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Abstract: Estimation in the deformable template model is a big challenge in image analy-
sis. The issue is to estimate an atlas of a population. This atlas contains a template and the
corresponding geometrical variability of the observed shapes. The goal is to propose an accu-
rate algorithm with low computational cost and with theoretical guaranties of relevance. This
becomes very demanding when dealing with high dimensional data which is particularly the
case of medical images. We propose to use an optimized Monte Carlo Markov Chain (MCMC)
method into a stochastic Expectation Maximization (EM) algorithm in order to estimate the
model parameters by maximizing the likelihood. We present a new Anisotropic Metropolis
Adjusted Langevin Algorithm (AMALA) which is used as transition in the MCMC method.
We first prove that this new sampler leads to a geometrically uniformly ergodic Markov
chain. We prove also that under mild conditions, the estimated parameters converge almost
surely and are asymptotically Gaussian distributed. The methodology developed is then
tested on handwritten digits and some 2D and 3D medical images for the deformable model
estimation. More widely, the proposed algorithm can be used for a large range of models in
many field of applications such as pharmacology or genetic.

AMS 2000 subject classifications: Primary 62F10, 60J22; secondary 62F15, 62M40,
62P10.
Keywords and phrases: maximum likelihood estimation; missing variable; high dimen-
sion; stochastic EM algorithm; MCMC; Anisotropic MALA; deformable template; geometric
variability.

1. Introduction

We consider here the deformable template model introduced for Computational Anatomy by
Grenander and Miller (1998). This model, which has demonstrated great impact in image analysis,
was developed and analyzed later on by many groups (among other Marsland and Twining (2004);
Miller et al (2009, 2002); Vercauteren et al (2009)). It offers several major advantages. First, it
enables to describe the population of interest by a digital anatomical template. Then, it captures
the geometric variability of the population shapes through the modeling of deformations of the
template which match it to the observations. Moreover, the metric on the space of deformations
is specified in the model as a quantification of the deformation cost. Not only describing the
population, this generative model also allows to generate synthetic data using both the template
and the geometrical metric of the deformation space which together define the atlas. Nevertheless,
the key statistical issue is how to estimate efficiently and accurately these parameters of the model
from an observed population of images.

∗The authors would like to thank ANR HM-TC and ANR BLANC 0126 01 IRMGroup.
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Several numerical methods have been developed mainly for the estimation of the template im-
age (for example Cootes et al (1995); Joshi et al (2004)). Even if these methods lead to interesting
results on some training samples, they suffer from a lack of theoretical properties and are not
robust to noisy data. Another important contribution toward the statistical formulation of the
issue of template estimation was proposed by Glasbey and Mardia (2001). However interesting
this approach is not entirely satisfactory since the deformations are applied to discrete obser-
vations requiring some interpolation. Moreover it does not formulate the analysis in terms of a
generative model which appears very attractive as mentioned above. To overcome these lacks,
Allassonnière et al (2007) have formulated a coherent statistical generative model. For estimating
all the model parameters, the template image together with the geometrical metric, the authors
proposed a deterministic algorithm based on an approximation of the well-known Expectation
Maximization (EM) algorithm (Dempster et al (1977)), where the posterior distribution is re-
placed by a Dirac measure on its mode (called FAM-EM). However, such an approximation leads
to the non-convergence of the estimates highlighted when considering noisy observations.

One solution to face this problem is to consider a convergent stochastic approximation of the
EM (SAEM) algorithm which was proposed by Delyon et al (1999). An extension using Monte
Carlo Markov Chain (MCMC) methods was developed and studied by Kuhn and Lavielle (2004)
and Allassonnière et al (2010b) allowing for wider applications. To apply this extension to the
deformable template model, Allassonnière et al (2010b) chose a Metropolis Hastings within Gibbs
sampler (also called hybrid Gibbs) as MCMC method since the variables to sample were of large
dimension (the usual Metropolis Hastings algorithm providing low acceptation rates). This esti-
mation algorithm has been proved convergent and performs very well on very different kind of data
as presented by Allassonnière et al (2010a). Nevertheless, the hybrid Gibbs sampler becomes com-
putationally very expensive when sampling very high dimensional variables. Although it reduces
the dimension of the sampling to one which enables to stride easier the target density support, it
loops over the sampling variable coordinates, which becomes computationally unusable as soon as
the dimension is very large or as the acceptation ratio involves heavy computations. To overcome
the problem of computational cost of this estimation algorithm, some authors propose to simplify
the statistical model constraining the correlations of the deformations (see Maire et al (2011);
Richard et al (2009)). Our purpose in this paper is to propose an efficient and convergent esti-
mation algorithm for the deformable template model in high dimension without any constrains.
With regards to the above considerations, the computational cost of the estimation algorithm can
be reduced by optimizing the sampling scheme in the MCMC method.

The sampling of high dimensional variables is a well-known difficult challenge. In particular,
many authors have proposed to use the Metropolis Adjusted Langevin Algorithm (MALA) (see
Roberts and Tweedie (1996) and Stramer and Tweedie (1999a)). This algorithm is a particular
random walk Metropolis Hastings sampler. Starting from the current iterate of the Markov chain,
one simulates a candidate with respect to a Gaussian proposal with an expectation equal to the
sum of this current iterate and a drift related to the target distribution. The covariance matrix
is diagonal and isotropic. This candidate is accepted or rejected with a probability given by the
Metropolis Hastings acceptance ratio.

Some modifications have been proposed in particular to optimize the covariance matrix of the
proposal in order to better stride the support of the target distribution (see Atchadé (2006);
Girolami and Calderhead (2011); Marshall and Roberts (2012); Stramer and Tweedie (1999b)).
Atchadé (2006) and Marshall and Roberts (2012) proposed to construct adaptive MALA chains
for which they prove the geometric ergodicity of the chain uniformly on any compact subset of
its parameters. Unfortunately, this technique does not take the whole advantage of changing the
proposal using the target distribution. In particular, the covariance matrix of the proposal is given
by a stochastic approximation of the empirical covariance matrix. This choice seems completely
relevant as soon as the convergence toward the stationary distribution is reached. However, it
does not provide a good guess of the variability during the first iterations of the chain since
it is still very dependent on the initialization. This leads to chains that may be numerically
trapped. Moreover, this particular algorithm may require a lot of tuning parameters. Although
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the theoretical convergence is proved, this algorithm may be very difficult to optimize in practice
into an estimation process.

Recently, Girolami and Calderhead (2011) proposed the Riemann manifold Langevin algorithm
in order to sample from target density in high dimensional setting with strong correlations. This
algorithm is also a MALA based one for which the choice of the proposal covariance is guided
by the metric of the underlying Riemann manifold. It requires to evaluate the metric, its inverse
as well as its derivatives. The proposed well-suited metric is the Fisher-Rao information matrix
or its empirical value. However, in the context we are dealing with, the real metric, namely the
metric of the space of non-rigid deformations, is not explicit preventing from any use of it (the
simplest case of the 3-landmark-matching problem is calculated by Micheli et al (2012) leading
to a very intricate formula which is difficult to extend to more complex models). Moreover, if we
consider the constant curvature simplification suggested by Girolami and Calderhead (2011), one
still needs to invert the metric which may be neither explicit nor computationally tractable. Note
that these constrains are common with other application fields such as genetic or pharmacology,
where the models are often complex.

For all these reasons, we propose to adapt the MALA algorithm in the spirit of both works of
Atchadé (2006) and Girolami and Calderhead (2011) to get an efficient sampler into the stochastic
EM algorithm. Therefore, we propose to sample from a proposal distribution which has the same
expectation as the MALA but using a full anisotropic covariance matrix based on the anisotropy
and correlations of the target distribution (called in the sequel AMALA). The expectation is ob-
tained as the sum of the current iterate plus a drift which is proportional to the gradient of the
logarithm of the target distribution. We construct the covariance matrix as a regularization of the
Gram matrix of this drift. We prove the geometric ergodicity uniformly on any compact set of the
AMALA assuming some regularity conditions on the target distribution. We also prove the almost
sure convergence of the parameter estimated sequence generated by the coupling of AMALA and
SAEM algorithms (AMALA-SAEM) toward the maximum likelihood estimate under some regu-
larity assumptions on the model. Moreover, we prove a Central Limit Theorem for this sequence
under weak conditions on the model. We test our estimation algorithm on the deformable template
model for estimating hand-written digit atlases from the USPS database and medical images of
corpus callosum (2D) and of dendrite spine excrescences (3D). The proposed estimation method
is compared with the results obtained from the FAM-EM algorithm and from the MCMC-SAEM
algorithm using different samplers namely the hybrid Gibbs sampler, the MALA and the adaptive
MALA proposed by Atchadé (2006) previously introduced. The comparison is also made via clas-
sification rates on the USPS database. These experiments demonstrate the good behavior of our
method in both the accuracy of the estimation and the low computational cost in high dimension.

The paper is organized as follows. In Section 2, we recall the Bayesian Mixed Effect (BME)
template model. In Section 3, we consider the estimation issue in general framework of missing
data models. We present our stochastic version of the EM algorithm using the AMALA sampler.
The convergence properties are established in Section 4. Section 5 is devoted to the experiments
on the BME template estimation. Finally, we give some conclusion in Section 6. The proofs are
postponed in Section 7.

2. Description of the Bayesian Mixed Effect (BME) Template model

The deformable template model aims at summarizing a population of images by two quantities.
The first one is a mean image which has to represent a relevant shape as one could find in the
population. The second quantity represents the variance in the space of shapes. This corresponds
to the geometrical variability around the mean shape. In practice, numerical approximations of
both quantities are obtained through statistical estimation processes. Let us now describe the
deformable template model.

We consider the hierarchical Bayesian framework for dense deformable template developed by
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Allassonnière et al (2007) where each image in a population is assumed to be generated as a noisy
and randomly deformed version of the mean image also called template.

The database is composed of n grey level images (yi)1≤i≤n observed on a grid Λ of pixels (or
voxels) {vu ∈ D,u ∈ Λ} included in a continuous domain D ⊂ Rd, (typically D = [−1, 1]d where d
equals 2 or 3). The expected template I0 : Rd → R takes its values in the continuous domain. Each
observation y is assumed to be a discretization on Λ of a random deformation of this template
plus an independent noise. Therefore, there exists an unobserved deformation field (also called
mapping) m : Rd → Rd such that for u ∈ Λ

y(u) = I0(vu −m(vu)) + σε(u) ,

where σε denotes the independent additive noise and vu is the location of pixel (or voxel) u.
Considering the template and the deformations as continuous functions would lead to a dense

problem. The dimension is reduced assuming that both elements belong to a subset of fixed
Reproducing Kernel Hilbert Spaces (RKHS) Vp and Vg defined by their respective kernels Kp and
Kg. More precisely, let (rp,j)1≤j≤kp -respectively (rg,j)1≤j≤kg - be some fixed control points in the
domain D: there exist α ∈ Rkp -resp. z ∈ Rkg × Rkg - such that for all v in D:

Iα(v) = (Kpα)(v) =

kp∑
j=1

Kp(v, rp,j)α
j and (2.1)

mz(v) = (Kgz)(v) =

kg∑
j=1

Kg(v, rg,j)z
j . (2.2)

For clarity, write y = (yi)1≤i≤n for the n−tuple of observations and z = (zi)1≤i≤n for the
n−tuple of unobserved variables defining the deformations. The statistical model on the observa-
tions is chosen as follows:  z ∼ ⊗ni=1Ndkg (0,Γg) | Γg ,

y ∼ ⊗ni=1N|Λ|(mziIα, σ
2Id|Λ|) | z, α, σ2 ,

(2.3)

where ⊗ denotes the product of independent variables and mIα(u) = Iα(vu −m(vu)), for u in Λ.
The parameters of interest are α (the template), σ2 (the noise variance) and Γg (the deformation
covariance matrix). We assume that θ = (α, σ2,Γg) belongs to the parameter space Θ:

Θ , { θ = (α, σ2,Γg) | α ∈ Rkp , |α| < R, σ > 0, Γg ∈ Sym+
dkg,∗(R) } , (2.4)

where Sym+
dkg,∗(R) is the cone of real positive dkg×dkg definite symmetric matrices, R an arbitrary

positive constant and d is the space dimension (typically 2 or 3 for images).
Since we aim at dealing with small size samples and high dimensional parameters, we work in

the Bayesian framework and we introduce priors on the parameters. In addition of guiding the
estimation it regularizes the estimation as shown by Allassonnière et al (2007). The priors are all
independent: θ = (α, σ2,Γg) ∼ νp ⊗ νg where

νp(dα, dσ
2) ∝ exp

(
−1

2
(α− µp)T (Σp)

−1(α− µp)
)
×
(

exp

(
− σ2

0

2σ2

)
1√
σ2

)ap
dσ2dα, ap ≥ 3 ,

νg(dΓg) ∝

(
exp(−〈Γ−1

g ,Σg〉F /2)
1√
|Γg|

)ag
dΓg, ag ≥ 4kg + 1 .

(2.5)
For two matrices A,B we define the Frobenius inner product by 〈A,B〉F , tr(ATB).

Parameter estimation for this model is then performed by Maximum A Posteriori (MAP) :

θ̂ = argmax
θ

q(θ|y) , (2.6)
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where q(θ|y) is the posterior density of θ conditional on y. The existence and consistence of the
MAP estimator for the BME template model has been proved by Allassonnière et al (2007).

Note that this model belongs to a more general class called mixed effect models. The fixed effects
are the parameters θ and the random effects are the deformation coefficients z. The estimation
issue in this class is treated in the same way as the likelihood maximization problem in the more
general framework of incomplete-data models. Therefore, the next section will be presented in this
general setting in which the proposed algorithm applies.

3. Maximum likelihood estimation

3.1. Maximum likelihood estimation for incomplete data setting

We consider in this section the standard incomplete-data (or partially-observed-data) setting and
recall the usual notation. We denote by y ∈ Rq the observed data and by z ∈ Rl the missing
data, so that we obtain the complete data (y, z) ∈ Rq+l for some q ∈ N∗ and l ∈ N∗. We consider
these data as random vectors. Let µ′ be a σ-finite measure on Rq+l and µ the restriction of µ′

to Rl generated by the projection (y, z) 7→ z. We assume that the probability density function of
the random vector (y, z) belongs to P = {f(y, z; θ), θ ∈ Θ}, a family of parametric probability
density functions on Rq+l w.r.t. µ′, where Θ ⊂ Rp. Therefore, the observed likelihood (i.e. the
incomplete-data likelihood) is defined for some θ ∈ Θ by:

g(y; θ) ,
∫
f(y, z; θ)µ(dz). (3.1)

Our purpose is to find the maximum likelihood estimate that is the value θ̂g in Θ that maxi-
mizes the observed likelihood g given a sample of observations. However, this maximization can
often not be done analytically because of the integration involved in (3.1). A powerful tool which
enables to compute this maximization in such a setting is the Expectation Maximization (EM) al-
gorithm (see Dempster et al (1977)). It is an iterative procedure which consists of two steps. First,
the so-called E-step computes the conditional expectation of the complete log-likelihood using the
current parameter value. Second, the M-step achieves the update of the parameter by maximizing
this expectation over Θ. However, the computation of this expectation is often intractable analyt-
ically. Therefore, alternative procedures have been proposed. We are particularly interested in the
Stochastic Approximation EM (SAEM) algorithm (see Delyon et al (1999)) because of its theoret-
ical convergence property and its small computation time. In this stochastic algorithm, the usual
E-step is replaced by two steps, the first one corresponding to the simulation of realizations of the
missing data, the second one to the computation of a stochastic approximation of the complete
log-likelihood using these simulated values. It can be shown under weak regularity conditions that
the sequence generated by this algorithm converges almost surely toward a local maximum of the
observed likelihood (see Delyon et al (1999)).

Nevertheless the simulation step requires some attention. In the SAEM algorithm the simulated
values of the missing data have to be drawn from the posterior distribution defined by:

p(z|y; θ) ,

{
f(y, z; θ)/g(y; θ) if g(y; θ) 6= 0
0 if g(y; θ) = 0 .

When not possible, the extension using MCMC method (Allassonnière et al (2010b); Kuhn
and Lavielle (2004)) allows to apply the SAEM algorithm using simulations obtained from some
transition probability of an ergodic Markov Chain having the targeted posterior distribution as
stationary distribution. Methods like Metropolis Hastings algorithm or Gibbs sampler are useful
to perform this assignment. However, this becomes very challenging in high dimensional setting.
Indeed, when the MCMC procedure has to explore a space of high dimension, its convergence may
occur in practice only after a possibly infinite time. Thus, it is necessary to optimize this MCMC
procedure. This is what we will propose in the following paragraph.
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3.2. Description of the sampling method: Anisotropic Metropolis Adjusted Langevin
Algorithm

We propose an anisotropic version of the well-known Metropolis Adjusted Langevin Algorithm
(MALA). So let us first recall the steps of the Metropolis Adjusted Langevin Algorithm (MALA).
Let X be an open subset of Rl, the l−dimensional Euclidean space equipped with its Borel
σ−algebra B. Let us denote π the probability density function (pdf) with respect to the Lebesgue
measure on X of the target distribution. We assume that π is positive continuously differentiable.
At each iteration k of this algorithm, a candidate Xc is simulated with respect to the Gaussian

distribution with expectation Xk + σ2

2 D(Xk) and covariance σ2Idl where Xk is the current value,

D(x) =
b

max(b, |∇ log π(x)|)
∇ log π(x) , (3.2)

Idl is the identity matrix in Rl and b > 0 a fixed truncated threshold. Note that the trun-
cation of the drift D was already suggested by Gilks et al (1996) to provide more stability.
In the following, we denote qMALA(x, ·) the pdf of this Gaussian candidate distribution start-
ing from x. Given this candidate, the next value of the Markov chain is updated using an
acceptance ratio αMALA(Xk, Xc) as follows: Xk+1 = Xc with probability αMALA(Xk, Xc) =

min
(

1, π(Xc)qMALA(Xc,Xk)
qMALA(Xk,Xc)π(Xk)

)
and Xk+1 = Xk with probability 1− αMALA(Xk, Xc). This provides

a transition kernel ΠMALA of this form: for any Borel set A ∈ B

ΠMALA(x,A) =

∫
A

αMALA(x, z)qMALA(x, z)dz+1A(x)

∫
X

(1−αMALA(x, z))qMALA(x, z)dz .

(3.3)

The Gaussian proposal of the MALA algorithm is optimized with respect to its expectation
guided by the Langevin diffusion. One step further is to optimize also its covariance matrix. A
first work in this direction was proposed by Atchadé (2006). The covariance matrix of the pro-
posal is given by a projection of a stochastic approximation of the empirical covariance matrix.
It produces an adaptive Markov chain. This process involves some additional tuning parameters
which have to be calibrated. Since our goal is to use this sampler in an estimation algorithm, the
sampler has at each iteration a different target distribution (depending on the current estimate of
the parameter). Therefore, the optimal tuning parameter may be different along the iterations of
the estimation process. Although we agree with the idea of using adaptive chain, we prefer taking
the advantage of the dynamic of the estimation algorithm. On the other side, an intrinsic solution
has been proposed by Girolami and Calderhead (2011) where the covariance matrix is given by
the metric of the Riemann manifold of the variable to sample. Unfortunately, this metric may not
be accessible and its empirical approximation not easy to compute. This is particularly the case
in the BME template model.

For these reasons, we propose a sampler in the spirit of Atchadé (2006), Girolami and Calderhead
(2011) or Marshall and Roberts (2012) however not providing an adaptive chain as motivated
above. The adaption comes from the dependency of the target distribution with respect to the
parameters of the model which are updated along the estimation algorithm. The proposal is still a
Gaussian distribution but both the drift and the covariance matrix depend on the gradient of the
target distribution. At the kth iteration, we are provided with Xk. The candidate is sampled from
the Gaussian distribution with expectation Xk + δD(Xk) and covariance matrix δΣ(Xk) denoted
in the sequel N (Xk + δD(Xk), δΣ(Xk)) where Σ(x) is given as :

Σ(x) = εIdl +D(x)D(x)T , (3.4)

with D defined in Equation (3.2) and ε > 0 is a small regularization parameter. Note that the
threshold parameter b leads to a symmetric positive definite covariance matrix with bounded non
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zero eigenvalues. We introduced the gradient of log π into the covariance matrix to provide an
anisotropic covariance matrix depending on the amplitude of the drift at the current value. When
the drift is large, the candidate is likely to be far from the current value. This large step may not
be of the right amplitude and a large variance will enable more flexibility. Moreover, this enables
to explore a larger area around these candidates which would not be possible with a fixed variance.
On the other hand, when the drift is small in a particular direction, it means that the current
value is within a region of high probability for the next value of the Markov chain. Therefore,
the candidate should not move too far neither with a large drift nor with a large variance. This
enables to sample a lot around large modes which is of particular interest. This covariance also
enables to treat the directions of interest with different amplitude of variances as the drift already
does as well as providing dependencies between coordinates since the directions of large variances
are likely to be different from the Euclidean axis. This is taken into account here by introducing
the drift into the covariance matrix.

We denote by qc the pdf of this proposal distribution. The transition kernel becomes:

Π(x,A) =

∫
A

α(x, z)qc(x, z)dz + 1A(x)

∫
X

(1− α(x, z))qc(x, z)dz , (3.5)

where α(Xk, Xc) = min
(

1, π(Xc)qc(Xc,Xk)
qc(Xk,Xc)π(Xk)

)
.

3.3. Description of the stochastic estimation algorithm

Back to the stochastic estimation algorithm, the target distribution of the sampler is the posterior
distribution p(·|y; θ).

The four steps of the proposed AMALA-SAEM algorithm are detailed in this subsection :
simulation, stochastic approximation, truncation on random boundaries and maximization steps.
At each iteration k of the algorithm, simulated values of the missing data are drawn from the
transition probability of the AMALA algorithm described in Section 3.2 with the current value of
the parameters. Then, a stochastic approximation of the complete log-likelihood is computed using
these simulated values for the missing data and is truncated using random boundaries. Finally,
the parameters are updated by maximizing this quantity over Θ.

We consider here only parametric models P which belong to the set of curved exponential
family, this means that the complete likelihood f(y, z; θ) can be written as:

f(y, z; θ) = exp [−ψ(θ) + 〈S(z), φ(θ)〉] ,

where 〈·, ·〉 denotes the Euclidean scalar product, the sufficient statistics S is a function on Rl,
taking its values in a subset S of Rm and ψ, φ are two functions on Θ (note that S, φ and ψ
may depend also on y, but we omit this dependency for simplicity). This condition is usual in the
framework of EM algorithm applications and it is fulfilled by large range of models even complex
ones as the BME template model. Therefore the stochastic approximation can be done either on
the sufficient statistics S of the model or on the complete log-likelihood.

Concerning the truncation procedure, we introduce a sequence of increasing compact subsets
of S denoted by (Kq)q≥0 such that ∪q≥0Kq = S and Kq ⊂ int(Kq+1), for all q ≥ 0. Let also
ε = (εq)q≥0 be a monotone non-increasing sequence of positive numbers and K a compact subset
of Rl. At iteration k we simulate a value z̄ for the missing data from the Anisotropic Metropolis
Adjusted Langevin Algorithm using the current value of the parameter θk−1. We compute the
associated stochastic approximation of the sufficient statistics of the model s̄. If it does not wander
outside the current compact set Kk and if it is not too far from its previous value sk−1, we keep
the possible proposed values for (zk, sk). As soon as one of these conditions is not fulfilled, we
reinitialize the sequences of z and s using a projection (for more details see Andrieu et al (2005)
) and we increase the size of the compact set used for the truncation. As explained by Andrieu
et al (2005), the re-projections act as a drift as they force the chain to come back to a compact
set when it grows too rapidly. It reinitializes the algorithm with a smaller step size. However, as
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the chain has an unbounded support, it requires the use of adaptive truncations. As we shall see
in the Proof section (and already noted by Andrieu et al (2005)), the limitation imposed on the
increments of the sequence is required in order to ensure the convergence of the whole algorithm.

Concerning the maximization step, we denote by L the function defined on S ×Θ taking values
in R equals for all (s, θ) to L(s, θ) = −ψ(θ) + 〈s, φ(θ)〉. We assume that there exists a function θ̂
defined on S taking values in Θ such that

∀θ ∈ Θ ∀s ∈ S L(s, θ̂(s)) ≥ L(s, θ).

Finally we update the parameter using the value of the function θ̂ evaluated in sk.

The complete algorithm is summarized in Algorithm 1. It only involves three parameters: b the
threshold for the gradient which appears in the expectation as well as in the covariance matrix,
δ the scale on this gradient and ε a small regularization parameter to ensure a positive definite
covariance matrix. The scale δ can be easily optimized looking at the data we are dealing with
to adapt to the range of the drift. The value of the threshold b is in practice never reached. The
practical choices for the sequence (γk)k of positive step sizes used in the stochastic approximation
and the tuning parameters will be detailed in the section devoted to the experiments.

Algorithm 1 AMALA within SAEM
for all k = 1 : kend do

Sample zc with respect to N (zk−1 + δD(zk−1, θk−1), δΣ(zk−1, θk−1)) whose pdf is denoted qsk−1 (zk−1, .)
where 

D(zk−1, θk−1) = b
max(b,|∇ log p(zk−1|y;θk−1)|)

×∇ log p(zk−1|y; θk−1)

Σ(zk−1, θk−1) = εIdl +D(zk−1, θk−1)D(zk−1, θk−1)T .

Compute the acceptance ratio

αsk−1 (zk−1, zc) = min

(
1,

p(zc|y; θk−1)qsk−1 (zc, zk−1)

qsk−1 (zk−1, zc)p(zk−1|y; θk−1)

)

Sample z̄ = zc with probability αsk−1 (zk−1, zc) and z̄ = zk−1 with probability 1− αsk−1 (zk−1, zc)
Do the stochastic approximation

s̄ = sk−1 + γk (S(z̄)− sk−1) ,

where (γk)k is a sequence of positive step sizes.
if s̄ ∈ Kκk−1 and ‖s̄− sk−1‖ ≤ εζk−1

then

Set (zk, sk) = (z̄, s̄) and κk = κk−1, νk = νk−1 + 1, ζk = ζk−1 + 1
else

set (zk, sk) = (z̃, s̃) ∈ K×K0 and κk = κk−1 + 1, νk = 0, ζk = ζk−1 + Ψ(νk−1)
where Ψ : N→ Z is a function such that Ψ(k) > −k for any k
and (z̃, s̃) is chosen arbitrarily.

end if
Update the parameter

θk = θ̂(sk)

end for

4. Theoretical Properties

4.1. Geometric ergodicity of the AMALA

Let S be a subset of Rm for some positive integer m. Let X be a measurable subspace of Rl for
some positive integer l. Let (πs)s∈S be a family of positive continuously differentiable probability
density functions with respect to the Lebesgue measure on X . For any s ∈ S, denote by Πs the
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transition kernel corresponding to the AMALA procedure described in Section 3.2 with stationary
distribution πs. We prove in the following proposition that each kernel of the family (Πs)s∈S is
uniformly geometrically ergodic and that this property holds uniformly in s on any compact subset
K of S.

We require a usual assumption on the stationary distributions namely the so-called super-
exponential property given by:

(B1) For all s ∈ S, the density πs is positive with continuous first derivative such that:

lim
|x|→∞

n(x).∇ log πs(x) = −∞ (4.1)

and
lim sup
|x|→∞

n(x).ms(x) < 0 (4.2)

where ∇ is the gradient operator in Rl, n(x) = x
|x| is the unit vector pointing in the direction

of x and ms(x) = ∇πs(x)
|∇πs(x)| is the unit vector in the direction of the gradient of the stationary

distribution at point x.

We assume also some regularity properties of the stationary distributions with respect to s.

(B2) For all x ∈ X , the functions s 7→ πs and s 7→ ∇x log πs are continuous on S.

Proposition 1. Assume (B1-B2). Let K a compact subset of S. Let r ≥ 1 and V (x) = 1 + ‖x‖r
for all x ∈ X . There exist a set C ⊆ X , a probability measure ν such that ν(C) > 0 and there exist
constants λ ∈]0, 1[, b ∈ [0,∞[ and ε ∈]0, 1] such that for all s ∈ K :

Πs(x,A) ≥ εν(A)1C(x) ∀x ∈ X ∀A ∈ B , (4.3)

ΠsV (x) ≤ λV (x) + b1C(x) . (4.4)

The first equation defines C as a small set for the transition kernels (Πs). Note that both ε and
ν can depend on C. The ν-small set Equation (4.3) ”in one step” also implies the ν-irreducibility of
the transition kernels and their aperiodicity (cf Meyn and Tweedie (1993)). The second inequality
is a drift condition which states that the transition kernels tend to bring back elements into the
small set. As a consequence of these well known drift conditions, the transition kernels (Πs) are
V -uniformly ergodic. Moreover this property holds uniformly in s in any compact subset K ⊂ S.
That is to say: for any compact K ⊂ S, there exist 0 < ρ < 1 and 0 < c < ∞ such that for all

n ∈ N∗ and f such that ‖f‖V = sup
x∈X

‖f(x)‖
V (x) <∞:

sup
s∈K
‖Πn

s f(.)− πsf‖V ≤ cρn‖f‖V . (4.5)

The proof of Proposition 1 is given in Appendix.

Remark 1. The same property holds for any power of the function V . Indeed, the proof follows
the same lines as it can be seen in Section 7. This is a property that will appear useful in the sequel
to prove some properties of the estimation algorithm.

4.2. Convergence property of the estimated sequence generated by the
AMALA-SAEM algorithm

We do the following assumptions on the model which are quite usual in the context of missing
data model using EM-like algorithms (see Delyon et al (1999), Kuhn and Lavielle (2004)).

For sake of simplicity we denote in the sequel pθ(·) instead of p(·|y; θ) the posterior distribution.
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• (M1) The parameter space Θ is an open subset of Rp. The complete data likelihood function
is given by:

f(y, z; θ) = exp [−ψ(θ) + 〈S(z), φ(θ)〉] ,

where S is a Borel function on Rl taking its values in an open convex subset S of Rm.
Moreover, the convex hull of S(Rl) is included in S, and, for all θ in Θ,∫

||S(z)||pθ(z)µ(dz) <∞.

• (M2) The functions ψ and φ are twice continuously differentiable on Θ.
• (M3) The function s̄ : Θ→ S defined as

s̄(θ) ,
∫
S(z)pθ(z)µ(dz)

is continuously differentiable on Θ.
• (M4) The function l : Θ→ R defined as the observed-data log-likelihood

l(θ) , log g(y; θ) = log

∫
f(y, z; θ)µ(dz)

is continuously differentiable on Θ and

∂θ

∫
f(y, z; θ)µ(dz) =

∫
∂θf(y, z; θ)µ(dz).

• (M5) There exists a function θ̂ : S → Θ, such that:

∀s ∈ S, ∀θ ∈ Θ, L(s; θ̂(s)) ≥ L(s; θ).

Moreover, the function θ̂ is continuously differentiable on S.
• (M6) The functions l : Θ→ R and θ̂ : S → Θ are m times differentiable.

• (M7)

(i) There exists an M0 > 0 such that{
s ∈ S, ∂sl(θ̂(s)) = 0

}
⊂ {s ∈ S, −l(θ̂(s)) < M0} .

(ii) For all M1 > M0, the set ¯Conv(S(Rl))∩{s ∈ S, −l(θ̂(s)) ≤M1} is a compact set of S.

• (M8) There exists a polynomial function P such that for all z ∈ X

||S(z)|| ≤ P (z) .

• (B3) For any compact subset K of S, there exists a polynomial function Q of the hidden
variable such that sup

s∈K
|∇z log pθ̂(s)(z)| ≤ Q(z).

Moreover a usual additional assumption is required on the step size sequences of the stochastic
approximation.

• (A4) The sequences γ = (γk)k≥0 and ε = (εk)k≥0 are non-increasing, positive and satisfy:

there exist 0 < a < 1 and p ≥ 2 such that
∞∑
k=0

γk =∞, lim
k→∞

εk = 0 and

∞∑
k=1

{γ2
k + γkε

a
k + (γkε

−1
k )p} <∞.
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Theorem 1 (Convergence Result for the Estimated Sequence generated by Algorithm 1). Assume
(M1-M8) and (A4). Assume that the family of posterior density functions {pθ̂(s), s ∈ S} satisfies

assumptions (B1-B3).

Let K be a compact subset of X and K0 ⊂ WM0
∩ ¯Conv(S(Rl)) (where M0 is defined in (M7)).

Then, for all z0 ∈ K and s0 ∈ K0, we have lim
k→∞

d(θk,L) = 0 a.s. where (θk)k is the sequence

generated by Algorithm 1 and L , {θ ∈ Θ, ∂θl(θ) = 0}.

The proof is postponed to Appendix 7.2.

4.3. Central Limit Theorem for the estimated sequence generated by the
AMALA-SAEM

Theorem 1 ensures that the number of re-initializations of the sequence of stochastic approximation
of Algorithm 1 is finite almost surely. We can therefore consider only the non truncated sequence
when we are interested in its asymptotic behavior.

Let us write the stochastic approximation procedure :

sk = sk−1 + γkh(sk−1) + γkηk

where Hs(z) = S(z) − s, h(s) = Epθ̂(s)(Hs(z)), ηk = S(zk) − Epθ̂(sk−1)
(S(z)) and Epθ̂(s) is the

expectation under the invariant measure of the chain pθ̂(s).

Let us introduce some usual assumptions in the spirit of these of Delyon (Delyon (2000)).

(N1) The function h is C1 in some neighborhood of s∗ which satisfies h(s∗) = 0 with first deriva-
tives Lipschitz and J the Jacobean matrix of the mean field h in s∗ has all its eigenvalues
with negative real part.

(N2) Let gθ̂(s) be a solution of the Poisson equation g − Πθ̂(s)g = Hs − pθ̂(s)(Hs) for any s ∈ S.

There exists a function w such that w−Πθ̂(s∗)w = gθ̂(s∗)g
T
θ̂(s∗)
−Πθ̂(s∗)gθ̂(s∗)(Πθ̂(s∗)gθ̂(s∗))

T−U
where the deterministic matrix U is given by :

U = Eθ̂(s∗)
[
gθ̂(s∗)(z)gθ̂(s∗)(z)

T −Πθ̂(s∗)gθ̂(s∗)(z)Πθ̂(s∗)gθ̂(s∗)(z)
T
]
. (4.6)

(N3) The step size sequence (γk) is decreasing and satisfies either case 1 or case 2:

Case 1 lim
k→∞

(
1
γk
− 1

γk−1

)
= 0,

Case 2 for all k ∈ N∗ γk = 1/k.

In Case 2, it requires also all eigenvalues of J have a real part lower than −1/2.

Note that assumption (N2) is crucial since it characterizes the matrix U which allows to
define the limit covariance matrix Γ of our CLT.

Theorem 2. Under the assumptions of Theorem 1 and under (N1)-(N3), the sequence
(sk−s∗)/

√
γk converges in distribution to a Gaussian random vector with zero mean and covariance

matrix Γ where Γ is the solution of the following Lyapunov equation depending on the cases of
assumption (N3):

Case 1: U + JΓ + ΓJT = 0,
Case 2: U + (J + I/2)Γ + Γ(J + I/2)T = 0.

Moreover,
1
√
γk

(θk − θ∗)→L N (0, ∂sθ̂(s
∗)Γ∂sθ̂(s

∗)T )

where θ∗ = θ̂(s∗).

The proof of Theorem 2 is given in Appendix 7.3.
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5. Applications on Bayesian Mixed Effect Template model

5.1. Comparison between MALA and AMALA samplers

As a first experiment, we compare the mixing properties of the MALA and the AMALA samplers.
We used both algorithms to sample from a 10 dimensional normal distribution with zero mean
and non diagonal covariance matrix. Its eigenvalues range from 1 to 10. The eigen-directions are
chosen randomly. The autocorrelations of both chains are plotted in Fig. 1 where we can see
that there is a benefit of using the anisotropic sampler. To evaluate the weight of the anisotropic
term D(x)D(x)T in the covariance matrix, we compute its amplitude (computed as its non zero
eigenvalue since it is a rank one matrix). We see that it is of the same order as the diagonal part
in mean and jumps up to 15 times bigger. This shows the importance taken by the anisotropic
term. The last check is the Mean Square Euclidean Jump Distance (MSEJD) which computes
the expected squared distance between successive draws of the Markov chain. The two methods
provide MSEJD of the same order showing a very slight advantage in term of visiting the space
for the AMALA sampler (1.29 versus 1.25 for the MALA).

Fig 1. Autocorrelations of the MALA (blue) and AMALA (red) samplers to target the 10 dimensional normal
distribution with anisotropic covariance matrix.

5.2. BME Template estimation

Back to our targeted application, we apply our estimation process on different databases. The first
one is the USPS hand-written digit base as used by Allassonnière et al (2007) and Allassonnière
et al (2010b). The others two are medical images of 2D corpus callosum and 3D murine dendrite
spine excrescences used by Allassonnière et al (2010a).

We begin with presenting the experiments on the USPS database. In order to make comparison,
we estimate the parameters in the same conditions as in the previous mentioned works that is to
say the same 20 images per digit. Each image has grey level between 0 (background) and 2 (bright
white). These images are presented on the left panel of Fig. 2. We also use a noisy training dataset
generated by adding a standardized independent Gaussian noise. These images are presented on
the right panel of Fig. 2. We test five algorithms: the deterministic approximation of the EM
algorithm (FAM-EM) presented by Allassonnière et al (2007), four MCMC-SAEM where the
sampler is either the MALA, the adaptive MALA proposed by Atchadé (2006), the hybrid Gibbs
sampler presented by Allassonnière et al (2010b) and our AMALA algorithm.

For these experiments the tuning parameters are chosen as follows: the threshold b is set to
1, 000, the scale δ to 10−3 and the regularization ε to 10−4. The other tuning parameters and
hyper-parameters are chosen as in Allassonnière et al (2010b).

Note that this model satisfies the conditions of our convergence theorem as these conditions are
similar to the ones proved by Allassonnière et al (2010b).
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Fig 2. Left: some images of the training set used for the estimation of the model parameters (inverse video). Right:
same examples with additive noise.

5.3. Computational performances

We compare first the computational performances of the algorithms. The computational time is
smaller for the three MCMC-SAEM algorithms using ”MALA-like” samplers compared to the
FAM. Indeed, a numerical convergence of that algorithm requires about 30 to 50 EM steps. Each
of them requires a gradient descent which has 15 iterations in average. This implies to compute
15 times the gradient of the energy (which actually equals our gradient) for each image for each
EM step. The ”MALA-like”-SAEM algorithms require about 100 to 150 EM steps (depending
on the digit) but only one gradient is computed for each image at each step. This reduces the
computational time by a factor of at least 4 (up to 7 depending on the digit). No comparison can
be done when the data are noisy since the FAM-EM does not converges toward the MAP estimator
as mentioned above. Comparing to the hybrid Gibbs-SAEM, the computational time is 8 times
lower with the AMALA-SAEM in this particular case of application. Indeed, the hybrid Gibbs
sampler requires no computation of the gradient. However, it includes a loop over the coordinates
of the hidden variable, here the deformation vector of size 2kg = 72. At each of these iterations,
the candidate is straightforward to sample whereas the computational cost lies into the acceptance
rate. When this becomes heavy, the less times you calculate it, the better. In the AMALA-SAEM,
this acceptance rate only has to be calculated once for each image. Therefore, even when the
dimension of the hidden variable increases, this is of constant cost. The main price to pay is the
computation of the gradient. Therefore, a tradeoff has to be found between the computation of
either one gradient or dkg acceptance rates in order to select the algorithm to use in a given case.

5.4. Results on the template estimation

All the estimated templates obtained with the five algorithms and noise-free and noisy training
data are presented in Fig. 3. As noticed by Allassonnière et al (2010b), the FAM-EM estimation
is sharp when the training set is noise-free and is deteriorated while adding noise. This behavior is
not surprising with regard to the theoretical bound established by Bigot and Charlier (2011) in the
particular case of compact deformation group. Considering the adaptive sampler, it does not reach
a good estimation of the templates which are still very blurry and noisy in both cases. The problem
seems to come from the very low acceptation rate already at the beginning of the estimation. The
bad initial guess we have about the covariance matrix of the proposal seems to block the chain.
Moreover, the tuning parameters are difficult to calibrate along the iterations of the estimation
algorithm. Concerning the estimated templates using the Gibbs, MALA and AMALA samplers,
they look very similar to each other using the noise-free data as well as the noisy ones. This
similarity confirms the convergence of all these algorithms toward the MAP estimator. In this
case, the templates are as expected noise free and sharp.
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Nevertheless, when the dimension of the hidden variable increases, both the Gibbs and the
MALA samplers show limitations. The Gibbs-SAEM would produce sharp estimations but ex-
plodes the computational time. For this reason, we did not run this algorithm on higher dimension
experiments. We run the estimation on the same noisy USPS database, increasing the number kg
of geometrical control points. We choose the dimension of the deformation vector equal to 72, 128
and 200. The results are presented in Fig. 4. Concerning the MALA sampler, it does not seem to
capture the whole variability of the population in such high dimension. This yields a poorly esti-
mation of the templates. This phenomenon does not appear using our AMALA-SAEM algorithm.
The templates still look sharp and the acceptation rate remains reasonable.

Algo./
Noise level

FAM Hybrid Gibbs MALA Adaptive MALA AMALA

No
additive

Noise

Additive
Noise

of Variance
1

Fig 3. Estimated templates using the five algorithms and noise free and noisy data. The training set includes 20
images per digit. The dimension of the hidden variable is 72.

Dim. of de-
formation /
Sampler

2kg = 72 2kg = 128 2kg = 200

MALA

AMALA

Fig 4. Estimated templates using MALA and AMALA samplers in the stochastic EM algorithm on noisy training
data. The training set includes 20 images per digit. The dimension of the hidden variable increases from 72 to 200.

5.5. Results on the covariance matrix estimation

We keep considering the USPS database. Since we are provided with a generative model, once
the parameters have been estimated, we can generate synthetic samples in order to evaluate the
constrained on the deformations that have been learnt. Some of these samples are presented in
Fig. 5. For each digit, 20 examples are generated with the deformations given by +z and 20 others
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with −z where z is simulated with respect to N (0,Γg). We recall that, as already noticed by
Allassonnière et al (2010b), the Gaussian distribution is symmetric which may lead to strange
samples in one direction whereas the other one looks like something present in the training set.

With regards to the above remarks concerning the computational time and the template esti-
mations, we present in this subsection only the results obtained using MALA and AMALA-SAEM
algorithms. We notice that the samples generated by both algorithms look alike in the case of hid-
den variable of dimension 72. Thus, we present only the results of our AMALA-SAEM estimation.
As we can see, the deformations are very well estimated in both cases (without or with noise) and
even look similar. This tends to demonstrate that the noise has really been separated from the
template as well as the geometric variability during the estimation process.

Fig 5. Synthetic samples generated with respect to the BME template model using the estimated parameters with
AMALA-SAEM. For each digit, the two lines represent the deformation using + and − the simulated deformation
z. Left: data without noise. Right: data with noise variance 1. The number of geometric control points is 36 leading
to a hidden variable of dimension 72.

Increasing the dimension of the deformation to 128, we run both algorithms on the noisy
dataset. We observe on Fig. 6 that the geometric variability of the samples remains similar to
the one obtained in lower dimension using our AMALA-SAEM. However, the MALA-SAEM does
not manage to capture the whole variability of the deformations which is related to the results
observed above on the template. This confirms the limitation of the use of MALA-SAEM in higher
dimension.

5.6. Results on the noise variance estimation

The last check of the accuracy of the estimation relies in the noise variance estimation. The plots
of their evolutions along the AMALA-SAEM iterations for each digit in both cases (without and
with noise) are presented in Fig. 7. This variance is underestimated in particular in the noisy
case, which is a well-known effect of the maximum likelihood (or in our case the MAP) estimator.
We observe that the geometrically very constrained digits as 1 or 7 tend to converge very quickly
whereas the digits 2 and 4 require more iterations to capture all the shape variability.

Since this is a real parameter, we used it to illustrate the Central Limit Theorem stated in
Subsection 4.3. Fig. 8 and Fig. 9 show the histograms of 10, 000 runs of the algorithm with the
same initial conditions. We use the digits 0 and 2 of the original data set as well as of the noisy
data. As the iterations go along, the distribution of the estimates tends to look like a Gaussian
distribution centered in the estimated noise variances which demonstrates empirically the Central
Limit Theorem.
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Fig 6. Synthetic samples generated with respect to the BME template model using the estimated parameters with
AMALA-SAEM (left) and MALA-SAEM (right). For each digit, the two lines represent the deformation using +
and − the simulated deformation z. The number of geometric control points is 64 leading to a hidden variable of
dimension 128.

Fig 7. Evolution of the estimation of the noise variance along the AMALA-SAEM iterations. Left: original data.
Right: noisy data.
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Fig 8. Empirical convergence toward the Gaussian distribution of the estimated noise variance along the AMALA-
SAEM iterations for digit 0. Left: original data. Right: noisy data.

Fig 9. Empirical convergence toward the Gaussian distribution of the estimated noise variance along the AMALA-
SAEM iterations for digit 2. Left: original data. Right: noisy data.
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5.7. Classification results

The deformable template model enables to perform classification using the maximum likelihood
of a new image to allocate it to one class, here the digit. We use the test USPS database (which
contains 2007 digits) for classification while the training was done on the previous 20 noisy images.
The results obtained with the hybrid Gibbs, MALA and AMALA-SAEM are presented in Table 1.
In dimension 72, the best classification rate is performed by the hybrid Gibbs-SAEM. This is
easily understandable since the sampling scheme enables to catch deformations which have been
optimized control point by control point. Therefore, the estimated covariance matrix carries more
local accuracy. The AMALA-SAEM leading to a much smaller computation time to estimates
of the same quality provides also a very good classification rate. This confirms the good results
observed on both the template estimates and the synthetic samples. Unfortunately, the MALA-
SAEM shows again some limitations. Even if the templates look acceptable, the sampler does not
manage to capture the whole class variability. Therefore, the classification rate falls down.

In order to evaluate the stability of our estimation algorithm with respect to the dimension,
we perform the same classification with more control points. As expected, the MALA-SAEM
classification rate is deteriorated whereas our AMALA-SAEM keeps very good performances.
Note that the hybrid Gibbs sampler was not tested in dimension 2kg = 128 because of its very
long computational time.

Sampler /
Dim. of Deformation Hybrid Gibbs MALA AMALA

72 22.43 35.98 23.22

128 × 43.8 25.36

Table 1
Error rate using the estimations on the noisy training set with respect to the sampler used in the MCMC-SAEM
algorithm and the dimension of the deformation 2kg. The classification is performed on the test set of the USPS

database.

5.8. 2D medical image template estimation

A second database is used to illustrate our algorithm. As before, in order to make comparisons
with existing algorithms, we use the same database presented by Allassonnière et al (2010a). It
consists of 47 medical images, each of them is a 2D square zone around the end point of the corpus
callosum. This box contains a part of this corpus callosum as well as a part of the cerebellum. Ten
exemplars are presented in the top rows of Fig. 10.

The estimations are compared with these obtained with the FAM-EM and the hybrid Gibbs-
SAEM algorithms and with the mean image (bottom row of Fig. 10). In this real situation, the
Euclidean mean image (a) is very blurry. The estimated template using the FAM-EM (b) provides
a first amelioration in particular leading to a sharper corpus callosum. However, the cerebellum
still looks blurry in particular when comparing it to the shape which appears in the template
estimated using the hybrid Gibbs SAEM (c). The result of our AMALA-SAEM is given in image
(d). This template is very close to (c) as we could expect at a convergence point. Nevertheless the
AMALA-SAEM has much lower computational time than the hybrid Gibbs-SAEM. This shows
the advantage of using AMALA-SAEM in real cases of high dimension.

5.9. 3D medical image template estimation

We also test our algorithm in much higher dimension using the dataset of murine dendrite spines
(see Aldridge et al (2005); Ceyhan et al (2007a,b)) already used by Allassonnière et al (2010a). The
dataset consists of 50 binary images of microscopic structures, tiny protuberances found on many
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(a) (b) (c) (d)

Fig 10. Medical image template estimation. Top rows : 10 Corpus callosum and cerebellum training images
among the 47 available. Bottom row : (a) mean image. (b) FAM-EM estimated template. (c) Hybrid Gibbs -
SAEM estimated template. (d) AMALA-SAEM estimated template.

types of neurons termed dendrite spines. The images are from control mice and knockout mice
which have been genetically modified to mimic human neurological pathologies like Parkinson’s
disease. The acquisition process consisted of electron microscopy after injection of Lucifer yellow
and subsequent photo-oxidation. The shapes were then manually segmented on the tomographic
reconstruction of the neurons. Some of these binary images are presented in Fig. 11 which shows
a 3D view of some exemplars among the training set. Each image is a binary (background = 0,
object = 2) cubic volume of size 283. We can notice here the large geometrical variability of this
population of images. Therefore we use a hidden variable of dimension 3kg = 648 to catch this
complex structure.

The template estimated with either 30 or 50 observations are presented in Fig. 13. We obtain
similar shapes which are coherent with what a mean shape could be regarding the training sam-
ple. To evaluate the estimated geometrical variability, we generate synthetic samples as done in
Subsection 5.5. Eight of these are shown in Fig. 12. We observe different twisting which are all
coherent with the shapes observed in the dataset. Note that the training shapes have very irregular
boundaries whereas the parametric model used for the template leads to a smoother image. Thus,
the synthetic samples do not reflect the local ruggedness of the segmented murine dendrite spines.
If the aim was to capture these local bumps, the number of photometrical control points has to
be increased. However, the goal of our study was to detect global shape deformations.

6. Conclusion

In this paper we have considered the deformable template estimation issue using the BME model.
We were particularly interested in the high dimensional setting. To that purpose, we have proposed
to optimize the sampling scheme in the MCMC-SAEM algorithm to get an efficient and accurate
estimation process. We have exhibited a new MCMC method based on the classical Metropolis
Adjusted Langevin Algorithm where we introduced an anisotropic covariance matrix in the pro-
posal. This optimization takes into account the anisotropy of the target distribution. We proved
that the generated Markov chain is geometrically ergodic uniformly on any compact set. We have
also proved the almost sure convergence of the sequence of parameters generated by the estimation
algorithm as well as its asymptotic normality. We have illustrated this estimation algorithm in
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Fig 11. 3D views of eight samples of the data set of dendrite spines. Each image is a volume leading to a binary
image.

Fig 12. 3D views of eight synthetic data. The estimated template shown in Fig. 13 is randomly deformed with
respect to the estimated covariance matrix.

the BME model. We considered different datasets of the literature namely the USPS database,
2D medical images of corpus callosum and 3D medical images of murine dendrite excrescences.
We have compared the results with previously published ones to highlight the gain in speed and
accuracy of the proposed algorithm.

We emphasize that the proposed estimation scheme can be applied in a wide range of applica-
tion fields involving missing data models in high dimensional setting. In particular, this method
is promising when considering mixture models as proposed by Allassonnière and Kuhn (2010).
Indeed, it will enable to shorten the computation time of the simulation part which in that case
requires the use of many auxiliary Markov chains. This also provides a good tool for this BME
model when introducing a diffeomorphic constrain on the deformations. In this case, it is even
more important to get an efficient estimation process since the computational cost of diffeomor-

Fig 13. Estimated templates of murine dendrite spines. The training set is either composed of 30 (left) or 50
(right) images.
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phic deformation is intrinsically large.

7. Appendix

7.1. Proof of Proposition 1

The idea of the proof is the same as the one of the geometric ergodicity of the random walk
Metropolis algorithm developed by Jarner and Hansen (1998) and reworked by Atchadé (2006)
for its adaptive version of the MALA with truncated drift. The fact that both the drift and the
covariance matrix are bounded even depending on the gradient of log πs enables some similar
proofs.

Let us first recall the transition kernel:

Πs(x,A) =

∫
A

αs(x, z)qs(x, z)dz + 1A(x)

∫
X

(1− αs(x, z))qs(x, z)dz , (7.1)

where αs(x, z) = min(1, ρs(x, z)) and ρs(x, z) = πs(z)qs(z,x)
qs(x,z)πs(x) .

Thanks to the bounded drift and covariance matrix, we can bound uniformly in s ∈ S the
proposal distribution qs by two centered Gaussian distributions with covariance matrices ε1Idl
and ε2Idl as follows: there exist two constants 0 < k1 < k2 such that for all (x, z) ∈ X 2 and for
all s ∈ S

k1gε1(x− z) ≤ qs(x, z) ≤ k2gε2(x− z) , (7.2)

denoting by ga the centered Gaussian probability density function in Rl with covariance matrix
aIdl.

7.1.1. Proof of the existence of a small set C

Let C be a compact subset of X . There exists a > 0 such that C ⊂ B∞(0, a) where B∞(0, a) is the
closed ball in Rl of radius a centered at 0 for the infinity norm. Let R > a and K = B∞(0, R). We
define τ = inf{ρs(x, z), x ∈ C, z ∈ K, s ∈ K}. Since ρs is a ratio of positive continuous functions
in s, x and z and K is a compact subset of S, we have τ > 0. Therefore, for all x ∈ C, for any
A ∈ B and for all s ∈ K :

Πs(x,A) ≥
∫
A∩K

αs(x, z)qs(x, z)dz .

≥ min(1, τ)

∫
A∩K

qs(x, z)dz .

Moreover, thanks to (7.2),

Πs(x,A) ≥ k1 min(1, τ)

∫
A∩K

gε1(z − x)dz

= k1 min(1, τ)

∫
X
gε1(z)1{A∩K−x}(z)dz .

To get a uniform lower bound in x ∈ C, we introduce the set KC(A) =
⋂
x∈C
{A∩K −x}. Let also

C be the set of the 2d vertices of B∞(0, a) and KC(A) =
⋂
x∈C
{A ∩K − x}. Since C ⊂ B∞(0, a), we

get :

KC(A) ⊃
⋂

x∈B∞(0,a)

{A ∩K − x}. (7.3)
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Let us now prove that ⋂
x∈B∞(0,a)

{A ∩K − x} = KC(A) .

The direct inclusion is trivial.
To prove the reverse inclusion, we first show that KC(A) ⊂ B∞(0, R− a).
Let z ∈ KC(A). For all c ∈ C, there exists zc ∈ A∩B∞(0, R) such that z = zc− c. In particular,

if z 6= 0, it holds for c = a z
‖z‖∞ leading to z = zc − a z

‖z‖∞ . Therefore, ‖z‖∞ ≤ R− a. If z = 0, the

result still holds.
Let x ∈ B∞(0, a) and zx = z+x. Then, ‖zx‖∞ ≤ R which yields the equality if the sets in (7.1.1).

The set KC(A) being measurable, we can define ν(A) = 1
Z

∫
X gε1(z)1KC(A)(z)dz where Z is the

renormalisation constant and ε = k1 min(1, τ)Z so that C is a small set for the transition kernel
Πs and (4.3) holds.

7.1.2. Proof of the drift condition

As already suggested by Jarner and Hansen (1998), we only need to prove the two following
conditions: for all s ∈ K

sup
x∈X

ΠsV (x)

V (x)
<∞ (7.4)

and

lim sup
‖x‖→∞

ΠsV (x)

V (x)
< 1 . (7.5)

For any x ∈ X , we denote As(x) = {z ∈ X such that ρs(x, z) ≥ 1} the acceptance set and
Rs(x) = As(x)c the complementary set of As(x). Then, we choose V (x) = 1 + ‖x‖r for r ≥ 1 and
write

ΠsV (x)

V (x)
=

∫
As(x)∪Rs(x)

min

(
1,
πs(z)qs(z, x)

πs(x)qs(x, z)

)
qs(x, z)

V (z)

V (x)
dz +

∫
Rs(x)

(
1− πs(z)qs(z, x)

πs(x)qs(x, z)

)
qs(x, z)dz

≤ 1

V (x)

∫
As(x)∪Rs(x)

V (z)qs(x, z)dz +

∫
Rs(x)

qs(x, z)dz (7.6)

Thanks to the Gaussian proposal qs with bounded drift and covariance matrix and the poly-
nomial form of V , we can find two constants k̃1 and k̃2 and two variances ε̃1 > 0 and ε̃2 > 0 such
that Equation (7.2) can be generalized as : for all s ∈ K

k̃1gε̃1(x− z) ≤ qs(x, z)V (z) ≤ k̃2gε̃2(x− z) . (7.7)

This enables to bound the first term of Equation (7.6) as follows :

1

V (x)

∫
As(x)∪Rs(x)

V (z)qs(x, z)dz ≤
k̃2

V (x)

∫
X
gε̃2(x− z)dz ≤ k̃2

V (x)
. (7.8)

Since lim
‖x‖→∞

V (x) =∞, this terms tends to 0 as ‖x‖ tends to infinity.

This yields

lim sup
‖x‖→∞

ΠsV (x)

V (x)
≤ lim sup
‖x‖→∞

∫
Rs(x)

qs(x, z)dz. (7.9)

Let Qs(x,As(x)) =
∫
As(x)

qs(x, z)dz, we get

lim sup
‖x‖→∞

ΠsV (x)

V (x)
≤ 1− lim inf

‖x‖→∞
Qs(x,As(x)).
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Let us now prove that lim inf
‖x‖→∞

Qs(x,As(x)) ≥ c > 0 where c does not depend on s ∈ K following

the lines of Atchadé (2006).
Let ε > 0. Then, there exists a > 0 such that for all x ∈ X ,

∫
B(x,a)

gε2(z − x)dz ≥ 1− ε. Since

qs is a Gaussian density with bounded drift and covariance matrix, there exists ca0 > 0 such that
for all s ∈ K

inf
z∈B(x,a)

qs(z, x)

qs(x, z)
≥ ca0 . (7.10)

Moreover, thanks to assumptions (B1-B2), for any 0 < u < a, there exists r1 > 0 such that for
all x ∈ X , ‖x‖ ≥ r1 and for all s ∈ K (r1 does not depend on s in the compact set K thanks to
the smoothness of πs in s).

πs(x)

πs(x− u n(x))
≤ ca0 . (7.11)

Hence, for ‖x‖ ≥ r1, any point x2 = x− u n(x) belongs to As(x).
Let W (x) be the cone defined as:

W (x) =
{
x2 − tζ, 0 < t < a− u, ζ ∈ Sd−1, |ζ − n(x2)| ≤ ε

2

}
(7.12)

where Sd−1 is the unit sphere in Rd.

Let us prove that W (x) ⊂ As(x) for all s ∈ K.
Using assumptions (B1-B2) and the same arguments as above, we have for a sufficiently large x:

ms(x).n(x) ≤ −ε. Besides, by construction ofW (x) for large x, for all z ∈W (x), |n(z)−n(x)| ≤ ε/2
with n(x) = n(x2) This leads for any sufficiently large x, for all z ∈W (x),

ms(z).ζ = ms(z).(ζ − n(x2)) +ms(z).(n(x2)− n(z)) +ms(z).n(z) ≤ ε/2 + ε/2− ε = 0 . (7.13)

Let now z = x2 − tζ ∈ W (x). Using the mean value theorem on the differentiable function πs
between x2 and z, we get that there exists τ ∈]0, t[ such that πs(z)− πs(x2) = −tζ.∇πs(x2− τζ).
Using the definition of ms, this implies that πs(z)− πs(x2) = −tζ.ms(x2− τζ)|∇πs(x2− τζ)| ≥ 0
thanks to Equation (7.13). Putting all these results together we finally get that for all z ∈W (x),
πs(z) ≥ πs(x2) ≥ 1

ca0
πs(x). Moreover, as z ∈ B(x, a) as well, Equation (7.10) is satisfied, leading

to z ∈ As(x).

Then, we have using Equation (7.2)

Qs(x,As(x)) =

∫
As(x)

qs(x, z)dz

≥
∫
As(x)

k1gε1(z − x)dz

≥ k1

∫
W (x)

gε1(z − x)dz

= k1

∫
Tx(W (x))

gε1(z)dz

where
Tx(W (x)) =

{
−un(x)− tζ, 0 < t < a− u, ζ ∈ Sd−1, |ζ − n(x)| ≤ ε

2

}
(7.14)

is the translation of the set W (x) by the vector x. But since gε1 is isotropic and Tx(W (x)) only
depends on a fixed constant u and n(x), this last integral is independent of x, so there exists a
positive constant c such that:

c = k1

∫
Tx(W (x))

gε1(z)dz . (7.15)
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Back to our limit, for all s ∈ K

lim sup
‖x‖→∞

ΠsV (x)

V (x)
≤ 1− c (7.16)

which ends the proof of the condition (7.5).

To prove Equation (7.4), we use the previous result. Indeed, since ΠsV (x)
V (x) is a smooth function

on X it is bounded on every compact subset. Moreover since the lim sup is finite, then it is also
bounded outside a fixed compact. This proves the results.

7.2. Proof of Theorem 1

We provide here the proof of the convergence of the estimated sequence generated by Algorithm
1.

We apply Theorem 4.1 from Allassonnière et al (2010b) with the functions Hs equals to Hs(z) =
S(z)− s, Πs = Πθ̂(s), πs = pθ̂(s) and

h(s) =

∫
(S(z)− s)pθ̂(s)(z)µ(dz) .

Let us first prove assumption (A1’) which ensures the existence of a global Lyapunov function
for the mean field of the stochastic approximation. It guaranties that, under some conditions, the
sequence (sk)k≥0 remains in a compact subset of S and converges to the set of critical points of
the log-likelihood.

Assumptions (M1)-(M7) ensure that S is an open subset and that the function h is continuous

on S. Moreover defining w(s) = −l(θ̂(s)), we get that w is continuously differentiable on S.
Applying Lemma 2 of Delyon et al (1999), we get (A1’)(i), (A1’)(iii) and (A1’)(iv).

To prove (A1’)(ii), we consider as absorbing set Sa the closure of the convex hull of S(Rl)
denoted ¯Conv(S(Rl)). So assumption (M7)(ii) is exactly equivalent to assumption (A1’)(ii).

This achieves the proof of assumption (A1’).

Let us now prove assumption (A2) which states in particular the existence of a unique invariant
distribution for the Markov chain.

To that purpose, we show that our family of kernels satisfies the drift conditions mentioned by
Andrieu et al (2005) and used by Allassonnière et al (2010b) in a similar context. These conditions
are the existence of a small set uniformly in s ∈ K, the uniform drift condition and an upper bound
on the family kernel :

(DRI1) For any s ∈ S, Πθ̂(s) is ψ-irreducible and aperiodic. In addition there exists a function

V : Rl → [1,∞[ such that , for any p ≥ 2 and any compact subset K ⊂ S, there exist an
integer j and constants 0 < λ < 1, B, κ, δ > 0 and a probability measure ν such that

sup
s∈K

Πj

θ̂(s)
V p(z) ≤ λV p(z) +B1C(z) , (7.17)

sup
s∈K

Πθ̂(s)V
p(z) ≤ κV p(z) ∀z ∈ X , (7.18)

inf
s∈K

Πj

θ̂(s)
(z,A) ≥ δν(A) ∀z ∈ C,∀A ∈ B(Rl) . (7.19)

Let us start with the irreducibility of Πθ̂(s). The kernel Πθ̂(s) is bounded by below as follows :

Πθ̂(s)(x,A) ≥
∫
A

αs(x, z)qs(x, z)dz , (7.20)
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where αs(x, z) = min(1, ρs(x, z)) and ρs(x, z) = πs(z)qs(z,x)
qs(x,z)πs(x) > 0. Since the proposal density qs is

positive, this proves that Πs(x,A) is positive and the ψ-irreducibility of each kernel of the family.

Proposition 1 and Remark 1 show that Equation (7.17) and Equation (7.19) hold for j = 1 and
V (z) = 1 + ‖z‖r for any r ≥ 1 and any p ≥ 2. Moreover, since Equation (7.17) holds for j = 1 and
V ≥ 1, Equation (7.18) directly comes from Equation (7.17) choosing κ = B + λ. This implies all
three inequalities. Since the small set condition is satisfied with j = 1 (small set ”in one-step”),
each chain of the family is aperiodic (see Meyn and Tweedie (1993)).

Assumption (A2) is therefore directly implied by assumption (M1).

Let us now prove assumption (A3’) which states some regularity conditions (Hölder type ones)
on the solution of the Poisson equation related to the transition kernel. It also ensures that this
solution and its image through the transition kernel have reasonable behaviors as the chain goes
to infinity and that the kernel is V p-bounded in expectation.

The drift conditions proved previously imply the geometric ergodicity uniformly in s in any
compact set K. This also ensures the existence of a solution of the Poisson equation (see Meyn
and Tweedie (1993)) required in Assumption (A3’).

We first consider condition (A3’(i)).

Let us define for any g : X → Rm the norm ‖g‖V , sup
z∈X

‖g(z)‖
V (z) .

SinceHs(z) = S(z)−s, assumption (M8) ensures that there exists r ≥ 1 such that sup
s∈K
‖Hs‖V <∞

and inequality (4.3) of (A3’(i)) holds.
The uniform ergodicity of the family of Markov chains corresponding to the AMALA on K ensures
that there exist constants 0 < γK < 1 and CK > 0 such that for all s ∈ K

sup
s∈K
‖gθ̂(s)‖V = sup

s∈K
‖
∑
k≥0

(Πk
θ̂(s)

Hs − pθ̂(s)Hs)‖V

≤ sup
s∈K

∑
k≥0

CKγ
k
K‖Hs‖V <∞ .

Thus for all s in K , gθ̂(s) belongs to LV = {g : Rl → Rm, ‖g‖V <∞}.
Repeating the same calculation as above, it is immediate that sup

s∈K
|‖Πθ̂(s)gθ̂(s)‖ is bounded. This

ends the proof of inequality (4.4) of (A3’(i)).

We now move to the Hölder conditions (4.5) of (A3’(i)). We will use the two following lemmas
which state Hölder conditions on the transition kernel and its iterates:

Lemma 1. Let K be a compact subset of S. There exists a constant CK such that for all 1 ≤ p
there exists q > p, for all function f ∈ LV p and for all (s, s′) ∈ K2 we have :

‖Πθ̂(s)f −Πθ̂(s′)f‖V q ≤ CK‖f‖V p ‖s− s
′‖ .

Proof. For any f ∈ LV p and any x ∈ Rl, we have

Πsf(x) =

∫
Rl
f(z)αs(x, z)qs(x, z)dz + f(x)(1− αs(x)) ,

where αs(x, z) = min
(

1,
pθ̂(s)(z)qs(z,x)

qs(x,z)pθ̂(s)(x)

)
and αs(x) =

∫
αs(x, z)qs(x, z)dz is the average acceptance

rate.
Let s and s′ be two points in K. We note that s 7→ θ̂(s) is a continuously differentiable function

therefore uniformly bounded in s ∈ K.
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‖Πsf(x)−Πs′f(x)‖ ≤ ‖f‖V p
{∫
X
|αs(x, z)qs(x, z)− αs′(x, z)qs′(x, z)|V p(z)dz +

V p(x)

∫
X
|αs(x, z)qs(x, z)− αs′(x, z)qs′(x, z)|dz

}
,

≤ 2‖f‖V pV p(x)

∫
X
|αs(x, z)qs(x, z)− αs′(x, z)qs′(x, z)|V p(z)dz .

Let I =
∫
X |αs(x, z)qs(x, z)−αs′(x, z)qs′(x, z)|V

p(z)dz. For sake of simplicity, we denote by As
the acceptance set instead of As(x). We decompose I into four terms :

I =

∫
As∩As′

|αs(x, z)qs(x, z)− αs′(x, z)qs′(x, z)|V p(z)dz (7.21)

+

∫
As∩Acs′

|αs(x, z)qs(x, z)− αs′(x, z)qs′(x, z)|V p(z)dz (7.22)

+

∫
Acs∩As′

|αs(x, z)qs(x, z)− αs′(x, z)qs′(x, z)|V p(z)dz (7.23)

+

∫
Acs∩Acs′

|αs(x, z)qs(x, z)− αs′(x, z)qs′(x, z)|V p(z)dz . (7.24)

Let us first consider the term (7.21).∫
As∩As′

|αs(x, z)qs(x, z)− αs′(x, z)qs′(x, z)|V p(z)dz =

∫
As∩As′

|qs(x, z)− qs′(x, z)|V p(z)dz .

We use the mean value theorem on the smooth function s 7→ qs(x, z) for fixed values of (x, z).

dqs(x, z)

ds
= qs(x, z)

d log qs(x, z)

ds
.

After some calculations, using the bounded drift and covariance and Assumption (M8), we get :

d log qs(x, z)

ds
≤ P̃1(x, z)

(∥∥∥∥dDs(x)

ds

∥∥∥∥+

∥∥∥∥dΣs(x)

ds

∥∥∥∥
F

+

∥∥∥∥dΣ−1
s (x)

ds

∥∥∥∥
F

)
,

≤ CKP1(x, z) .

where P̃1 and P1 are two polynomial functions in both variables.
Using Equation (7.2), we have :∣∣∣∣dqs(x, z)ds

∣∣∣∣ ≤ k2CKP1(x, z)gε2(z − x) ,

which leads to :∫
As∩As′

|qs(x, z)− qs′(x, z)|V p(z)dz ≤ k2CK‖s− s′‖
∫
X
V p(z)P (x, z)gε2(z − x)dz

≤ k2CKQ1(x)‖s− s′‖ ,

where Q1 is a polynomial function.

Now we move to the second term (7.22). Let z ∈ As ∩ Acs′ . We define for all u ∈ [0, 1] the
barycenter s(u) of s and s′ equals to us + (1 − u)s′ which belongs to the convex hull of the
compact subset K.
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Since u 7→ ρs(u)(x, z) is continuously differentiable, ρs(x, z) ≥ 1 and ρs′(x, z) < 1, using the
intermediate value theorem, there exists u ∈]0, 1] depending on x and z such that ρs(u)(x, z) = 1.
We choose the minimum value of u satisfying this condition. Therefore,

|αs(x, z)qs(x, z)−αs′(x, z)qs′(x, z)| ≤ |qs(x, z)−qs(u)(x, z)|+|ρs(u)(x, z)qs(u)(x, z)−ρs′(x, z)qs′(x, z)| .
(7.25)

We treat the first term of the right hand side as previously. For the second term, we use the
mean value theorem for the function v 7→ fs(v)(x, z) = ρs(v)(x, z)qs(v)(x, z) on ]0, u[. There exists
v ∈]0, u[ such that

|fs(u)(x, z)− fs′(x, z)| ≤
∣∣∣∣dfs(v)(x, z)

dv

∣∣∣∣ ‖s− s′‖ .
Thanks to the upper bound above we get

d log fs(v)(x, z)

dv
≤ CKP2(x, z) ,

where P2 is a polynomial function in both variables. Since on the segment defined by s(u) and s′

we have ρs(x, z) ≤ 1 :

dfs(v)(x, z)

dv
= fs(v)(x, z)

d log fs(v)(x, z)

dv
≤ CKqs(v)(x, z)P2(x, z)

≤ k2CK‖s− s′‖P2(x, z)gε2(z − x) .

This yields :∫
As∩Acs′

|αs(x, z)qs(x, z)− αs′(x, z)qs′(x, z)|V p(z)dz ≤ k2CK

(
Q1(x) +Q2(x)

)
‖s− s′‖ .

The third term (7.23) is the symmetric one of the second.
Let us end with the last term (7.24).∫

Acs∩Acs′
|αs(x, z)qs(x, z)− αs′(x, z)qs′(x, z)|V p(z)dz =

∫
Acs∩Acs′

|ρs(x, z)qs(x, z)− ρs′(x, z)qs′(x, z)|V p(z)dz .

If for all u ∈]0, 1[, ρs(u)(x, y) < 1 then this term can be treated as the second term of Equa-
tion (7.25). If there exists u ∈]0, 1[ such that ρs(u)(x, y) ≥ 1, we define u0 and u1 respectively the
smallest and biggest elements in ]0, 1[ such that ρs(u1) = ρs(u1) = 1. The first and last terms are
treated as the previous case and the middle term is treated as the term (7.21).

Putting all these upper bounds together yields :

‖Πsf(x)−Πs′f(x)‖ ≤ 2‖f‖V pV p(x)Q(x)‖s− s′‖ , (7.26)

where Q is a polynomial function in x ∈ X . Therefore, there exists a constant q > p such that
V p(x)Q(x) ≤ V q(x) which concludes the proof.

Lemma 2. Let K be a compact subset of S. There exists a constant CK such that for all 1 ≤ p < q,
for all function f ∈ LV p , for all (s, s′) ∈ K2 and for all k ≥ 0, we have:

‖Πk
θ̂(s)

f −Πk
θ̂(s′)

f‖V q ≤ CK‖f‖V p‖s− s′‖ .
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Proof. The proof of lemma 2 follows the line of the proof of Proposition B.2 of Andrieu et al
(2005).

Thanks to the proofs of Allassonnière et al (2010b), we get that h is a Hölder function for any
0 < a < 1 which leads to (A3”(i)).

We finally focus on the proof of (A3”(ii)).

Lemma 3. Let K be a compact subset of S and p ≥ 1. For all sequences γ = (γk)k≥0 and
ε = (εk)k≥0 satisfying εk < ε̄ for some ε̄ sufficiently small, there exists CK > 0, such that for any
z0 ∈ X , we have

sup
s∈K

sup
k≥0

Eγz,s[V p(zk)1σ(K)∧ν(ε)≥k] ≤ CKV p(z0) ,

where Eγz,s is the expectation related to the non-homogeneous Markov chain ((zk, sk)) started from
(z, s) with step size sequence γ.

Proof. Let K be a compact subset of Θ such that θ̂(K) ⊂ K. We note in the sequel, θk = θ̂(sk).
We have for k ≥ 2, using the Markov property and the drift property (4.4) for V p,

Eγz,s[V p(zk)1σ(K)∧ν(ε)≥k] ≤ Eγz,s[Πθk−1
V p(zk−1)] (7.27)

≤ λEγz,s[V p(zk−1)] + C . (7.28)

Iterating the same arguments recursively leads to :

Eγz,s[V p(zk)1σ(K)∧ν(ε)≥k] ≤ λkEγz,s[V p(z0)] + C

k−1∑
l=0

λl .

Since λ < 1 and V (z) ≥ 1 for all z ∈ X , for all k ∈ N, we have :

Eγz,s[V p(zk)1σ(K)∧ν(ε)≥k] ≤ V p(z0) + C

k−1∑
l=0

λl

≤ V p(z0)

(
1 +

C

1− λ

)
.

This yields (A3’(ii)) which concludes the proof of Theorem 1.

7.3. Proof of the Central Limit Theorem for the Estimated Sequence

To prove this result we apply Theorem 24 of Delyon (2000). Consider the stochastic approximation
with a noise of the form:

sk = sk−1 + γkh(sk−1) + γk(ξk + νk − νk−1 + rk) (7.29)

and assumption (C) given by

(C) The algorithm defined by Equation (7.29) is A-stable, the sequence (sk) converges toward
some limit s∗. The function h is C1 in some neighborhood of s∗ with first derivatives Lipschitz
and J the Jacobean matrix of the mean field h in s∗ has all its eigenvalues with negative
real part.
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Theorem 3 (Theorem 24 Delyon (2000)). Let assumptions (C) and (N3) be satisfied, and if
lim
k→∞

kγk = 1 we require that γk = 1/k. Furthermore assume that for some matrix U , some ε > 0

and some positive random variables X,X ′, X ′′:

The sequence (ξi) is a F −martingale (7.30)

sup
i∈N
‖ξi‖2+ε <∞ (7.31)

lim
k→∞

γ
−1/2
k ‖Xrk‖1 = 0 (7.32)

lim
k→∞

γ
1/2
k ‖X

′νk‖1 = 0 (7.33)

lim
k→∞

γk‖X ′′
k∑
i=1

(ξiξ
T
i − U)‖1 = 0 (7.34)

where F = (Fi)i∈N is the increasing family of σ−algebra generated by the random variables
(s0, z1, ..., zi). Then

sk − s∗√
γk

→L N (0, V ) (7.35)

where V is the solution of the following Lyapunov equation depending on the cases of assumption
(N3):

Case 1: U + JV + V JT = 0,
Case 2: U + (J + I/2)V + V (J + I/2)T = 0.

Unfortunately in our application case, we are not able to prove the A-stability required in
assumption (C). Thus we use a relaxed version of this condition to prove our convergence result.
This new assumption is sufficient to prove the required result as it can be seen when following the
proofs of Delyon (2000). We therefore define a new assumption (C’).

(C’) The sequence (sk)k converges almost surely toward some limit s∗, the function h is C1 in
some neighborhood of s∗ with first derivatives Lipschitz and J the Jacobean matrix of the
mean field h in s∗ has all its eigenvalues with negative real part.

The result of Theorem 24 still holds under this alleviated assumption. Indeed, it is sufficient to

establish that the random variable γ
−1/2
k

k∑
i=0

exp[(tk − ti)J ]γiri converges toward 0 in probability

where ti =
i∑

j=1

γj . Theorem 19 and Proposition 39 of Delyon (2000) can be applied in expectation.

Theorems 23 and 20 of Delyon (2000) also still hold with assumption (C’) instead of (C).

We have now to prove assumptions of Theorem 24 of Delyon (2000) replacing (C) by (C’).

We decompose the remainder term as follows:

ηk = ξk + νk − νk−1 + rk (7.36)

with

ξk = gθ̂(sk−1)(zk)−Πθ̂(sk−1)gθ̂(sk−1)(zk−1) (7.37)

νk = −Πθ̂(sk)gθ̂(sk)(zk) (7.38)

rk = Πθ̂(sk)gθ̂(sk)(zk)−Πθ̂(sk−1)gθ̂(sk−1)(zk) (7.39)

where for any s ∈ S, gθ̂(s) is a solution of the Poisson equation g −Πθ̂(s)g = Hs − pθ̂(s)(Hs).

Thanks to the assumptions of Theorem 1 which provides the convergence of the sequence (sk)
and assumption (N1), we get (C’).
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By definition of ξi it is obvious that (7.30) is fulfilled. Moreover, the following lemma proves
that there exists ε > 0 such that (7.31) holds with X = 1.

Lemma 4. For all ε > 0, the sequence (ξk) is in L2+ε.

Proof. We use the convexity of the function x 7→ x2+ε. Indeed, we have

|gθ̂(sk−1)(zk)−Πθ̂(sk−1)gθ̂(sk−1)(zk−1)|2+ε ≤ (|gθ̂(sk−1)(zk)|+ |Πθ̂(sk−1)gθ̂(sk−1)(zk−1)|)2+ε

≤ Cε(|gθ̂(sk−1)(zk)|2+ε + |Πθ̂(sk−1)gθ̂(sk−1)(zk−1)|2+ε) ,

where Cε = 1
23+ε .

Applying the drift condition, we get :

E(||ξk||2+ε|Fk−1) ≤ Cε

(
E(|gθ̂(sk−1)(zk)|2+ε | Fk−1) + |E(Πθ̂(sk−1)gθ̂(sk−1)(zk−1)|Fk−1)|2+ε

)
≤ C E(V (zk)2+ε + V (zk−1)2+ε|Fk−1)) ≤ C

(
λV 2+ε(zk−1) + 1

)
.

Finally taking the expectation after induction as in Lemma 3 leads to:

E(||ξ2+ε
k ||) ≤ CV 2+ε(z0) < +∞ .

Let us now focus on Equation (7.32). Thanks to the Hölder property of our kernel and the fact
that Hsk belongs to LV :

‖rk‖1 = E[|Πθ̂(sk)gθ̂(sk)(zk)−Πθ̂(sk−1)gθ̂(sk−1)(zk)|]
≤ CE[V q(zk)|sk − sk−1|a]

≤ CE[V q+1(zk)]γak

≤ Cγak

where the last inequality comes from the drift property. Since the Hölder property is true for any
0 < a < 1, we can choose a > 1/2 which leads to the conclusion.

To prove Equation (7.33), we note that using the drift condition as in the previous lemma,
E(‖νk‖) is uniformly bounded in k. Since the step-size sequence (γk)k tends to zero, the result
follows with X ′ = 1.

We follow the lines of the proof of Theorem 25 of Delyon (2000) to establish Equation (7.34).
We use the drift property coupled with our Hölder condition in LV -norm instead of the usual
Hölder condition considered by Delyon (2000) which is denoted (MS).

The Delta method enables to get the result on the sequence (θk) achieving the proof of our
Central Limit Theorem.
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image analysis. Electron J Stat 5:1054–1089, , URL http://dx.doi.org/10.1214/11-EJS633

Ceyhan E, Fong L, Tasky T, Hurdal M, Beg M MFand Martone, Ratnanather J (2007a) Type-
specific analysis of morphometry of dendrite spines of mice. 5th Int Symp Image Signal Proc
Analysis, ISPA pp 7–12
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