor formula twice; firstly for the function y →
CallBS(x0, y, k) at y = ā2

x0
T around y = ā2

xav
T and secondly, for the function

x → a2
t (x) at x = x0 around x = xav, ∀t ∈ [0, T ]. It gives

CallBS(x0, ā
2
x0

T, k)

=CallBS(x0, ā
2
xav

T, k) + ∂yCallBS(x0, ā
2
xav

T, k)T (ā2
x0

− ā2
xav

) + R1,

=CallBS(x0, ā
2
xav

T, k) + ∂yCallBS(x0, ā
2
xav

T, k)ω(a(xav)a
(1)(xav))

T
0 (x0 − k) + R2

+ R1.

where:

R1 = T 2(ā2
x0

− ā2
xav

)2
∫ 1

0

(∂2
y2CallBS(x0, y, k))|y=T (λā2

x0
+(1−λ)ā2

xav
)(1 − λ)dλ,

R2 = ∂yCallBS(x0, ā
2
xav

T, k)
(x0 − k)2

4

∫ 1

0

(∂2
x2ω(a2(x))T

0 )|x=λx0+(1−λ)xav
(1 − λ)dλ.

Similar arguments previously employed in the proof of Lemma 11 easily lead to:

|R1| ≤c[M1(a)]2[M0(a)]2T 2

∫ 1

0

[T (λā2
x0

+ (1 − λ)ā2
xav

)]−
1
2 dλ

≤cM1(a)[M0(a)]2T
3
2 ,

|R2| ≤cM1(a)[M0(a)]2T
3
2 .
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Similarly we have:

CallBS(x0, ā
2
kT, k)

=CallBS(x0, ā
2
xav

T, k) − ∂yCallBS(x0, ā
2
xav

T, k)ω(a(xav)a
(1)(xav))

T
0 (x0 − k)

+ O(M1(a)[M0(a)]2T
3
2 ).

We are finished.

Lemmas 11 and 12 lead to the following Theorem for the log-normal proxy, while

similar arguments apply for the normal proxy.

Theorem 13. (2nd order approximations for Call options with local

volatility at mid-point). Under (Ha
x0

)-(Ha
k)-(Ha

xav
), we have

Call(ex0 , T, ek) =CallBS(x0, ā
2
xav

T, k)

+
C1(a;xav)

T
0 − C1(ã;xav)

T
0

2
(∂3

x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+O(M1(a)[M0(a)]2T
3
2 ), (37)

Under (HΣ
S0

)-(HΣ
K)-(HΣ

Sav
), we have

Call(S0, T, K) =CallBA(S0, Σ̄
2
Sav

T, K)

+
C1(Σ; Sav)

T
0 − C1(Σ̃; Sav)

T
0

2
∂3

S3CallBA(S0, Σ̄
2
Sav

T, K)

+ O(M1(Σ)[M0(Σ)]2T
3
2 ). (38)

Remark 14. If a (and consequently Σ) is time-independent or has separable vari-

ables, observe that the corrective terms vanish and we obtain remarkably simple

formulas: the expansion formulas (37) and (38) reduce to only a Black-Scholes price

and a Bachelier price, with the local volatility function frozen at the mid-point.

3.4. Second order expansion of the implied volatility

Interestingly, the previous expansions of Call price (Theorems 9, 10 and 13) can

be turned into expansions of Black-Scholes and Bachelier implied volatility defined

respectively in (7) and (9). To achieve this, we use the relations between Greeks

postponed in Propositions 34 and 39 in order to write the different approximation

formulas in terms of the Vega. For example consider the second order log-normal

expansion formula based on the ATM local volatility (Theorem 9): thanks to (72)

in Proposition 34, it becomes:

Call(ex0 , T, ek) =CallBS(x0, ā
2
x0

T, k) − VegaBS(x0, ā
2
x0

T, k)
C1(a;x0)

T
0 m

ā3
x0

T 2

+ O(M1(a)[M0(a)]2T
3
2 ),

≈CallBS
(
x0, (āx0

− C1(a;x0)
T
0

ā3
x0

T 2
m)2T, k

)
,
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where m is the log-moneyness m = x0 − k = log(S0/K). We have paved the way

for the following result:

Theorem 15. (2nd order expansions of the implied volatility). Assuming

(Ha
x0

)-(Ha
k)-(Ha

xav
) and using the log-normal proxy, we have

σI(x0, T, k) =āx0
− C1(a;x0)

T
0

ā3
x0

T 2
m + ErrorI2,x0

, (39)

σI(x0, T, k) =āk +
C1(ã; k)T

0

ā3
kT 2

m + ErrorI2,k, (40)

σI(x0, T, k) =āxav +
(C1(ã;xav)

T
0 − C1(a;xav)

T
0 )

2ā3
xav

T 2
m + ErrorI2,xav

. (41)

Assuming (HΣ
S0

)-(HΣ
K)-(HΣ

Sav
) and using the normal proxy, we have

ΣI(S0, T, K) =Σ̄S0
− C1(Σ; S0)

T
0

Σ̄3
S0

T 2
M + ErrorI2,S0

,

ΣI(S0, T, K) =Σ̄K +
C1(Σ̃; K)T

0

Σ̄3
KT 2

M + ErrorI2,K,

ΣI(S0, T, K) =Σ̄Sav
+

(C1(Σ̃; Sav)
T
0 − C1(Σ; Sav)

T
0 )

2Σ̄3
Sav

T 2
M + ErrorI2,Sav

,

where Sav = S0+K
2 and M = S0 − K.

Remark 16. We retrieve in our implied volatility approximation formulas the well-

known property that at the money (ie m = 0) and for short maturity, the value of

the implied volatility is equal to the value of the local volatility function and the

slope of the local volatility function is twice the slope of the implied volatility. We

justify this assertion for the Black-Scholes implied volatility, the work being similar

for the Bachelier one. If T ≪ 1, in view of (39) and the definition (35) of C1,

assuming that a(t, x0) and a(1)(t, x0) are continuous at t = 0, we obtain:

[σI(x0, T, k)]|k=x0
≈ a(0, x0),

∂k[σI(x0, T, k)]|k=x0 ≈ ∂k[āx0 ]|k=x0 −
C1(a;x0)

T
0

ā3
x0

T 2
∂k[(x0 − k)]|k=x0

≈ 0 +
a3(0, x0)a

(1)(0, x0)
T 2

2

a3(0, x0)T 2
=

a(1)(0, x0)

2
.

We obtain the same estimates starting from (40) and (41), we skip details.

To conclude this paragraph, we estimate the residual terms of the above implied

volatility expansions, in terms of M0(a), M1(a) and so on. Since the Vega is very

small for far OTM/ITM Call options, deriving error bounds on implied volatility

from Theorems 9, 10 and 13 gives poor estimates for extreme strikes. Actually, in

the further numerical experiments, we also observe inaccuracies for extreme strikes.
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To obtain accurate theoretical error bounds, we restrict to log-moneyness m (resp

moneyness M) belonging to a small ball by assuming that |m| ≤ ξM0(a)
√

T (resp.

|M | ≤ ξM0(Σ)
√

T ) for a given ξ > 0.

For the sake of brevity, we only analyze the expansion (39), the other approximations

being similar. We assume in addition that M0(a), M1(a) and T are globally small

enough to ensure that āx0
− C1(a;x0)

T
0

ā3
x0

T 2 m > 0. Note that at the money (i.e. m = 0),

this condition is automatically satisfied. A first order expansion readily gives

CallBS(x0,
(
āx0

− C1(a;x0)
T
0

ā3
x0

T 2
m

)2
T, k)

=CallBS(x0, ā
2
x0

T, k) − C1(a;x0)
T
0

ā3
x0

T 2
mVegaBS(x0, ā

2
x0

T, k)

+
(C1(a;x0)

T
0

ā3
x0

T 2
m

)2
∫ 1

0

VommaBS(x0, a
2T, k)|

a=āx0−λ
C1(a;x0)T

0
ā3

x0
T2 m

(1 − λ)dλ

=CallBS(x0, σ
2
I (x0, T, k)T, k) + O(M1(a)[M0(a)]2T

3
2 )

+
(C1(a;x0)

T
0

ā3
x0

T 2
m

)2
∫ 1

0

VommaBS(x0, a
2T, k)|

a=āx0
−λ

C1(a;x0)T
0

ā3
x0

T2 m
(1 − λ)dλ,

applying Theorem 9 and using the definition of the Black-Scholes implied volatility.

Expanding a → CallBS(x0, a
2T, k) at a = σI(x0, T, k) around a = āx0 − C1(a;x0)

T
0

ā3
x0

T 2 m

gives:

ErrorI2,x0

∫ 1

0

VegaBS(x0, a
2T, k)|a=σI(x0,T,k)−λ ErrorI2,x0

dλ = O(M1(a)[M0(a)]2T
3
2 )

−
(C1(a;x0)

T
0

ā3
x0

T 2
m

)2
∫ 1

0

VommaBS(x0, a
2T, k)|

a=āx0−λ
C1(a;x0)T

0
ā3

x0
T2 m

(1 − λ)dλ.

In view of the expression of VegaBS (see (65) in Proposition 32) and (68) in Corollary

33, the hypotheses made on m, M0(a), M1(a) and T guarantee the existence of a

constant C > 0 (depending on S0) such that:
∫ 1

0

VegaBS(x0, a
2T, k)|a=σI(x0,T,k)−λ ErrorI2,x0

dλ ≥ C
√

T > 0.

In addition (69) and (Ha
x0

) readily yield

∣∣(C1(a;x0)
T
0

ā3
x0

T 2
m

)2
∫ 1

0

VommaBS(x0, a
2T, k)|

a=āx0−λ
C1(a;x0)T

0
ā3

x0
T2 m

(1 − λ)dλ
∣∣

≤c(M1(a)M0(a)
√

T )2
√

T

āx0

≤c M1(a)[M0(a)]2T
3
2 ,

where the generic constant depends in an increasing way on ξ. That finally implies:

ErrorI2,x0
= O(M1(a)[M0(a)]2T ).
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In view of the above upper bound, we interpret our implied volatility formulas as

second order expansion ones.

4. Proofs: a comparative discussion between stochastic analysis and

PDE techniques

In this section, our aim is to show how three different techniques ranging from

stochastic analysis to PDE may lead to the same formulas given in Theorem 5.

Although the final result is the same, the derivation is quite different, first regarding

the way in which the expansion coefficients are made explicit, second regarding the

error estimates and the assumptions used for that.

We shall admit that our preference is for the stochastic analysis approach, because

it is flexible regarding the model and the functionals under consideration, and it

is slightly less demanding regarding the assumptions (pointwise ellipticity versus

uniform ellipticity for instance). But the reader may argue differently, depending

on its own fields of expertise.

As an illustration of flexibility of the stochastic analysis approach, it has been

possible to handle Call/Put/digital options in local volatility models with Gaussian

jumps [45], Call/Put options in local volatility models with stochastic Gaussian

interest rates [7], Call/Put options in time-dependent Heston model [46], general

average options (including Asian and Basket options) in local volatility models [42],

and more recently local stochastic volatility models [47].

4.1. A pure stochastic analysis approach

This is basically the derivation that we have performed in Subsection 3.2.

Smooth payoff h. We first deal with the case of infinitely differentiable function

h with exponentially bounded derivatives. Resuming from (31-32-33) and using

Taylor’s formula, write

E[h(XT )] =E[h(XP
T )] + E[h(1)(XP

T )(XT − XP
T )]

+

∫ 1

0

E
[
h(2)(XP

T + λ(XT − XP
T ))(XT − XP

T )2
]
(1 − λ)dλ

=E[h(XP
T )] + E[h(1)(XP

T )
X2,T

2
] + E

[
h(1)(XP

T )

∫ 1

0

(1 − λ)2

2
Xλ

3,T

]
dλ

+

∫ 1

0

E
[
h(2)(XP

T + λ(XT − XP
T ))(

∫ 1

0

Xη
2,T (1 − η)dη)2

]
(1 − λ)dλ

:=E[h(XP
T )] + E[h(1)(XP

T )
X2,T

2
] + Error2(h). (42)

The first correction term E[h(1)(XP
T )

X2,T

2 ] is made explicit using the key Lemma

4, and it is equal to a weighted summation of sensitivities ∂i
εE[h(XP

T + ε)]|ε=0 for
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i = 1, 2, 3 (see the statement of Theorem 5).

The evaluation of Error2(h) requires to estimate the Lp-norms of Xλ
2,T and Xλ

3,T

(uniformly in λ ∈ [0, 1]). Direct and standard stochastic calculus inequalities from

(28-29-30) yield

|Xλ
2,T |p ≤c M1(a)M0(a)T, |Xλ

3,T |p ≤c M1(a)[M0(a)]2T 3/2 (43)

for any p ≥ 1 and any λ ∈ [0, 1]. Combining these estimates with Hölder and

Minkowski inequalities readily gives Error2(h) = O(M1(a)[M0(a)]2T
3
2 ), which

completes the proof if h is smooth as above. Observe that we have only required

the coefficients to be smooth enough, and nothing has been imposed on the non-

degeneracy of a.

Locally Lipschitz function h. We now extend the analysis to functions satisfy-

ing conditions of Theorem 5 (thus almost everywhere differentiable), assuming ad-

ditionally (Ha
x0

): observe that the pointwise ellipticity condition
∫ T

0
a2(t, x0)dt > 0

is necessary to ensure that XP -Greeks are well defined. The analysis below shows

that the condition is also sufficient to obtain the expansion.

The new ingredient consists in appropriately smoothing h and in using integration-

by-parts formula from Malliavin calculus to get rid of the derivatives of h; this

follows the arguments of [42]. Let B be another scalar Brownian motion indepen-

dent of W and for δ > 0, set

hδ(x) := E(h(x + δB2T )) = E(hδ/
√

2(x + δBT )).

For any δ > 0, the function hδ is smooth and its derivatives are exponentially

bounded, so that we can apply the previous expansion to hδ instead of h in order

to obtain:

E[hδ(XT )] =E[hδ(X
P
T )] + C1(a;x0)

T
0 (∂3

ε3 − 3

2
∂2

ε2 +
1

2
∂ε)E

[
hδ(X

P
T + ε)

]
|ε=0

+ Error2(hδ).

Take δ = M1(a)[M0(a)]2T : then replacing E(hδ(XT )) and E(hδ(X
P
T )) by E(h(XT ))

and E(h(XP
T )) readily yields an extra error O(M1(a)[M0(a)]2T

3
2 ) which has the

right magnitude regarding the expected global error. Moreover using (Ha
x0

), we

can also prove that computing the sensitivities with respect to h or to hδ does

not deteriorate the global accuracy (see [42, Lemma 4.2]). It remains to prove

that Error2(hδ) = O(M1(a)[M0(a)]2T
3
2 ). An inspection of the representation

(42) of Error2(hδ) shows immediately that the first contribution with h
(1)
δ is a

O(M1(a)[M0(a)]2T
3
2 ), by simply using the exponential growth condition on h(1)

and the finiteness of exponential moments of Xη
T .The second contribution with h

(2)
δ
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is the integral over (η1, η2, λ) ∈ [0, 1]3 of (1 − η1)(1 − η2)(1 − λ) times

E
[
h

(2)
δ (XP

T + λ(XT − XP
T ))Xη1

2,T Xη2

2,T

]

= E
[
h

(2)

δ/
√

2
(XP

T + λ(XT − XP
T ) + δBT )Xη1

2,T Xη2

2,T

]

= E
[
h

(1)

δ/
√

2
(XP

T + λ(XT − XP
T ) + δBT )Hδ,η1,η2,λ

1

]
.

The first equality follows from the definition of hδ, whereas the second one is an

integration by parts formula from Malliavin calculus [48, Proposition 2.1.4]. We do

not enter into the derivation details, we only emphasize two points: first, it is allowed

since XP
T + λ(XT − XP

T ) + δBT is a non-degenerate random variable (in Malliavin

sense) thanks to the additional perturbation δBT , and its Malliavin matrix has an

inverse of order (
∫ T

0
a2(t, x0)dt)−1 in Lp-norms, owing to the ellipticity assumption

in (Ha
x0

). Second, the Malliavin norms of Xη
2,T can be estimated similarly to (43)

and it finally gives that (E|Hδ,η1,η2,λ
1 |2)1/2 = O(M1(a)[M0(a)]2T

3
2 ). This finishes

the proof. Slight modifications in the above arguments would enable to handle

functions with local Hölder smoothness.

Arbitrary function h. Here, we do not assume any regularity on h, only ex-

ponential growth. The analysis is similar but the regularization step for h is more

complex, see [45]: the expansion analysis has been done under the uniform ellipticity

condition on (Ha), and not only under the pointwise ellipticity in (Ha
x0

).

As a conclusion to this stochastic analysis approach:

• the derivation of expansion coefficients is direct and easy;

• the error analysis relies on delicate Malliavin calculus estimates;

• it applies to general function h under mild non-degeneracy condition.

4.2. Mixing stochastic analysis and PDE

Here, we directly prove the expansion result for locally Lipschitz function h. We

represent the error E[h(XT )] − E[h(XP
T )] using the PDE associated to the proxy:

uP,h(t, x) = E[h(XP
T )|XP

t = x]

To get a smooth solution uP , assume that a(t, x0) 6= 0 for any t ∈ [0, T ], which

is stronger that
∫ T

0
a2(t, x0)dt > 0 considered in (Ha

x0
). The generic constants

appearing in our next error estimates depend in an increasing way of the oscillation

ratio M0(a)

inf
t∈[0,T ]

a(t, x0)
. Then,

{
∂tu

P,h(t, x) + 1
2a2(t, x0)(∂

2
x2 − ∂x)uP,h(t, x) = 0, for t < T ,

uP,h(T, x) = h(x),
(44)

|∂n
xnuP,h(t, x)| ≤c ec|x|(

∫ T

t

a2(s, x0)ds)−
n−1

2 . (45)
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The estimates (45) directly follow from the differentiation of the Gaussian density

of XP
T conditionally to Xp

t = x, taking into account the exponential growth of h.

Then, apply Itô’s formula to uP,h(t, Xt) between t = 0 and t = T , combine this

with simplifications coming from the PDE solved by uP,h; it gives

E[h(XT )] =E[h(XP
T )] +

1

2
E

[ ∫ T

0

(a2(t, Xt) − a2(t, x0))(∂
2
x2 − ∂x)uP,h(t, Xt)dt

]

=E[h(XP
T )] +

1

2

∫ T

0

∂x[a2](t, x0)E
[
(Xt − x0)(∂

2
x2 − ∂x)uP,h(t, Xt)

]
dt

+
1

2
E

[ ∫ T

0

[a2(t, Xt) − a2(t, x0) − ∂x[a2](t, x0)(Xt − x0)] (46)

× (∂2
xx − ∂x)uP,h(t, Xt)dt

]
.

Taking advantage of (45), we can easily bound the last term in (46) by

C

∫ T

0

M0(a)M1(a)|Xt − x0|24(
∫ T

t

a2(s, x0)ds)−
1
2 dt = O(M1(a)[M0(a)]2T

3
2 )

using standard increment estimates and uniform lower and upper bounds on a2.

Observe that the Lipschitz regularity of h gives rise to singular terms of the form

(T − t)−
1
2 , which are fortunately integrable at T .

Regarding the second term in (46), we have to approximate E

[
(Xt − x0)(∂

2
x2 −

∂x)uP,h(t, Xt)
]

for any t ∈ [0, T [: we apply again the previous decomposition by

replacing T by t and h(x) by φt(x) = (x − x0)(∂
2
xx − ∂x)uP,h(t, x). We denote by

vP,φ
t (s, x) = E[φt(X

P
t )|XP

s = x] the solution of the system (44) on [0, t[×R but with

terminal condition φt. The term under study is thus equal to

E[φt(X
P
t )] +

1

2
E[

∫ t

0

(a2(s, Xs) − a2(s, x0))(∂
2
x2 − ∂x)vP,φ

t (s, Xs)ds].

It remains to make explicit vP,φ
t (s, x) in order to compute the first term and to

estimate the second. For this, the trick lies in the observation that for any k ≥
0, Mk,t = ∂k

xkuP,h(t, XP
t ) is a martingale for t < T : this directly follows from

the application of Itô’s formula, combined with (44) and (45). Hence, successive

applications of the equalities E[Mk,t|XP
s = x] = ∂k

xkuP,h(s, x) for s ≤ t and of the

Lemma 4 gives:

vP,φ
t (s, x) =E

[
(XP

t − x0)(∂
2
x2 − ∂x)uP,h(t, XP

t )|XP
s = x

]

=(x − x0)E
[
(∂2

x2 − ∂x)uP,h(t, XP
t )|XP

s = x
]

+ E

[
(XP

t − XP
s )(∂2

x2 − ∂x)uP,h(t, XP
t )|XP

s = x
]
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=(x − x0)(∂
2
x2 − ∂x)uP,h(s, x) − 1

2

∫ t

s

a2(ξ, x0)dξE

[
(∂2

x2 − ∂x)uP,h(t, XP
t )|XP

s = x
]

+ E

[( ∫ t

s

a(ξ, x0)dWξ

)
(∂2

x2 − ∂x)uP,h(t, x − 1

2

∫ t

s

a2(ξ, x0)dξ +

∫ t

s

a(ξ, x0)dWξ)
]

=(x − x0)(∂
2
x2 − ∂x)uP,h(s, x) − 1

2

∫ t

s

a2(ξ, x0)dξ(∂2
x2 − ∂x)uP,h(s, x)

+

∫ t

s

a2(ξ, x0)dξE

[
(∂3

x3 − ∂2
x2)uP,h(t, XP

t )|XP
s = x

]

=(x − x0)(∂
2
x2 − ∂x)uP,h(s, x) +

∫ t

s

a2(ξ, x0)dξ(∂3
x3 − 3

2
∂2

x2 +
1

2
∂x)uP,h(s, x).

In particular the above calculus yields E[φt(X
P
t )] = vP,φ

t (0, x0) =∫ t

0
a2(s, x0)ds(∂3

x3 − 3
2∂2

x2 + 1
2∂x)uP,h(0, x0) and by multiplying by 1

2∂x[a2](t, x0)

and integrating over t ∈ [0, T ] in (46), we recover the correction terms from Theo-

rem 5.

On the other hand, combining (45) and the ellipticity assumption, we easily obtain
∣∣(∂2

x2 − ∂x)vP,φ
t (s, Xs)

∣∣
p
≤c |Xs − x0|2p

∣∣(∂4
x4 − 2∂3

x3 + ∂2
x2)uP,h(s, Xs)

∣∣
2p

+
∣∣(2∂3

x3 − 3∂2
x2 + ∂x)uP,h(s, Xs)

∣∣
p

+

∫ t

s

a2(ξ, x0)dξ
∣∣(∂5

x5 − 5

2
∂4

x4 + 2∂3
x3 − 1

2
∂2

x2)uP,h(s, Xs)
∣∣
p

≤c

√
s

inf
s∈[0,T ]

a2(s, x0)(T − s)
3
2

+
1

inf
s∈[0,T ]

a2(s, x0)(T − s)
,

for any p ≥ 1, t ∈ [0, T [, s ∈ [0, t[. Consequently we obtain for the final error:

∣∣
∫ T

0

∂x[a2](t, x0)E
[ ∫ t

0

(a2(s, Xs) − a2(s, x0))(∂
2
x2 − ∂x)vP,φ

t (s, Xs)ds
]
dt

∣∣

≤cM1(a)M0(a)

∫ T

0

∫ t

0

|Xs − x0|2[
√

s

(T − s)
3
2

+
1

(T − s)
]dsdt

≤cM1(a)[M0(a)]2T
3
2 .

We have retrieved the error estimate provided in Theorem 5. Once again, we would

like to point out that the singular terms (T − s)−3/2 and (T − s)−1 appearing in

the above time iterated integral remain integrable.

As a conclusion to this approach mixing stochastic analysis and PDE :

• the error analysis relies on usual estimates of derivatives of heat equations (PDE

satisfied by the proxy) and it may be considered easier; however for digital

options, the singularities arising in iterated time integrals are not integrable

and the current approach seems to be inappropriate.



July 25, 2012 11:53 World Scientific Review Volume - 9.75in x 6.5in BompisGobet˙ws-rv975x65˙final˙2

36 R. Bompis and E. Gobet

• this approach requires stronger non-degeneracy assumptions compared to the

previous stochastic analysis approach;

• the explicit derivation of expansion coefficients is tricky and relies on appropri-

ate combination of martingale properties and Itô calculus;

• we nevertheless mention that this approach could be potentially used in a frame-

work where the Malliavin calculus fails, e.g. for barrier options.

Actually for higher order expansion, the latter explicit martingale computation is

harder to write down, whereas a direct application of Lemma 4 remains direct.

4.3. A pure PDE approach

Alternatively, inspired by the interpolation (23-24), consider the solution of the

PDE

{
∂tu

η(t, x) + 1
2a2(t, x0 + η(x − x0))(∂

2
x2 − ∂x)uη(t, x) = 0, for t < T ,

uη(T, x) = h(x).

Observe that u1(0, x0) coincides with E(h(XT )) whereas u0(0, x0) coincides with

E(h(XP
T )). This PDE has similarities with that of Hagan (20) but it differs here,

because the space variable has not been rescaled around the strike. In addition the

solution of the principal PDE in the Hagan approach is a Call price in a Bachelier

model, whereas u0(0, x0) is a Call price in a Black-Scholes model.

To derive the correction terms, we shall apply a regular perturbation analysis by

writing uη = u0 + ηu1 + . . . , with u0 = u0, and

Lη = ∂t+
1

2
a2(t, x0+η(x−x0))(∂

2
x2−∂x) = L0+η

1

2
∂x[a2](t, x0)(x−x0)(∂

2
x2−∂x)+. . . .

A formal identification of the system to PDEs to solve gives

[
∂t+

1

2
a2(t, x0)(∂

2
x2−∂x)

]
u0(t, x) = 0, L0u1 = −1

2
∂x[a2](t, x0)(x−x0)(∂

2
x2−∂x)u0

with u0(T, x) = h(x) and u1(T, x) = 0. As mentioned before, in our opinion,

an explicit resolution of u1 is difficult to exhibit without knowing the solution.

However, after tedious calculus involving Gaussian kernels and convolutions, we

can retrieve the corrective terms of Theorem 5.

Also, a PDE error analysis (which we have not been able to find in the literature

in the case of irregular h) may presumably give error estimates only in powers

of η (which equals 1 here!) and not as O(M1(a)[M0(a)]2T
3
2 ). Additionally, due

to the form of the proxy, our intuition is that the error at (0, x0) (where we aim

at computing the solution) is smaller that the error at arbitrary (t, x). All these

reasons indicate that a PDE approach to derive correction terms and error analysis

in our proxy setting is probably irrelevant.
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5. Higher-order proxy approximation

In this section, we give several expansions formulas with a third order accuracy.

First, we recall without proof results obtained in [49] and [44] for expansions based

on local volatility at spot and at strike. Second we introduce a new expansion with

local volatility frozen at mid-point. Finally new expansions of implied volatility are

provided.

5.1. Third order approximation with the local volatility at spot and

at strike.

We define some integral operators useful to state the next theorems.

Definition 17. If the derivatives and the integrals have a meaning, we define for a

two variables function l the above operators:

C1(l; z)T
0 =ω(l2(z), l(z)l(1)(z))T

0 ,

C2(l; z)T
0 =ω(l2(z), (l(1)(z))2 + l(z)l(2)(z))T

0 ,

C3(l; z)T
0 =ω(l2(z), l2(z), (l(1)(z))2 + l(z)l(2)(z))T

0 ,

C4(l; z)T
0 =ω(l2(z), l(z)l(1)(z), l(z)l(1)(z))T

0 .

We frequently use some linear combinations of these operators:

η1(l; z)T
0 =

C1(l; z)T
0

2
− C2(l; z)T

0

2
− C3(l; z)T

0

4
− C4(l; z)T

0

2
,

η2(l; z)T
0 = − 3C1(l; z)T

0

2
+

C2(l; z)T
0

2
+

5C3(l; z)T
0

4
+

7C4(l; z)T
0

2
+

[C1(l; z)T
0 ]2

8
,

η3(l; z)T
0 =C1(l; z)T

0 − 2C3(l; z)T
0 − 6C4(l; z)T

0 − 3[C1(l; z)T
0 ]2

4
,

η4(l; z)T
0 =C3(l; z)T

0 + 3C4(l; z)T
0 +

13[C1(l; z)T
0 ]2

8
,

η5(l; z)T
0 = − 3[C1(l; z)T

0 ]2

2
,

η6(l; z)T
0 =

[C1(l; z)T
0 ]2

2
,

ζ2(l; z)T
0 =

C2(l; z)T
0

2
, ζ3(l; z)T

0 =C1(l; z)T
0 ,

ζ4(l; z)T
0 =C3(l; z)T

0 + 3C4(l; z)T
0 , ζ6(l; z)T

0 =
[C1(l; z)T

0 ]2

2
.

Theorem 18. (3rd order approximations for Call options with the local

volatility at spot). Assuming (Ha) and using the log-normal proxy, one has

Call(ex0 , T, ek) =CallBS(x0, ā
2
x0

T, k) +

6∑

i=1

ηi(a;x0)
T
0 ∂i

xiCallBS(x0, ā
2
x0

T, k)

+ O(M1(a)[M0(a)]3T 2).
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Assuming (HΣ) and using the normal proxy, one has

Call(S0, T, K) =CallBA(S0, Σ̄
2
S0

T, K) +
∑

i∈{2,3,4,6}
ζi(Σ; S0)

T
0 ∂i

SiCallBA(S0, Σ̄
2
S0

T, K)

+ O(M1(Σ)[M0(Σ)]3T 2).

The operators ζi and ηi in the above expansions are defined in Definition 17.

The magnitude of the residual terms in the previous formulas justifies the label of

third order approximations.

The above theorem is a straightforward application of [49, Theorems 2.2, 2.3

and 4.2], taking into account that we slightly modify the notations of the Greek

coefficients. Namely, for convenience we merge certain ω operators: for instance

the reader can easily check that:

[C1(l; z)T
0 ]2 = [ω(l(z)2, l(z)l(1)(z))T

0 ]2 = 4ω(l(z)2, l(z)2, l(z)l(1)(z), l(z)l(1)(z))T
0

+ 2ω(l(z)2, l(z)l(1)(z), l(z)2, l(z)l(1)(z))T
0 .

We should mention that it seems possible to relax the strong hypothesis (Ha) which

appears in [49, Theorems 2.2 and 4.2]. As for the second order approximations,

(Ha
x0

) may be sufficient.

Using the duality argument introduced in Subsection 3.3 and [49, Theorems 2.2,

2.3 and 4.2], approximations using the volatility at strike are available too.

Theorem 19. (3rd order approximations for Call options with the local

volatility at strike). Assuming (Ha) and using the log-normal proxy, one has

Call(ex0 , T, ek) =CallBS(x0, ā
2
kT, k) +

6∑

i=1

ηi(ã; k)T
0 ∂i

ziCallBS(x0, ā
2
kT, k)

+ O(M1(a)[M0(a)]3T 2),

Assuming (HΣ)and using the normal proxy, one has

Call(S0, T, K) =CallBA(S0, Σ̄
2
KT, K) +

∑

i∈{2,3,4,6}
ζi(Σ̃; K)T

0 ∂i
ZiCallBA(S0, Σ̄

2
KT, K)

+ O(M1(Σ)[M0(Σ)]3T 2).

The operators ζi and ηi in the above expansions are defined in Definition 17.

5.2. Third order approximation with the local volatility at mid-

point.

We now state a new result related to third order expansions based on the local

volatility at mid-point xav or Sav. For a clearer proof, we change the presentation of

the corrective terms in comparison with Theorems 18 and 19: instead of gathering
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them according the order of the Greeks, we put them together according to the

operators Ci introduced in Definition 17.

Theorem 20. (3rd order approximations for Call options with the local

volatility at mid-point). Assuming (Ha) and using the log-normal proxy, one

has

Call(ex0 , T, ek) = CallBS(x0, ā
2
xav

T, k)

+
C1(a;xav)

T
0 − C1(ã;xav)

T
0

2
(∂3

x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+
C2(a;xav)

T
0 + C2(ã;xav)

T
0

2
(
1

2
∂2

x2 − 1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+
C3(a;xav)

T
0 + C3(ã;xav)

T
0

2
(∂4

x4 − 2∂3
x3 +

5

4
∂2

x2 − 1

4
∂x)CallBS(x0, ā

2
xav

T, k)

+
C4(a;xav)

T
0 + C4(ã;xav)

T
0

2
(3∂4

x4 − 6∂3
x3 +

7

2
∂2

x2 − 1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+
[C1(a;xav)

T
0 ]2 + [C1(ã;xav)

T
0 ]2

2

× (
1

2
∂6

x6 − 3

2
∂5

x5 +
13

8
∂4

x4 − 3

4
∂3

x3 +
1

8
∂2

x2)CallBS(x0, ā
2
xav

T, k)

− (x0 − k)2C5(a;xav)
T
0 (

1

8
∂2

x2 − 1

8
∂x)CallBS(x0, ā

2
xav

T, k)

− (x0 − k)2C6(a;xav)
T
0 (

1

4
∂4

x4 − 1

2
∂3

x3 +
1

4
∂2

x2)CallBS(x0, ā
2
xav

T, k)

+ O(M1(a)[M0(a)]3T 2), (47)

where the operators Ci for i = 1..4 are defined in Definition 17 and where the time

reversal invariante operators C5 and C6 are defined by:

C5(l; z)T
0 = ω((l(1)(z))2 + l(z)l(2)(z))T

0 , C6(l; z)T
0 = ω(l(z)l(1)(z), l(z)l(1)(z))T

0 .

Assuming (HΣ)and using the normal proxy, one has

Call(S0, T, K) =CallBA(S0, Σ̄
2
Sav

T, K)

+
C1(Σ; Sav)

T
0 − C1(Σ̃; Sav)

T
0

2
∂3

S3CallBA(S0, Σ̄
2
Sav

T, K)

+
C2(Σ; Sav)

T
0 + C2(Σ̃; Sav)

T
0

4
∂2

S2CallBA(S0, Σ̄
2
Sav

T, K)

+
C3(Σ; Sav)

T
0 + C3(Σ̃; Sav)

T
0

2
∂4

S4(S0, Σ̄
2
Sav

T, K)

+ 3
C4(Σ; Sav)

T
0 + C4(Σ̃; Sav)

T
0

2
∂4

S4(S0, Σ̄
2
Sav

T, K)

ethat is C5(l̃; z)T
0

= C5(l; z)T
0

and C6(l̃; z)T
0

= C6(l; z)T
0

using (26).
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+
[C1(Σ; Sav)

T
0 ]2 + [C1(Σ̃; Sav)

T
0 ]2

4
∂6

S6(S0, Σ̄
2
Sav

T, K)

− (x0 − k)2
C5(Σ; Sav)

T
0

8
∂2

S2CallBA(S0, Σ̄
2
Sav

T, K)

− (x0 − k)2
C6(Σ; Sav)

T
0

4
∂4

S4(S0, Σ̄
2
Sav

T, K)

+ O(M1(Σ)[M0(Σ)]3T 2).

Proof. We only prove the result for the log-normal proxy. The case of normal proxy

is similar, and it is left to the reader as an exercise. The idea is again to consider

the average of the third order formulas in spot and strike provided in Theorems 18

and 19 and to perform an expansion around the mid-point.

⊲ Step 1: expansion of the leading term. Firstly we aim at showing that:

(CallBS(x0, ā
2
x0

T, k) + CallBS(x0, ā
2
kT, k))/2

=CallBS(x0, ā
2
xav

T, k) +
(x0 − k)2

4
C5(a;xav)

T
0 ∂yCallBS(x0, ā

2
xav

T, k)

+ (x0 − k)2C6(a;xav)
T
0 ∂2

y2CallBS(x0, ā
2
xav

T, k) + O(M1(a)[M0(a)]3T 2), (48)

where the operators C5 and C6 are defined in Theorem 20. Perform Taylor expan-

sions to obtain:

CallBS(x0, ā
2
x0

T, k)

=CallBS(x0, ā
2
xav

T, k) + ∂yCallBS(x0, ā
2
xav

T, k)T (ā2
x0

− ā2
xav

)

+
1

2
∂y2CallBS(x0, ā

2
xav

T, k)T 2(ā2
x0

− ā2
xav

)2 + R1

=CallBS(x0, ā
2
xav

T, k) + ∂yCallBS(x0, ā
2
xav

T, k)ω(a(xav)a
(1)(xav))

T
0 (x0 − k)

+
1

4
∂yCallBS(x0, ā

2
xav

T, k)C5(a;xav)
T
0 (x0 − k)2

+ ∂2
y2CallBS(x0, ā

2
xav

T, k)C6(a;xav)
T
0 (x0 − k)2 + R1 + R2 + R3, (49)

where we have used the relations ∂zω(l2(z))T
0 = 2ω(l(z)l(1)(z))T

0 , ∂2
z2ω(l2(z))T

0 =

2C5(l; z)T
0 , [ω(l(z)l(1)(z))T

0 ]2 = 2C6(l; z)T
0 and where R1, R2 and R3 are defined by:

R1 =T 3(ā2
x0

− ā2
xav

)3
∫ 1

0

(∂3
y3CallBS(x0, y, k))|y=T (λā2

x0
+(1−λ)ā2

xav
)
(1 − λ)2

2
dλ,

R2 =∂yCallBS(x0, ā
2
xav

T, k)
(x0 − k)3

8

∫ 1

0

(∂3
xω(a2(x))T

0 )|x=λx0+(1−λ)xav

(1 − λ)2

2
dλ,

R3 =
1

2
∂2

y2CallBS(x0, ā
2
xav

T, k)
(x0 − k)2

4

∫ 1

0

(∂2
xω(a2(x))T

0 )x=λx0+(1−λ)xav
(1 − λ)dλ

×
[ (x0 − k)2

4

∫ 1

0

(∂2
xω(a2(x))T

0 )x=λx0+(1−λ)xav
(1 − λ)dλ

+ 2ω(a(xav)a
(1)(xav))

T
0 (x0 − k)

]
.
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Using (6), Corollary 30 and (Ha) we obtain

|R1 + R2 + R3| ≤c M1(a)[M0(a)]3T 2.

Similarly, we show that:

CallBS(x0, ā
2
kT, k)

=CallBS(x0, āxav , k) − ∂yCallBS(x0, ā
2
xav

T, k)ω(a(xav)a
(1)(xav))

T
0 (x0 − k)

+
1

4
∂yCallBS(x0, ā

2
xav

T, k)C5(a;xav)
T
0 (x0 − k)2

+ ∂2
y2CallBS(x0, ā

2
xav

T, k)C6(a;xav)
T
0 (x0 − k)2 + O(M1(a)[M0(a)]3T 2).

Combine this with (49) to obtain (48).

⊲ Step 2: expansion of the corrective terms. Firstly we treat the correc-

tive terms with the operators C2, C3, C4 and [C1]
2 in Theorems 18 and 19. We

let the reader verify that in the formula with volatility at spot (respectively in

strike), we can replace the point x0 (respectively k) by the point xav in all the

corrective terms involving these operators: indeed it induces an extra error of order

M1(a)[M0(a)]3T 2. This is very similar to the proof of Lemma 11 so we skip it.

Then we can replace derivatives w.r.t. z with derivatives w.r.t. x in CallBS thanks

to Proposition 34, equations (72)-(74)-(75)-(76). That leads to:

1

2
C2(a;x0)

T
0 (

1

2
∂2

x2 − 1

2
∂x)CallBS(x0, ā

2
x0

T, k) (50)

+
1

2
C2(ã; k)T

0 (
1

2
∂2

z2 − 1

2
∂z)CallBS(x0, ā

2
kT, k)

+
1

2
C3(a;x0)

T
0 (∂4

x4 − 2∂3
x3 +

5

4
∂2

x2 − 1

4
∂x)CallBS(x0, ā

2
x0

T, k)

+
1

2
C3(ã; k)T

0 (∂4
z4 − 2∂3

z3 +
5

4
∂2

z2 − 1

4
∂z)CallBS(x0, ā

2
kT, k)

+
1

2
C4(a;x0)

T
0 (3∂4

x4 − 6∂3
x3 +

7

2
∂2

x2 − 1

2
∂x)CallBS(x0, ā

2
x0

T, k)

+
1

2
C4(ã; k)T

0 (3∂4
z4 − 6∂3

z3 +
7

2
∂2

z2 − 1

2
∂z)CallBS(x0, ā

2
kT, k)

+
1

2
[C1(a;x0)

T
0 ]2(

1

2
∂6

x6 − 3

2
∂5

x5 +
13

8
∂4

x4 − 3

4
∂3

x3 +
1

8
∂2

x2)CallBS(x0, ā
2
x0

T, k)

+
1

2
[C1(ã; k)T

0 ]2(
1

2
∂6

z6 − 3

2
∂5

z5 +
13

8
∂4

z4 − 3

4
∂3

z3 +
1

8
∂2

z2)CallBS(x0, ā
2
kT, k)

=
C2(a;xav)

T
0 + C2(ã;xav)

T
0

2
(
1

2
∂2

x2 − 1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+
C3(a;xav)

T
0 + C3(ã;xav)

T
0

2
(∂4

x4 − 2∂3
x3 +

5

4
∂2

x2 − 1

4
∂x)CallBS(x0, ā

2
xav

T, k)

+
C4(a;xav)

T
0 + C4(ã;xav)

T
0

2
(3∂4

x4 − 6∂3
x3 +

7

2
∂2

x2 − 1

2
∂x)CallBS(x0, ā

2
xav

T, k)
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+
[C1(a;xav)

T
0 ]2 + [C1(ã;xav)

T
0 ]2

2

× (
1

2
∂6

x6 − 3

2
∂5

x5 +
13

8
∂4

x4 − 3

4
∂3

x3 +
1

8
∂2

x2)CallBS(x0, ā
2
xav

T, k)

+ O(M1(a)[M0(a)]3T 2).

Secondly, we pass to the corrective terms in which appears the operator C1. For

the sake of clarity, we introduce the following notation Ax = ∂3
x3 − 3

2∂2
x2 + 1

2∂x

and Az = ∂3
z3 − 3

2∂2
z2 + 1

2∂z. For example ∂yAx stands for the differential operator

∂4
yx3 − 3

2∂3
yx2 + 1

2∂2
yx and similarly for ∂2

y2Ax. We recall the following relation

AxCallBS = −AzCallBS (see (72) in Proposition 34). Our purpose is to prove that:

1

2
C1(a;x0)

T
0 AxCallBS(x0, ā

2
x0

T, k) +
1

2
C1(ã; k)T

0 AzCallBS(x0, ā
2
kT, k) (51)

=
1

2
(C1(a;xav)

T
0 − C1(ã;xav)

T
0 )AxCallBS(x0, ā

2
xav

T, k)

+
(x0 − k)

4
[4C6(a;xav)

T
0 + C2(a;xav)

T
0 + C2(ã;xav)

T
0 ]AxCallBS(x0, ā

2
xav

T, k)

+ [C4(a;xav)
T
0 + C4(ã;xav)

T
0 + ω(a(xav)a

(1)(xav), a
2(xav), a(xav)a

(1)(xav))
T
0 ]

× (x0 − k)∂yAxCallBS(x0, ā
2
xav

T, k) + O(M1(a)[M0(a)]3T 2).

Perform a second order Taylor expansion for the function y → AxCallBS(x0, y, k)

at y = ā2
x0

T = ω(a2(x0))
T
0 around y = ā2

xav
T = ω(a2(xav))

T
0 and for the function

x → C1(a;x)T
0 at x = x0 around x = xav:

C1(a;x0)
T
0 AxCallBS(x0, ā

2
x0

T, k) (52)

=
{
C1(a;xav)

T
0 + ∂x(C1(a;x)T

0 )|x=xav

(x0 − k)

2
+ R1

}

×
{
AxCallBS(x0, ā

2
xav

T, k) + ∂yAxCallBS(x0, ā
2
xav

T, k)T (ā2
x0

− ā2
xav

) + R2

}

=
{
C1(a;xav)

T
0 + ∂x(C1(a;x)T

0 )|x=xav

(x0 − k)

2
+ R1

}

×
{
AxCallBS(x0, ā

2
xav

T, k) + R3 + R2

+ ∂yAxCallBS(x0, ā
2
xav

T, k)ω(a(xav)a
(1)(xav))

T
0 (x0 − k)

}

=C1(a;xav)
T
0 AxCallBS(x0, ā

2
xav

T, k)

+ ∂x(C1(a;x)T
0 )|x=xav

(x0 − k)

2
AxCallBS(x0, ā

2
xav

T, k)

+ C1(a;xav)
T
0 ∂yAxCallBS(x0, ā

2
xav

T, k)ω(a(xav)a
(1)(xav))

T
0 (x0 − k)

+ R,
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where:

R =C1(a;x0)
T
0 [R3 + R2] + R1AxCallBS(x0, ā

2
xav

T, k)

+ (x0 − k)∂yAxCallBS(x0, ā
2
xav

T, k)ω(a(xav)a
(1)(xav))

T
0

× [R1 + ∂x(C1(a;x)T
0 )|x=xav

(x0 − k)

2
],

R1 =
(x0 − k)2

4

∫ 1

0

(∂2
x2(C1(a;x)T

0 ))|x=λx0+(1−λ)xav
(1 − λ)dλ,

R2 =T 2(ā2
x0

− āxav
)2

∫ 1

0

(∂2
y2AxCallBS(x0, y, k))|y=T (λā2

x0
+(1−λ)āxav )(1 − λ)dλ,

R3 =∂yAxCallBS(x0, ā
2
xav

T, k)
(x0 − k)2

4

×
∫ 1

0

(∂2
x2(ω(a2(x))T

0 ))|x=λx0+(1−λ)xav
(1 − λ)dλ.

On the one hand, we have:

∂z(C1(l; z)T
0 ) = 2C6(l; z)T

0 + C2(l; z)T
0 ,

C1(l; z)T
0 ω(l(z)l(1)(z))T

0 = 2C4(l; z)T
0 + ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T

0 ,

and on the other hand, with (6), Corollary 30 and (Ha), it comes:

|R| ≤c M1(a)[M0(a)]3T 2.

We skip further details. Consequently we can write (52) as follows:

C1(a;x0)
T
0 AxCallBS(x0, ā

2
x0

T, k) (53)

=C1(a;xav)
T
0 AxCallBS(x0, ā

2
xav

T, k)

+
(x0 − k)

2
[2C6(a;xav)

T
0 + C2(a;xav)

T
0 ]AxCallBS(x0, ā

2
xav

T, k)

+ [2C4(a;xav)
T
0 + ω(a(xav)a

(1)(xav), a
2(xav), a(xav)a

(1)(xav))
T
0 ](x0 − k)

× ∂yAxCallBS(x0, ā
2
xav

T, k) + O(M1(a)[M0(a)]3T 2).

Then using the relation AxCallBS = −AzCallBS, the time reversal invariance of

l → C6(l, z)T
0 and l → ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T

0 (for any z), one obtains

similarly:

C1(ã; k)T
0 AzCallBS(x0, ā

2
x0

T, k) (54)

= − C1(ã;xav)
T
0 AxCallBS(x0, ā

2
xav

T, k)

+
(x0 − k)

2
[2C6(a;xav)

T
0 + C2(ã;xav)

T
0 ]AxCallBS(x0, ā

2
xav

T, k)

+ [2C4(ã;xav)
T
0 + ω(a(xav)a

(1)(xav), a
2(xav), a(xav)a

(1)(xav))
T
0 ](x0 − k)

× ∂yAxCallBS(x0, ā
2
xav

T, k) + O(M1(a)[M0(a)]3T 2).

Compute the average of (53) and (54) to complete the proof of (51).
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⊲ Step 3: mathematical reductions. We gather terms coming from (48) and

(51). In view of (6) and equations (71) and (72) in Proposition 34, we have:

(x0 − k)2

4
C5(a;xav)

T
0 ∂yCallBS(x0, ā

2
xav

T, k)

+
(x0 − k)

4
[C2(a;xav)

T
0 + C2(ã;xav)

T
0 ]AxCallBS(x0, ā

2
xav

T, k)

=
(x0 − k)2

4
∂yCallBS(x0, ā

2
xav

T, k)
(
C5(a;xav)

T
0 − 2

[C2(a;xav)
T
0 + C2(ã;xav)

T
0 ]

ω(a2(xav))T
0

)

=
(x0 − k)2

4
∂yCallBS(x0, ā

2
xav

T, k)(C5(a;xav)
T
0 − 2C5(a;xav)

T
0 )

= − (x0 − k)2

8
C5(a;xav)

T
0 (∂2

x2 − ∂x)CallBS(x0, ā
2
xav

T, k), (55)

where we have used at the second equality the relation C5(l; z)T
0 ω(l2(z))T

0 =

C2(l; z)T
0 + C2(l̃; z)T

0 obtained easily with (26). Then (6), (71) and (72) yield

∂yAxCallBS(x0, ā
2
xav

T, k)

=∂y((−2(x0 − k)

y
∂y)CallBS(x0, y, k))|y=ā2

xav
T

=
2(x0 − k)

ω(a2(xav))T
0

[∂yCallBS(x0, ā
2
xav

T, k)

ω(a2(xav))T
0

− ∂2
y2CallBS(x0, ā

2
xav

T, k)
]
,

and straightforward calculus allows to obtain with (26):

C6(l; z)T
0 ω(l2(z))T

0 = C4(l; z)T
0 + C4(l̃; z)T

0 + ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T
0 .

These two intermediate results give:

(x0 − k)C6(a;xav)
T
0

[
AxCallBS(x0, ā

2
xav

T, k) + (x0 − k)∂2
y2CallBS(x0, ā

2
xav

T, k)
]

+ [C4(a;xav)
T
0 + C4(ã;xav)

T
0 + ω(a(xav)a

(1)(xav), a
2(xav), a(xav)a

(1)(xav))
T
0 ]

× (x0 − k)∂yAxCallBS(x0, ω(a2(xav))
T
0 , k)

= − 2
(x0 − k)2

ω(a2(xav))T
0

C6(a;xav)
T
0 ∂yCallBS(x0, ā

2
xav

T, k)

+ (x0 − k)2C6(a;xav)
T
0 ∂2

y2CallBS(x0, ā
2
xav

T, k)

+ (x0 − k)[C6(a;xav)
T
0 ω(a2(xav))

T
0 ]

2(x0 − k)

ω(a2(xav))T
0

×
[∂yCallBS(x0, ω(a2(xav))

T
0 , k)

ω(a2(xav))T
0

− ∂2
y2CallBS(x0, ω(a2(xav))

T
0 , k)

]

= − (x0 − k)2C6(a;xav)
T
0 ∂2

y2CallBS(x0, ā
2
xav

T, k)

= − (x0 − k)2

4
C6(a;xav)

T
0 (∂4

x4 − 2∂3
x3 + ∂2

x2)CallBS(x0, ā
2
xav

T, k). (56)

Finally, sum the relations (48-51-50) taking into account the simplifications (55-56)

and apply Theorems 18 and 19 to obtain the announced result (47).
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5.3. Third order expansion of the implied volatility

We define extra integral operators in order to state a new result about third order

expansions of the implied volatility.

Definition 21. Provided that the derivatives and the integrals below have a mean-

ing, we define the following operators for a two variables non-negative function l

such that lz > 0:

γ0(l; z)T
0 =lz +

C2(l; z)T
0

2lzT
− C4(l; z)T

0

4lzT
− C3(l; z)T

0

l
3

zT
2

− 3C4(l; z)T
0

l
3

zT
2

+
[C1(l; z)T

0 ]2

8l
3

zT
2

+
3[C1(l; z)T

0 ]2

2l
5

zT
3

,

γ1(l; z)T
0 =

C1(l; z)T
0

l
3

zT
2

, γ2(l; z)T
0 =

C3(l; z)T
0

l
5

zT
3

+ 3
C4(l; z)T

0

l
5

zT
3

− 3[C1(l; z)T
0 ]2

l
7

zT
4

;

π0(l; z)T
0 =

γ0(l; z)T
0 + γ0(l̃; z)T

0

2
, π1(l; z)T

0 =
γ1(l̃; z)T

0 − γ1(l; z)T
0

2
,

π2(l; z)T
0 =

γ2(l; z)T
0 + γ2(l̃; z)T

0

2
− C5(l; z)T

0

8lzT
+

C6(l; z)T
0

4l
3

zT
2

;

χ0(l; z)T
0 =lz +

C2(l; z)T
0

2lzT
− C3(l; z)T

0

l
3

zT
2

− 3C4(l; z)T
0

l
3

zT
2

+
3[C1(l; z)T

0 ]2

2l
5

zT
3

,

χ1(l; z)T
0 =γ1(l; z)T

0 , χ2(l; z)T
0 = γ2(l; z)T

0 ;

Ξ0(l; z)T
0 =

χ0(l; z)T
0 + χ0(l̃; z)T

0

2
, Ξ1(l; z)T

0 = π1(l; z)T
0 , Ξ2(l; z)T

0 = π2(l; z)T
0 .

Theorem 22. (3rd order expansions of the implied volatility). Assume

(Ha). We have:

σI(x0, T, k) =γ0(a;x0)
T
0 − γ1(a;x0)

T
0 m + γ2(a;x0)

T
0 m2 + ErrorI3,x0

, (57)

σI(x0, T, k) =γ0(ã; k)T
0 + γ1(ã; k)T

0 m + γ2(ã; k)T
0 m2 + ErrorI3,k, (58)

σI(x0, T, k) =π0(a;xav)
T
0 + π1(a;xav)

T
0 m + π2(a;xav)

T
0 m2 + ErrorI3,xav

. (59)

Under (HΣ) we have

ΣI(S0, T, K) =χ0(Σ; S0)
T
0 − χ1(Σ; S0)

T
0 M + χ2(Σ; S0)

T
0 M2 + ErrorI3,S0

, (60)

ΣI(S0, T, K) =χ0(Σ̃; K)T
0 + χ1(Σ̃; K)T

0 M + χ2(Σ̃; K)T
0 M2 + ErrorI3,K, (61)

ΣI(S0, T, K) =Ξ0(Σ; Sav)
T
0 + Ξ1(Σ; Sav)

T
0 M + Ξ2(Σ; Sav)

T
0 M2 + ErrorI3,Sav

. (62)

The operators γi, πi, χi and Ξi used in the above expansions are defined in Definition

21.

Remark 23. We have obtained Black-Scholes (respectively Bachelier) implied

volatility approximations which are written as a quadratic function w.r.t. the Black-

Scholes log-moneyness (respectively w.r.t. the Bachelier moneyness). At the money,
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observe that the corresponding approximations are not equal to the local volatility

function computed at spot. However, in view of the definition of the operators C1,

C2, C3 and C4 (see Definition 17) and the operators γ0 and χ0 (see Definition 21),

we easily obtain the estimate:

|γ0(a;x0)
T
0 − āx0

| + |γ0(ã;x0)
T
0 − āx0

| + |χ0(Σ; S0) − Σ̄S0
| + |χ0(Σ̃; S0) − Σ̄S0

| ≤c T.

It shows that when the maturity tends to zero, our implied volatility approxima-

tions at the money become equal to the local volatility function frozen at spot.

We therefore interpret the difference between our implied volatility approximations

ATM and the local volatility function frozen at spot as a maturity bias.

Proof. We first focus on the formula (57), the treatment of (58-60-61) being similar.

Start from Theorem 18 and apply Proposition 34 in order to write the Greeks w.r.t.

x (for each operator Ci) in terms of the VegaBS and the VommaBS. Thus the third

order expansion formula based on the ATM local volatility with log-normal proxy

can be transformed into:

Call(ex0 , T, ek)

=CallBS(x0, ā
2
x0

T, k) + VegaBS(x0, ā
2
x0

T, k)

×
[
− C1(a;x0)

T
0 m

ā3
x0

T 2
+

C2(a;x0)
T
0

2āx0
T

+
C3(a;x0)

T
0 m2

ā5
x0

T 3
− C3(a;x0)

T
0

ā3
x0

T 2
+

3C4(a;x0)
T
0 m2

ā5
x0

T 3

−3C4(a;x0)
T
0

ā3
x0

T 2
− C4(a;x0)

T
0

4āx0
T

+
[C1(a;x0)

T
0 ]2

8ā3
x0

T 2
+

3[C1(a;x0)
T
0 ]2

2ā5
x0

T 3
− 3[C1(a;x0)

T
0 ]2m2

ā7
x0

T 4

]

+
1

2
VommaBS(x0, ā

2
x0

T, k)
(C1(a;x0)

T
0 m

ā3
x0

T 2

)2
+ O(M1(a)[M0(a)]3T 2)

=CallBS(x0, ā
2
x0

T, k)

+ VegaBS(x0, ā
2
x0

T, k)
[
γ0(a;x0)

T
0 − āx0

− γ1(a;x0)
T
0 m + γ2(a;x0)

T
0 m2

]

+
1

2
VommaBS(x0, ā

2
x0

T, k)[γ1(a;x0)
T
0 m]2 + O(M1(a)[M0(a)]3T 2)

≈CallBS(x0,
[
γ0(a;x0)

T
0 − γ1(a;x0)

T
0 m + γ2(a;x0)

T
0 m2

]2
T, k).

This reads as an expansion of the implied volatility and achieves the proof of (57).

Now we give the main lines of the derivation of the error estimate in (59), while

(62) is left to the reader. Again, we apply Theorem 20 and Proposition 34 in order
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to replace the x0-Greeks with the VegaBS and the VommaBS. One obtains similarly:

Call(ex0 , T, ek) = CallBS(x0, ā
2
xav

T, k) (63)

+ VegaBS(x0, ā
2
xav

T, k)
[γ0(a;xav)

T
0 + γ0(ã;xav)

T
0

2
− āxav

+
γ1(ã;xav)

T
0 − γ1(a;xav)

T
0

2
m +

γ2(a;xav)
T
0 + γ2(ã;xav)

T
0

2
m2

− C5(a;xav)
T
0

8āxavT
m2 +

C6(a;xav)
T
0

4ā3
xav

T 2
m2 +

C6(a;xav)
T
0

16āxavT
m2 − C6(a;xav)

T
0

4ā5
xav

T 3
m4

]

+
1

2
VommaBS(x0, ā

2
xav

T, k)m2
( [γ1(a;xav)

T
0 ]2 + [γ1(ã;xav)

T
0 ]2

2

)

+ O(M1(a)[M0(a)]3T 2).

Then write
( [γ1(a;xav)T

0 ]2+[γ1(ea;xav)T
0 ]2

2

)
=

(γ1(ea;xav)T
0 −γ1(a;xav)T

0

2

)2

+
(γ1(ea;xav)T

0 +γ1(a;xav)T
0

2

)2
, use the fact that (see the definition (66) of VommaBS

and the definition of γ1 in Definition 21)

1

2
VommaBS(x0, ā

2
xav

T, k)m2
(γ1(ã;xav)

T
0 + γ1(a;xav)

T
0

2

)2

=VegaBS(x0, ā
2
xav

T, k)(C1(ã;xav)
T
0 + C1(a;xav)

T
0 )2[− m2

32ā5
xav

T 3
+

m4

8ā9
xav

T 5
],

and finally, use the above identity (obtained with the definitions of C1, C6 and with

the relation (26)):
(
C1(l̃;x)T

0 + C1(l;x)T
0 )2

=2[ω(l2(z))T
0 ]2C6(l; z)T

0 = 4ω(l2(z), l2(z))T
0 ω(l(z)l(1)(z), l(z)l(1)(z))T

0

=4
[
ω(l(z)l(1)(z), l(z)l(1)(z), l2(z), l2(z))T

0 + ω(l2(z), l2(z), l(z)l(1)(z), l(z)l(1)(z))T
0

+ ω(l2(z), l(z)l(1)(z), l(z)l(1)(z), l2(z))T
0 + ω(l(z)l(1)(z), l2(z), l2(z), l(z)l(1)(z))T

0

+ ω(l2(z), l(z)l(1)(z), l2(z), l(z)l(1)(z))T
0 + ω(l(z)l(1)(z), l2(z), l(z)l(1)(z), l2(z))T

0

]
,

to cancel the terms
C6(a;xav)T

0

16āxavT m2, −C6(a;xav)T
0

4ā5
xav

T 3 m4 and

1
2VommaBS(x0, ā

2
xav

T, k)m2
(γ1(ea;xav)T

0 +γ1(a;xav)T
0

2

)2
in (63). That achieves the proof

of (59).

In addition to these implied volatility expansions, one can under additional

technical assumptions upper bound the residuals terms. For instance, let us consider

(57), for which we can prove

ErrorI3,x0
= O(M1(a)[M0(a)]3T

3
2 ), (64)

which justifies the label of third order expansion. This is available under the as-

sumptions that |m| ≤ ξM0(a)
√

T (for a given ξ ≥ 0) and that M0(a), M1(a) and

T are globally small enough to ensure that the implied volatility approximation
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γ0(a;x0)
T
0 − γ1(a;x0)

T
0 m + γ2(a;x0)

T
0 m2 is bounded away from 0. The method of

proof is analogous to that in Subsection 3.4, by performing a third order expansion

of BS price w.r.t. the volatility, using the estimate (70) on UltimaBS (see Corollary

33), and carefully gathering terms and evaluating their magnitudes.

6. Approximation of the Delta

In this section, we investigate the approximation of the delta of the Call price, i.e.

the derivative w.r.t. the spot, by deriving similar expansion formulas. For the sake

of brevity we present only results using a log-normal proxy. The results are new.

To achieve this goal, we follow again the Dupire approach taking advantage of the

symmetry between spot and strike. We start from the Feynman-Kac representation

(36) which leads to a nice expression for the delta:

δ(S0, T, K) = ∂S0
E[(S0 − ekT )+] = P(ekT < S0) = P(kT < x0).

Thus we are reduced to compute the price of a binary option on the fictitious asset

(kt)t. This binary payoff is not anymore differentiable, but we can however apply

directly [49, Theorems 2.1, 2.2 and 4.3] to obtain

Theorem 24. (1st and 2nd order approximations for delta using local

volatility at strike). Assume (Ha). Then we have:

δ(ex0 , T, ek) =δBS(x0, ā
2
kT, k) + C1(ã; k)T

0 (∂3
z3 − 3

2
∂2

z2 +
1

2
∂z)δ

BS(x0, ā
2
kT, k)

+ O(M1(a)M0(a)T ),

δ(ex0 , T, ek) =δBS(x0, ā
2
kT, k) +

6∑

i=1

ηi(ã; k)T
0 ∂i

kiδBS(x0, ā
2
kT, k)

+ O(M1(a)[M0(a)]2T
3
2 ),

where δBS is Black-Scholes delta function defined by δBS(x, y, z) = N (d1(x, y, z)),

with x the log-spot, y the total variance and z the log-strike.

Remark 25. In view of the error estimate, observe that the corresponding second

and third order formulas for vanilla payoffs are respectively first and second order

approximations for binary payoffs. This is due to the lack of regularity of the payoff

(see our discussion in Subsection 2.5).

Like in the previous price approximation formulas, it is possible to perform

additional Taylor expansions in order to obtain similar formulas using local volatility

function frozen at spot or at mid-point. We announce two Lemmas which proof is

very similar to those of Lemmas 11 and 12 and Theorem 20 is left to the reader.

Extra technical results are postponed in Appendix, Subsection 8.3.
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Lemma 26. Let x ∈ {x0, xav}. Assume (Ha), then we have

δBS(x0, ā
2
kT, k)

=δBS(x0, a
2
xT, k) + 2∂yδBS(x0, a

2
xT, k)(k − x)C7(a;x)T

0 + O(M1(a)M0(a)T ),

=δBS(x0, a
2
xT, k) + [2(k − x)C7(a;x)T

0 + (k − x)2C5(a;x)T
0 ]∂yδBS(x0, a

2
xT, k)

+ 4∂2
y2δBS(x0, a

2
xT, k)(k − x)2C6(a;x)T

0 + O(M1(a)[M0(a)]2T
3
2 ),

where C7(l; z)T
0 = ω(l(z)l(1)(z))T

0 .

Lemma 27. Let x ∈ {x0, xav}. Assume (Ha), then we have

C1(ã; k)T
0 (∂3

z3 − 3

2
∂2

z2 +
1

2
∂z)δ

BS(x0, ā
2
kT, k)

=C1(ã;x)T
0 (∂3

z3 − 3

2
∂2

z2 +
1

2
∂z)δ

BS(x0, a
2
xT, k) + O(M1(a)M0(a)T ),

6∑

i=1

ηi(ã; k)T
0 ∂i

ziδBS(x0, ā
2
kT, k) =

6∑

i=1

ηi(ã;x)T
0 ∂i

ziδBS(x0, a
2
xT, k)

+[2C6(ã;x)T
0 + C2(ã;x)T

0 ](k − x)(∂3
z3 − 3

2
∂2

z2 +
1

2
∂z)δ

BS(x0, a
2
xT, k)

+2(k − x)C1(ã;x)T
0 C7(ã;x)T

0 (∂4
yz3 − 3

2
∂3

yz2 +
1

2
∂2

yz)δ
BS(x0, a

2
xT, k)

+O(M1(a)[M0(a)]2T
3
2 ).

Then remark that:

C1(ã;x)T
0 C7(ã;x)T

0 = 2C4(ã;x)T
0 + C8(ã;x)T

0 ,

where the operator C8 is defined as follows:

C8(l; z)T
0 = C8(l̃; z)T

0 = ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T
0 .

An application of Proposition 42 finally yields the theorem below.

Theorem 28. (1st and 2nd order approximations for delta using local

volatility at spot and mid-point). Assume (Ha) and let x ∈ {x0, xav}. We

have:

δ(ex0 , T, ek) = δBS(x0, a
2
xT, k) + C1(ã;x)T

0 (∂3
z3 − 3

2
∂2

z2 +
1

2
∂z)δ

BS(x0, a
2
xT, k)

+ (k − x)C7(a;x)T
0 (∂2

z2 − ∂z)δ
BS(x0, a

2
xT, k) + O(M1(a)M0(a)T ),
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δ(ex0 , T, ek) = δBS(x0, a
2
xT, k) +

6∑

i=1

ηi(ã; k)T
0 ∂i

ziδBS(x0, a
2
xT, k)

+ (k − x)[C7(a;x)T
0 +

(k − x)

2
C5(a;x)T

0 ](∂2
z2 − ∂z)δ

BS(x0, a
2
xT, k)

+ (k − x)2C6(a;x)T
0 (∂4

z4 − 2∂3
z3 + ∂2

z2)δBS(x0, a
2
xT, k)

+ (k − x)[2C6(ã;x)T
0 + C2(ã;x)T

0 ](∂3
z3 − 3

2
∂2

z2 +
1

2
∂z)δ

BS(x0, a
2
xT, k)

+ (k − x)[2C4(ã;x)T
0 + C8(ã;x)T

0 ](∂5
z5 − 5

2
∂4

z4 + 2∂3
z3 − 1

2
∂2

z2)δBS(x0, a
2
xT, k)

+ O(M1(a)[M0(a)]2T
3
2 ).

7. Numerical experiments

7.1. The set of tests

For the numerical experiments, we consider a CEV model with constant parameters:

σ(t, S) = νSβ−1. We choose a spot value S0 equal to 1 and we test two values of

ν (a parameter interpreted as a level of volatility): firstly we set ν = 0.25 and

we consider either β = 0.8 (a priori close to the log-normal case) or β = 0.2 (a

priori close to the normal case). Then we investigate the case of a larger volatility

with ν = 0.4 and β = 0.5. For the sake of completeness, we give in Appendix 8.5

the expressions of corrective coefficients allowing the computation of our various

approximation formulas proposed throughout the paper.

We compare the accuracy of different approximations, for various maturities

and various strikes gathered in 5 categories. The strikes evolve approximately as

Table 1. Set of maturities and strikes for the numerical experiments
T/K far ITM ITM ATM OTM far OTM

3M 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.25 1.30 1.35

6M 0.65 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.20 1.25 1.35 1.50
1Y 0.55 0.65 0.75 0.80 0.90 0.95 1.00 1.05 1.15 1.25 1.40 1.50 1.80

1.5Y 0.50 0.60 0.70 0.75 0.85 0.95 1.00 1.10 1.15 1.30 1.50 1.65 2.00

2Y 0.45 0.55 0.65 0.75 0.85 0.90 1.00 1.10 1.20 1.35 1.55 1.80 2.30
3Y 0.35 0.50 0.55 0.70 0.80 0.90 1.00 1.10 1.25 1.45 1.75 2.05 2.70
5Y 0.25 0.40 0.50 0.60 0.75 0.85 1.00 1.15 1.35 1.60 2.05 2.50 3.60
10Y 0.15 0.25 0.35 0.50 0.65 0.80 1.00 1.20 1.50 1.95 2.75 3.65 6.30

S0 exp(cν
√

T ) where c takes the value of various quantiles of the standard Gaussian

law (1%-5%-10%-20%-30%-40%-50%-60%-70%-80%-90%-95%-99%) which allows to

cover far ITM and far OTM options. We report in Tables 2, 3 and 4 the Black-

Scholes implied volatilities corresponding to the exact Call prices with constant

parameters [50].

The purpose of the numerical tests is to compare the following approximations:
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Table 2. CEV model (β = 0.8, ν = 0.25): BS implied volatilities in %.

3M 25.90 25.73 25.56 25.41 25.26 25.13 25.00 24.88 24.76 24.65 24.45 24.35 24.26
6M 26.09 25.73 25.56 25.41 25.27 25.13 25.00 24.88 24.76 24.55 24.45 24.26 24.00
1Y 26.53 26.10 25.73 25.56 25.27 25.13 25.00 24.88 24.65 24.45 24.17 24.00 23.56
1.5Y 26.78 26.30 25.91 25.73 25.41 25.13 25.00 24.77 24.66 24.35 24.00 23.77 23.31
2Y 27.06 26.53 26.10 25.73 25.41 25.27 25.01 24.77 24.55 24.26 23.92 23.56 22.98
3Y 27.73 26.78 26.53 25.91 25.57 25.27 25.01 24.77 24.45 24.09 23.63 23.25 22.60
5Y 28.64 27.38 26.79 26.31 25.74 25.42 25.01 24.66 24.27 23.85 23.26 22.79 21.94

10Y 30.08 28.66 27.75 26.80 26.12 25.59 25.02 24.57 24.02 23.39 22.57 21.92 20.69

Table 3. CEV model (β = 0.2, ν = 0.25): BS implied volatilities in %.

3M 28.75 28.00 27.31 26.67 26.08 25.53 25.01 24.53 24.07 23.64 22.84 22.48 22.13
6M 29.59 28.02 27.32 26.69 26.09 25.54 25.02 24.53 24.08 23.24 22.85 22.13 21.18
1Y 31.54 29.62 28.05 27.35 26.12 25.56 25.04 24.55 23.66 22.87 21.81 21.19 19.60

1.5Y 32.71 30.57 28.83 28.07 26.74 25.58 25.06 24.11 23.68 22.51 21.20 20.36 18.73
2Y 34.03 31.62 29.69 28.10 26.76 26.16 25.08 24.13 23.29 22.18 20.92 19.62 17.62
3Y 37.34 32.84 31.70 28.92 27.46 26.21 25.12 24.17 22.93 21.55 19.88 18.56 16.40
5Y 42.07 35.80 33.00 30.82 28.27 26.91 25.20 23.80 22.26 20.71 18.59 17.01 14.38
10Y 47.85 41.60 37.46 33.14 30.08 27.76 25.38 23.53 21.41 19.09 16.35 14.32 10.99

Table 4. CEV model (β = 0.5, ν = 0.4): BS implied volatilities in %.

3M 43.69 42.97 42.29 41.67 41.08 40.53 40.02 39.53 39.07 38.63 37.82 37.45 37.09
6M 44.51 42.99 42.31 41.68 41.10 40.55 40.03 39.55 39.09 38.23 37.84 37.10 36.11
1Y 46.38 44.55 43.03 42.35 41.13 40.58 40.06 39.58 38.68 37.86 36.78 36.13 34.45

1.5Y 47.49 45.46 43.80 43.06 41.75 40.61 40.10 39.14 38.71 37.51 36.15 35.27 33.52

2Y 48.73 46.47 44.63 43.10 41.79 41.20 40.13 39.17 38.31 37.17 35.87 34.49 32.31
3Y 51.76 47.62 46.55 43.90 42.48 41.26 40.18 39.22 37.97 36.54 34.79 33.36 30.97
5Y 55.94 50.30 47.73 45.69 43.27 41.95 40.28 38.87 37.30 35.69 33.42 31.68 28.66
10Y 60.86 55.20 51.48 47.60 44.80 42.63 40.36 38.55 36.41 33.98 30.97 28.64 24.51

(1) ImpVol(AppPriceLN(2,z)) and ImpVol(AppPriceN(2,z)): the BS implied

volatility of the second order expansions based respectively on the log-normal

and normal proxy with local volatility frozen at point z, z being respectively

equal to x0, k or xav and to S0, K or Sav. See Theorems 9-10-13.

(2) AppImpVolLN(2,z) and AppImpVolN(2,z): the second order implied volatil-

ity expansions (Theorem 15). All the results are converted into Black-Scholes

implied volatility. Namely, for the normal proxy, once we have computed Bache-

lier implied volatility expansions, we first evaluate the price with the Bachelier

formula and then compute the related implied Black-Scholes volatility.

(3) ImpVol(AppPriceLN(3,z)) and ImpVol(AppPriceN(3,z)): the implied

volatility of the third order expansions (Theorems 18 and 19). In addition

for the log-normal proxy, we test the average of approximations based on strike

and on spot and we denote it by Av.ImpVol(AppPriceLN(3,.)).

(4) AppImpVolLN(3,z) and AppImpVolN(3,z): the third order implied volatility

expansions (Theorem 22). We use the notation Av.AppImpVolLN(3,.) for the
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average of the expansions in strike and in spot.

(5) Hagan and Henry-Labordère formulas denoted by (HF) and (HLF) in the follow-

ing: benchmark implied volatility approximations of Hagan etal. [5, formula (7)

p.149] and Henry-Labordère [6, formula (5.41) p.141]. For the sake of complete-

ness, we recall these well-know implied volatility approximations in the CEV

model:

σI(x0, T, k) ≈ ν(
S0 + K

2
)β−1

(
1 +

(1 − β)(2 + β)

6
(
S0 − K

S0 + K
)2

+
(β − 1)2ν2T

24
(
S0 + K

2
)2β−2

)
, (HF)

σI(x0, T, k) ≈ ν(1 − β) log(S0

K )

S1−β
0 − K1−β

(
1 +

(β − 1)2ν2T

24
(
S0 + K

2
)2β−2

)
. (HLF)

We recall that these formulas are essentially available for time-independent

volatility, while our formulas allow time dependency.

Our goal is to demonstrate the interest of our approximation formulas in com-

parison to those of Hagan and Henry-Labordere. We are rather exhaustive with

our numerical experiments in order to, on the one hand, select the best approx-

imation formulas among ours, and on the other hand to show that our methods

with log-normal proxy involving the mid-point generally outperform Hagan and

Henry-Labordère formulas. Full details allow the reader to easily reproduce the

results.

In Tables 7 and 9, we report the errors expressed in bps (basis points) on

implied volatility for (β, ν) = (0.8, 0.25) using the second and the third or-

der price expansions. Tables 8 and 10 give results for the second and the

third order implied volatility expansions. Next in Table 11, we report the er-

rors in bps obtained with the averaged expansions Av.ImpVol(AppPriceLN(3,.))

and Av.AppImpVolLN(3,.) and the benchmarks (HF) and (HLF). Then in Ta-

ble 12, we compare Av.ImpVol(AppPriceLN(3,.)), ImpVol(AppPriceLN(3,xav)),

Av.AppImpVolLN(3,.) and AppImpVolLN(3,xav) with the benchmarks (HF) and

(HLF).

After we analyse the case (β, ν) = (0.2, 0.25) and we report in Tables 13 and

14 the errors using ImpVol(AppPriceLN(3,xav)), ImpVol(AppPriceN(3,Sav)),

AppImpVolLN(3,xav), AppImpVolN(3,Sav) and the benchmarks (HF) and (HLF).

Because the other methods in general give globally less accurate results, we just

report and compare the best approximations.

Finally in Tables 15 and 16 we establish a comparison

between ImpVol(AppPriceLN(3,xav)), AppImpVolLN(3,xav) and the benchmarks

Hagan and (HLF) for (β, ν) = (0.5, 0.4).

For example, on the first row of Table 7, the value −12 corresponds to the ap-

proximation error of ImpVol(AppPriceLN(2,x0)) for the first strike of the maturity
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T = 3M (i.e. K = 0.7), whereas on the second row, the value -3 corresponds to

the approximation error of ImpVol(AppPriceLN(2,k)) for the third strike of the

maturity T = 6M (i.e. K = 0.8). If the price approximation does not belong to

the non-arbitrage interval for Call options (it may happen for extremes strikes) we

just report ND in the tabular.

7.2. Analysis of results

⊲ Influence of T and K. We notice in Tables 7, 8, 9, 10 that errors are increasing

w.r.t. T for all the different approximations: this is coherent with the T 3/2 or T 2-

factor of our theoretical error estimates. For ATM options, all the approximations

are excellent and errors remain small for a large range of strikes and maturities:

with the log-normal proxy, usually smaller than 10 bps up to 10Y for strikes corre-

sponding to the Gaussian quantiles range [10%, 90%].

⊲ Influence of the proxy. As expected, approximations based on log-normal

proxy perform better than approximations based on normal proxy. On the one

hand, we obtain simpler approximation formulas with the normal proxy: on the

other hand, the errors become significant when considering slightly OTM or ITM

options, even for short maturities and for advanced methods (order 3, local volatil-

ity frozen at the mid-point...).

⊲ Influence of the order. Regarding firstly Tables 7-9 and then Tables 8-10,

we notice that as expected, third order approximations are more accurate than

second order ones. In addition, for the log-normal proxy case, second order ap-

proximations in spot or strike often underestimate the true implied volatility values

whereas third order approximations in spot overestimate the true values for OTM

options and yield underestimation for ITM options; the converse occurs for the third

order approximations in strike. Because the errors have approximately the same

magnitude but with opposite signs, approximations are improved by considering

the average between the approximations. It is discussed below.

⊲ Influence of the point. Unquestionably, methods using the local volatility at

mid-point systematically give the best results. With ImpVol(AppPriceLN(2,xav))

(Table 7), errors do not exceed 15 bps for the whole set of strikes and matu-

rities, which is already really good, whereas ImpVol(AppPriceLN(3,xav)) and

AppImpVolLN(3,xav) provide errors close to 0 proving an extreme accuracy.

⊲ Price expansions vs implied volatility expansions. Generally speaking,

the implied volatility expansions are more precise and stable. This can be easily

observed by comparing on the one hand Tables 7 and 8 and on the other hand

Tables 9 and 10. Sometimes, especially for extreme strikes, a simple direct second

order second implied volatility expansion is more accurate than the corresponding

third order price expansion. Since in addition the formulas are easier to compute,

we recommend the use of implied volatility expansions. Moreover, the difference
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between ImpVol(AppPriceLN(3,xav)) and AppImpVolLN(3,xav) is not clear, both

methods giving similar and excellent results (see Tables 12 or 13) although the di-

rect implied volatility expansion remains more stable especially for β = 0.2 and/or

for large maturities. Last, when the local volatility function is frozen at spot or at

strike, there is really an improvement in using implied volatility expansions instead

of the corresponding price expansions.

⊲ Comparison with the benchmarks. In Table 11, we report the performance

of the methods Av.ImpVol(AppPriceLN(3,.)), Av.AppImpVolLN(3,.) and the

benchmarks (HF) and (HLF). Errors on the implied volatility are equal to zero

bp for the whole range of maturities and strikes for Av.AppImpVolLN(3,.) and

the (HLF) approximation, whereas Av.ImpVol(AppPriceLN(3,.)) and (HF) pro-

vide errors smaller than 45 and 70 bps in absolute value respectively. In Ta-

ble 12, we compare Av.ImpVol(AppPriceLN(3,.)), ImpVol(AppPriceLN(3,xav)),

Av.AppImpVolLN(3,.) and AppImpVolLN(3,xav) with the benchmarks (HF) and

(HLF). In order to observe more clearly the accuracy of the different methods, we

partially gather the results and we report the average of errors for different cate-

gories of strike (far ITM, ITM, ATM, OTM and far OTM, see Table 1), using a

scientific notation for the errors. Computing the average per categories of strikes

gives an advantage to methods which errors have non constant sign. These methods

may be more reliable than those giving a systematic over/under-estimation.

The best method is clearly AppImpVolLN(3,xav) which yields errors of 10−5

bps for short maturities and 10−2 bps for long maturities. The method gives

better results than the excellent approximation proposed by Henry-Labordère

(errors of 10−4 bps for short maturities and 10−1 bps for long maturities).

ImpVol(AppPriceLN(3,xav)) seems to be slightly better than (HLF) but is less

robust for extreme strikes than AppImpVolLN(3,xav). Significantly better results

are obtained by averaging the expansions in spot and strike, thanks to the sym-

metrical roles played by these two variables. The results are close to those of the

corresponding expansions with the mid-point, but they remain less accurate and

less robust for extreme strikes. The problem of this averaging method is the risk of

huge inaccuracy if one of two approximations in spot and strike fails. (HF) is clearly

less accurate than all the other approximations.

⊲ Influence of β. In the Table 13, as expected the log-normal proxy provides larger

errors than for β = 0.8. Although the results of the normal proxy are better in com-

parison with the case β = 0.8, they remain less accurate and less robust than those

obtained with the log-normal proxy. Up to the maturity 5Y , AppImpVolLN(3,xav)

yields errors in bps smaller than 7 bps which is truly excellent. (HLF) gives compara-

ble results. (HF) seems less accurate and cruder for extreme strikes. For the maturity

10Y , we observe that AppImpVolLN(3,xav) (maximal error close to 159 bps) behaves

better than (HLF) (maximal error close to 271 bps) for very small strikes, whereas

for very large strikes (HLF) is slightly better (−5 bps for AppImpVolLN(3,xav) ver-

sus −1 bp for (HLF)). Surprisingly (HF) yields the smallest maximal error (close



July 25, 2012 11:53 World Scientific Review Volume - 9.75in x 6.5in BompisGobet˙ws-rv975x65˙final˙2

Asymptotic and non asymptotic approximations for option valuation 55

to 112 bps) but is more inaccurate for OTM. (HLF) and AppImpVolLN(3,xav) give

excellent results with errors of the order of 10−3 bps for short maturity (3M) and

10−1 bps for the maturity 3Y . We nevertheless notice that ATM, (HLF) is better.

⊲ Impact of ν. The level of volatility ν plays a similar role to
√

T , and in Tables 15

and 16, we analyse the impact of a larger volatility on our approximations. We take

ν = 40% and β = 0.5. We notice that up to the maturity 5Y , the errors in bps do not

exceed 6 bps for the methods ImpVol(AppPriceLN(3,xav)) or AppImpVolLN(3,xav)

with a maximal error of 92 bps for the maturity 10Y . Their accuracy is better than

those of (HF) or (HLF) for short and long maturities. (HLF) is much more inaccurate

ITM for the maturity 10Y (maximal error of 286 bps). In Table 16, we aggregate

the results per categories of strike up to the maturity 3Y and we observe a good

accuracy of ImpVol(AppPriceLN(3,xav)) and AppImpVolLN(3,xav): 10−3 bps for

the maturity 3M and 10−1 for the maturity 3Y . In particular we notice that ATM,

(HF) and (HLF) are less accurate.

In view of all these tests, we may conclude that ImpVol(AppPriceLN(3,xav))

and particulary AppImpVolLN(3,xav) give very satisfying results, being at least as

good as the Henry-Labordère formula in the worst situations (β = 0.2 or ν = 0.4)

and being often better in the case β = 0.8. The different current tests prove that

our direct implied volatility approximations outperform the corresponding price

approximations. In addition, a normal proxy seems not to be the most appropriate

for the approximation of a CEV model, in view of the large errors obtained especially

for very small strikes. This presumably explains why the Hagan formula is much less

accurate than our approximations with log-normal proxy and than that of Henry-

Labordère. The Hagan formula is namely close in the spirit to our approximation

formulas with normal proxy.

To conclude, our approximations maintain very tight error estimates and allow

to deal naturally with general time-dependent local volatility (or with stochastic

interest rates, see [7]) which is a significant advantage compared to other approaches.

7.3. CEV Delta approximations

Now we test our approximation formulas for the deltas, by choosing again a CEV

model with spot value S0 = 1 and constant parameters. We test the values (β, ν) =

(0.8, 0.25) and (β, ν) = (0.2, 0.25). We report in Tables 5 and 6 the exact delta

values for the set of maturities and strikes defined in Table 1.

We test the 6 following approximations:

(1) AppDeltaLN(1,x0), AppDeltaLN(1,k) and AppDeltaLN(1,xav): first order

delta expansions based on the log-normal proxy with local volatility frozen

at point x0, k and xav.

(2) AppDeltaLN(2,x0), AppDeltaLN(2,k) and AppDeltaLN(2,xav): second order

delta expansions based on the log-normal proxy with local volatility frozen at
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Table 5. CEV model (β = 0.8, ν = 0.25): deltas in %.

3M 99.75 98.89 96.38 90.83 81.18 67.67 51.99 36.60 23.57 13.91 3.78 1.76 0.76
6M 99.20 95.10 90.44 83.56 74.58 64.05 52.82 41.80 31.77 16.33 11.09 4.64 1.01
1Y 99.09 96.04 88.90 83.53 69.78 61.97 53.98 46.15 31.98 20.75 9.76 5.55 0.82
1.5Y 98.76 95.68 89.46 85.06 74.11 61.40 54.88 42.35 36.62 22.35 10.35 5.44 1.03
2Y 98.75 95.94 90.58 82.55 72.45 66.93 55.63 44.75 34.97 23.04 12.30 5.15 0.75
3Y 99.13 95.36 93.13 83.51 75.22 66.13 56.88 47.99 36.04 23.46 11.44 5.25 0.86
5Y 99.23 95.93 91.89 86.53 76.75 69.63 58.86 48.70 36.85 25.21 12.05 5.54 0.79
10Y 99.13 97.10 93.95 87.68 80.34 72.60 62.46 53.06 40.92 27.19 12.88 5.57 0.54

Table 6. CEV model (β = 0.2, ν = 0.25): deltas in %.

3M 99.37 98.08 95.04 89.11 79.43 66.09 50.50 34.98 21.76 12.08 2.60 1.01 0.34
6M 98.13 92.97 88.01 81.08 72.24 61.88 50.71 39.59 29.35 13.70 8.60 2.85 0.35
1Y 97.34 93.15 85.45 80.09 66.66 58.97 51.00 43.08 28.51 17.00 6.39 2.91 0.14
1.5Y 96.23 92.03 85.29 80.89 70.22 57.76 51.23 38.45 32.50 17.73 6.20 2.35 0.13
2Y 95.71 91.77 85.84 77.85 68.06 62.67 51.43 40.30 30.09 17.68 7.29 1.81 0.04
3Y 95.62 90.10 87.57 77.87 69.86 61.01 51.76 42.61 30.02 16.82 5.53 1.36 0.03
5Y 94.70 89.45 84.88 79.47 70.04 63.12 52.32 41.69 28.91 16.52 4.53 0.87 0.00
10Y 94.37 90.36 86.11 79.22 71.81 64.05 53.52 43.32 29.65 14.59 2.76 0.23 0.00

point x0, k and xav.

Tables 17-18 (respectively 19) give errors on deltas (expressed in bps) using all the

approximations with β = 0.8 (respectively β = 0.2).

Regarding the results, the accuracy for β = 0.8 is excellent because, except for

AppDeltaLN(1,x0), we obtain a maximal error (in absolute value) equal to 36 bps.

Generally speaking, approximations with local volatility at spot are not as good

as related approximations at strike. In addition, for second order formulas, we do

not observe any symmetry between the spot and strike approximations (which of-

ten overestimate the exact delta), whereas the symmetry slightly appears for the

first order expansions (not exactly with the same magnitude but opposite signs).

Maybe in this situation, the optimal expansion point is not exactly the convex

combination xav = (x0 + k)/2. However the methods with the mid-point are truly

excellent, in particular AppDeltaLN(2,xav) which yields a maximal error (in abso-

lute value) close to 1 bps. From Table 18, we observe that in average, the errors for

AppDeltaLN(2,xav) range from 10−3 for short maturities to 10−1 for long maturi-

ties.

In Table 19 (β = 0.2), without surprise the errors are larger compared to β = 0.8.

The best approximation is still AppDeltaLN(2,xav) which provides errors smaller

than 27 bps up to 5Y with a global maximal error of 157 bps, which remains quite

good. Curiously, for ATM options, the first order approximation may give better

estimates even if the related errors quickly for large or small strikes in comparison

with the second order approximations.
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8. Appendix

8.1. Computations of derivatives of CallBS w.r.t the log spot, the

log strike and the total variance

In the following Proposition, we make explicit the formula for the derivatives at any

order of CallBS w.r.t. x and z:

Proposition 29. Let x, z ∈ R and y > 0. For any integer n ≥ 1, we have:

∂n
xnCallBS(x, y, z) =exN (d1(x, y, z))

+1n≥2 exN ′(d1(x, y, z))

n−1∑

k=1

(
n − 1

k

)
(−1)k−1 Hk−1(d1(x, y, z))

y
k
2

,

∂z
znCallBS(x, y, z) = − ezN (d2(x, y, z))

+1n≥2 ezN ′(d2(x, y, z))

n−1∑

k=1

(
n − 1

k

)
Hk−1(d2(x, y, z))

y
k
2

,

where (Hk)k∈N are the Hermite polynomials defined for any n ∈ N and for any

x ∈ R by:

Hn(x) = (−1)nex2/2∂n
xn(e−x2/2)

Proof. For n = 1 the formulas are easy to obtain. For n ≥ 2, apply the Leibniz

formula to the products exN (d1(x, y, z)) and ezN (d2(x, y, z)).

We deduce a very useful Corollary:

Corollary 30. Let x, z ∈ R and y > 0. For any integers n ≥ 1 and m ≥ 1, we

have:

|∂n
xnCallBS(x, y, z)| + |∂n

znCallBS(x, y, z)| ≤c y
1−n

2 ,

|x − z|m|∂n
xnCallBS(x, y, z) − exN (d1(x, y, z))| ≤c y

1−n+m
2 ,

|x − z|m|∂n
znCallBS(x, y, z) + ezN (d2(x, y, z))| ≤c y

1−n+m
2 ,

where the generic constants depend polynomially on y.

Remark 31. In practice the two last estimates are used when we want to bound

(x− z)m

n∑

i=1

αi∂
i
xiCallBS(x, y, z) or (x− z)m

n∑

i=1

αi∂
i
ziCallBS(x, y, z) (with

n∑

i=1

αi = 0)

by a power of y with the highest possible degree.

Proof. We recall that for any polynomial function P, x → P(x)N ′(x) is a bounded

function. Then the first inequality follows directly from Proposition 29. For the

second and the third, write (x − z) = d1(x, y, z)
√

y − 1
2y = d2(x, y, z)

√
y + 1

2y and

conclude similarly.
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In the next Proposition, we provide the formulas of the first, the second and the

third derivatives of CallBS w.r.t. a positive volatility:

Proposition 32. Let x, z ∈ R, ν > 0 and T > 0. We have:

VegaBS(x, ν2T, z) = ∂νCallBS(x, ν2T, z)

= ex
√

TN ′(d1(x, ν2T, z)) = ez
√

TN ′(d2(x, ν2T, z)), (65)

VommaBS(x, ν2T, z) = ∂νVegaBS(x, ν2T, z)

=
VegaBS(x, ν2T, z)

ν
d1(x, ν2T, z)d2(x, ν2T, z)

=
VegaBS(x, ν2T, z)

ν
[
(x − z)2

ν2T
− ν2T

4
], (66)

UltimaBS(x, ν2T, z) = ∂νVommaBS(x, ν2T, z)

= −VegaBS(x, ν2T, z)

ν2
[d1d2(1 − d1d2) + d2

1 + d2
2](x, ν2T, z)

= −VegaBS(x, ν2T, z)

ν2
[
(x − z)2

2
+

3(x − z)2

ν2T
+

ν2T

4
− (x − z)4

ν4T 2
− ν4T 2

16
]. (67)

The above Proposition directly implies the following result:

Corollary 33. Let x, z ∈ R, ν > 0 and T > 0. We have the following estimates:

0 < VegaBS(x, ν2T, z) ≤c

√
T , (68)

|VommaBS(x, ν2T, z)| ≤c

√
T

ν
, (69)

|UltimaBS(x, ν2T, z)| ≤c

√
T

ν2
, (70)

where the generic constants depend polynomially of ν.

We finally state relations between the derivatives w.r.t. x or z, the VegaBS and the

VommaBS. These relations allow on the one hand to replace derivatives w.r.t. z

with derivatives w.r.t. x and on the other hand to write the differential operators

w.r.t. x or z in terms of the VegaBS and the VommaBS. The verification of these

identities is tedious but without mathematical difficulties. For instance, we have

used Mathematica to check these relations.

Proposition 34. Let x, z ∈ R, ν > 0 and T > 0. We have:

(∂2
x2 − ∂x)CallBS(x, ν2T, z) = (∂2

z2 − ∂z)CallBS(x, ν2T, z)

=
ex

ν
√

T
N ′(d1(x, ν2T, z))

=
VegaBS(x, ν2T, z)

νT
, (71)
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(∂3
x3 − 3

2
∂2

x2 +
1

2
∂x)CallBS(x, ν2T, z) = −(∂3

z3 − 3

2
∂2

z2 +
1

2
∂z)CallBS(x, ν2T, z)

= −ex(x − z)

ν3T
3
2

N ′(d1(x, ν2T, z))

= −VegaBS(x, ν2T, z)
(x − z)

ν3T 2
, (72)

(
1

4
∂4

x4 − 1

2
∂3

x3 +
1

4
∂2

x2)CallBS(x, ν2T, z) = (
1

4
∂4

z4 − 1

2
∂3

z3 +
1

4
∂2

z2)CallBS(x, ν2T, z)

= exN ′(d1(x, ν2T, z))
[ (x − z)2

4ν5T
5
2

− 1

16ν
√

T
− 1

4ν3T
3
2

]

= VegaBS(x, ν2T, z)
[ (x − z)2

4ν5T 3
− 1

16νT
− 1

4ν3T 2

]
, (73)

(∂4
x4 − 2∂3

x3 +
5

4
∂2

x2 − 1

4
∂x)CallBS(x, ν2T, z)

= (∂4
z4 − 2∂3

z3 +
5

4
∂2

z2 − 1

4
∂z)CallBS(x, ν2T, z)

= exN ′(d1(x, ν2T, z))
[ (x − z)2

ν5T
5
2

− 1

ν3T
3
2

]

= VegaBS(x, ν2T, z)
[ (x − z)2

ν5T 3
− 1

ν3T 2

]
, (74)

(3∂4
x4 − 6∂3

x3 +
7

2
∂2

x2 − 1

2
∂x)CallBS(x, ν2T, z)

= (3∂4
z4 − 6∂3

z3 +
7

2
∂2

z2 − 1

2
∂z)CallBS(x, ν2T, z)

= exN ′(d1(x, ν2T, z))
[
3
(x − z)2

ν5T
5
2

− 3

ν3T
3
2

− 1

4ν
√

T

]

= VegaBS(x, ν2T, z)
[
3
(x − z)2

ν5T 3
− 3

ν3T 2
− 1

4νT

]
, (75)

(
1

2
∂6

x6 − 3

2
∂5

x5 +
13

8
∂4

x4 − 3

4
∂3

x3 +
1

8
∂2

x2)CallBS(x, ν2T, z)

= (
1

2
∂6

z6 − 3

2
∂5

z5 +
13

8
∂4

z4 − 3

4
∂3

z3 +
1

8
∂2

z2)CallBS(x, ν2T, z)

= exN ′(d1(x, ν2T, z))
[ (x − z)4

2ν9T
9
2

− (x − z)2

8ν5T
5
2

− 3
(x − z)2

ν7T
7
2

+
1

8ν3T
3
2

+
3

2ν5T
5
2

]

= VegaBS(x, ν2T, z)
[
− 3

(x − z)2

ν7T 4
+

1

8ν3T 2
+

3

2ν5T 3

]

+
1

2
VommaBS(x, ν2T, z)

(x − z)2

ν6T 4
. (76)
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8.2. Derivatives of CallBA w.r.t the spot, the strike and the total

variance

Proposition 35. Let S, Z ∈ R and Y > 0. For any integer n ≥ 1, we have:

∂n
SnCallBA(S, Y, Z) =1n=1N (

S − Z√
Y

) + 1n≥2N ′(
S − Z√

Y
)(−1)n−2

Hn−2(
S−Z√

Y
)

Y
n−1

2

,

∂n
ZnCallBA(S, Y, Z) = − 1n=1N (

S − Z√
Y

) + 1n≥2N ′(
S − Z√

Y
)
Hn−2(

S−Z√
Y

)

Y
n−1

2

.

Corollary 36. Let S, Z ∈ R and Y > 0. For any integers n ≥ 2 and m ≥ 1, we

have:

|S − Z|m
(
|∂n

SnCallBA(S, Y, Z)| + |∂n
ZnCallBA(S, Y, Z)|

)
≤cY

1−n+m
2 ,

where the generic constants depend polynomially on Y .

Proposition 37. Let S, Z ∈ R, V > 0 and T > 0. We have:

VegaBA(S, V 2T, Z) =∂V CallBA(S, V 2T, Z) =
√

TN ′(
S − Z

V
√

T
),

VommaBA(S, V 2T, Z) =∂V VegaBA(S, V 2T, Z)

=
VegaBA(S, V 2T, Z)

ν

(S − Z)2

V 2T
,

UltimaBA(S, V 2T, Z) =∂V VommaBA(S, V 2T, Z)

= − VegaBA(S, V 2T, Z)

ν2
[
3(S − Z)2

V 2T
− (S − Z)4

V 4T 2
].

Corollary 38. Let S, Z ∈ R V > 0 and T > 0. We have the following estimates:

0 < VegaBA(S, V 2T, Z) ≤c

√
T ,

|VommaBA(S, V 2T, Z)| ≤c

√
T

V
,

|UltimaBA(S, V 2T, Z)| ≤c

√
T

V 2
,

where the generic constants depend polynomially on V .
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Proposition 39. Let S, Z ∈ R V > 0 and T > 0. We have:

∂2
S2CallBA(S, V 2T, Z) = ∂2

Z2CallBA(x, V 2T, Z)

=
VegaBA(S, V 2T, Z)

V T
,

∂3
S3CallBA(S, V 2T, Z) = −∂3

Z3CallBA(S, V 2T, Z)

= −VegaBA(S, V 2T, Z)
(S − Z)

V 3T 2
,

∂3
S4CallBA(S, V 2T, Z) = ∂4

Z4CallBA(S, V 2T, Z)

= VegaBA(S, V 2T, Z)
[ (S − Z)2

V 5T 3
− 1

V 3T 2

]
,

∂6
S6CallBA(S, V 2T, Z) = ∂6

Z6CallBA(S, V 2T, Z)

= VegaBA(S, V, T, Z)
[
− 6

(S − Z)2

V 7T 4
+

3

V 5T 3

]

+ VommaBA(S, V 2T, Z)
(S − Z)2

V 6T 4
.

8.3. Derivatives of δBS w.r.t the log spot, the log strike and the total

variance

Proposition 40. Let x, z ∈ R and y > 0. For any integer n ≥ 1, we have:

∂n
xnδBS(x, y, z) =(−1)n−1N ′(d1(x, y, z))

Hn−1(d1(x, y, z))

y
n
2

,

∂n
znδBS(x, y, z) = −N ′(d1(x, y, z))

Hn−1(d1(x, y, z))

y
n
2

.

Corollary 41. Let x, z ∈ R and y > 0. For any integers n ≥ 1 and m ≥ 1, we

have:

|x − z|m
(
|∂n

xnδBS(x, y, z)| + |∂n
znδBS(x, y, z)|

)
≤cy

m−n
2 ,

where the generic constants depend polynomially on y.

Proposition 42. Let x, z ∈ R and y > 0. We have:

∂yδBS(x, y, z) =
1

2
(∂2

z2 − ∂z)δ
BS(x, y, z) = −N ′(d1(x, y, z))

2y
d2(x, y, z).

8.4. Proof of Lemma 4

We proceed by induction. The key is to prove the above technical result:

Lemma 43. Let (mt)t∈[0,T ] be a square integrable and predictable process, (λt)t∈[0,T ]

be a measurable and bounded deterministic function and ϕ be a C∞
b function. Then,
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we have:

E

(
ϕ(

∫ T

0

λtdWt)

∫ T

0

mtdWt

)
= E

(
ϕ(1)(

∫ T

0

λtdWt)

∫ T

0

λtmtdt
)
.

Proof. We propose two proofs: firstly we employ a PDE argument and secondly

we show that this is a straightforward application of the Malliavin calculus theory.

In the two points of view, we use the common notation for the diffusion process

(Zt)t∈[0,T ] = (
∫ t

0
λsdWs)t∈[0,T ] and we recall that (Ft)t∈[0,T ] denotes the augmented

filtration of the Brownian motion W .

⊲ PDE argument. We introduce u(t, x) = E[ϕ(ZT )|Zt = x] which solves the

following PDE with terminal condition:
{

∂tu(t, x) + 1
2λ2

t ∂
2
xxu(t, x) = 0, (t, x) ∈]0, T [×R,

u(T, x) = ϕ(x), x ∈ R.

Thanks to the above PDE and the assumption on ϕ, ∀i ∈ N, ∂i
xi(u(t, Zt))t∈[0,T ] is

a martingale and ∀t ∈ [0, T ], we have:

∂i
xiu(t, Zt) = E[ϕ(i)(ZT )|Ft] =E[ϕ(i)(ZT )] +

∫ t

0

∂i+1
xi+1u(s, Zs)λsdWs.

Then applying the L2-isometry for the product u(T, ZT )
∫ T

0
mtdWt =

ϕ(ZT )
∫ T

0
mtdWt, it readily comes:

E

(
ϕ(ZT )

∫ T

0

mtdWt

)
=

∫ T

0

E[∂xu(t, Zt)λtmt]dt = E

(
ϕ(1)(ZT )

∫ T

0

λtmtdt
)
,

where at the last equality we have used the martingale property of ∂x(u(t, Zt))t∈[0,T ].

⊲ Malliavin calculus approach. The result directly comes from the duality

relationship of Malliavin calculus (see [48, Lemma 1.2.1]) identifying the Itô integral∫ T

0
mtdWt with the Skorohod operator and observing that (ϕ(1)(ZT )λt)t∈[0,T ] is the

first Malliavin derivative of ϕ(ZT ).

Lemma 43 is a particular case of Lemma 4 for N = 1 and IN = 1 noting that ∀i ∈ N,

E

(
ϕ(i)(

∫ T

0
λtdWt)

)
= ∂i

εiE

(
ϕ(

∫ T

0
λtdWt + ε)

)
|ε=0, thanks to the regularity of ϕ.

For N = 1 and IN = 0, there is nothing to prove. Suppose that the formula (34) is

true for N ≥ 2. Then apply Lemma 43 if IN+1 = 1 to obtain:

E

(
ϕ(

∫ T

0

λtdWt)

∫ T

0

lN+1,tN+1

∫ tN+1

0

lN,tN
. . .

∫ t2

0

l1,t1dW I1
t1 . . .dW IN

tN
dW

IN+1

tN+1

)

=E

(
ϕ(IN+1)(

∫ T

0

λtdWt)

∫ T

0

l̂N+1,tN+1

×
∫ tN+1

0

lN,tN

∫ tN

0

. . .

∫ t2

0

l1,t1dW I1
t1 . . .dW IN

tN
dtN+1

)

=E

(
ϕ(IN+1)(

∫ T

0

λtdWt)

∫ T

0

(
lN,tN

∫ T

tN

l̂N+1,sds
) ∫ tN

0

. . .

∫ t2

0

l1,t1dW I1
t1 . . .dW IN

tN

)
,
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where at the last equality we have used the fact that
∫ T

0
ftZtdt =

∫ T

0
(
∫ T

t
fsds)dZt

for any continuous semi-martingale Z starting from 0 and any measurable

and bounded deterministic function f (apply the Itô formula to the product

(
∫ T

t
fsds)Zt). We easily conclude with the induction hypothesis and leave the de-

tails to the reader.

8.5. Applications of the expansions for time-independent CEV

model

We specify in this section the results and the practical calculus of the various ex-

pansion coefficients when the volatility has the form:

σ(S) = νSβ−1,

i.e. a CEV-type time-independent volatility with a level ν and a skew β ≤ 1.

Although the volatility and its derivatives are not bounded, we expect that our

expansions can be generalized to that model. Alternatively, to fit our assumptions,

we would need to modify the CEV volatility function σ near 0 and +∞, so that the

ellipticity and regularity conditions are met. The impact of such a modification has

been studied in the case of Limited CEV model in [51] where the authors show a

very small impact on prices. Observe in addition that the correction terms in our

expansions do no depend on the modification of σ at 0 and +∞.

To apply our different expansion theorems, we need to give the expressions of

the coefficients (Ci)1≤i≤8 defined in Definition 17, in Theorem 20 and in Lemmas

26-27. A straightforward calculus leads to:

a(x) =νex(β−1), a(1)(x) =(β − 1)a(x), a(2)(x) =(β − 1)2a(x),

a(x0) =νSβ−1
0 , a(k) =νKβ−1, a(xav) =ν(S0K)

β−1
2 ,

Σ(S) =νSβ , Σ(1)(S) =β
Σ(S)

S
, Σ(2)(S) =β(β − 1)

Σ(S)

S2
,

Σ(S0) =νSβ
0 , Σ(K) =νKβ , Σ(Sav) =ν(

S0 + K

2
)β .

Thus for β ∈ [0, 1], the magnitudes of M0(a) and M1(a) are mainly linked to those

of ν and ν(β − 1). At the limit case β = 1, the model coincides with the log-normal

proxy and M1(a) = 0. In the same spirit, ν and νβ are respectively linked to

M0(Σ) and M1(Σ). At the limit case β = 0, the model coincides with the normal

proxy and M1(Σ) = 0.

Finally, the expression of the coefficients (Ci)1≤i≤8 are:

C1(a;x)T
0 =(β − 1)a4(x)

T 2

2
, C2(a;x)T

0 =(β − 1)2a4(x)T 2,

C3(a;x)T
0 =(β − 1)2a6(x)

T 3

3
, C4(a;x)T

0 =C8(a;x)T
0 = (β − 1)2a6(x)

T 3

6

C5(a;x)T
0 =2(β − 1)2a2(x)T, C6(a;x)T

0 =(β − 1)2a4(x)
T 2

2
,
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C7(a;x)T
0 =(β − 1)a2(x)T,

C1(Σ; S)T
0 =β

Σ4(S)

S

T 2

2
, C2(Σ; S)T

0 =β(2β − 1)
Σ4(S)

S2

T 2

2
,

C3(Σ; S)T
0 =β(2β − 1)

Σ6(S)

S2

T 3

6
, C4(Σ; S)T

0 =C8(Σ; S)T
0 = β2 Σ6(S)

S2

T 3

6
,

C5(Σ; S)T
0 =β(2β − 1)

Σ2(S)

S2
T, C6(Σ; S)T

0 =β2 Σ4(S)

S2

T 2

2
,

C7(Σ; S)T
0 =β

Σ2(S)

S
T,

where x = x0, k, xav and S = S0, K, Sav.

We now give the expressions of the coefficients γi, πi, χi and Ξi defined in

Definition 21 useful to compute the implied volatility expansions:

γ0(a;x)T
0 =

(β − 1)2

24
a3(x)T [1 − a2(x)T

4
], γ1(a;x)T

0 =
(β − 1)

2
a(x),

γ2(a;x)T
0 =

(β − 1)2

12
a(x), π0(a;x)T

0 =γ0(a;x)T
0 ,

π1(a;x)T
0 =0, π2(a;x)T

0 = − (β − 1)2

24
a(x),

χ1(Σ; S)T
0 =

βΣ(S)

2S
, χ0(Σ; S)T

0 =
β(β − 2)

24S2
Σ3(S)T,

χ2(Σ; S)T
0 =

β(β − 2)

12S2
Σ(S), Ξ0(Σ; S)T

0 =χ0(Σ; S)T
0 ,

Ξ2(Σ; S)T
0 = − β(β + 1)

24S2
Σ(S), Ξ1(Σ; S)T

0 =0.

For example, the second and third order Black-Scholes and Bachelier implied volatil-

ity expansions based on the mid-points are explicitely given by:

σI(x0, T, k) ≈ ν(S0K)
β−1

2 ,

σI(x0, T, k) ≈ ν(S0K)
β−1

2

[
1 +

(β − 1)2ν2T

24
(S0K)β−1(1 − ν2T (S0K)β−1

4
)

− (β − 1)2

24
log2(

S0

K
)
]
,

ΣI(S0, T, K) ≈ ν(
S0 + K

2
)β ,

ΣI(S0, T, K) ≈ ν(
S0 + K

2
)β

[
1 +

β(β − 2)ν2T

24
(
S0 + K

2
)2β−2

− β(β + 1)

6
(
S0 − K

S0 + K
)2

]
,

which are very simple formulas. The last formula coincides with the intermediate

equation (A.28b) in [5].
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Table 7. CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility
using the 6 second order price approxima-
tions ImpVol(AppPriceLN(2,x0)), ImpVol(AppPriceLN(2,k)), ImpVol(AppPriceLN(2,xav)),

ImpVol(AppPriceN(2,S0)), ImpVol(AppPriceN(2,K)) and ImpVol(AppPriceN(2,Sav)).

3M −12 −6 −2 −1 0 0 0 0 0 −1 −3 −5 −8
−17 −7 −3 −1 0 0 0 0 0 −1 −2 −4 −7

0 0 0 0 0 0 0 0 0 0 0 0 0
−577 −79 −18 −1 2 2 2 2 2 0 −22 −44 −73
−124 −59 −20 −2 2 2 2 2 2 1 −21 −53 −125

21 14 9 6 3 2 2 2 3 4 9 11 15

6M −13 −3 −1 −1 0 0 0 0 0 −1 −2 −4 −15

−17 −4 −2 −1 0 0 0 0 0 −1 −2 −4 −11
1 0 0 0 0 0 0 0 0 0 0 0 1

−269 −18 0 5 5 4 3 4 4 1 −5 −35 −117

−138 −26 −4 4 5 4 3 4 4 3 −2 −30 −238
33 16 11 7 5 4 3 3 4 8 10 16 26

1Y −23 −8 −2 −1 0 0 0 0 0 −1 −4 −8 −37
−34 −9 −2 −1 0 0 0 0 0 −1 −4 −7 −23

1 1 0 0 0 0 0 0 0 0 0 0 1
−848 −48 6 10 8 7 6 7 9 6 −21 −59 −235
−240 −69 −1 8 8 7 6 7 9 9 −9 −45 ND

64 36 20 14 8 7 6 7 9 13 22 29 54

1.5Y −28 −11 −3 −2 −1 0 0 0 −1 −2 −6 −12 −50
−41 −12 −4 −2 −1 0 0 0 −1 −2 −5 −10 −30

2 1 0 0 0 0 0 0 0 0 0 1 2

−644 −50 10 16 14 10 9 11 12 10 −31 −95 −299
−291 −90 −4 10 14 10 9 11 12 13 −9 −71 ND

89 52 30 23 14 10 9 11 12 19 32 44 74

2Y −36 −14 −5 −2 −1 −1 −1 −1 −1 −2 −6 −18 −91
−56 −17 −6 −2 −1 −1 −1 −1 −1 −2 −6 −14 −44

2 1 0 0 0 0 −1 0 0 0 0 1 2
ND −65 12 22 18 15 13 14 17 13 −27 −138 −418

−373 −129 −13 18 18 15 13 14 17 18 −1 −107 ND
119 72 44 27 17 15 13 14 17 25 39 60 105

3Y −64 −18 −11 −3 −1 −1 −1 −1 −1 −3 −10 −27 −141
−122 −21 −13 −3 −1 −1 −1 −1 −1 −3 −9 −21 −57

4 1 1 0 −1 −1 −1 −1 0 0 1 1 3
ND −43 6 35 28 22 19 20 25 17 −62 −208 −534

−638 −154 −68 27 28 22 19 20 25 27 −8 −159 −2260
208 102 81 41 28 21 19 20 25 37 61 87 146

5Y −106 −31 −13 −6 −2 −1 −1 −1 −2 −5 −17 −45 −472

−256 −38 −14 −6 −2 −1 −1 −1 −2 −5 −15 −32 −88
7 2 1 0 −1 −1 −1 −1 −1 0 1 2 5

ND −41 53 64 49 39 32 35 41 25 −116 −334 −753
−1000−295 −55 34 48 39 32 35 43 47 −4 −249 ND

377 183 119 80 49 38 32 34 43 60 99 140 233

10Y −172 −69 −30 −10 −4 −3 −2 −2 −4 −9 −35 −103 ND
ND −95 −34 −10 −4 −3 −2 −2 −4 −9 −28 −61 −159
15 6 2 0 −2 −2 −2 −2 −1 0 2 5 10
ND 40 158 146 109 82 67 70 80 32 −271 −625 −1100

−1531−762 −232 75 103 82 67 70 85 95 16 −781 ND
786 451 289 166 108 80 67 68 84 120 192 267 439



July 25, 2012 11:53 World Scientific Review Volume - 9.75in x 6.5in BompisGobet˙ws-rv975x65˙final˙2

Asymptotic and non asymptotic approximations for option valuation 69

Table 8. CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied
volatility using the 6 second order implied volatility approximations AppImpVolLN(2,x0),
AppImpVolLN(2,k), AppImpVolLN(2,xav), AppImpVolN(2,S0), AppImpVolN(2,K) and

AppImpVolN(2,Sav).

3M −1 −1 0 0 0 0 0 0 0 0 0 −1 −1
−1 −1 −1 0 0 0 0 0 0 0 0 −1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0
27 18 12 7 4 2 2 2 3 5 11 15 19
29 19 12 7 4 2 2 2 3 5 11 15 18

21 14 9 6 3 2 2 2 3 4 9 11 15

6M −2 −1 −1 0 0 0 0 0 0 0 −1 −1 −1

−2 −1 −1 0 0 0 0 0 0 0 −1 −1 −1
1 0 0 0 0 0 0 0 0 0 0 0 1
41 20 13 9 5 4 3 4 5 10 13 21 36
44 21 14 9 6 4 3 4 5 9 12 20 33
33 16 11 7 5 4 3 3 4 8 10 16 26

1Y −3 −2 −1 −1 0 0 0 0 0 −1 −1 −2 −3
−4 −2 −1 −1 0 0 0 0 0 −1 −1 −1 −3

1 1 0 0 0 0 0 0 0 0 0 0 1
79 44 24 17 9 7 6 7 10 16 28 39 74
88 48 25 17 9 7 6 7 10 15 27 36 67
64 36 20 14 8 7 6 7 9 13 22 29 54

1.5Y −4 −3 −1 −1 −1 0 0 0 −1 −1 −2 −2 −4
−5 −3 −2 −1 −1 0 0 0 −1 −1 −2 −2 −4

2 1 0 0 0 0 0 0 0 0 0 1 2

108 64 36 27 15 10 9 11 13 23 42 59 104
123 69 38 28 15 10 9 11 13 22 39 54 91

89 52 30 23 14 10 9 11 12 19 32 44 74

2Y −6 −4 −2 −1 −1 −1 −1 −1 −1 −1 −2 −3 −6
−7 −4 −2 −1 −1 −1 −1 −1 −1 −1 −2 −3 −5

2 1 0 0 0 0 −1 0 0 0 0 1 2
145 87 52 31 19 15 13 14 19 30 50 80 149

167 97 55 32 19 15 13 14 18 29 47 72 127
119 72 44 27 17 15 13 14 17 25 39 60 105

3Y −10 −5 −4 −2 −1 −1 −1 −1 −1 −2 −3 −5 −9
−12 −6 −4 −2 −1 −1 −1 −1 −1 −2 −3 −4 −7

4 1 1 0 −1 −1 −1 −1 0 0 1 1 3
249 121 96 47 31 22 19 20 28 45 80 120 212
301 136 105 49 31 22 19 20 28 43 73 106 176
208 102 81 41 28 21 19 20 25 37 61 87 146

5Y −18 −9 −5 −4 −2 −1 −1 −1 −2 −3 −5 −8 −14

−23 −10 −6 −4 −2 −1 −1 −1 −2 −3 −5 −7 −11
7 2 1 0 −1 −1 −1 −1 −1 0 1 2 5

443 216 140 92 52 39 32 35 48 74 132 196 352
571 252 155 98 53 40 32 35 47 69 117 167 277
377 183 119 80 49 38 32 34 43 60 99 140 233

10Y −33 −19 −12 −7 −4 −3 −2 −2 −3 −6 −10 −16 −29
−47 −24 −14 −7 −4 −3 −2 −2 −3 −5 −9 −12 −21

15 6 2 0 −2 −2 −2 −2 −1 0 2 5 10
904 522 333 188 117 82 67 70 94 149 264 394 725
1289 660 390 203 120 83 67 70 91 137 224 313 510
786 451 289 166 108 80 67 68 84 120 192 267 439
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Table 9. CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility
using the 6 third order price approxima-
tions ImpVol(AppPriceLN(3,x0)), ImpVol(AppPriceLN(3,k)), ImpVol(AppPriceLN(3,xav)),

ImpVol(AppPriceN(3,S0)), ImpVol(AppPriceN(3,K)) and ImpVol(AppPriceN(3,Sav)).

3M −1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
6 −4 −2 −1 0 0 0 0 0 0 2 0 −6

−22 −1 2 1 0 0 0 0 0 0 −2 −3 −2

−1 0 0 0 0 0 0 0 0 0 0 0 0

6M −1 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0

−17 −4 −1 0 0 0 0 0 0 1 2 4 −12

−13 4 2 0 0 0 0 0 0 −1 −1 −5 −12
−1 0 0 0 0 0 0 0 0 0 0 0 −1

1Y 1 1 0 0 0 0 0 0 0 0 0 0 1
−2 0 0 0 0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0
−62 −15 −2 −1 0 0 0 0 0 1 6 9 −56
−34 13 3 1 0 0 0 0 0 −1 −5 −12 −45
−3 0 0 0 0 0 0 0 0 0 0 0 −3

1.5Y −2 0 0 0 0 0 0 0 0 0 0 0 4
3 0 0 0 0 0 0 0 0 0 0 0 −3
0 0 0 0 0 0 0 0 0 0 0 0 0

−100 −23 −4 −2 0 0 0 0 0 2 11 14 −83
−36 21 7 3 0 0 0 0 0 −1 −8 −23 −98

−4 −1 0 0 0 0 0 0 0 0 0 −1 −5

2Y −3 −1 0 0 0 0 0 0 0 0 0 1 10
4 1 0 0 0 0 0 0 0 0 0 −1 −7

0 0 0 0 0 0 0 0 0 0 0 0 0
−163 −36 −8 −1 0 0 0 0 0 3 14 17 −177

−63 31 14 2 0 0 0 0 0 −2 −9 −38 −243
−7 −1 0 0 0 0 0 0 0 0 0 −1 −12

3Y −9 −1 0 0 0 0 0 0 0 0 0 1 16
11 1 0 0 0 0 0 0 0 0 0 −1 −10
0 0 0 0 0 0 0 0 0 0 0 0 0

−818 −48 −23 −2 −1 0 0 0 1 5 29 16 −275
−250 52 41 4 1 0 0 0 −1 −3 −19 −69 ND
−24 −2 −1 0 0 0 0 0 0 0 −1 −3 −23

5Y −18 −1 0 0 0 0 0 0 0 0 1 2 39

23 1 0 0 0 0 0 0 0 0 −1 −2 −21
0 0 0 0 0 0 0 0 0 0 0 0 0

ND −103 −26 −7 −2 −1 0 0 1 12 57 −10 −522
−597 90 65 17 1 1 0 −1 −2 −5 −38 −143 ND
−73 −5 −1 −1 0 0 0 0 0 0 −2 −7 −76

10Y −34 −5 −1 0 0 0 0 0 0 0 1 7 147
28 3 1 0 0 0 0 0 0 0 −1 −7 −59
0 0 0 0 0 0 0 0 0 0 0 0 0
ND −340 −83 −16 −6 −4 −1 1 4 42 109 −222 −987

−1200−42 230 49 5 1 −1 −3 −4 −13 −94 −588 ND
−214 −29 −7 −3 −2 −1 −1 −1 −1 −1 −6 −28 ND
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Table 10. CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility using
the 6 third order implied volatility approximations AppImpVolLN(3,x0), AppImpVolLN(3,k),

AppImpVolLN(3,xav), AppImpVolN(3,S0), AppImpVolN(3,K) and AppImpVolN(3,Sav).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
4 2 1 0 0 0 0 0 0 0 −1 −2 −3

−5 −3 −1 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0

6M 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
7 2 1 0 0 0 0 0 0 −1 −1 −3 −8

−10 −3 −1 0 0 0 0 0 0 0 1 2 5

0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
17 6 2 1 0 0 0 0 0 −1 −4 −7 −25

−30 −10 −2 −1 0 0 0 0 0 1 3 5 14
1 0 0 0 0 0 0 0 0 0 0 0 1

1.5Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
25 10 3 2 0 0 0 0 0 −2 −7 −15 −43

−49 −17 −5 −2 0 0 0 0 0 1 5 9 22
2 1 0 0 0 0 0 0 0 0 0 1 2

2Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

37 16 6 1 0 0 0 0 0 −2 −9 −24 −79
−80 −29 −9 −2 0 0 0 0 0 2 6 14 35

4 1 0 0 0 0 0 0 0 0 0 1 4

3Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
77 23 15 2 0 0 0 0 −1 −5 −20 −47 −143

−214 −48 −28 −4 0 0 0 0 0 3 11 23 55
12 2 1 0 0 0 0 0 0 0 1 2 8

5Y −1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
160 50 22 7 0 −1 0 0 −2 −10 −47 −108 −350

−618 −130 −47 −15 −1 0 0 −1 0 6 22 43 102
36 7 2 0 0 0 0 0 0 0 2 6 21

10Y −1 −1 −1 0 0 0 0 0 0 0 1 1 1
2 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

362 155 68 16 0 −3 −1 1 −4 −34 −153 −368 −1307
−2195−631 −216 −44 −6 1 −1 −3 0 14 53 102 231

113 34 10 0 −1 −1 −1 −1 −1 1 8 21 70
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Table 11. CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility using

the 4 approximations Av.ImpVol(AppPriceLN(3,.)), Av.AppImpVolLN(3,.), (HF), and (HLF).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0

1.5Y 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0

−2 −1 0 0 0 0 0 0 0 0 0 0 −2
0 0 0 0 0 0 0 0 0 0 0 0 0

2Y 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0
−3 −1 0 0 0 0 0 0 0 0 0 −1 −3

0 0 0 0 0 0 0 0 0 0 0 0 0

3Y 1 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0

−9 −2 −1 0 0 0 0 0 0 0 −1 −2 −6
0 0 0 0 0 0 0 0 0 0 0 0 0

5Y 2 0 0 0 0 0 0 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 0
−24 −5 −2 0 0 0 0 0 0 0 −2 −4 −14

0 0 0 0 0 0 0 0 0 0 0 0 0

10Y −3 −1 0 0 0 0 0 0 0 0 0 0 44
0 0 0 0 0 0 0 0 0 0 0 0 0

−69 −24 −8 −1 0 0 0 0 0 −1 −6 −14 −44
0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 12. CEV model (β = 0.8, ν = 0.25): average per categories of strikes of errors in
bps on the BS implied volatility using the 6 approximations Av.ImpVol(AppPriceLN(3,.)),
ImpVol(AppPriceLN(3,xav)), Av.AppImpVolLN(3,.), AppImpVolLN(3,xav), (HF), and (HLF).

far ITM ITM ATM OTM far OTM

3M 6.7E−2 1.4E−4 −7.9E−6 1.8E−4 1.5E−2
−2.4E−4 −1.4E−5 −1.3E−5 −1.3E−5 −9.9E−5

4.3E−4 9.1E−5 −8.2E−6 7.3E−5 2.6E−4
−3.4E−5 −9.6E−6 −1.3E−5 −8.7E−6 −1.7E−5
−9.1E−2 −8.6E−3 2.0E−4 −7.3E−3 −4.8E−2
−6.4E−5 1.7E−4 2.4E−4 1.5E−4 −9.8E−6

6M 3.6E−2 1.6E−4 −4.3E−5 1.5E−4 3.2E−2

−3.0E−4 −4.3E−5 −5.3E−5 −3.6E−5 −2.4E−4
1.0E−3 1.5E−4 −4.3E−5 1.4E−4 7.8E−4

−6.5E−5 −4.3E−5 −5.3E−5 −3.5E−5 −4.9E−5
−1.6E−1 −7.9E−3 9.2E−4 −8.6E−3 −1.3E−1

2.5E−4 8.6E−4 9.5E−4 7.1E−4 1.3E−4

1Y 9.6E−2 5.1E−4 −1.9E−4 4.4E−4 1.9E−1
−1.1E−3 −1.8E−4 −2.1E−4 −1.4E−4 −1.1E−3

4.2E−3 4.3E−4 −1.9E−4 5.5E−4 3.0E−3
−2.5E−4 −1.8E−4 −2.1E−4 −1.4E−4 −2.1E−4
−6.3E−1 −2.2E−2 3.8E−3 −3.6E−2 −5.1E−1

1.2E−3 3.7E−3 3.8E−3 2.8E−3 4.4E−4

1.5Y 9.2E−2 1.2E−3 −3.9E−4 7.5E−4 2.8E−1
−1.8E−3 −4.0E−4 −4.5E−4 −3.2E−4 −2.1E−3

8.5E−3 1.1E−3 −3.9E−4 1.1E−3 6.1E−3
−4.9E−4 −3.9E−4 −4.5E−4 −3.0E−4 −4.0E−4
−1.2E+0 −5.5E−2 8.3E−3 −7.3E−2 −9.9E−1

3.9E−3 8.4E−3 8.6E−3 6.2E−3 1.1E−3

2Y 1.4E−1 1.7E−3 −6.4E−4 1.4E−3 8.7E−1

−3.1E−3 −7.1E−4 −7.9E−4 −5.3E−4 −4.7E−3
1.5E−2 1.8E−3 −6.4E−4 1.7E−3 1.1E−2

−8.9E−4 −7.1E−4 −7.9E−4 −5.1E−4 −8.1E−4

−2.0E+0 −9.6E−2 1.5E−2 −1.0E−1 −1.9E+0
7.5E−3 1.5E−2 1.5E−2 1.1E−2 1.2E−3

3Y 5.8E−1 2.5E−3 −1.5E−3 1.9E−3 1.5E+0
−9.9E−3 −1.6E−3 −1.7E−3 −1.1E−3 −9.4E−3

3.7E−2 5.3E−3 −1.5E−3 3.8E−3 2.2E−2
−2.4E−3 −1.5E−3 −1.7E−3 −1.1E−3 −1.6E−3
−5.2E+0 −3.5E−1 3.4E−2 −2.6E−1 −3.8E+0

1.8E−2 3.5E−2 3.5E−2 2.4E−2 3.1E−3

5Y 1.2E+0 6.2E−3 −3.6E−3 1.2E−3 4.5E+0
−3.0E−2 −4.0E−3 −4.2E−3 −2.7E−3 −2.7E−2

1.0E−1 1.2E−2 −3.5E−3 9.4E−3 5.4E−2

−7.2E−3 −3.9E−3 −4.3E−3 −2.5E−3 −4.4E−3
−1.5E+1 −6.9E−1 9.4E−2 −6.7E−1 −9.1E+0

6.5E−2 1.1E−1 9.7E−2 6.3E−2 7.6E−3

10Y −2.1E+0 −4.6E−2 −1.1E−2 −3.2E−2 2.2E+1
−9.7E−2 −1.1E−2 −1.2E−2 −7.5E−3 −1.3E−1

2.8E−1 3.8E−2 −1.1E−2 2.9E−2 1.7E−1
−2.3E−2 −1.1E−2 −1.3E−2 −6.9E−3 −1.8E−2
−4.6E+1 −3.1E+0 3.8E−1 −2.4E+0 −2.9E+1

4.4E−1 4.8E−1 4.0E−1 2.3E−1 2.2E−2
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Table 13. CEV model (β = 0.2, ν = 0.25): errors in bps on the BS implied
volatility using the 6 approximations ImpVol(AppPriceLN(3,xav)), AppImpVolLN(3,xav),
ImpVol(AppPriceN(3,Sav)), AppImpVolN(3,Sav), (HF) and (HLF).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0

−5 −1 0 0 0 0 0 0 0 0 0 −1 −2
0 0 0 0 0 0 0 0 0 0 0 0 0

1.5Y −1 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0

−9 −3 −1 0 0 0 0 0 0 0 −1 −1 −4
−1 0 0 0 0 0 0 0 0 0 0 0 0

2Y −1 0 0 0 0 0 0 0 0 0 0 0 −3
−1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 1

−15 −5 −1 0 0 0 0 0 0 0 −1 −3 −8
−1 −1 0 0 0 0 0 0 0 0 0 0 0

3Y −4 −1 −1 −1 −1 −1 0 0 0 0 0 −1 −8
−2 −1 −1 −1 −1 −1 0 0 0 0 0 0 −1

7 2 2 1 0 0 0 0 0 0 0 0 0

8 3 2 1 0 0 0 0 0 0 0 1 1
−45 −9 −5 −1 0 0 0 0 0 −1 −2 −5 −15
−4 −1 −1 0 0 0 0 0 0 0 0 0 0

5Y 2 −1 −2 −2 −2 −2 −1 −1 −1 0 0 −2 −37
7 −1 −2 −2 −2 −2 −1 −1 −1 0 0 0 −1

47 13 6 4 2 1 1 1 1 1 1 1 0
50 13 7 4 2 1 1 1 1 1 1 1 3

−117 −26 −9 −3 0 0 0 0 0 −1 −6 −12 −31
4 0 0 0 0 0 0 0 0 0 −1 −1 −1

10Y 148 84 41 12 2 −2 −3 −2 −2 −1 −2 −13 ND
159 85 41 12 2 −2 −3 −2 −2 −1 −1 −1 −5
530 221 109 45 21 11 6 3 2 2 2 2 −8
541 224 111 45 21 11 6 3 2 2 2 3 6

−112 −6 18 18 12 8 4 2 −1 −5 −17 −33 −73
271 123 65 29 14 8 4 2 0 −1 −1 −1 −1
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Table 14. CEV model (β = 0.2, ν = 0.25): average per categories of strikes of errors in
bps on the BS implied volatility using the 6 approximations ImpVol(AppPriceLN(3,xav)),

AppImpVolLN(3,xav), ImpVol(AppPriceN(3,Sav)), AppImpVolN(3,Sav), (HF) and (HLF).

far ITM ITM ATM OTM far OTM

3M −5.4E−2 −4.0E−3 −3.4E−3 −3.3E−3 −2.9E−2

−9.3E−3 −3.1E−3 −3.4E−3 −1.9E−3 −4.1E−3
2.5E−2 6.3E−3 1.8E−3 3.7E−3 8.9E−3

3.9E−2 7.2E−3 1.8E−3 4.5E−3 1.6E−2
−3.8E−1 −3.9E−2 7.9E−5 −2.9E−2 −1.6E−1
−2.1E−2 −4.6E−3 3.2E−4 −2.6E−3 −7.9E−3

6M −6.9E−2 −1.5E−2 −1.4E−2 −7.5E−3 −7.4E−2
−2.1E−2 −1.4E−2 −1.4E−2 −7.2E−3 −1.1E−2

6.8E−2 1.6E−2 6.9E−3 9.6E−3 2.5E−2
9.0E−2 1.7E−2 6.9E−3 1.0E−2 4.3E−2

−7.2E−1 −4.5E−2 1.5E−3 −3.9E−2 −4.3E−1

−5.6E−2 −7.4E−3 1.8E−3 −5.4E−3 −2.2E−2

1Y −2.5E−1 −6.6E−2 −5.5E−2 −2.8E−2 −3.8E−1
−9.9E−2 −6.6E−2 −5.5E−2 −2.6E−2 −4.6E−2

3.2E−1 6.4E−2 2.8E−2 3.5E−2 7.8E−2
4.1E−1 6.7E−2 2.8E−2 3.8E−2 1.5E−1

−3.0E+0 −1.4E−1 8.2E−3 −1.5E−1 −1.6E+0

−2.6E−1 −2.3E−2 8.8E−3 −1.9E−2 −7.2E−2

1.5Y −4.4E−1 −1.6E−1 −1.2E−1 −6.2E−2 −7.4E−1

−2.4E−1 −1.6E−1 −1.2E−1 −5.6E−2 −8.8E−2
7.4E−1 1.7E−1 6.2E−2 7.1E−2 1.5E−1
8.8E−1 1.8E−1 6.2E−2 7.8E−2 2.9E−1

−5.6E+0 −3.5E−1 1.7E−2 −3.0E−1 −3.0E+0
−5.6E−1 −5.8E−2 1.9E−2 −3.5E−2 −1.3E−1

2Y −8.0E−1 −3.1E−1 −2.2E−1 −9.6E−2 −1.9E+0
−4.9E−1 −3.1E−1 −2.2E−1 −9.0E−2 −1.8E−1

1.5E+0 3.2E−1 1.2E−1 1.1E−1 2.1E−1
1.7E+0 3.3E−1 1.2E−1 1.2E−1 5.1E−1

−1.0E+1 −6.1E−1 3.0E−2 −4.3E−1 −5.5E+0
−1.1E+0 −9.2E−2 3.6E−2 −5.5E−2 −2.1E−1

3Y −2.3E+0 −8.0E−1 −4.8E−1 −2.0E−1 −4.3E+0
−1.4E+0 −8.0E−1 −4.8E−1 −1.7E−1 −3.5E−1

4.8E+0 9.8E−1 2.8E−1 2.4E−1 3.4E−1

5.4E+0 1.0E+0 2.8E−1 2.6E−1 9.3E−1
−2.7E+1 −2.1E+0 8.9E−2 −1.0E+0 −9.9E+0

−2.7E+0 −2.7E−1 9.7E−2 −1.1E−1 −3.7E−1
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Table 15. CEV model (β = 0.5, ν = 0.4): errors in bps on the BS implied volatility using

the 4 approximations ImpVol(AppPriceLN(3,xav)), AppImpVolLN(3,xav), (HF) and (HLF).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

6M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
−4 −1 0 0 0 0 0 0 0 0 0 −1 −3

0 0 0 0 0 0 0 0 0 0 0 0 0

1.5Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

−8 −2 0 0 0 0 0 0 0 0 −1 −2 −5
0 0 1 1 0 0 0 0 0 0 0 0 0

2Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
−13 −4 0 1 1 1 1 1 1 0 −1 −3 −10

1 1 1 1 1 1 1 1 1 0 0 0 0

3Y −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0

−37 −5 −2 2 2 2 2 2 1 0 −2 −6 −19
3 3 3 3 2 2 2 2 1 1 0 0 0

5Y 6 1 0 −1 −1 −1 −1 −1 −1 −1 0 0 −1

6 1 0 −1 −1 −1 −1 −1 −1 −1 0 0 0
−88 −9 4 7 8 7 6 5 3 1 −5 −14 −43

25 15 12 10 8 7 6 5 3 2 1 0 −1

10Y 92 61 40 22 13 8 4 2 1 0 0 −1 −8
91 61 40 22 13 8 4 2 1 0 0 0 −1

−58 54 76 69 54 42 31 23 15 4 −17 −44 −118
286 173 120 79 56 42 31 23 16 9 4 1 −2
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Table 16. CEV model (β = 0.5, ν = 0.4): average per categories of strikes of errors in
bps on the BS implied volatility using the 4 approximations ImpVol(AppPriceLN(3,xav)),

AppImpVolLN(3,xav), (HF) and (HLF).

far ITM ITM ATM OTM far OTM

3M −6.9E−3 −5.3E−3 −5.4E−3 −3.6E−3 −3.2E−3
−4.6E−3 −5.3E−3 −5.4E−3 −3.6E−3 −2.2E−3
−3.8E−1 −2.9E−2 1.1E−2 −2.4E−2 −1.8E−1

−5.9E−3 8.0E−3 1.1E−2 5.4E−3 −3.0E−3

6M −2.3E−2 −2.3E−2 −2.1E−2 −1.5E−2 −1.1E−2

−2.1E−2 −2.3E−2 −2.1E−2 −1.5E−2 −8.3E−3
−6.8E−1 4.2E−3 4.4E−2 −1.1E−2 −4.8E−1

1.1E−2 4.4E−2 4.5E−2 2.8E−2 −3.4E−3

1Y −9.9E−2 −9.5E−2 −8.2E−2 −5.3E−2 −4.2E−2
−9.5E−2 −9.4E−2 −8.2E−2 −5.3E−2 −2.8E−2
−2.6E+0 8.3E−2 1.8E−1 −5.3E−2 −1.8E+0

8.7E−2 2.0E−1 1.8E−1 1.0E−1 −1.5E−2

1.5Y −2.3E−1 −2.1E−1 −1.7E−1 −1.1E−1 −7.9E−2

−2.2E−1 −2.1E−1 −1.7E−1 −1.1E−1 −5.2E−2
−4.7E+0 2.0E−1 4.1E−1 −7.7E−2 −3.5E+0

3.4E−1 5.0E−1 4.1E−1 2.4E−1 −2.5E−2

2Y −4.0E−1 −3.6E−1 −2.9E−1 −1.8E−1 −1.5E−1
−3.9E−1 −3.6E−1 −2.9E−1 −1.8E−1 −8.1E−2

−8.2E+0 4.3E−1 7.6E−1 −3.7E−2 −6.7E+0
8.1E−1 9.7E−1 7.7E−1 4.2E−1 −6.8E−2

3Y −7.0E−1 −7.2E−1 −5.7E−1 −3.3E−1 −3.0E−1

−6.6E−1 −7.2E−1 −5.8E−1 −3.3E−1 −1.4E−1
−2.1E+1 7.9E−1 1.8E+0 −2.2E−1 −1.3E+1

3.0E+0 2.6E+0 1.8E+0 8.8E−1 −1.2E−1
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Table 17. CEV model (β = 0.8, ν = 0.25): errors in bps on the deltas using the 6 ap-
proximations AppDeltaLN(1,x0), AppDeltaLN(1,k), AppDeltaLN(1,xav), AppDeltaLN(2,x0),

AppDeltaLN(2,k) and AppDeltaLN(2,xav).

3M 1 2 2 1 1 0 0 0 −1 −1 −2 −2 −2
1 0 0 −1 −1 0 0 0 0 1 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 3 3 2 1 1 1 0 −1 −1 −2 −3 −4 −4

1 −1 −1 −1 −1 0 0 0 1 1 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 5 5 3 3 1 1 0 −1 −2 −4 −6 −8 −9

1 −2 −3 −2 −1 0 0 0 1 2 2 1 −3
0 0 0 1 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

1.5Y 7 7 5 4 2 1 0 −2 −3 −5 −9 −13 −15
0 −3 −4 −3 −2 0 0 1 1 3 3 1 −4
0 0 1 1 1 0 0 −1 −1 −1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

2Y 9 9 7 5 3 2 0 −2 −4 −7 −12 −18 −20
0 −4 −6 −4 −2 −1 0 1 2 4 5 0 −6
0 0 1 1 1 1 0 −1 −1 −1 −1 0 0

1 0 0 0 0 0 0 0 0 0 0 1 2
1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

3Y 12 12 10 6 4 2 0 −3 −6 −11 −19 −28 −32
0 −8 −8 −6 −3 −1 0 1 3 6 6 −1 −9

0 0 1 1 1 1 0 −1 −2 −2 −1 0 1
1 0 0 0 0 0 0 0 0 0 1 1 4

1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

5Y 16 17 13 10 7 4 0 −5 −10 −18 −34 −51 −61
−3 −13 −14 −10 −5 −2 0 1 5 10 9 −4 −15

0 1 2 2 2 1 0 −2 −3 −3 −1 0 1
3 1 1 0 0 0 0 0 0 1 1 3 10
3 1 0 0 0 0 0 0 0 0 1 2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0

10Y 24 26 21 16 12 7 −1 −8 −19 −37 −76 −118 −145
−16 −26 −26 −17 −9 −4 −1 2 8 20 13 −17 −23
−1 1 3 4 4 2 −1 −3 −5 −6 −2 1 2

4 2 1 1 1 1 1 1 1 2 3 8 36
6 2 0 0 0 1 1 1 0 0 3 5 −6
0 0 0 0 0 1 1 1 1 0 0 −1 −1
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Table 18. CEV model (β = 0.8, ν = 0.25): average per categories of strikes of errors in bps
on the deltas using the 2 approximations AppDeltaLN(1,xav) and AppDeltaLN(2,xav).

far ITM ITM ATM OTM far OTM

3M −3.1E−2 7.1E−2 −1.9E−3 −8.0E−2 4.0E−2
−1.8E−3 2.4E−4 3.6E−3 4.7E−4 −2.4E−3

6M −1.1E−2 2.3E−1 −6.0E−3 −2.3E−1 4.8E−2
−4.6E−3 5.0E−3 1.1E−2 4.4E−3 −6.1E−3

1Y −4.0E−2 4.5E−1 −1.9E−2 −4.5E−1 7.9E−2
−1.4E−2 1.7E−2 3.0E−2 1.2E−2 −1.6E−2

1.5Y −1.9E−2 6.8E−1 −1.2E−1 −6.6E−1 1.4E−1

−2.4E−2 2.8E−2 5.3E−2 2.4E−2 −3.2E−2

2Y −2.4E−2 8.7E−1 −4.8E−2 −9.6E−1 2.1E−1

−3.6E−2 4.4E−2 7.9E−2 3.9E−2 −4.9E−2

3Y 3.9E−2 1.2E+0 −9.4E−2 −1.4E+0 3.6E−1

−5.7E−2 6.7E−2 1.4E−1 6.2E−2 −9.5E−2

5Y 6.3E−2 2.0E+0 −1.9E−1 −2.3E+0 6.5E−1
−1.2E−1 1.4E−1 2.8E−1 1.2E−1 −2.1E−1

10Y 8.9E−2 3.4E+0 −5.6E−1 −4.3E+0 1.5E+0
−3.4E−1 2.5E−1 6.2E−1 2.3E−1 −6.1E−1
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Table 19. CEV model (β = 0.2, ν = 0.25): errors in bps on the deltas using the 6 ap-
proximations AppDeltaLN(1,x0), AppDeltaLN(1,k), AppDeltaLN(1,xav), AppDeltaLN(2,x0),

AppDeltaLN(2,k) and AppDeltaLN(2,xav).

3M 19 27 25 18 11 6 0 −6 −11 −17 −30 −31 −27
9 −1 −10 −13 −9 −3 0 3 7 9 −3 −7 −6

−1 −1 0 2 2 2 0 −2 −2 −1 0 0 0
5 3 2 1 1 0 0 0 0 1 2 3 5
3 3 2 0 0 0 0 0 0 0 1 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0

6M 51 45 34 24 16 9 0 −8 −15 −31 −41 −59 −58

−7 −29 −27 −19 −10 −3 0 4 9 17 13 −6 −11
−2 2 4 5 5 3 0 −2 −4 −3 −2 0 1

10 3 2 2 1 1 1 1 1 2 2 5 13
10 3 1 1 1 1 1 1 0 1 2 3 −2

−1 0 0 0 1 1 1 1 1 0 0 0 0

1Y 99 90 59 46 24 13 1 −10 −32 −53 −93 −117 −113

−54 −69 −52 −37 −11 −3 1 5 19 32 12 −14 −9
−3 3 9 11 8 5 1 −3 −7 −7 −2 1 1

24 10 5 4 3 2 2 2 3 4 7 12 41

28 9 2 2 2 2 2 2 1 1 6 6 −4
−2 0 1 1 2 2 2 2 1 1 0 −1 0

1.5Y 146 126 86 70 43 16 2 −26 −38 −77 −140 −183 −180
−123 −114 −81 −60 −23 −3 2 13 21 45 12 −27 −10
−2 7 15 17 15 7 2 −7 −9 −10 −3 1 1

35 16 10 8 5 4 4 4 4 7 13 24 72
37 12 3 3 4 4 4 3 2 2 11 7 −6

−3 0 2 3 4 4 4 3 3 1 −1 −1 −1

2Y 189 163 17 81 51 36 3 −29 −58 −102 −173 −254 −224
−197 −164 −115 −63 −23 −11 3 14 33 58 23 −40 −4

0 11 20 23 19 14 3 −7 −13 −13 −5 2 1

50 24 15 11 7 6 5 6 7 11 18 40 125
45 15 5 5 6 6 5 3 3 14 4 −3

−4 0 3 5 6 6 5 5 4 2 −1 −2 −1

3Y 262 218 188 118 82 45 6 −33 −86 −157 −286 −393 −354
−377 −245 −204 −93 −40 −10 6 18 49 82 −3 −54 −3

0 24 30 36 31 20 6 −7 −19 −18 −4 3 1
95 36 29 19 14 11 10 10 13 0 35 77 230

51 13 9 9 11 11 10 8 5 6 26 −4 −2
−8 2 5 9 10 10 10 9 6 3 −2 −4 −1

5Y 373 323 253 197 131 85 11 −61 −148 −258 −497 −684 −592
−641 −409 −276 −169 −60 −19 11 34 84 121 −43 −59 0

0 43 59 64 53 38 11 −13 −30 −28 −3 4 0
156 62 47 39 28 23 20 20 26 38 73 170 533

−156 −19 3 15 22 23 20 15 8 13 38 −22 0
−27 2 13 19 22 21 20 17 12 5 −6 −6 0

10Y 390 381 325 262 06 134 18 −102 −269 −529 −1075−1477−1164
−174 −486 −447 −269 −123 −36 18 56 49 175 −127 −23 0
−71 −8 39 76 78 58 18 −21 −53 −44 0 4 0

75 −5 3 25 32 34 38 43 57 88 189 536 1725
−1252−598 −237 −43 18 7 38 32 15 47 5 −21 0
−157 −97 −49 −3 23 34 38 36 26 6 −16 −10 0
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