Introduction

We study in this paper the propagation of an optical beam inside the Output Mode Cleaner (OMC) cavity in order to test the tolerancing of construction specications. The main goal of this problem is to check if the beam stay inside polished mirrors during the propagation assuming random angular errors for mirror positions. The diameters of mirrors, assume to be 5mm, and the maximum allowed angular error, which we would determine, constitute the set of two relevant parameters in this problem if we exclude conguration parameters of the OMC. To solve the problem we will progress in two stpng, rst we will establish the equations of the beam propagation inside the cavity using the geometrical optics and second we will do the numerical resolution with a C++ code of those equations and nd the maximum allowed angular error.

Equations

2.1

Introduction to the mathematical problem

Conguration of the cavity

We can nd characteristics of the OMC in the Advanced Virgo Technical Design Report. We put a number for each mirror following the gure 1 and all variables in relation of a mirror will take the same subscript number. Angles are oriented in the counterclockwise. The axis going from the center O 1 to the center O 2 with the associated base vector e x will be the reference axis for all of this study. The origin of frames will be O 1 . We will use unitary vectors u i parallel to the mirror i (see Fig. 1 ). The pair of vectors (e x , u i ) make a base which is not orthogonal.

Finally, mirrors 1 and 4 are plane and mirrors 2 and 3 are spherical. We will consider beams only inside the cavity, input and output beams are deduced from corresponding inside beam with the refraction law.

2.1.2

Position of mirrors and beams

The position of mirrors and beams is done in the following way (see gure. 2):

• γ i is the angle between e x and u i which represent the angular position of the mirror i from the x axis.

• α i is the angle between an orthogonal axis to the mirror i and the incident beam.

• α ir is the angle between an orthogonal axis to the mirror i and the reected beam.

• L i is the distance between the center of the mirror i and the impact point of the beam. , -l sin(γ 3 )

), ( l tan(γ 4 )

, -l sin(γ 4 )

) . The angle α j of the incident beam on the mirror j is calculated as a function of the angle α ir by getting the angle θ. This angle represent the angular position of the beam from the x axis as shown on the gure 4. The angle θ is:

θ = γ i + π 2 + α ir = γ j + π 2 + α j (1)
Then we get:

α j = α ir + γ i -γ j (2) 
Comment : In our case of closed cavity, with the equation 2 we nd the beam after reections on the four mirrors has to respect the following equation:

α 1 = -α 1r + 2 (γ 2 -γ 4 + γ 3 -γ 1 ) (3) 
We observe it exist a solution for the beam to come back with the same angular position using plane mirrors only in the particular case of (γ 2γ 4 + γ 3γ 1 ) = 0

Beam position from center of mirrors

We will specify in this section the position of the incident beam on the mirror j from the center O j as a function of the reected beam characteristics on the mirror i. We will represent the propagation of the beam from i to j with the vector v ij . In order to obtain searched parameters we will make projection of all quantities on base vectors (e x , u j ).

First, we need to formulate u i in the chosen base as:

u i = a e x + b u j (4) VIR-0266B-12 -October 17, 2012
We know u i • e x = cos(γ i ), u j • e x = cos(γ j ) and u i • u j = cos(γ iγ j ), from that scalar products we obtain :

u i = sin(γ j -γ i ) sin(γ j ) e x + sin(γ i ) sin(γ j ) u j (5)
Second, we formulate in the same way the vector v ij as :

v ij = a e x + b u j (6)
We need following scalar products :

v ij • e x = -µ ij cos(γ i + π 2 + α ir ) = µ ij sin(γ i + α ir ) and v ij • u j = µ ij cos( π 2 -α j ) = µ ij sin(α j ).
We specify the direction of propagation by using the constant µ ij which is µ 12 = µ 43 = 1 and

µ 24 = µ 31 = -1
After few trigonometrical calculus, we obtain:

v ij = µ ij cos(α j ) sin(γ j ) e x -µ ij cos(α ir + γ i ) sin(γ j ) u j (7) 
Now, we will express the coordinates (x O j , L j ) in the frame (e x , u j ) as a function of the coordinates (x O i , L i ). For this, we will write the equation of the line describing the propagation of the beam with the vector v ij , the origin (x O i , L i ) and the path parameter r:

(x O i e x + L i u i ) + rv ij (8)
The arriving impact point T on the mirror j correspond to the intersection between this line and the line representing the mirror j which has the coordinate x O j along the x axis. This intersection correspond to the following relation :

x O i e x + L i u i + r ij v ij = x O j e x + L j u j (9)
Since the vectors e x and u j form a base, the previous equation is veried when we have :

x O i + L i sin(γ j -γ i ) sin(γ j ) + r ij µ ij cos(α j ) sin(γ j ) = x O j (10) 
With the equation 10 we get r ij :

r ij = µ ij x O j -x O i -L i sin(γ j -γ i ) sin(γ j ) sin(γ j ) cos(α j ) (11) 
Then we get the other coordinate L j from r ij :

L j = L i sin(γ i ) sin(γ j ) -µ ij x O j -x O i -L i sin(γ j -γ i ) sin(γ j ) sin(γ j ) cos(α j ) µ ij cos(α ir + γ i ) sin(γ j ) (12) 
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Curved mirrors 6/13

Let rewrite this expression as :

L j = L i sin(γ i ) sin(γ j ) -x O j -x O i -L i sin(γ j -γ i ) sin(γ j ) cos(α ir + γ i ) cos(α j ) (13) 
With equations 2 and 13 we can compute all reexions inside the cavity taking care to put this additional equation for the reection law:

α ir = -α i ( 14 
)
2.3 Curved mirrors

Characterization of spherical mirrors

At this point, we will take into account the curvature radius of mirrors 2 and 3. First, we need to determine the coordinate position (x K 2 , L K 2 ) and (x K 3 , L K 3 ) of respective sphere centers K 2 and K 3 in the corresponding vector basis. As shown on the gure 5 we get:

(x K 2 , L K 2 ) =   L - R cos(γ 2 - π 2 ) , -R tan(γ 2 - π 2 )   = L - R sin(γ 2 ) , R tan(γ 2 ) (15)
With the gure 6 we get:

(x K 3 , L K 3 ) = L + l tan(γ 3 ) - R sin(γ 3 ) , - l sin(γ 3 ) + R tan(γ 3 ) (16)
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The equation of such circles is:

(x ′ O j -x K j )e x + (L ′ j -L K j )u j ) 2 = R 2 (17)
This give:

(x ′ O j -x K j ) 2 + (L ′ j -L K j ) 2 + 2(x ′ O j -x K j )((L ′ j -L K j )u j • e x = R 2 (18)
We get nally:

(x ′ O j -x K j ) 2 + (L ′ j -L K j ) 2 + 2(x ′ O j -x K j )(L ′ j -L K j ) cos(γ j ) = R 2 (19)
We formulate the line equation corresponding to the beam propagation using vector basis (e x , u j ) : The upper part show the dierent iteration of the program with the iteration numbers in the rst column, the angle α 1 in the second one, the position L 1 for the third, and dierences δL 1 and δα 1 for the two last column. The lower part give results for each mirrors respect to the commented column.

x O i e x + L i u i + r v ij = x O i e x + L i sin(γ j -γ i ) sin(γ j ) e x + sin(γ i ) sin(γ j ) u j + rµ ij cos(α j ) sin(γ j ) e x - cos(α ir + γ i ) sin(γ j ) u j (20)

Results

The main idea is to test the tolerancing of construction specications for the OMC, thus it is essential to take the worst case of angular error conguration. We can nd this condition by doing several tests and we get the following sign conguration for the angular error ε γ :

γ 1 = γ 10 -ε γ or + ε γ γ 2 = γ 20 + ε γ or -ε γ γ 3 = γ 30 + ε γ or -ε γ γ 4 = γ 40 -ε γ or + ε γ ( 31 
)
where γ i0 = 90 ± 8.876 • correspond to the ideal conguration of OMC. The two possibility of sign congurations are equivalent and give identical results. The set of parameters taken in the Advanced VIRGO TDR are:

γ i0 = 90 ± 8.876 • L = 60 mm (32) l = 19.20 mm (33) RoC = 1499 mm (34)
The precision chosen for nding roots is a dierence of δL 1 and δα 1 less than 10 -6 . Within this conguration we can plot position oset L 1reso and tilt α 1reso in comparison to the ideal OMC.

VIR-0266B-12 -October 17, 2012 The rst observation of the curve in gure 8 is the oset on each mirror is quite close and strongly linear dependent on the angle error. Assuming the equation L 1reso = a ε γ the slope for the two lines are a = 52.3 mm • ( • ) -1 for the upper one and a = 51.2 mm • ( • ) -1 for the lower one. This linear behaviour is not so surprising since we are dealing with very small angles ε γ and this has the consequence to make this problem mainly dependent to the rst order of ε γ .

With ε γ = 0.03 • , which was the specication to be checked, we nd an oset L 1reso = 1.57 mm. Then, it is usual to take 2.5 r for calculate the edge of mirrors. Assuming the beam has a radius around r = 0.3 mm (the beam waist is 0.256 mm), this constraint corresponds to 1.57 + 2.5 r = 2.32 mm, which is less than the radius of the polished surface mirror (2.5 mm). These results conrm that an error of 0.03 • is acceptable for the actual conguration of OMC even in the worst case. Similar results had been obtain by Romain Gouaty with a naive model of cavity which conrm the coherence of such results with the code.

In the same idea we can check the angle oset (α iresoγ i0 ) as a function of angle error ε γ . We observe in gure 9 that the angular oset is also enough small to does not have any VIR-0266B-12 -October 17, 2012 

Conclusion

The tolerancing ε γ = ±0.03 • conrm to us that the resonant beam does not exit from polished surfaces and does not have any impact on the optical set-up.

The code can be used for other congurations and can be easily modied to adapt it to other kind of cavity such as one spherical mirror for example.

The equations developed in the rst part can be used in other contexts and other programming languages.
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 9 Figure 9: Angle oset (α iresoγ i0 ) as a function of angle error ε γ .
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Including equation 20 in the equation 19 we get the equation giving the parameter r ′ ij for the intersection points T ′ j :

We rewrite this equation using quantities a, b, c, d in order to simplify the equation:

Then we obtain:

The solution which we are seeking, is at the "right" side of the circle:

Reection on spherical mirrors

The radius joining the center K j with the point T ′ j represent the orthogonal to the tangent of the spherical mirror at this point. With the coordinates of these points we get unit vector u ′⊥ j associated to this orthogonal direction as following:

From the gure 7 we calculate the angular correction γ ′ j to make transition from plane mirror to spherical mirror.
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Figure 7: Reections on the spherical mirror j

We deduce from the gure 7 the equation for reection law including angular correction due to sphericity:

Variables in an equivalent system of mirror parallel to a reference plane mirror

The position along x axis of the equivalent mirror j = 2, 3 which pass at the point T ′ j is:

In the same way we nd the position of the incident beam on the equivalent mirror along the u j axis
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3 Numerical resolution

3.1

The method and the code

The cavity is assumed to be at the resonance when the propagating beam comes back with the same position and the same incident angle. For the ideal conguration of OMC, the position L 1reso and the angle α 1reso , which make resonant the beam inside the cavity, are obvious, i. e. L 1reso = 0 and α 1reso = -γ 1 . But in the case of random errors for the angular position of mirrors there are no obvious solutions. Since analytical solutions for the beam propagation inside the cavity with four mirrors are too complicated and not relevant for our problem, we will proceed by using an algorithm to nd the solution (L 1reso , α 1reso ). To help us, previous equations had been established in order to be used iteratively and therefore easily implementable in any codes. Initialization of the algorithm is done by taking the value (L 1 , α 1 ) assuming the position of mirrors 1 would be the ideal conguration for the beam, i. e. (L

where ε is the angular error. The procedure of the algorithm consist to nd roots of the two functions δL 1 (L 1 , α 1 ) and δα 1 (L 1 , α 1 ) which are the dierences of value L 1 and α 1 before and after a round trip of the beam inside the cavity. Then at each iteration we correct the couple of parameters (L 1 , α 1 ) to have null dierences δL 1 and δα 1 . The algorithm has been optimized by using the "good Broyden's method" for nding the two roots of two variables functions.

The program works with an input le of parameters and create an output le with results. Below is shown an example of input le, "par_cavite.dat", with a set of parameters , all of them are commented. For simplicity of input le the sign of angular error implemented for each mirror is hard written in the code but can be changed easily before compiling the code again. The compilation is done by writing in a command terminal " make version11" after going in the corresponding le, such as "version11_recherche_resonnance_optimisee_fonction_erreur_angulaire/". The code is started by typing in a command terminal " ./version11 ", then we obtain this output le "donnees_sortie_v11.dat":