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Abstract: Estimation in the deformable template model is a big challenge in image analy-
sis. The issue is to estimate an atlas of a population. This atlas contains a template and the
corresponding geometrical variability of the observed shapes. The goal is to propose an accu-
rate algorithm with low computational cost and with theoretical guaranties of relevance. This
becomes very demanding when dealing with high dimensional data which is particularly the
case of medical images. We propose to use an optimized Monte Carlo Markov Chain (MCMC)
method into a stochastic Expectation Maximization (EM) algorithm in order to estimate the
model parameters by maximizing the likelihood. We present a new Anisotropic Metropolis
Adjusted Langevin Algorithm (AMALA) which is used as transition in the MCMC method.
We first prove that this new sampler leads to a geometrically uniformly ergodic Markov
chain. We prove also that under mild conditions, the estimated parameters converge almost
surely and are asymptotically Gaussian distributed. The methodology developed is then
tested on handwritten digits and some 2D and 3D medical images for the deformable model
estimation. More widely, the proposed algorithm can be used for a large range of models in
many field of applications such as pharmacology or genetic.

AMS 2000 subject classifications: Primary 62F10, 60J22; secondary 62F15, 62M40,
62P10.
Keywords and phrases: Maximum likelihood estimation; missing variable; high dimen-
sion; stochastic EM algorithm; MCMC; Anisotropic MALA; Deformable template; geometric
variability..

1. Introduction

We consider here the deformable template model introduced for Computational Anatomy by
Grenander and Miller (1998). This model, which has demonstrated great impact in image analysis,
was developed and analyzed later on by many groups (among other Marsland and Twining (2004);
Miller et al (2009, 2002); Vercauteren et al (2009)). It offers several major advantages. First, it
enables to describe the population of interest by a digital anatomical template. Then, it captures
the geometric variability of the population shapes through the modeling of deformations of the
template which match it to the observations. Moreover, the metric on the space of deformations
is specified in the model as a quantification of the deformation cost. Not only describing the
population, this generative model also allows to generate synthetic data using both the template
and the geometrical metric of the deformation space which together define the atlas. Nevertheless,
the key statistical issue is how to estimate efficiently and accurately these parameters of the model
from an observed population of images.
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Several numerical methods have been developed mainly for the estimation of the template im-
age (for example Cootes et al (1995); Joshi et al (2004)). Even if these methods lead to interesting
results on some training samples, they suffer from a lack of theoretical properties and are not
robust to noisy data. Another important contribution toward the statistical formulation of the
issue of template estimation was proposed by Glasbey and Mardia (2001). However interesting
this approach is not entirely satisfactory since the deformations are applied to discrete obser-
vations requiring some interpolation. Moreover it does not formulate the analysis in terms of a
generative model which appears very attractive as mentioned above. To overcome these lacks,
Allassonnière et al (2007) have formulated a coherent statistical generative model. For estimating
all the model parameters, the template image together with the geometrical metric, the authors
proposed a deterministic algorithm based on an approximation of the well-known Expectation
Maximization (EM) algorithm (Dempster et al (1977)), where the posterior distribution is re-
placed by a Dirac measure on its mode (called FAM-EM). However, such an approximation leads
to the non-convergence of the estimates highlighted when considering noisy observations.

One solution to face this problem is to consider a convergent stochastic approximation of the
EM (SAEM) algorithm which was proposed by Delyon et al (1999). An extension using Monte
Carlo Markov Chain (MCMC) methods was developed and studied by Kuhn and Lavielle (2004)
and Allassonnière et al (2010b) allowing for wider applications. To apply this extension to the
deformable template model, Allassonnière et al (2010b) chose a Metropolis Hastings within Gibbs
sampler (also called hybrid Gibbs) as MCMC method since the variables to sample were of large
dimension (the usual Metropolis Hastings algorithm providing low acceptation rates). This esti-
mation algorithm has been proved convergent and performs very well on very different kind of data
as presented by Allassonnière et al (2010a). Nevertheless, the hybrid Gibbs sampler becomes com-
putationally very expensive when sampling very high dimensional variables. Although it reduces
the dimension of the sampling to one which enables to stride easier the target density support, it
loops over the sampling variable coordinates, which becomes computationally unusable as soon as
the dimension is very large or as the acceptation ratio involves heavy computations. To overcome
the problem of computational cost of this estimation algorithm, some authors propose to simplify
the statistical model constraining the correlations of the deformations (c.f. Maire et al (2011);
Richard et al (2009)). Our purpose in this paper is to propose an efficient and convergent esti-
mation algorithm for the deformable template model in high dimension without any constrains.
With regards to the above considerations, the computational cost of the estimation algorithm can
be reduced by optimizing the sampling scheme in the MCMC method.

The sampling of high dimensional variables is a well-known difficult challenge. In particular,
many authors have proposed to use the Metropolis Adjusted Langevin Algorithm (MALA) (see
Roberts and Tweedie (1996) and Stramer and Tweedie (1999a)). This algorithm is a particular
random walk Metropolis-Hastings sampler. Starting from the current iterate of the Markov chain,
one simulates a candidate with respect to a Gaussian proposal with an expectation equal to the
sum of this current iterate and a drift related to the target distribution. The covariance matrix
is diagonal and isotropic. This candidate is accepted or rejected with a probability given by the
Metropolis Hastings acceptance ratio.

Some modifications have been proposed in particular to optimize the covariance matrix of the
proposal in order to better stride the support of the target distribution (see Atchadé (2006);
Girolami and Calderhead (2011); Marshall and Roberts (2012); Stramer and Tweedie (1999b)).
Atchadé (2006) and Marshall and Roberts (2012) proposed to construct adaptive MALA chains
for which they prove the geometric ergodicity of the chain uniformly on any compact subset of
its parameters. Unfortunately, this technique does not take the whole advantage of changing the
proposal using the target distribution. In particular, the covariance matrix of the proposal is given
by a stochastic approximation of the empirical covariance matrix. This choice seems completely
relevant as soon as the convergence toward the stationary distribution is reached. However, it
does not provide a good guess of the variability during the first iterations of the chain since
it is still very dependent on the initialization. This leads to chains that may be numerically
trapped. Moreover, this particular algorithm may require a lot of tuning parameters. Although
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the theoretical convergence is proved, this algorithm may be very difficult to optimize in practice
into an estimation process.

Recently, Girolami and Calderhead (2011) proposed the Riemann manifold Langevin algorithm
in order to sample from target density in high dimensional setting with strong correlations. This
algorithm is also a MALA based one for which the choice of the proposal covariance is guided by
the metric of the underlying Riemann manifold. It requires to evaluate the metric, its inverse as
well as its derivatives. The proposed well-suited metric is the Fisher-Rao information matrix or its
empirical value. However, in the context we are dealing with, the real metric, namely the metric of
the space of non-rigid deformations, is not explicit (a particular case is calculated by Micheli et al
(2012)) preventing from any use of it. Moreover, if we consider the constant curvature simplifica-
tion suggested by Girolami and Calderhead (2011), one still needs to invert the metric which may
be neither explicit nor computationally tractable. Note that these constrains are common with
other application fields such as genetic or pharmacology, where the models are often complex.

For all these reasons, we propose to adapt the MALA algorithm in the spirit of both works of
Atchadé (2006) and Girolami and Calderhead (2011) to get an efficient sampler into the stochastic
EM algorithm. Therefore, we propose to sample from a proposal distribution which has the same
expectation as the MALA but using a full anisotropic covariance matrix based on the anisotropy
and correlations of the target distribution (called in the sequel AMALA). The expectation is ob-
tained as the sum of the current iterate plus a drift which is proportional to the gradient of the
logarithm of the target distribution. We construct the covariance matrix as a regularization of the
Gram matrix of this drift. We prove the geometric ergodicity uniformly on any compact set of the
AMALA assuming some regularity conditions on the target distribution. We also prove the almost
sure convergence of the parameter estimated sequence generated by the coupling of AMALA and
SAEM algorithms (AMALA-SAEM) toward the maximum likelihood estimate under some regu-
larity assumptions on the model. Moreover, we prove a Central Limit Theorem for this sequence
under weak conditions on the model. We test our estimation algorithm on the deformable template
model for estimating hand-written digit atlases from the USPS database and medical images of
corpus callosum (2D) and of dendrite spine excrescences (3D). The proposed estimation method
is compared with the results obtained from the FAM-EM algorithm and from the MCMC-SAEM
algorithm using different samplers namely the hybrid Gibbs sampler, the MALA and the adaptive
MALA proposed by Atchadé (2006) previously introduced. The comparison is also made via clas-
sification rates on the USPS database. These experiments demonstrate the good behavior of our
method in both the accuracy of the estimation and the low computational cost in high dimension.

The paper is organized as follows. In Section 2, we recall the Bayesian Mixed Effect (BME)
template model. In Section 3, we consider the estimation issue in general framework of missing
data models. We present our stochastic version of the EM algorithm using the AMALA sampler.
The convergence properties are established in Section 4. Section 5 is devoted to the experiments
on the BME template estimation. Finally, we give some conclusion in Section 6. The proofs are
postponed in Section 7.

2. Description of the Bayesian Mixed Effect (BME) Template model

The deformable template model aims at summarizing a population of images by two quantities.
The first one is a mean image which has to represent a relevant shape as one could find in the
population. The second quantity represents the variance in the space of shapes. This corresponds to
the geometrical variability around the mean shape. In practice, numerical approximations of both
quantities are obtained through statistical estimation process. Let us now describe the deformable
template model.

We consider the hierarchical Bayesian framework for dense deformable template developed by
Allassonnière et al (2007) where each image in a population is assumed to be generated as a noisy
and randomly deformed version of the mean image also called template.
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The database is composed of n grey level images (yi)1≤i≤n observed on a grid Λ of pixels (or
voxels) {vu ∈ D,u ∈ Λ} included in a continuous domain D ⊂ Rd, (typically D = [−1, 1]d where d
equals 2 or 3). The expected template I0 : Rd → R takes its values in the continuous domain. Each
observation y is assumed to be a discretization on Λ of a random deformation of this template
plus an independent noise. Therefore, there exists an unobserved deformation field (also called
mapping) m : Rd → Rd such that for u ∈ Λ

y(u) = I0(vu −m(vu)) + σε(u) ,

where σε denotes the independent additive noise and vu is the location of pixel (or voxel) u.
Considering the template and the deformations as continuous functions would lead to a dense

problem. The dimension is reduced assuming that both elements belong to a subset of fixed
Reproducing Kernel Hilbert Spaces (RKHS) Vp and Vg defined by their respective kernels Kp and
Kg. More precisely, let (rp,j)1≤j≤kp -respectively (rg,j)1≤j≤kg - be some fixed control points in the
domain D: there exist α ∈ Rkp -resp. z ∈ Rkg × Rkg - such that for all v in D:

Iα(v) = (Kpα)(v) =

kp∑
j=1

Kp(v, rp,j)α
j and

mz(v) = (Kgz)(v) =

kg∑
j=1

Kg(v, rg,j)z
j .

For clarity, write y = (yi)1≤i≤n for the n−tuple of observations and z = (zi)1≤i≤n for the
n−tuple of unobserved variables defining the deformations. The statistical model on the observa-
tions is chosen as follows:  z ∼ ⊗ni=1Ndkg (0,Γg) | Γg ,

y ∼ ⊗ni=1N|Λ|(mziIα, σ
2Id) | z, α, σ2 ,

(2.1)

where ⊗ denotes the product of independent variables and mIα(u) = Iα(vu −m(vu)), for u in Λ.
The parameters of interest are α (the template), σ2 (the noise variance) and Γg (the deformation
covariance matrix). We assume that θ = (α, σ2,Γg) belongs to the parameter space Θ:

Θ , { θ = (α, σ2,Γg) | α ∈ Rkp , |α| < R, σ > 0, Γg ∈ Sym+
dkg,∗(R) } , (2.2)

where Sym+
dkg,∗(R) is the cone of real positive dkg×dkg definite symmetric matrices, R an arbitrary

positive constant and d is the space dimension (typically 2 or 3 for images).
Since we aim at dealing with small size samples and high dimensional parameters, we work in

the Bayesian framework and we introduce priors on the parameters. In addition of guiding the
estimation it regularizes the estimation as shown by Allassonnière et al (2007). The priors are all
independent: θ = (α, σ2,Γg) ∼ νp ⊗ νg where

νp(dα, dσ
2) ∝ exp

(
−1

2
(α− µp)T (Σp)

−1(α− µp)
)
×
(

exp

(
− σ2

0

2σ2

)
1√
σ2

)ap
dσ2dα, ap ≥ 3 ,

νg(dΓg) ∝

(
exp(−〈Γ−1

g ,Σg〉F /2)
1√
|Γg|

)ag
dΓg, ag ≥ 4kg + 1 .

(2.3)
For two matrices A,B we define the Frobenius inner product by 〈A,B〉F , tr(ATB).

Parameter estimation for this model is then performed by Maximum A Posteriori (MAP) :

θ̂ = argmax
θ

q(θ|y) ,
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where q(θ|y) is the posterior density of θ conditional on y. The existence and consistence of the
MAP estimator for the BME template model has been proved by Allassonnière et al (2007).

Note that this model belongs to a more general class called the mixed effect models. The
fixed effects are the parameters θ and the random effects are the deformation coefficients z. The
estimation issue in this class is treated in the same way as the likelihood maximization problem
in the more general framework of incomplete-data models. Therefore, the next section will be
presented in this general setting in which the proposed algorithm applies.

3. Maximum likelihood estimation

3.1. Maximum likelihood estimation for incomplete data setting

We consider in this section the standard incomplete-data (or partially-observed-data) setting and
recall the usual notation. We denote by y ∈ Rq the observed data and by z ∈ Rl the missing
data, so that we obtain the complete data (y, z) ∈ Rq+l for some q ∈ N∗ and l ∈ N∗. We consider
these data as random vectors. Let µ′ be a σ-finite measure on Rq+l and µ the restriction of µ′

to Rl generated by the projection (y, z) 7→ z. We assume that the probability density function of
the random vector (y, z) belongs to P = {f(y, z; θ), θ ∈ Θ}, a family of parametric probability
density functions on Rq+l w.r.t. µ′, where Θ ⊂ Rp. Therefore, the observed likelihood (i.e. the
incomplete-data likelihood) is defined for some θ ∈ Θ by:

g(y; θ) ,
∫
f(y, z; θ)µ(dz). (3.1)

Our purpose is to find the maximum likelihood estimate that is the value θ̂g in Θ that maxi-
mizes the observed likelihood g given a sample of observations. However, this maximization can
often not be done analytically because of the integration involved in (3.1). A powerful tool which
enables to compute this maximization in such a setting is the Expectation Maximization (EM) al-
gorithm (see Dempster et al (1977)). It is an iterative procedure which consists of two steps. First,
the so-called E-step computes the conditional expectation of the complete log-likelihood using the
current parameter value. Second, the M-step achieves the update of the parameter by maximizing
this expectation over Θ. However, the computation of this expectation is often intractable analyt-
ically. Therefore, alternative procedures have been proposed. We are particularly interested in the
Stochastic Approximation EM (SAEM) algorithm (see Delyon et al (1999)) because of its theoret-
ical convergence property and its small computation time. In this stochastic algorithm, the usual
E-step is replaced by two steps, the first one corresponding to the simulation of realizations of the
missing data, the second one to the computation of a stochastic approximation of the complete
log-likelihood using these simulated values. It can be shown that under weak regularity conditions
the sequence generated by this algorithm converges almost surely toward a local maximum of the
observed likelihood (see Delyon et al (1999)).

Nevertheless the simulation step requires some attention. In the SAEM algorithm the simulated
values of the missing data have to be drawn from the posterior distribution defined by:

p(z|y; θ) ,

{
f(y, z; θ)/g(y; θ) if g(y; θ) 6= 0
0 if g(y; θ) = 0 .

When not possible, the extension using MCMC method (Allassonnière et al (2010b); Kuhn
and Lavielle (2004)) allows to apply the SAEM algorithm using simulations obtained from some
transition probability of an ergodic Markov Chain having the targeted posterior distribution as
stationary distribution. Methods like Metropolis Hastings algorithm or Gibbs sampler are useful
to perform this assignment. However, this becomes very challenging in high dimensional setting.
Indeed, when the MCMC procedure has to explore a space of high dimension, its convergence may
occur in practice only after a possibly infinite time. Thus, it is necessary to optimize this MCMC
procedure. This is what we will propose in the following paragraph.
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3.2. Description of the sampling method: Anisotropic Metropolis Adjusted Langevin
Algorithm

We propose an anisotropic version of the well-known Metropolis Adjusted Langevin Algorithm
(MALA). So let us first recall the steps of the Metropolis Adjusted Langevin Algorithm (MALA).
Let X be an open subset of Rl, the l−dimensional Euclidean space equipped with its Borel
σ−algebra B. Let us denote π the probability density function (pdf) with respect to the Lebesgue
measure on X of the target distribution. We assume that π is positive continuously differentiable.
At each iteration k of this algorithm, a candidate Xc is simulated with respect to the Gaussian

distribution with expectation Xk + σ2

2 D(Xk) and covariance σ2Idl where Xk is the current value,

D(x) =
b

max(b, |∇ log π(x)|)
∇ log π(x) , (3.2)

Idl is the identity matrix in Rl and b > 0 a fixed truncated threshold. In the following, we denote
qMALA(x, ·) the pdf of this Gaussian candidate distribution starting from x. Given this candidate,
the next value of the Markov chain is updated using an acceptance ratio αMALA(Xk, Xc) as follows:

Xk+1 = Xc with probability αMALA(Xk, Xc) = min
(

1, π(Xc)qMALA(Xc,Xk)
qMALA(Xk,Xc)π(Xk)

)
and Xk+1 = Xk with

probability 1 − αMALA(Xk, Xc). This provides a transition kernel ΠMALA of this form: for any
Borel set A ∈ B

ΠMALA(x,A) =

∫
A

αMALA(x, z)qMALA(x, z)dz+1A(x)

∫
X

(1−αMALA(x, z))qMALA(x, z)dz .

(3.3)

Note that the truncation of the drift was already suggested by Gilks et al (1996) to provide
more stability.

The Gaussian proposal of the MALA algorithm is optimized with respect to its expectation
guided by the Langevin diffusion. One step further is to optimize also its covariance matrix. A
first work in this direction was proposed by Atchadé (2006). The covariance matrix of the pro-
posal is given by a projection of a stochastic approximation of the empirical covariance matrix.
It produces an adaptive Markov chain. This process involves some additional tuning parameters
which have to be calibrated. Since our goal is to use this sampler in an estimation algorithm, the
sampler has at each iteration a different target distribution (depending on the current estimate of
the parameter). Therefore, the optimal tuning parameter may be different along the iterations of
the estimation process. Although we agree with the idea of using adaptive chain, we prefer taking
the advantage of the dynamic of the estimation algorithm. On the other side, an intrinsic solution
has been proposed by Girolami and Calderhead (2011) where the covariance matrix is given by
the metric of the Riemann manifold of the variable to sample. Unfortunately, this metric may not
be accessible and its empirical approximation not easy to compute. This is particularly the case
in the BME template model.

For these reasons, we propose a sampler in the spirit of Atchadé (2006), Marshall and Roberts
(2012) or Girolami and Calderhead (2011) however not providing an adaptive chain as motivated
above. The adaption comes from the dependency of the target distribution with respect to the
parameters of the model which are updated along the estimation algorithm. The proposal is still a
Gaussian distribution but both the drift and the covariance matrix depend on the gradient of the
target distribution. At the kth iteration, we are provided with Xk. The candidate is sampled from
the Gaussian distribution with expectation Xk + δD(Xk) and covariance matrix δΣ(Xk) denoted
in the sequel
N (Xk + δD(Xk), δΣ(Xk)) where Σ(x) is given as :

Σ(x) = εIdl +D(x)D(x)T , (3.4)
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with D defined in Eq (3.2) and ε > 0 is a small regularization parameter. Note that the threshold
parameter b leads to a symmetric positive definite covariance matrix with bounded non zero eigen
values. We introduced the gradient of log π into the covariance matrix to provide an anisotropic
covariance matrix depending on the amplitude of the drift at the current value. When the drift is
large, the candidate is likely to be far from the current value. This large step may not be of the
right amplitude and a large variance will enable more flexibility. On the other hand, when the drift
is small in a particular direction, it means that the current value is close to an admissible state for
the Markov chain. Therefore, the candidate should neither be allowed to move too far nor with a
large variance. This is taken into account here by introducing the drift into the covariance matrix.

We denote by qc the pdf of this proposal distribution. The transition kernel becomes:

Π(x,A) =

∫
A

α(x, z)qc(x, z)dz + 1A(x)

∫
X

(1− α(x, z))qc(x, z)dz , (3.5)

where α(Xk, Xc) = min
(

1, π(Xc)qc(Xc,Xk)
qc(Xk,Xc)π(Xk)

)
.

3.3. Description of the stochastic estimation algorithm

Back to the stochastic estimation algorithm, the target distribution of the sampler is the posterior
distribution p(·|y, θ).

The four steps of the proposed AMALA-SAEM algorithm are detailed in this subsection :
simulation, stochastic approximation, truncation on random boundaries and maximization steps.
At each iteration k of the algorithm, simulated values of the missing data are drawn from the
transition probability of the AMALA algorithm described in Section 3.2 with the current value of
the parameters. Then, a stochastic approximation of the complete log-likelihood is computed using
these simulated values for the missing data and is truncated using random boundaries. Finally,
the parameters are updated by maximizing this quantity over Θ.

We consider here only parametric models P which belong to the set of curved exponential
family, this means that the complete likelihood f(y, z; θ) can be written as:

f(y, z; θ) = exp [−ψ(θ) + 〈S(z), φ(θ)〉] ,

where 〈·, ·〉 denotes the Euclidean scalar product, the sufficient statistics S is a function on Rl,
taking its values in a subset S of Rm and ψ, φ are two functions on Θ (note that S, φ and ψ
may depend also on y, but we omit this dependency for simplicity). This condition is usual in the
framework of EM algorithm applications and it is fulfilled by large range of models even complex
ones as the BME template model. Therefore the stochastic approximation can be done either on
the sufficient statistics S of the model or on the complete log-likelihood.

Concerning the truncation procedure, we introduce a sequence of increasing compact subsets
of S denoted by (Kq)q≥0 such that ∪q≥0Kq = S and Kq ⊂ int(Kq+1), for all q ≥ 0. Let also
ε = (εq)q≥0 be a monotone non-increasing sequence of positive numbers and K a compact subset
of Rl. At iteration k we simulate a value z̄ for the missing data from the Anisotropic Metropolis
Adjusted Langevin Algorithm using the current value of the parameter θk−1. We compute the
associated stochastic approximation of the sufficient statistics of the model s̄. If it does not wander
outside the current compact set Kk and if it is not too far from its previous value sk−1, we keep
the possible proposed values for (zk, sk). As soon as one of these conditions is not fulfilled, we
reinitialize the sequences of z and s using a projection (for more details see Andrieu et al (2005)
) and we increase the size of the compact set used for the truncation.

Concerning the maximization step, we denote by L the function defined on S ×Θ taking values
in R equals for all (s, θ) to L(s, θ) = −ψ(θ) + 〈s, φ(θ)〉. We assume that there exists a function θ̂
defined on S taking values in Θ such that

∀θ ∈ Θ ∀s ∈ S L(s, θ̂(s)) ≥ L(s, θ).
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Finally we update the parameter using the value of the function θ̂ evaluated in sk.

The complete algorithm is summarized in Algorithm 1. It only involves three parameters: b
the threshold for the gradient which appears in the mean as well as in the covariance matrix,
δ the scale on this gradient and ε a small regularization parameter to ensure a positive definite
covariance matrix. The scale δ can be easily optimized looking at the data we are dealing with
to adapt to the range of the drift. The value of the threshold b is in practice never reached. The
practical choices for the sequence of positive step sizes used in the stochastic approximation step
and the tuning parameters will be detailed in the section devoted to the experiments.

Algorithm 1 AMALA within SAEM
for all k = 1 : kend do

Sample zc with respect to N (zk−1 + δD(zk−1, θk−1), δΣ(zk−1, θk−1)) whose pdf is denoted qc(zk−1, .; θk−1)
where 

D(zk−1, θk−1) = b
max(b,|∇ log p(zk−1|y;θk−1)|)

×∇ log p(zk−1|y; θk−1)

Σ(zk−1, θk−1) = εIdl +D(zk−1, θk−1)D(zk−1, θk−1)T .

Compute the acceptance ratio

α(zk−1, zc, θk−1) = min

(
1,

p(zc|y; θk−1)qc(zc, zk−1; θk−1)

qc(zk−1, zc; θk−1)p(zk−1|y; θk−1)

)
(3.6)

Sample z̄ = zc with probability α(zk−1, zc, θk−1) and z̄ = zk−1 with probability 1− α(zk−1, zc, θk−1)
Do the stochastic approximation

s̄ = sk−1 + γk (S(z̄)− sk−1) ,

where (γk)k is a sequence of positive step sizes.
if s̄ ∈ Kκk−1 and ‖s̄− sk−1‖ ≤ εζk−1

then

Set (zk, sk) = (z̄, s̄) and κk = κk−1, νk = νk−1 + 1, ζk = ζk−1 + 1
else

set (zk, sk) = (z̃, s̃) ∈ K×K0 and κk = κk−1 + 1, νk = 0, ζk = ζk−1 + Ψ(νk−1)
where Ψ : N→ Z is a function such that Ψ(k) > −k for any k
and (z̃, s̃) is chosen arbitrarily.

end if
Update the parameter

θk = θ̂(sk).

end for

4. Theoretical Properties

4.1. Geometric ergodicity of the AMALA

The AMALA algorithm described in Subsection 3.2 creates a geometric ergodic Markov chain uni-
formly on any compact subset. Atchadé (2006) proved the geometric ergodicity for a bounded drift
and a projection of the empirical covariance matrix. In our case, the same results hold using the
previously detailed algorithm where the main difference stands in the anisotropic covariance of the
proposal involving the gradient of log π. An assumption is required on the stationary distribution
namely the so-called super-exponential property given by:

(B1) The density π is positive with continuous first derivative such that:

lim
|x|→∞

n(x).∇ log π(x) = −∞ (4.1)

and
lim sup
|x|→∞

n(x).m(x) < 0 (4.2)
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where ∇ is the gradient operator in Rl, n(x) = x
|x| is the unit vector pointing in the direction

of x and m(x) = ∇π(x)
|∇π(x)| is the unit vector in the direction of the gradient of the stationary

distribution at point x.

Proposition 1. Assume (B1). Let 0 < β < 1 and V (x) = cπ(x)−β where c is such that ∀ x ∈
X , V (x) ≥ 1. There exist a set C ⊆ X , a probability measure ν such that ν(C) > 0 and there exist
constants λ ∈]0, 1[, b ∈ [0,∞[ and ε ∈]0, 1] such that

Π(x,A) ≥ εν(A)1C(x) ∀x ∈ X ∀A ∈ B , (4.3)

ΠV (x) ≤ λV (x) + b1C(x) . (4.4)

The first equation defines C as a small set for the transition kernel Π. Note that both ε and
ν can depend on C. The second inequality is a drift condition which states that the transition
kernel tends to bring back elements into the small set. As a consequence of these well known drift
conditions, the transition kernel Π is V -uniformly ergodic. That is to say: there exist 0 < ρ < 1

and 0 < c <∞ such that for all n ∈ N∗ and f such that ‖f‖V = sup
x∈X

‖f(x)‖
V (x) <∞:

‖Πnf(.)− πf‖V ≤ cρn‖f‖V . (4.5)

The proof of Proposition 1 is given in Appendix.

Remark 1. The same property holds for any power p of the function V satisfying 0 < pβ < 1.
Indeed, the proof follows the same way as it can be seen in Section Appendix 7. This is a property
that will appear useful in the sequel to prove some properties of the estimation algorithm.

4.2. Convergence property of the general stochastic approximation using AMALA

We first prove a general theorem on the convergence of the stochastic approximation using the
Anisotropic Metropolis Adjusted Langevin Algorithm. Then, we apply this result to prove the
convergence of the estimated sequence generated by the algorithm AMALA-SAEM.

Let S be a subset of Rm for some positive integer m. Let X be a measurable subspace of Rl for
some positive integer l. For all s ∈ S, let Hs : X → S be a measurable function. Let γ = (γk)k
be a sequence of positive step sizes. Let (πs)s∈S be a family of positive continuously differentiable
probability density functions with respect to the Lebesgue measure on X . For any s ∈ S, denote
by Πs the transition kernel corresponding to the AMALA procedure described in Section 3.2 with
stationary distribution πs.

Define now the stochastic approximation sequence (sk)k as follows :{
sk = sk−1 + γk−1Hsk−1

(zk) with zk ∼ Πsk−1
(zk−1, ·) , if sk−1 ∈ S

sk = sc with zk = zc , if sk−1 /∈ S ,
(4.6)

where sc /∈ S, zc /∈ X . Denote by Qγ the resulting transition which generates ((zk, sk))k. We
consider the natural filtration of the non-homogeneous chain ((zk, sk))k and denote respectively
by Pγz,s and Eγz,s the probability measure and the corresponding expectation generated by this
Markov chain starting at (z0, s0) ∈ X × S and using the sequence γ.

For any s ∈ S such that the function Hs is integrable with respect to πs, we denote by h the
mean field associated with our stochastic approximation so that :

h(s) =

∫
Hs(z)πs(z)dz .

Using the notation introduced in Subsection 3.3, let Φ : X × S → K × K0 be a measurable
function and Ψ : N→ Z be a function such that Ψ(k) > −k for any k. We define the homogeneous
Markov chain

(Zk = (zk, sk, κk, ζk, νk))k (4.7)

on Z , X × S × N3 with the following transition at iteration k :
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• If νk−1 = 0 then draw
(zk, sk) ∼ Qγζk−1

(Φ(zk−1, sk−1), ·); otherwise draw (zk, sk) ∼ Qγζk−1
((zk−1, sk−1), ·);

• If ‖sk− sk−1‖ ≤ εζk−1
and sk ∈ Kκk−1

then set κk = κk−1, ζk = ζk−1 + 1 and νk = νk−1 + 1;
otherwise set κk = κk−1 + 1, ζk = ζk−1 + Ψ(νk−1) and νk = 0.

We consider the following assumptions, generalized from Andrieu et al (2005) and Allassonnière
et al (2010b).

(A1’) S is an open subset of Rm, h : S → Rm is continuous and there exists a continuously
differentiable function w : S → [0,∞[ with the following properties:

(i) There exists an M0 > 0 such that

L , {s ∈ S, 〈∇w(s), h(s)〉 = 0} ⊂ {s ∈ S, w(s) < M0} .

(ii) There exists a closed convex set Sa ⊂ S for which s→ s+ρHs(z) ∈ Sa for any ρ ∈ [0, 1]
and (z, s) ∈ X × Sa (Sa is absorbing) and such that for any M1 ∈]M0,∞], the set
WM1 ∩ Sa is a compact set of S where WM1 , {s ∈ S, w(s) ≤M1}.

(iii) For any s ∈ S\L 〈∇w(s), h(s)〉 < 0.

(iv) The closure of w(L) has an empty interior.

(A2’) For any s ∈ S, Hs : X → S is measurable and
∫
‖Hs(z)‖πs(z)dz <∞.

(A3”) There exist a function V : X → [1,∞] such that {z ∈ X , V (z) < ∞} 6= ∅,
constants a ∈]0, 1], p ≥ 2 and q ≥ p such that for any compact subset K ⊂ S,

(i)

sup
s∈K
‖Hs‖V < ∞ , (4.8)

sup
s∈K

(‖gs‖V + ‖Πsgs‖V ) < ∞ , (4.9)

sup
s,s′∈K

‖s− s′‖−a{‖gs − gs′‖V q+ (4.10)

‖Πsgs −Πs′gs′‖V q} < ∞ , (4.11)

where for anyÂ s ∈ S a solution of the Poisson equation g − Πsg = Hs − πs(Hs) is
denoted by gs.

(ii) For any sequence ε = (εk)k≥0 such that there exists ε̄ > 0 satisfying εk ≤ ε̄ for all
k ∈ N∗, for any sequence γ = (γk)k≥0, there exists a constant C such that for any
z ∈ X ,

sup
s∈K

sup
k≥0

Eγz,s
[
V p(zk)1σ(K)∧ν(ε)≥k

]
≤ CKV q(z) , (4.12)

where ν(ε) = inf{k ≥ 1, ‖sk − sk−1‖ ≥ εk} and σ(K) = inf{k ≥ 1, sk /∈ K} and the
expectation is related to the non-homogeneous Markov chain ((zk, sk))k≥0 using the
step-size sequence γ = (γk)k≥0.

(A4) The sequences γ = (γk)k≥0 and ε = (εk)k≥0 are non-increasing, positive and satisfy:
∞∑
k=0

γk = ∞, lim
k→∞

εk = 0,
∞∑
k=1

{γ2
k + γkε

a
k + (γkε

−1
k )p} < ∞, where a and p are defined

in (A3”).

We assume also some regularity properties of the stationary distribution with respect to s.

(B2) For all z ∈ X , the functions s 7→ πs and s 7→ ∇z log πs are continuous on S.
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Theorem 1 (Convergence Result for Stochastic Approximation). Assume (A1’),(A2’), (A3”)
and (A4). Assume also that for all s ∈ S, the density function πs satisfies assumptions (B1-B2).
Let K ⊂ X be such that sup

z∈K
V (z) <∞ and K0 ⊂ WM0

∩ Sa (where M0 is defined in (A1’)), and

let (Zk)k≥0 be the sequence defined in Equation (4.7). Then, for all z0 ∈ K and s0 ∈ K0, we have
lim
k→∞

d(sk,L) = 0 P̄z0,s0,0,0,0-a.s, where P̄z0,s0,0,0,0 is the probability measure associated with the

chain (Zk = (zk, sk, κk, ζk, νk))k≥0 starting at (z0, s0, 0, 0, 0).

Proof. The proof of this result is based on the theorem on general convergence result for stochastic
approximation stated by Allassonnière et al (2010b) which generalized the one stated by Andrieu
et al (2005). Assumptions (A1’) and (A4) are the same. We prove that the choice of the Anisotropic
Metropolis Adjusted Langevin Algorithm as the transition probability for the dynamic of the
current Markov Chain combined with assumptions (A2’) and (A3”) implies that assumptions
(A2) and (A3’) of the theorem stated by Allassonnière et al (2010b) are fulfilled. The details are
in Appendix 7.

Remark 2. The differences between assumptions (A2’), (A3”) and (A2) and (A3’) from Allas-
sonnière et al (2010b) come from the existence of a unique stationary distribution and the existence
of a solution to the Poisson equation which are actually induced by the theoretical properties of the
AMALA sampling procedure.

4.3. Convergence property of the estimated sequence generated by the
AMALA-SAEM Algorithm

We do the following assumptions on the model which are quite usual in the context of missing
data model using EM-like algorithms (see Delyon et al (1999), Kuhn and Lavielle (2004)).

For sake of simplicity we denote in the sequel pθ(·) instead of p(·|y; θ) the posterior distribution.

• (M1) The parameter space Θ is an open subset of Rp. The complete data likelihood function
is given by:

f(y, z; θ) = exp {−ψ(θ) + 〈S(z), φ(θ)〉} ,

where S is a Borel function on Rl taking its values in an open subset S of Rm. Moreover,
the convex hull of S(Rl) is included in S, and, for all θ in Θ,∫

||S(z)||pθ(z)µ(dz) <∞.

• (M2) The functions ψ and φ are twice continuously differentiable on Θ.
• (M3) The function s̄ : Θ→ S defined as

s̄(θ) ,
∫
S(z)pθ(z)µ(dz)

is continuously differentiable on Θ.
• (M4) The function l : Θ→ R defined as the observed-data log-likelihood

l(θ) , log g(y; θ) = log

∫
f(y, z; θ)µ(dz)

is continuously differentiable on Θ and

∂θ

∫
f(y, z; θ)µ(dz) =

∫
∂θf(y, z; θ)µ(dz).
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• (M5) There exists a function θ̂ : S → Θ, such that:

∀s ∈ S, ∀θ ∈ Θ, L(s; θ̂(s)) ≥ L(s; θ).

Moreover, the function θ̂ is continuously differentiable on S.
• (M6) The functions l : Θ→ R and θ̂ : S → Θ are m times differentiable.

• (M7)

(i) There exists an M0 > 0 such that{
s ∈ S, ∂sl(θ̂(s)) = 0

}
⊂ {s ∈ S, −l(θ̂(s)) < M0} .

(ii) For all M1 > M0, the set ¯Conv(S(Rl))∩{s ∈ S, −l(θ̂(s)) ≤M1} is a compact set of S.

• (M8) There exists a polynomial function P of degree 2 such that for all z ∈ X

||S(z)|| ≤ P (z) .

• (B3) For any compact subset K of S, there exists a polynomial function Q of the hidden
variable such that sup

s∈K
|∇z log pθ̂(s)(z)| ≤ Q(z).

Theorem 2 (Convergence Result for the Estimated Sequence generated by Algorithm 1). Assume
(M1-M8) and (A4). Assume that the family of posterior density functions {pθ̂(s), s ∈ S} satisfies

assumptions (B1-B3).

Let K ⊂ X be such that sup
z∈K

p−β
θ̂(s1)

(z) <∞ and K0 ⊂ WM0
∩ ¯Conv(S(Rl)) (where M0 is defined

in (M7)). Then, for all z0 ∈ K and s0 ∈ K0, we have lim
k→∞

d(θk,L′) = 0 a.s. where (θk)k is the

sequence generated by Algorithm 1 and L′ , {θ ∈ Θ, ∂θl(θ) = 0}.

The proof is postponed to Appendix 7.3.

4.4. Central Limit Theorem for the estimated sequence generated by the
AMALA-SAEM

Theorem 2 ensures that the number of re-initializations of the sequence of stochastic approximation
of Algorithm 1 is finite almost surely. We can therefore consider only the non truncated sequence
when we are interested in its asymptotic behavior.

Let us write the stochastic approximation procedure :

sk = sk−1 + γkh(sk−1) + γkηk

where ηk = S(zk)− Epθ̂(sk−1)
(S(z)).

Let us introduce some assumptions.

(N1) The function h is C1 in some neighborhood of s∗ which satisfies h(s∗) = 0 with first deriva-
tives Lipschitz and J the Jacobean matrix of the mean field h in s∗ has all its eigenvalues
with negative real part.

(N2) Let ξk = gsk−1
(zk) − Πsk−1

gsk−1
(zk−1) where for any s ∈ S, gs is a solution of the Poisson

equation g−Πsg = Hs−ps(Hs). Assume that for some matrix U and some random variable
X > 0,

lim
k→∞

E

[
|X

k∑
i=1

(ξiξ
′
i − U)|

]
= 0 .

(N3) The step size sequence (γk) is decreasing and satisfies either case 1 or case 2:

Case 1 lim
k→∞

(
1
γk
− 1

γk−1

)
= 0,
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Case 2 for all k ∈ N∗ γk = 1/k.

In Case 2, it requires also all eigenvalues of J have a real part lower than −1/2.

Theorem 3. Under the assumptions of Theorem 2 and under (N1)-(N3), the sequence
(sk−s∗)/

√
γk converges in distribution to a Gaussian random vector with zero mean and covariance

matrix Γ and √
k(θk − θ∗)→L N (0, ∂sθ̂(s

∗)Γ∂sθ̂(s
∗)′)

where θ∗ = θ̂(s∗).

The matrix Γ is characterized as the solution of some Lyapunov equation depending on the
matrices U and J (see Theorem 4 in Section Appendix). The proof of Theorem 3 is given in
Appendix 7.4.

5. Applications on Bayesian Mixed Effect Template model

We apply our estimation process on different databases. The first one is the USPS hand-written
digit base as used by Allassonnière et al (2007) and Allassonnière et al (2010b). The others two
are medical images of 2D corpus callosum and 3D murine dendrite spine excrescences used by
Allassonnière et al (2010a).

We begin with presenting the experiments on the USPS database. In order to make comparison,
we estimate the parameters in the same conditions as in the previous mentioned works that is to
say the same 20 images per digit. Each image has grey level between 0 (background) and 2 (bright
white). These images are presented on the left panel of Fig. 1. We also use a noisy training dataset
generated by adding a standardized independent Gaussian noise. These images are presented on
the right panel of Fig. 1. We test five algorithms: the deterministic approximation of the EM
algorithm (FAM-EM) presented by Allassonnière et al (2007), four MCMC-SAEM where the
sampler is either the MALA, the adaptive MALA proposed by Atchadé (2006), the hybrid Gibbs
sampler presented by Allassonnière et al (2010b) and our AMALA algorithm.

Fig 1. Left: some images of the training set used for the estimation of the model parameters (inverse video). Right:
same examples with additive noise.

For these experiments the tuning parameters are chosen as follows: the threshold b is set to
1, 000, the scale δ = 10−3, the regularization ε = 10−4. The other tuning parameters and hyper-
parameters are chosen as in Allassonnière et al (2010b).

5.1. Computational performances

We compare first the computational performances of the algorithms. The computational time is
smaller for the three MCMC-SAEM algorithms using ”MALA-like” samplers compared to the



S. Allassonnière et al./Efficient stochastic EM in high dimension 14

FAM. Indeed, a numerical convergence of that algorithm requires about 30 to 50 EM steps. Each
of them requires a gradient descent which has 15 iterations in average. This implies to compute 15
times the gradient of the energy (which actually equals our gradient) for each image for each EM
step. The ”MALA-like”-SAEM require about 100 to 150 EM steps (depending on the digit) but
only one gradient is computed for each image at each step. This reduces the computational time
by a factor of at least 4 (up to 7 depending on the digit). No comparison can be done when the
data are noisy since the FAM-EM does not converges toward the MAP estimator as mentioned
above. Comparing to the hybrid Gibbs-SAEM, the computational time is 8 times lower with the
AMALA-SAEM in this particular case of application. Indeed, the hybrid Gibbs sampler requires
no computation of the gradient. However, it includes a loop over the coordinates of the hidden
variable, here the deformation vector of size 2kg = 72. At each of these iterations, the candidate is
straightforward to sample whereas the computational cost lies into the acceptance rate. When this
becomes heavy, the less times you calculate it, the better. In the AMALA-SAEM, this acceptance
rate only has to be calculated once for each image. Therefore, even when the dimension of the
hidden variable increases, this is of constant cost. The main price to pay is the computation of the
gradient. Therefore, a tradeoff has to be found between the computation of either one gradient or
dkg acceptance rates in order to select the algorithm to use in a given case.

5.2. Results on the template estimation

All the estimated templates obtained with the five algorithms and noise-free and noisy training
data are presented in Fig. 2. As noticed by Allassonnière et al (2010b), the FAM-EM estimation
is sharp when the training set is noise-free and is deteriorated while adding noise. This behavior is
not surprising with regard to the theoretical bound established by Bigot and Charlier (2011) in the
particular case of compact deformation group. Considering the adaptive sampler, it does not reach
a good estimation of the templates which are still very blurry and noisy in both cases. The problem
seems to come from the very low acceptation rate already at the beginning of the estimation. The
bad initial guess we have about the covariance matrix of the proposal seems to block the chain.
Moreover, the tuning parameters are difficult to calibrate along the iterations of the estimation
algorithm. Concerning the estimated templates using the Gibbs, MALA and AMALA samplers,
they look very similar to each other using the noise-free data as well as the noisy ones. This
similarity confirms the convergence of all these algorithms toward the MAP estimator. In this
case, the templates are as expected, noise free and sharp.

Nevertheless, when the dimension of the hidden variable increases, both the Gibbs and the
MALA samplers show limitations. The Gibbs-SAEM would produce sharp estimations but ex-
plodes the computational time. For this reason, we did not run this algorithm on higher dimension
experiments. We run the estimation on the same noisy USPS database, increasing the number kg
of geometrical control points. We choose the dimension of the deformation vector equal to 72, 128
and 200. The results are presented in Fig. 3. Concerning the MALA sampler, it does not seem to
capture the whole variability of the population in such high dimension. This yields a poorly esti-
mation of the templates. This phenomenon does not appear using our AMALA-SAEM algorithm.
The templates still look sharp and the acceptation rate remains reasonable.

5.3. Results on the covariance matrix estimation

We keep considering the USPS database. Since we are provided with a generative model, once
the parameters have been estimated, we can generate synthetic samples in order to evaluate the
constrained on the deformations that have been learnt. Some of these samples are presented in
Fig. 4. For each digit, 20 examples are generated with the deformation given by +z and 20 others
with −z where z is simulated with respect to N (0,Γg). We recall that, as already noticed by
Allassonnière et al (2010b), the Gaussian distribution is symmetric which may lead to strange
samples in one direction whereas the other one looks like something present in the training set.
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Algo./
Noise level

FAM Hybrid Gibbs MALA Adaptive MALA AMALA

No
additive

Noise

Additive
Noise

of Variance
1

Fig 2. Estimated templates using the five algorithms and noise free and noisy data. The training set includes 20
images per digit. The dimension of the hidden variable is 72.

Dim. of de-
formation /
Sampler

2kg = 72 2kg = 128 2kg = 200

MALA

AMALA

Fig 3. Estimated templates using MALA and AMALA samplers in the stochastic EM algorithm on noisy training
data. The training set includes 20 images per digit. The dimension of the hidden variable increases from 72 to 200.
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With regards to the above remarks concerning the computational time and the template esti-
mations, we present in this subsection only the results obtained using MALA and AMALA-SAEM
algorithms. We notice that the samples generated by both algorithms look alike in the case of
hidden variable of dimension 72. Thus, we present the results of our AMALA-SAEM estimation.
As we can see, the deformations are very well estimated in both cases (without or with noise) and
even look similar. This tends to demonstrate that the noise has really been separated from the
template as well as the geometric variability during the estimation process.

Fig 4. Synthetic samples generated with respect to the BME template model using the estimated parameters with
AMALA-SAEM. For each digit, the two lines represent the deformation using + and − the simulated deformation
z. Left: data without noise. Right: data with noise variance 1. The number of geometric control points is 36 leading
to a hidden variable of dimension 72.

Increasing the dimension of the deformation to 128, we run both algorithms on the noisy
dataset. We observe on Fig. 5 that the geometric variability of the samples remains similar to
the one obtained in lower dimension using our AMALA-SAEM. However, the MALA-SAEM does
not manage to capture the whole variability of the deformations which is related the results
observed above on the template. This confirms the limitation of the use of MALA-SAEM in
higher dimension.

5.4. Results on the noise variance estimation

The last check of the accuracy of the estimation relies in the noise variance estimation. The plots
of their evolutions along the AMALA-SAEM iterations for each digit in both cases (without and
with noise) are presented in Fig. 6. This variance is underestimated in particular in the noisy
case, which is a well-known effect of the maximum likelihood (or in our case the MAP) estimator.
We observe that the geometrically very constrained digits as 1 or 7 tend to converge very quickly
whereas the digits 2 and 4 require more iterations to capture all the shape variability.

Since this is a real parameter, we used it to illustrate the Central Limit Theorem stated in
Subsection 4.4. Fig. 7 and Fig. 8 show the histograms of 10, 000 runs of the algorithm with the
same initial conditions. We use the digits 0 and 2 of the original data set as well as of the noisy
data. As the iterations go along, the distribution of the estimates tends to look like a Gaussian
distribution centered in the estimated noise variances which demonstrates empirically the Central
Limit Theorem.
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Fig 5. Synthetic samples generated with respect to the BME template model using the estimated parameters with
AMALA-SAEM (left) and MALA-SAEM (right). For each digit, the two lines represent the deformation using +
and − the simulated deformation z. The number of geometric control points is 64 leading to a hidden variable of
dimension 128.

Fig 6. Evolution of the estimation of the noise variance along the AMALA-SAEM iterations. Left: original data.
Right: noisy data.
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Fig 7. Empirical convergence toward the Gaussian distribution of the estimated noise variance along the AMALA-
SAEM iterations for digit 0. Left: original data. Right: noisy data.

Fig 8. Empirical convergence toward the Gaussian distribution of the estimated noise variance along the AMALA-
SAEM iterations for digit 2. Left: original data. Right: noisy data.
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5.5. Classification results

The deformable template model enables to perform classification using the maximum likelihood
of a new image to allocate it to one class, here the digit. We use the test USPS database (which
contains 2007 digits) for classification while the training was done on the previous 20 noisy images.
The results obtained with the hybrid Gibbs, MALA and AMALA-SAEM are presented in Table 1.
In dimension 72, the best classification rate is performed by the hybrid Gibbs-SAEM. This is
easily understandable since the sampling scheme enables to catch deformations which have been
optimized control point by control point. Therefore, the estimated covariance matrix carries more
local accuracy. The AMALA-SAEM leading in a much smaller computation time to estimates
of the same quality provides also a very good classification rate. This confirms the good results
observed on both the template estimates and the synthetic samples. Unfortunately, the MALA-
SAEM shows again some limitations. Even if the templates look acceptable, the sampler does not
manage to capture the whole class variability. Therefore, the classification rate falls down.

In order to evaluate the stability of our estimation algorithm with respect to the dimension,
we perform the same classification with more control points. As expected, the MALA-SAEM
classification rate is deteriorated whereas our AMALA-SAEM keeps very good performances.
Note that the hybrid Gibbs sampler was not tested in dimension 2kg = 128 because of its very
long computational time.

Sampler /
Dim of Deformation Hybrid Gibbs MALA AMALA

72 22.43 35.98 23.22

128 × 43.8 25.36

Table 1
Error rate using the estimations on the noisy training set with respect to the sampler used in the MCMC-SAEM
algorithm and the dimension of the deformation 2kg. The classification is performed on the test set of the USPS

database.

5.6. Medical image template estimation

A second database is used to illustrate our algorithm. As before, in order to make comparisons
with existing algorithms, we use the same database presented by Allassonnière et al (2010a). It
consists of 47 medical images, each of them is a 2D square zone around the end point of the corpus
callosum. This box contains a part of this corpus callosum as well as a part of the cerebellum. Ten
exemplars are presented in the top rows of Fig. 9.

The estimations are compared with these obtained with the FAM-EM and the hybrid Gibbs-
SAEM algorithms and with the mean image (bottom row of Fig. 9). In this real situation, the
Euclidean mean image (a) is very blurry. The estimated template using the FAM-EM (b) provides
a first amelioration in particular leading to a sharper corpus callosum. However, the cerebellum
still looks blurry in particular when comparing it to the shape which appears in the template
estimated using the hybrid Gibbs SAEM (c). The result of our AMALA-SAEM is given in image
(d). This template is very close to (c) as we could expect at a convergence point. Nevertheless the
AMALA-SAEM has much lower computational time than the hybrid Gibbs-SAEM. This shows
the advantage of using AMALA-SAEM in real cases of high dimension.

5.7. 3D medical images

We also test our algorithm in much higher dimension using the dataset of murine dendrite spines
(see Aldridge et al (2005); Ceyhan et al (2007a,b)) already used by Allassonnière et al (2010a). The
dataset consists of 50 binary images of microscopic structures, tiny protuberances found on many
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(a) (b) (c) (d)

Fig 9. Medical image template estimation. Top rows : 10 Corpus callosum and cerebellum training images among
the 47 available. Bottom row : (a) mean image. (b) FAM-EM estimated template. (c) Hybrid Gibbs - SAEM
estimated template. (d) AMALA-SAEM estimated template.

types of neurons termed dendrite spines. The images are from control mice and knockout mice
which have been genetically modified to mimic human neurological pathologies like Parkinson’s
disease. The acquisition process consisted of electron microscopy after injection of Lucifer yellow
and subsequent photo-oxidation. The shapes were then manually segmented on the tomographic
reconstruction of the neurons. Some of these binary images are presented in Fig. 10 which shows
a 3D view of some exemplars among the training set. Each image is a binary (background = 0,
object = 2) cubic volume of size 283. We can notice here the large geometrical variability of this
population of images. Therefore we use a hidden variable of dimension 3kg = 648 to catch this
complex structure.

The template estimated with either 30 or 50 observations are presented in Fig. 12. We obtain
similar shapes which are coherent with what a mean shape could be regarding the training sam-
ple. To evaluate the estimated geometrical variability, we generate synthetic samples as done in
Subsection 5.3. Eight of these are shown in Fig. 11. We observe different twistings which are all
coherent with the shapes observed in the dataset. Note that the training shapes have very irregular
boundaries whereas the parametric model used for the template leads to a smoother image. Thus,
the synthetic samples do not reflect the local ruggedness of the segmented murine dendrite spines.
If the aim was to capture these local bumps, the number of photometrical control points has to
be increased. However, the goal of our study was to detect global shape deformations.

6. Conclusion

In this paper we have considered the deformable template estimation issue using the BME model.
We were particularly interested in the high dimensional setting. To that purpose, we have proposed
to optimize the sampling scheme in the MCMC-SAEM algorithm to get an efficient and accurate
estimation process. We have exhibited a new MCMC method based on the classical Metropolis
Adjusted Langevin Algorithm where we introduced an anisotropic covariance matrix in the pro-
posal. This optimization takes into account the anisotropy of the target distribution. We proved
that the generated Markov chain is geometrically ergodic uniformly on any compact set. We have
also proved the almost sure convergence of the sequence of parameters generated by the estimation
algorithm as well as its asymptotic normality. We have illustrated this estimation algorithm in
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Fig 10. 3D views of eight samples of the data set of dendrite spines. Each image is a volume leading to a binary
image.

Fig 11. 3D views of eight synthetic data. The estimated template shown in Fig. 12 is randomly deformed with
respect to the estimated covariance matrix.

the BME model. We considered different datasets of the literature namely the USPS database,
2D medical images of corpus callosum and 3D medical images of murine dendrite excrescences.
We have compared the results with previously published ones to highlight the gain in speed and
accuracy of the proposed algorithm.

We emphasize that the proposed estimation scheme can be applied in a wide range of application
fields involving missing data models in high dimensional setting. In particular, this method is
promising when considering mixture models as by Allassonnière and Kuhn (2010). Indeed, it will
enable to shorten the computation time of the simulation part which in that case requires the
use of many auxiliary Markov chains. This also provides a good tool for this BME model when
introducing a diffeomorphic constrain on the deformations. In this case, it is even more important
to get an efficient estimation process since the computational cost of diffeomorphic deformation is

Fig 12. Estimated templates of murine dendrite spines. The training set is either composed of 30 (left) or 50
(right) images.
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intrinsically large.

7. Appendix

7.1. Proof of Proposition 1

The idea of the proof is the same as the one of the geometric ergodicity of the random walk
Metropolis algorithm developed by Jarner and Hansen (1998) and re-written by Atchadé (2006)
for its adaptive version of the MALA with truncated drift. The fact that both the drift and the
covariance matrix are bounded even depending on the gradient of log π enables some similar proofs.

Let us first recall the transition kernel:

Π(x,A) =

∫
A

α(x, z)qc(x, z)dz + 1A(x)

∫
X

(1− α(x, z))qc(x, z)dz , (7.1)

where α(x, z) = min(1, ρ(x, z)) and ρ(x, z) = π(z)qc(z,x)
qc(x,z)π(x) .

Thanks to the bounded drift and covariance matrix, we can bound the proposal distribution qc
by two centered Gaussian distributions with covariance matrices ε1Idl and ε2Idl as follows: there
exist two constants 0 < k1 < k2 such that for all (x, z) ∈ X 2

k1gε1(x− z) ≤ qc(x, z) ≤ k2gε2(x− z) , (7.2)

denoting by ga the centered Gaussian probability density function in Rl with covariance matrix
aIdl.

7.1.1. Proof of the existence of a small set C

Let K = B(0, R) be the ball in Rd centered at 0 and of radius R > 0. For any x ∈ X and for any
A ∈ B:

Π(x,A) ≥
∫
A∩K

α(x, z)qc(x, z)dz .

Let C be a compact subset of X and
τ = min

x∈C, z∈K
ρ(x, z). Since ρ is a ratio of positive continuous functions in both variables, then

τ > 0. Therefore, for all x ∈ C and for any A ∈ B:

Π(x,A) ≥ min(1, τ)

∫
A∩K

qc(x, z)dz .

Moreover, thanks to (7.2),

Π(x,A) ≥ k1 min(1, τ)

∫
A∩K

gε1(z − x)dz

≥ k1 min(1, τ)

∫
X
gε1(z)1KC(A)(z)dz ,

where since C is a compact subset of Rd, it is bounded and we can define KC(A) to be the
intersection of all translations of A∩K by any element of C. Note that we can choose R sufficiently
large with respect to the size of C so that this intersection is not empty.

Let ε = k1 min(1, τ)Z and
ν(A) = 1

Z

∫
X gε1(z)1KC(A)(z)dz where Z is the renormalisation constant. Thus, C is a small set for

the transition kernel Π and (4.3) holds.
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7.1.2. Proof of the drift condition

As already noticed by Atchadé (2006), we only need to prove the two following conditions:

sup
x∈X

ΠV (x)

V (x)
<∞ (7.3)

and

lim sup
|x|→∞

ΠV (x)

V (x)
< 1 . (7.4)

We take the same path as Atchadé (2006) applied to our case and refer to Fig 13. for a 2D
visualization of all the spaces introduced along the proof.

Fig 13. 2D representation of the sets used in the proof.

For any x ∈ X , we denote A(x) = {z ∈ X such that ρ(x, z) ≥ 1} the acceptance set and R(x) =
A(x)c the complementary set of A(x). Then, using V (x) = cπ(x)−β for any 0 < β < 1,

ΠV (x)

V (x)
=

∫
A(x)

qc(x, z)
V (z)

V (x)
dz +

∫
R(x)

π(z)qc(z, x)

π(x)qc(x, z)
qc(x, z)

V (z)

V (x)
dz +

∫
R(x)

(
1− π(z)qc(z, x)

π(x)qc(x, z)

)
qc(x, z)dz

=

∫
A(x)

π(z)−β

π(x)−β
qc(x, z)︸ ︷︷ ︸

f1(x,z)

dz +

∫
R(x)

π(z)1−β

π(x)1−β qc(z, x)︸ ︷︷ ︸
f2(x,z)

dz +

∫
R(x)

qc(x, z)︸ ︷︷ ︸
f3(x,z)

dz

On the acceptance set A(x):

π(z)−β

π(x)−β
qc(x, z) ≤ qc(z, x)βqc(x, z)

1−β .

Thanks to Equation (7.2) one can bound this term by the following symmetric Gaussian distribu-
tion:

π(z)−β

π(x)−β
qc(x, z) ≤ k2gε2(z − x) (7.5)

which yields: ∫
A(x)

f1(x, y)dz ≤ k2

∫
A(x)

gε2(z − x)dz . (7.6)
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Equivalently on R(x), we have the following bound:

π(z)1−β

π(x)1−β qc(z, x) ≤ qc(x, z)1−βqc(z, x)β ≤ k2gε2(z − x) . (7.7)

Let fix ε > 0, there exists a > 0 such that
∫
B(x,a)

gε2(z − x)dz ≥ 1− ε. This leads to:∫
A(x)∩B(x,a)c

f1(x, z)dz ≤ k2ε

Let Cπ(x) be the level set of π in x: Cπ(x) = {z ∈ X : π(z) = π(x)}. We define a pipe around
this level set as
Cπ(x)(u) = {z + s n(z), |s| ≤ u, z ∈ Cπ(x)}.

Thanks to assumption (B1), there exists r1 > 0 such that for all x ∈ X satisfying |x| ≥ r1 then 0
is inside the hyperspace defined by the level set Cπ(x) (π(0) > π(x)). Therefore, let x ∈ X , |x| ≥ r1,
then for all z ∈ X , ∃x1 ∈ Cπ(x) such that z = x1 + s n(x1).

Since z 7→ gε2(z − x) is a smooth density in the variable z, we can find u > 0 sufficiently small
such that ∫

B(x,a)∩Cπ(x)(u)

gε2(z − x)dz ≤ ε , (7.8)

leading to ∫
A(x)∩B(x,a)∩Cπ(x)(u)

f1(x, z)dz ≤ k2ε .

Assumption (B1) implies that for any r > 0 and s > 0, dr(s) = sup
|x|≥r

π(x+s n(x))
π(x) goes to 0 as

r goes to ∞. Denote Cπ(x)(u)c+ = {z ∈ Cπ(x)(u)c s.t. π(x) > π(z)} and Cπ(x)(u)c− = {z ∈
Cπ(x)(u)c s.t. π(x) < π(z)}. Therefore there exists r2 > r1 + a such that for any x : |x| ≥ r2 and
using also the definition of the acceptance set A(x):∫

A(x)∩B(x,a)∩Cπ(x)(u)c+
f1(x, z)dz ≤

∫
A(x)∩B(x,a)∩Cπ(x)(u)c+

(
π(z)

π(x)

)1−β

qc(z, x)dz

≤ dr2(u)1−βk2

∫
X
gε2(z − x)dz ≤ k2dr2(u)1−β ,

using equation (4.2) which states that the stationary distribution is decreasing in the direction of
the normal of x sufficiently large.

In the same way, one has:∫
A(x)∩B(x,a)∩Cπ(x)(u)c−

f1(x, z)dz ≤
∫
A(x)∩B(x,a)∩Cπ(x)(u)c−

(
π(z)

π(x)

)−β
qc(x, z)dz

≤ k2dr2(u)β .

The same inequalities can be obtained for f2 using the same arguments:∫
R(x)∩B(x,a)c

f2(x, z)dz ≤ k2ε∫
R(x)∩B(x,a)∩Cπ(x)(u)

f2(x, z)dz ≤ k2ε∫
R(x)∩B(x,a)∩Cπ(x)(u)c+

f2(x, z)dz ≤ k2dr2(u)1−β

∫
R(x)∩B(x,a)∩Cπ(x)(u)c−

f2(x, z)dz ≤ k2dr2(u)β .
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This yields

lim sup
|x|→∞

ΠV (x)

V (x)
= lim sup
|x|→∞

∫
R(x)

qc(x, z)dz. (7.9)

Let Q(x,A(x)) =
∫
A(x)

qc(x, z)dz, we get

lim sup
|x|→∞

ΠV (x)

V (x)
= 1− lim inf

|x|→∞
Q(x,A(x)).

Let us now prove that lim inf
|x|→∞

Q(x,A(x)) ≥ c > 0 where c does not depend on x.

Let a fixed as above. Since qc is an exponential function, there exists ca0 > 0 such that

inf
z∈B(x,a)

qc(z, x)

qc(x, z)
≥ ca0 . (7.10)

Moreover, thanks to assumption (B1) there exists r3 > 0 such that for all x ∈ X , |x| ≥ r3, there
exists 0 < u2 < a such that,

π(x)

π(x− u2 n(x))
≤ ca0 . (7.11)

Hence, for |x| ≥ r3, any point x2 = x− u2 n(x) belongs to A(x).
Let W (x) be the cone defined as:

W (x) =
{
x2 − sζ, 0 < s < a− u2, ζ ∈ Sd−1, |ζ − n(x2)| ≤ ε

2

}
(7.12)

where Sd−1 is the unit sphere in Rd.

Let us prove that W (x) ⊂ A(x).
Using assumption (B1), we have for a sufficiently large x: m(x).n(x) ≤ −ε. Besides, by con-

struction of W (x) for large x, for all z ∈ W (x), |n(z) − n(x)| ≤ ε/2 with n(x) = n(x2) (see Fig
13). This leads to for any sufficiently large x, for all z ∈W (x),

m(z).ζ = m(z).(ζ − n(x2)) +m(z).(n(x2)− n(z)) +m(z).n(z) ≤ ε/2 + ε/2− ε = 0 . (7.13)

Let now z = x2 − sζ ∈ W (x). Using the mean value theorem on the differentiable function π
between x2 and z, we get that there exists τ ∈]0, s[ such that π(z) − π(x2) = −sζ.∇π(x2 − τζ).
Using the definition of m, this implies that π(z) − π(x2) = −sζ.m(x2 − τζ)|∇π(x2 − τζ)| ≥ 0
thanks to Equation (7.13). Putting all these results together we finally get that for all z ∈W (x),
π(z) ≥ π(x2) ≥ 1

ca0
π(x). Moreover, as z ∈ B(x, a) as well, Equation (7.10) is satisfied, leading to

z ∈ A(x).

Then, we have

Q(x,A(x)) =

∫
A(x)

q(x, z)dz

≥
∫
A(x)

k1gε1(z − x)dz

≥ k1

∫
W (x)

gε1(z − x)dz

=

∫
Tx(W (x))

gε1(z)dz

where
Tx(W (x)) =

{
−u2 n(x)− sζ, 0 < s < a− u2, ζ ∈ Sd−1, |ζ − n(x)| ≤ ε

2

}
(7.14)
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is the translation of the set W (x) by the vector x. But since gε1 is isotropic and Tx(W (x)) only
depends on a fixed constant u2 and n(x), this last integral is independent of x, so there exists a
positive constant c such that:

c =

∫
Tx(W (x))

gε1(z)dz . (7.15)

Back to our limit,

lim sup
|x|→∞

ΠV (x)

V (x)
≤ 1− c (7.16)

which ends the proof of the condition (7.4).

To prove (7.3), we use the previous result. Indeed, since ΠV (x)
V (x) is a smooth function on X it

is bounded on every compact subset. Moreover since the lim sup is finite, then it is also bounded
outside a fixed compact. This proves the results.

7.2. Proof of Theorem 1

We provide here the proof of the convergence of the stochastic approximation sequence. Proposition
1 ensures the existence of a small set for each transition probability Πs which satisfies also a drift
condition. Therefore, each of this transition probability generates a uniform ergodic chain which
admits an unique stationary distribution (see Meyn and Tweedie (1993)). This result combined
with assumption (A2’) implies assumption (A2) of Allassonnière et al (2010b).

We now prove assumption (A3’). Let K be a compact subset of S. The proof of the existence
of a small set for each transition probability detailed in Section 7.1.1 can be easily adapted to
construct a common small set C for all transition probabilities obtained for all s ∈ K where K is
compact.

Moreover, each transition probability satisfies a drift condition:

∀s ∈ K, ∀z ∈ X ΠsVs(z) ≤ λsVs(z) + bs1C(z), (7.17)

where λs ∈]0, 1[, bs > 0 and Vs(z) = cβsπ
−β
s (z) with cs = max

z∈X
πs(z). Note that assumption (B1)

ensures that 0 < cs <∞.
We now have to prove that there exist a function V , constants m ∈ N∗, 0 < λm < 1 and b > 0

independent of s such that

∀z ∈ X sup
s∈K

Πm
s V (z) ≤ λmV (z) + b1C(z).

Thanks to assumption (B2), there exists a constant ca0 uniform in s with respect to the compact
K such that Equations (7.10) and (7.11) still hold for all s ∈ K. This implies that the set Tx(W (x))
is independent of s ∈ K. Therefore, we can set λ = 1− c < 1 where c is defined in Equation (7.15)
and is also independent of any s in the compact K. The same arguments hold for b.

Let s1 ∈ S be fixed arbitrarily and define V (z) = cβs1π
−β
s1 (z). Since K is compact, there exist

two constants (c1, c2) such that ∀s ∈ K ∀z ∈ X c1πs1(z) ≤ πs(z) ≤ c2πs1(z).
Then, we get

Πm
s V (z) ≤ cβs1c

β
2 c
−β
s Πm

s Vs(z)

≤ cβs1c
β
2 c
−β
s (λmVs(z) + b/(1− λ))

≤ c−β1 cβ2λ
mV (z) + cβs1c

β
2 c
−β
s b/(1− λ)

≤ (c2/c1)βλmV (z) + cβs1c
β
2 c
−β
K b/(1− λ)

where cK = mins∈K cs > 0. Choosing m large enough such that λm = (c2/c1)βλm < 1 ensures the
result.
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The geometric ergodicity of the Markov chain also ensures the existence of a solution of the
Poisson equation (see Meyn and Tweedie (1993)). Thus, assumption (A3”) implies assumption
(A3’) in the context of Anisotropic Metropolis Adjusted Langevin transition probability and the
stated convergence result holds.

7.3. Proof of Theorem 2

We provide here the proof of the convergence of the estimated sequence generated by Algorithm
1.

We apply Theorem 1 with the functions Hs equals to Hs(z) = S(z)− s, πs = pθ̂(s) and

h(s) =

∫
(S(z)− s)pθ̂(s)(z)µ(dz) .

Let us first prove that assumption (A1’) is satisfied. Assumptions (M1)-(M6) ensure that S
is an open subset and that the function h is continuous on S. Moreover defining w(s) = −l(θ̂(s)),
we get that w is continuously differentiable on S. Applying Lemma 2 of Delyon et al (1999), we
get (A1’)(i), (A1’)(iii) and (A1’)(iv).

To prove (A1’)(ii), we consider as absorbing set Sa the closure of the convex hull of S(Rl)
denoted ¯Conv(S(Rl)). So assumption (M7)(ii) is exactly equivalent to assumption (A1’)(ii).

This achieves the proof of assumption (A1’).

Assumption (A2’) is directly implied by assumption(M1).

Let us now prove assumption (A3”).

Let s1 ∈ S be fixed arbitrarily and define V (z) = cβs1p
−β
θ̂(s1)

(z), with cs1 = maxz∈X pθ̂(s1)(z). Let

also K be a compact subset of S.
We first consider condition (A3”(i)).
Since Hs(z) = S(z)−s, assumptions (M8) and (B1) ensure that there exists a constant C > 0

such that sup
s∈K

sup
z∈X

P (z)

p−β
θ̂(s1)

(z)
≤ C and inequality (4.8) of (A3”(i)) holds.

The uniform ergodicity of the family of Markov chains corresponding to the AMALA on K ensures
that there exist constants 0 < γK < 1 and CK > 0 such that for all s ∈ K

sup
s∈K
‖gθ̂(s)‖V = sup

s∈K
‖
∑
k≥0

(Πk
θ̂(s)

Hs − pθ̂(s)Hs)‖V

≤ sup
s∈K

∑
k≥0

CKγ
k
K‖Hs‖V <∞ .

Thus ∀s ∈ K, gθ̂(s) belongs to LV = {g : Rl → R, ‖g‖V <∞}.
Repeating the same calculation as above, it is immediate that sup

s∈K
|‖Πθ̂(s)gθ̂(s)‖ is bounded. This

ends the proof of inequality (4.9) of (A3”(i)).

We now move to the Hölder condition (4.11) of (A3”(i)). We will use the following lemmas
which state Hölder conditions on the transition kernel and its iterates:

Lemma 1. Let K be a compact subset of S. There exists a constant CK such that for all 1 ≤ p < q,
for all function f ∈ LV p and for all (s, s′) ∈ K2 we have :

‖Πθ̂(s)f −Πθ̂(s′)f‖V q ≤ CK‖f‖V p ‖s− s
′‖ .
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Proof. For any f ∈ LV p , we have

Πθf(z) =

∫
Rl
f(z′)α(z, z′, θ)qc(z, z

′; θ)dz′ + f(z)(1− α(z, θ)) ,

where α(z, z′, θ) = min
(

1, pθ(z′)qc(z
′,z;θ)

qc(z,z′;θ)pθ(z)

)
and α(z, θ) =

∫
α(z, z′, θ)qc(z, z

′; θ)dz′ is the average

acceptance rate.
Let s and s′ be two points in K and s(ε) = (1− ε)s+ εs′ for ε ∈ [0, 1] be a linear interpolation

between s and s′ (since S is convex, we can assume that K is a convex set so that s(ε) ∈ K for

any ε ∈ [0, 1]). We denote also by θ(ε) , θ̂(s(ε)) the associated path in Θ which is a continuously
differentiable function.

We introduce Π1
θf(z) , (1 − α(z, θ))f(z) and Π2

θf(z) ,
∫
Rd f(z′)α(z, z′, θ)qc(z, z

′, θ)dz′. We

start with the difference |(Π2
θ(1)f −Π2

θ(0)f)(z)|.
We have:

|(Π2
θ(1)f −Π2

θ(0)f)(z)| ≤
∫ 1

0

∫
Rl
|f(z′)| ×

∣∣∣∣ ddε (α(z, z′, θ(ε))qc(z, z
′; θ(ε)))

∣∣∣∣ dz′dε .
Since α(z, z′, θ) = min(ρ(z, z′, θ), 1) where ρ(z, z′, θ) , pθ(z′)qc(z

′,z;θ)
pθ(z)qc(z,z′;θ)

is a smooth function in θ,

we have almost every where:

∣∣∣∣ ddε (α(z, z′, θ(ε))qc(z, z
′; θ(ε)))

∣∣∣∣ ≤ qc(z, z′; θ(ε))×∣∣∣∣ ddε (log πθ(ε)(z
′)− log πθ(ε)(z)+ log qc(z, z

′; θ(ε)))
∣∣∣

≤ CKqc(z, z
′; θ(ε))‖ d

dε
∇z log πθ(ε)(z)‖ ×

[
1 + ‖S(z′)− S(z)‖‖ d

dε
φ(θ(ε))‖+‖z′ − z − δD(z, θ(ε))‖2

]
≤ CKqc(z, z

′; θ(ε))R(z, z′) ,

where R is a polynomial function of both variables z and z′, with degree 2 in z′ (thanks to
assumption (M8) and (B3)).

Since |f(z′)| ≤ ‖f‖V pV p(z′), there exists an CK such that for all (s, s′) ∈ K2, for all z ∈ Rl,∫ 1

0

∫
Rl
|f(z′)| qc(z, z′; θ(ε))R(z, z′)dz′dε ≤ CK‖f‖V p

∫ 1

0

∫
Rl
V p(z′)R(z, z′)qc(z, z

′; θ(ε))dz′dε .

Thanks to assumption (M8) and the normality of qc, we have for all 0 < β < 1 and 1 ≤ p
satisfying 0 < βp < 1 :

sup
s∈K

∫
Rl
V p(z′)R(z, z′)qc(z, z

′; θ̂(s))dz′ ≤ CKR(z) ,

where R is a polynomial function.
Therefore we end up with:

|(Π2
θ(1)f −Π2

θ(0)f)(z)| ≤ CK‖f‖V p‖s− s′‖R(z) .

Moreover, thanks to the super exponential property (B1) of pθ, we have that for all q > 0 :

sup
z∈X

R(z)

V q(z)
<∞ .

This implies that: for all f ∈ LV p ,

‖(Π2
θ̂(s)

f −Π2
θ̂(s′)

f)‖V q ≤ CK‖f‖V p‖s− s′‖ .
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Now, looking at the first term,

|(Π1
θ(1)f −Π1

θ(0)f)(z)| = |α(z, θ(1))− α(z, θ(0))| |f(z)|

= |(Π2
θ(1)1−Π2

θ(0)1)(z)| |f(z)|
≤ CK‖1‖V p‖s− s′‖R(z) |f(z)| ,

where we define 1 to be the constant function equals to 1 everywhere.
Following the same lines as previously, we get

|(Π1
θ(1)f −Π1

θ(0)f)(z)| ≤ CK‖‖s′ − s‖ R(z)‖f‖V pV p(z) . (7.18)

Since R is polynomial, we obtain for all q > p and for all f ∈ LV p ,

‖(Π1
θ̂(s)

f −Π1
θ̂(s′)

f)‖V q ≤ CK‖f‖V p‖s− s′‖ .

Thus, adding both terms, we get (updating again CK) that

‖(Πθ(1) −Πθ(0))f‖V q ≤ CK‖f‖V p‖s′ − s‖ , (7.19)

which ends the proof of the lemma.

Lemma 2. Let K be a compact subset of S. There exists a constant CK such that for all 1 ≤ p < q,
for all function f ∈ LV p , for all (s, s′) ∈ K2 and for all k ≥ 0, we have:

‖Πk
θ̂(s)

f −Πk
θ̂(s′)

f‖V q ≤ CK‖f‖V p‖s− s′‖ .

Proof. We use the usual decomposition of the difference denoting θ = θ̂(s) and θ′ = θ̂(s′) :

Πk
θf −Πk

θ′f =

k−1∑
i=1

Πi
θ(Πθ −Πθ′)(Π

k−i−1
θ′ f − pθ′(f)) .

Using Lemma 1, the fact that ‖Πk
θ(f − pθ(f))‖V p ≤ CKγ

k
K‖f‖V p with γK < 1 (geometric

ergodicity) and sup
j≥0

sup
s∈K
‖Πj

θ̂(s)
V q‖V q <∞ we get:

‖Πk
θf −Πk

θ′f‖V q ≤ CK

k−1∑
i=1

‖(Πθ −Πθ′)× (Πk−i−1
θ′ f − pθ′(f))‖V q

≤ CK‖f‖V p‖s− s′‖
k−1∑
i=1

γk−i+1
K

and the lemma is proved.

Thanks to the proofs of Allassonnière et al (2010b), we get that h is a Hölder function for any
0 < a < 1 which leads to (A3”(i)).

We finally focus on the proof of (A3”(ii)).

Lemma 3. Let K be a compact subset of S and p ≥ 1. There exists CK > 0 such that for any
s, s′ ∈ K, for any z ∈ X ,

|V p
θ̂(s)

(z)− V p
θ̂(s′)

(z)| ≤ CK‖s− s′‖V pθ̂(s)(z)P (z) . (7.20)
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Proof. We calculate first the differential in s of the function p−βp
θ̂(s)

. We get for all z ∈ X :

∂sp
−βp
θ̂(s)

(z) = (−p β) p−βp−1

θ̂(s)
(z)∂spθ̂(s)(z).

and
|∂sp−βpθ̂(s)

(z)| ≤ p β p−βp
θ̂(s)

(z)|∂s log(pθ̂(s)(z))| .

We have for all z ∈ X :

pθ̂(s)(z) =
exp

(
ψ(θ̂(s)) + 〈S(z), φ(θ̂(s))〉

)
∫

exp
(
ψ(θ̂(s)) + 〈S(z), φ(θ̂(s))〉

)
dz

,

which leads to

∂s log(pθ̂(s)(z)) = ∂sψ(θ̂(s)) + 〈S(z), ∂sφ(θ̂(s))〉

−

∫
exp

(
ψ(θ̂(s)) + 〈S(z), φ(θ̂(s))〉

)
∫

exp
(
ψ(θ̂(s)) + 〈S(z), φ(θ̂(s))〉

)
dz
×

(
∂sψ(θ̂(s)) + 〈S(z), ∂sφ(θ̂(s))〉

)
dz∫

exp
(
ψ(θ̂(s)) + 〈S(z), φ(θ̂(s))〉

)
dz

. (7.21)

We can deduce from assumptions (M2), (M5) and (M8) that there exists a constant CK such
that: for all s ∈ K

|∂s log(pθ̂(s)(z))| ≤ CKP (z) ,

which implies that
|∂sp−βpθ̂(s)

(z)| ≤ CK p β p−βpθ̂(s)
(z)P (z).

Introducing again 0 ≤ c1 ≤ c2 such that

c1p
−β
θ̂(s1)

(z) ≤ p−β
θ̂(s)

(z) ≤ c2p−βθ̂(s1)
(z)

for any (z, s) ∈ X ×K we deduce that

|∂sp−βpθ̂(s)
(z)| ≤ cp2CK p β p

−βp
θ̂(s1)

(z)P (z).

Using the mean value theorem, we get

|p−βp
θ̂(s)

(z)− p−βp
θ̂(s′)

(z)| ≤ cp2
cp1
CK p β‖s− s′‖ p−βpθ̂(s)

(z)P (z). (7.22)

We recall that Vθ̂(s)(z) = cβs p
−β
θ̂(s)

(z). This yields

|V p
θ̂(s′)

(z)− V p
θ̂(s)

(z)| ≤ |cβps′ ||p
−βp
θ̂(s)

(z)− p−βp
θ̂(s′)

(z)|+ |p−βp
θ̂(s)

(z)| |cβps − c
βp
s′ | .

Since cs = max
z∈X

pθ̂(s)(z) and using the smoothness of the target distribution with respect to both

the parameter and the hidden variable, we can bound cs on any compact subset K by CK and
using Equation (7.22) we have:

|V p
θ̂(s′)

(z)− V p
θ̂(s)

(z)| ≤ C ′K‖s− s′‖p
−βp
θ̂(s)

(z)P (z) + p−βp
θ̂(s)

(z)|cβps − c
βp
s′ | .

We now focus on the estimation of |cβps − c
βp
s′ |.
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Let us note that:

|cβps − c
βp
s′ | = |max

z∈X
pβp
θ̂(s)

(z)−max
z∈X

pβp
θ̂(s′)

(z)|

≤ max
z∈X
|pβp
θ̂(s)

(z)− pβp
θ̂(s′)

(z)| .

We then use the mean value theorem as before:

|∂spβpθ̂(s)(z)| ≤ CK p β p
βp

θ̂(s)
(z)P (z)

≤ CKc
−p
1 p β pβp

θ̂(s1)
(z)P (z) ,

and get:

|pβp
θ̂(s)

(z)− pβp
θ̂(s′)

(z)| ≤ CK p β‖s− s′‖ pβpθ̂(s1)
(z)P (z)

≤ CK p β‖s− s′‖cβps1 P (z) .
(7.23)

This yields :
|cβps − c

βp
s′ | ≤ CKP (z)‖s− s′‖

and thus

|V p
θ̂(s′)

(z)− V p
θ̂(s′)

(z)| ≤ C ′K‖s− s′‖p
−βp
θ̂(s)

(z)P (z)

≤ C ′Kc
−βp
K ‖s− s′‖V p

θ̂(s)
(z)P (z) ,

which concludes the proof of Lemma 3.

Lemma 4. Let K be a compact subset of S, p ≥ 1 and P be a polynomial function on X . There
exists µK > 0 such that for any z ∈ X , for any s ∈ K, we have

Πθ̂(s)V
p

θ̂(s)
P (z) ≤ µKV pθ̂(s)(z) . (7.24)

Proof. This proof is similar to the proof of Proposition 1 and in particular of Equation (7.3). The
key property leads in an equivalent inequalities sequence given in Equation (7.2) including the
polynomial function P . As before, we have : thanks to the bounded drift and covariance matrix,
there exist two constants 0 < k1 < k2 such that for all (x, z) ∈ X 2

k1gε1(x− z) ≤ qc(x, z)P (z) ≤ k2gε2(x− z) , (7.25)

denoting by ga the centered Gaussian probability density function in Rl with covariance matrix
aIdl. Therefore we get, with the condition that βp < 1 :

ΠV pP (x)

V p(x)
=

∫
A(x)

π(z)−βp

π(x)−βp
qc(x, z)P (z)︸ ︷︷ ︸

f1(x,y)P (z)

dz +

∫
R(x)

π(z)1−βp

π(x)1−βp qc(z, x)P (z)︸ ︷︷ ︸
f2(x,z)P (z)

dz +

∫
R(x)

qc(x, z)P (z)︸ ︷︷ ︸
f3(x,z)P (z)

dz .

Equation (7.25) enables to bound the two first elements as already done and thus they converge
toward 0 as |x| → ∞. Considering now the last term, we can use the same bound :∫

R(x)

qc(x, z)P (z)dz ≤
∫
R(x)

k2gε2(x− z)dz ≤ k2 .

Then, taking the lim sup over |x| tending to infinity provides the result.

Lemma 5. Let K be a compact subset of S and p ≥ 1 such that pβ < 1. For all sequences
γ = (γk)k≥0 and ε = (εk)k≥0 satisfying εk < ε̄ for some ε̄ sufficiently small, there exists CK > 0,
such that for any z ∈ X , we have

sup
s∈K

sup
k≥0

Eγz,s[V p(zk)1σ(K)∧ν(ε)≥k] ≤ CKV p(z) .
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Proof. Let K be a compact subset of Θ such that θ̂(K) ⊂ K. We note in the sequel, θk = θ̂(sk).
We have for k ≥ 2, using the Markov property and the drift property (7.17) for V pθ ,

Eγz,s[V
p
θk−1

(zk)1σ(K)∧ν(ε)≥k] ≤ Eγz,s[Πθk−1
V pθk−1

(zk−1)1σ(K)∧ν(ε)≥k] (7.26)

≤ λEγz,s[(V
p
θk−1

(zk−1)1σ(K)∧ν(ε)≥k] + C (7.27)

Moreover, with the same arguments and Lemma 3,

Eγz,s[V
p
θk−1

(zk−1)1σ(K)∧ν(ε)≥k] = Eγz,s[(V
p
θk−1

(zk−1)− V pθk−2
(zk−1))1σ(K)∧ν(ε)≥k]

+Eγz,s[V
p
θk−1

(zk−1)1σ(K)∧ν(ε)≥k]

≤ CKεk−1Eγz,s[Πθk−2
V pθk−2

P (zk−2)1σ(K)∧ν(ε)≥k]

+Eγz,s[Πθk−2
V pθk−2

1σ(K)∧ν(ε)≥k]

≤ CKεk−1µKEγz,s[V
p
θk−2

(zk−2)1σ(K)∧ν(ε)≥k]

+λEγz,s[V
p
θk−2

(zk−2)1σ(K)∧ν(ε)≥k] + C

≤ C + λ(λ+ CKεk−1µK)× Eγz,s[V
p
θk−2

(zk−2)1σ(K)∧ν(ε)≥k] .

Iterating this recursively leads to :

Eγz,s[V
p
θk−1

(zk−1)1σ(K)∧ν(ε)≥k] ≤ C

1 +

k−1∑
j=2

k−1∏
l=j

(λ+ CKεlµK)

+ (7.28)

k−1∏
j=1

(λ+ CKεjµK)

Eγz,s[V
p
θ0

(z)1σ(K)∧ν(ε)≥k] , (7.29)

which can be injected in Equation (7.26) and yields :

Eγz,s[V
p
θk−1

(zk)1σ(K)∧ν(ε)≥k] ≤ λ

k−1∏
j=1

(λ+ CKεjµK)

Eγz,s
[
V pθ0(z)

]
+

C

1 + λ

k−1∑
j=2

k−1∏
l=j

(λ+ CKεlµK)

 .
Since λ < 1, we can choose ε̄ such that ρ = λ + CKε̄µK < 1 which ensures that for all k ∈ N,

we have :

Eγz,s[V
p
θk−1

(zk)1σ(K)∧ν(ε)≥k] ≤ ρk−1V pθ0(z) + C
k−2∑
l=0

ρl

≤ V pθ0(z)

(
1 +

C

1− ρ

)
.

Using 0 ≤ c1 ≤ c2 such that c1p
−β
θ̂(s1)

(z) ≤ p−βθ (z) ≤ c2p
−β
θ̂(s1)

(z) for any (z, θ) ∈ Rl ×K and the

definitions of V and Vθ we get the result.

This yields (A3”(ii)) under (A4) and allows finally to apply Theorem 1.

7.4. Proof of the Central Limit Theorem for the Estimated Sequence

To prove this result we consider Theorem 24 of Delyon (2000): Consider the stochastic approxi-
mation with a noise of the form:

sk = sk−1 + γkh(sk−1) + γkξk + νk − νk−1 + rk (7.30)

and assumption (C) given by
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(C) The algorithm defined by Equation (7.30) is A-stable, the sequence (sk) converges toward
some limit s∗. The function h is C1 in some neighborhood of s∗ with first derivatives Lipschitz
and J the Jacobean matrix of the mean field h in s∗ has all its eigenvalues with negative
real part.

Theorem 4 (Theorem 24 Delyon (2000)). Let assumptions (C) and (N3) be satisfied, and if
lim
k→∞

kγk = 1 we require that γk = 1/k. Furthermore assume that for some matrix U , some ε > 0

and some positive random variables X,X ′, X ′′:

The sequence (ξi) is a F −martingale (7.31)

sup
i∈N
‖ξi‖2+ε <∞ (7.32)

lim
k→∞

γ
−1/2
k ‖Xrk‖1 = 0 (7.33)

lim
k→∞

γ
1/2
k ‖X

′νk‖1 = 0 (7.34)

lim
k→∞

γk‖X ′′
k∑
i=1

(ξiξ
′
i − U)‖1 = 0 (7.35)

where F = (Fi)i∈N is the increasing family of σ−algebra generated by the random variables
(s0, z1, ..., zi). Then

sk − s∗√
γk

→L N (0, V ) (7.36)

where V is the solution of the following Lyapunov equation depending on the cases of assumption
(N3):

Case 1: U + JV + V J ′ = 0,
Case 2: U + (J + I/2)V + V (J + I/2)′ = 0.

Unfortunately, we are not able to prove the A-stability required in assumption (C) and to prove
our convergence we use a relaxed version of this condition. This new assumption is a sufficient
condition to prove the required result as can be seen when following the proofs of Delyon (2000).
We therefore define a new assumption (C’).

(C’) The sequence sk converges to some limit s∗, the function h is C1 in some neighborhood of
s∗ with first derivatives Lipschitz and J the Jacobean matrix of the mean field h in s∗ has
all its eigenvalues with negative real part.

The result of Theorem 24 still holds under this alleviated assumption. Indeed, it is sufficient to
establish that the random variable

γ
−1/2
k

k∑
i=0

exp((tk − ti)J)γiri converges toward 0 in probability where ti =
i∑

j=1

γj . Theorem 19 and

Proposition 39 of Delyon (2000) can be applied in expectation. Theorems 23 and 20 of Delyon
(2000) also still hold with assumption (C’) instead of (C).

We have now to prove that the assumptions of Theorem 24 of Delyon (2000) replacing (C) by
(C’).

We decompose the remainder term as follows:

ηk = ξk + νk − νk−1 + rk (7.37)

with

ξk = gsk−1
(zk)−Πsk−1

gsk−1
(zk−1) (7.38)

νk = −Πskgsk(zk) (7.39)

rk = Πskgsk(zk)−Πsk−1
gsk−1

(zk) (7.40)
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where for any s ∈ S, gs is a solution of the Poisson equation g −Πsg = Hs − ps(Hs).
Thanks to the assumptions of Theorem 2 which provides the convergence of the sequence (sk)

and assumption (N1) we get (C’).

By definition of ξi it is obvious that (7.31) is true. Moreover, the following lemma proves that
there exists ε > 0 such that (7.32) holds with X = 1.

Lemma 6. For all ε ≥ 0 such that β(2 + ε) < 1, the sequence (ξk) is in L2+ε.

Proof. We use the convexity of the function x 7→ x2+δ. Indeed, we have

|gsk−1
(zk)−Πsk−1

gsk−1
(zk−1)|2+ε ≤ (|gsk−1

(zk)|+ |Πsk−1
gsk−1

(zk−1)|)2+ε

≤ Cε(|gsk−1
(zk)|2+ε + |Πsk−1

gsk−1
(zk−1)|2+ε) ,

where Cε = 1
23+ε .

Using assumptions (M8) and (B1), we get applying the drift condition:

E(||ξk||2+ε|Fk−1) ≤ Cε
(
E(|gsk−1

(zk)|2+ε | Fk−1) + |E(Πsk−1
gsk−1

(zk−1)|Fk−1)|2+ε
)

≤ C E(V (zk)2+ε + V (zk−1)2+ε|Fk−1)) ≤ C
(
λV 2+ε(zk−1) + 1

)
.

Finally taking the expectation after induction leads to:

E(||ξ2+ε
k ||) ≤ CV 2+ε(z0) < +∞ .

Let us now focus on Equation (7.33). Thanks to the Hölder property of our kernel and the fact
that Hsk belongs to LV :

‖rn‖1 = E[|Πsngsn(zn)−Πsn−1
gsn−1

(zn)|]
≤ CE[V q(zn)|sn − sn−1|a]

≤ CE[V q+1(zn)]γan

≤ Cγan

where the last inequality comes from the drift property. Since the Hölder property is true for any
0 < a < 1, we can choose a > 1/2 which leads to the conclusion.

To prove Equation (7.34), we note that using the drift condition as in the previous lemma,
E[|νk|] is uniformly bounded in k. Since the step-size sequence (γk) tends to zero, the result fol-
lows with X ′′ = 1.

Equation (7.35) is an assumption of our asymptotic normality theorem and Theorem 24 applies.
The Delta method enables to get the result on the sequence (θk) achieving the proof of our Central
Limit theorem.
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Atchadé Y (2006) An adaptive version for the metropolis adjusted langevin algorithm with a
truncated drift. Methodol Comput Appl Probab 8:235–254

Bigot J, Charlier B (2011) On the consistency of Fréchet means in deformable models for curve and
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Ceyhan E, Ölken R, Fong L, Tasky T, Hurdal M, Beg M, Martone M, Ratnanather J (2007b)
Modeling metric distances of dendrite spines of mice based on morphometric measures. Int
Symp on Health Informatics and Bioinformatics

Cootes T, Taylor C, Cooper D, Graham J (1995) Active shape models: their training and appli-
cation. Comp Vis and Image Understanding 61(1):38–59

Delyon B (2000) Stochastic approximation with decreasing gain: convergence and asymptotic
theory. Technical Report: Publication interne 952, IRISA

Delyon B, Lavielle M, Moulines E (1999) Convergence of a stochastic approximation version of
the EM algorithm. Ann Statist 27(1):94–128

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society 1:1–22

Gilks W, Richardson S, Spiegelhalter D (1996) Markov Chain Monte Carlo in Practice. Chapman
& Hall

Girolami M, Calderhead B (2011) Riemann manifold langevin and hamiltonian monte carlo meth-
ods. Journal of the Royal Statistical Society: Series B 73(2):1–37

Glasbey CA, Mardia KV (2001) A penalised likelihood approach to image warping. Journal of the
Royal Statistical Society, Series B 63:465–492

Grenander U, Miller MI (1998) Computational anatomy: An emerging discipline. Quarterly of
Applied Mathematics LVI(4):617–694

Jarner S, Hansen E (1998) Geometric ergodicity of metropolis algorithms. In: Stochastic Processes
and Their Applications, pp 341–361

Joshi S, Davis B, Jomier M, Gerig G (2004) Unbiased diffeomorphic atlas construction for com-
putational anatomy. Neuroimage 23:S151–S160

Kuhn E, Lavielle M (2004) Coupling a stochastic approximation version of EM with an MCMC
procedure. ESAIM Probab Stat 8:115–131 (electronic)

Maire F, Lefebvre S, Moulines E, Douc R (2011) Aircraft classification with low infrared sensor.
Statistical Signal Processing Workshop (SSP), IEEE

Marshall T, Roberts G (2012) An adaptive approach to langevin MCMC. Statistics and Computing
22 (5):1041–1057

Marsland S, Twining C (2004) Constructing diffeomorphic representations for the groupewise
analysis of non-rigid registrations of medical images. IEEE Transactions on Medical Imaging 23

Meyn SP, Tweedie RL (1993) Markov chains and stochastic stability. Communications and Control
Engineering Series, Springer-Verlag London Ltd., London

Micheli M, Michor PW, Mumford DB (2012) Sectional curvature in terms of the cometric, with
applications to the riemannian manifolds of landmarks. SIAM Journal on Imaging Sciences
5(1):394–433

Miller M, Priebe C, Qiu A, Fischl B, Kolasny A, Brown T, Park Y, Ratnanather J, Busa E, Jovi-
cich J, Yu P, Dickerson B, Buckner R (2009) Morphometry BIRN. collaborative computational

http://dx.doi.org/10.1214/11-EJS633


S. Allassonnière et al./Efficient stochastic EM in high dimension 36

anatomy: An MRI morphometry study of the human brain via diffeomorphic metric mapping.
Human Brain Mapping 30(7):2132–2141
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