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Taxonomy of models for tolerance analysis in assembling.

Introduction

Mechanical products are usually made by assembling many parts. Their quality is guaranteed by the respect of some functional requirements assigned to the whole assembly. It is needed to limit the deviations from nominal due to the manufacturing process of each assembly's component inside the assigned tolerances. Moreover, the respect of the functional requirements of the assembly depends on the effect of the tolerances assigned to the single parts and on the assembly constraints.

The aim of the tolerance analysis is to study the dimensional and/or geometric variations of the assembly due to a stack of dimensions and tolerances that are applied to the assembly's components. Therefore, tolerance analysis is the fundamental tool to allocate the tolerances on the single components by solving the trade-off between the quality of a product and its cost.

Tolerance analysis

The aim of the tolerance analysis of an assembly is to evaluate the cumulative effect of the tolerances, that are assigned to the assembly components, on the functional requirements of the whole assembly. Each functional requirement is schematized through an equation, that is usually called stack-up function, whose variables are the model parameters that are function of the dimensions and the tolerances assigned to the assembly components. It looks like
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where FR is the considered functional requirement, p 1 ,…,p n are the model parameters and f(p) is the stack-up function, that is usually not linear.

A functional requirement is a usually characteristic that relates two features. Its analytical expression is obtained by applying the equations of the Euclidean geometry to the features that define the functional requirement or to the points of the features that define the functional requirement.

A stack-up function has to model two possible assembly variations. The first variation is due to the tolerances assigned to the features of the assembly components. The obtained model (that is called "local model") has to be able to schematize all the tolerance kinds, i.e. dimensional, form, and so on, but in the same time it has to be interaction among the assigned tolerance zones. The second variation is due to the contact among the assembly components. The variability of the coupled features, by which the link among the parts is made, gives a deviation in the location among the coupled parts. The resulting model (that is called "global model") has to be able to schematize the joints with contact and the joints with clearance between the coupled features. Moreover, the global model has to be able to approach to the joints which give a linear structure of the FR equation (stack-up function) and to the joints which carry out to a complex structure of the FR equation (network function), as shown in Figure 1.

Once modeled the stack-up functions, they may be solved by means of a worst case or a statistical case approaches [START_REF] Creveling | Tolerance Design[END_REF]. To carry out a worst case approach, it is needed to define the worst configurations of the assembly (i.e. those configurations due to the cumulative effect of the smallest and the highest values of the tolerances assigned to the assembly components) that satisfy its assigned tolerances. This means to solve a problem of optimization (maximization and/or minimization) under constraints due to the assigned tolerances. Many are the methods developed by the literature to carry out a worst case approach (see [START_REF] Luenberger | Linear and Nonlinear Programming[END_REF]. To carry out a statistical approach, it is needed to translate each tolerance assigned to an assembly components into one or more parameters of the stack-up function. Therefore, a Probability Density Function (PDF), that is usually a Gaussian Function, is assigned to each parameter. The variation of the FR is obtained by means of a Monte Carlo simulation technique [START_REF] Nigam | Review of statistical approaches to tolerance analysis[END_REF]Turner 1995, Nassef and[START_REF] Nassef | Probabilistic Analysis of geometric tolerances[END_REF]; it is usually calculated as ± three times the estimated standard deviation (three sigma paradigm of Creveling 1998). 

State of the art on tolerance analysis

The result of the tolerance analysis is meaningfully conditioned by the adopted mathematical model. Some are the models proposed by the literature to carry out a tolerance analysis of an assembly, but there does not exist in the literature a paper that compares the different analytical models on the basis of a case study that underlines in a clear way all the advantages and the weakness. In the literature, Chase and Parkinson compare a number of analytical models existing with varying levels of sophistication for 1D stack-up functions that involve only dimensions [START_REF] Chase | A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies[END_REF]. The authors deal with the 2D and 3D tolerance analysis by means of the vector loop model only. Hong and Chang classified the 3D tolerance propagation scheme according to two things that are closely related each other: the representation of tolerance zones and the spatial tolerance propagation scheme [START_REF] Hong | A comprehensive review of tolerancing research[END_REF]. Shen et al. explain the differences among tolerance charting, a commercial CAT (CETOL) and T-Map method that is developed by the authors (Shen et al. 2005). Some of the criteria used for the comparison are quantitatively and very interesting: the analysis type, the tolerance types, the bonus/shift tolerances, the datum precedence, the tolerance zone interaction. Prisco and Giorleo compare the five commercial CATs by using some of the parameters introduced by Shen et al.

Other studies compare the main commercial CATs that implement some of the models of the tolerance analysis (Turner andGangoiti 1991, Salomons et al. 1998, Prisco and[START_REF] Prisco | Overview of Current CAT Systems[END_REF]; they use few parameters to describe the approach to the tolerance analysis, such as the variation sources (dimensional, geometric or small kinematic adjustments), the simplifying assumptions (rigid body and so on), the tolerance analysi kind (worst case or statistical analysis) and the sensitivity analysis.

However, a complete comparison of the models proposed to solve the tolerance analysis involving all the aspect of a tolerance analysis problem does not exist in the literature and, therefore, no guidelines exist to select the method more appropriate to the specific aims.

Development of the taxonomy

The purpose of this paper is to provide a reference framework of the major models for tolerance analysis. A taxonomy to evaluate and compare them is also suggested. The first part of the paper provides a description of the most common criteria to categorize tolerance analysis models (taxonomy) and, then, the case study used to compare the models. Subsequently, five of the most representative models are independently described and set in the suggested taxonomy (see Table 1), in order to identify theirs common features as well as those set them apart. Considering the great abundance of models presented in the literature, those discussed here were selected owing to their originality and spread. The five chosen model have been completely developed for 3D applications that involve geometrical tolerances too. All models are accompanied by explanatory representation schemes.

Taxonomy description

In this section we propose a taxonomy to benchmark tolerance analysis models.

Taxonomy is a useful tool for evaluating and comparing tolerance analysis models, depending on their peculiarities. In the next section, five of the most representative tolerance analysis models are illustrated and classified in detail. The evaluation criteria has been defined by starting from those proposed by the literature and introducing all the criteria needed to describe all the steps involved in a tolerance analysis problem: the translation of the applied tolerances and the kinematic joints into model's parameters, the building of the stack-up functions, the strategy adopted to solve the stack-up functions. Those steps may be found in all the methods proposed by the literature. Therefore, the proposed evaluation criteria are:

• the tolerance kind: the models allows to deal with the dimensions and their related tolerances or with the form tolerances or with all the geometrical tolerances (with the exception of form);

• the Envelope and the Independence: the model allows to deal with the Envelope or the Independence Principle applied to a dimensional tolerance;

• the tolerance zones' interaction: the model allows or it does not allow to schematize more tolerances applied on the same feature;

• the precedence among datum: the model allows or it does not allow to deal with an assigned precedence among the datum;

• the Material Modifier Condition: the model allows or it does not allow to deal with assigned material modifier conditions;

• the model's parameters from tolerances: the model allows or it does not allow to assign a probability density function to the model's parameters starting from the assigned tolerances;

• the joint type: the model may deal with joints with contact only or it may deal with joints with clearance too;

• the functional requirement organization: the functional requirement is represented through features or through points belonging to the features;

• the tolerance stack-up function: the model may solve linear stack-up function only or network stack-up function too.

• the analysis type: the model takes into account the worst-case approach or the statistical approach to solve the stack-up functions.

The values of the proposed criteria are shown in 

Development of a case study

To compare the tolerance analysis models, the case study shown in Figure 2 is introduced too. The two-dimensional geometry of the example assembly is made of a rectangular box containing two disk-shaped parts. The width g of the gap between the top disk and the upper surface of the box is assumed as the functional requirement to be investigated by the analysis. Goal of the tolerance analysis problem is to identify the tolerance stack-up function that defines the variability of g, and describes it as a function of the geometries and tolerances of the components involved in the assembly.

Tolerance analysis is based on the dimensional and geometrical tolerances illustrated in Figure 2.

Both the worst-case and the statistical approaches are considered when solving the tolerance analysis problem. The case study is representative of all the main aspects and critical issues involved in a typical tolerance analysis problem, while at the same time being computationally simple enough to allow for a geometrical resolution procedure in order to have an exact solution that is a term to compare the results due to all five tolerance analysis models. The example is adapted from a real-life industrial application and properly simplified to make it easier to be presented and discussed in this context. The applied tolerancing scheme, which may not appear as entirely rigorous under the viewpoint of a strict application of standardized tolerancing rules, is directly derived from the current practice adopted for the actual industrial product.

As a quantitative reference to be used when comparing results obtained by applying the tolerancing models, a first computation is now illustrated which makes use of the worst-case conditions to derive the exact geometrical solution for the variability of the 
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The variability of the gap is the difference between the maximum or the minimum values and the nominal one:
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In the following paragraphs five of the most significant tolerance analysis model are described in detail, following the criteria on taxonomy presented previously.

Vector loop model

The vector loop model uses vectors to represent relevant dimensions in an assembly [START_REF] Chase | General 2-D tolerance analysis of mechanical assemblies with small kinematic adjustments[END_REF][START_REF] Chase | Including geometric feature variations in tolerance analysis of mechanical assemblies[END_REF][START_REF] Chase | Tolerance analysis of 2-and 3D mechanical assemblies with small kinematic adjiustments[END_REF]. Each vector represents either a component dimension or an assembly dimension. Vectors are arranged in chains or loops to reproduce the effects of those dimensions that stack together to determine the resultant assembly dimensions. Three types of variations are modelled in the vector loop model: dimensional variations, kinematic variations and geometric variations.

In a vector loop model the magnitude of a geometric dimension is mapped to the length (Li) of the corresponding vector. Dimensional variations defined by dimensional tolerances are incorporated as +/-variations in the length of the vector. Kinematic variations describe the relative motions among mating parts, i.e. small adjustments that occur at assembly time in response to the dimensional and geometric variations of the components. In the vector loop model, kinematic variations are modelled by means of kinematic joints, i.e. schematizations such as the slider, etc. In vector loop models there are 6 common joint types available for 2-D assemblies and 12 common joints for 3-D assemblies. At each kinematic joint, assembly adjustments are turned into ranges for the motions allowed by the joint (i.e. degrees of freedom). A local datum reference frame (DRF) must be defined for each kinematic joint.

Geometric variations capture those variations that are imputable to geometric tolerances. These are modelled by adding additional degrees of freedom (DOFs) to the kinematic joints illustrated above. This introduces a simplification: although geometric tolerances may affect an entire surface, in vector loop models they are considered only in terms of the variations they induce at mating points, and only in the directions allowed by the type of kinematic joint. Depending on what type of geometric variation is represented by the tolerance and what motions are allowed at the kinematic joint, a geometric tolerance is typically modelled as an additional set of translational and rotational transforms (e.g. displacement vectors, rotation matrices) to be added at the joint.

To better understand the vector loop model, the basic steps for applying it to a tolerance analysis problem are provided below [START_REF] Gao | Generalized 3-D Tolerance Analysis of mechanical assemblies with small kinematic adjustments[END_REF][START_REF] Chase | Multi-Dimensional Tolerance Analysis (Automated Method)[END_REF][START_REF] Faerber | Tolerance Analysis of assemblies using kinematically derived sensitivities[END_REF][START_REF] Nigam | Review of statistical approaches to tolerance analysis[END_REF].

(1) Create the assembly graph -The first step is to create an assembly graph. The assembly graph is a simplified diagram of the assembly representing the parts, their dimensions, the mating conditions and functional requirements, i.e. the final assembly dimensions that must be measured in order to verify that the product is capable of providing the required functionality. An assembly graph assists in identifying the number of vector chains and loops involved in the assembly.

(2) Define the datum reference frame (DRF) for each part -The next step is to define the DRF for each part. DRFs are used to locate relevant features on each part. If there is a circular contact surface, its center is considered as a DRF too.

(3) Define kinematic joints and create datum paths -Each mating relation among parts is translated into a kinematic joint. Kinematic joints are typically located at contact points between parts. Datum paths are geometric layouts specifying the direction and orientation of vectors forming the vector loops, they are created by chaining together the dimensions that locate the point of contact of a part with another, with respect to the DRF of the part itself.

(4) Create vector loops -Using the assembly graph and the datum paths, vector loops are created. Each vector loop is created by connecting datums; vector loops may be open or closed; an open loop terminates with a functional requirement, which can be measured in the final assembly (it could either be the size of a relevant gap in the final assembly, or any other functionallyrelevant assembly dimension); a closed loop indicates the presence of one or more adjustable elements in the assembly.

(5) Derive the stack-up equations -The assembly constraints defined within vector loop-based models may be mathematically represented as a concatenation of homogeneous rigid body transformation matrices. H is the resultant matrix. If the assembly is described by a closed loop of constraints, H is equal to the identity matrix, otherwise H is equal to the g vector representing the resultant transformation that will lead to the identification of a functional requirement. The DLM is a very simple and rapid method, but it is approximated too. When an approximated solution is not acceptable, it is possible to use alternative approaches, such as numerical simulation by means of a Monte

Carlo technique (Gao et al. 1998, Boyer and[START_REF] Boyer | Modeling spaces for toleranced objects[END_REF].

Taxonomy descriptors

Vector loop model may be solved by means of both the worst case and the statistical approaches. It allows to take into account the dimensional and all the geometrical tolerances (the form too). If more tolerances are applied to the same feature, each tolerance is considered separately. Therefore, the model is not able to take into account the Envelope or the Independence principle applied to the dimensional tolerances and the interaction among the tolerance zones, since the vector loop models Table 3 shows the results of the application of the vector loop model to the case study, when only the dimensional tolerances or both the dimensional and the geometrical tolerances are applied. All the mathematical steps are reported in [Marziale and Polini 2009]. If only the dimensional tolerances are applied, the worst case approach gives small under estimated results of about 4%, when compared with the geometrical exact solution. This is probably due to the same way the dimensional tolerances are schematize (i.e. the first datum is nominal, the variability due to the dimensional tolerance is considered applied only on one of the two features delimiting the dimension). If both dimensional and geometrical tolerances are applied, the worst case approach gives as result an increase of the range of the g-dimension. This is due to the fact that the vector loop model considers the effect of a set of tolerances applied to a surface as the sum of the effects due to each single tolerance applied to the same surface. The effects of the different tolerances are considered independent. Therefore, increasing the number of tolerances applied to the same surface increases the variability of the functional requirement. This means that the interaction among tolerances defined on the same surface are not properly handled. The statistical approach gives similar results, when only dimensional tolerances or both dimensional and geometrical tolerances are applied.

Variational model

A mathematical foundation of this model has been proposed by Boyer and Stewart [START_REF] Boyer | Modeling spaces for toleranced objects[END_REF] first, and then by Gupta and Turner [START_REF] Gupta | Variational solid modelling for tolerance analysis[END_REF] The basic idea of the variational model is to represent the variability of an assembly, due to tolerances and assembly conditions, through a parametric mathematical model.

To create an assembly, the designer must define the nominal shape and the dimensions of each assembly component (this information is usually retrieved from CAD files). Then, the designer identifies the relevant features of each component and cases, the localization of a feature affected by variation may be defined by a transform with respect to another feature in the same part, which is affected by variations as well. Therefore, the material modifier condition are modeled by setting the parameters of DT matrix.

Once the variabilities of the parts are modeled, they must be assembled together.

Another set of differential homogeneous transformation matrices is introduced to handle the roto-translational deviations introduced by each assembly mating relation.

Such matrices are named DA, with the letter A (=assembly) to distinguish them from the matrices that have been used for parts. Those matrices are hard to evaluate, since they depend by both the tolerances imposed on the parts in contact and by the assembly conditions. This model is not able to represent mating conditions with clearance. The problem of evaluating the differential matrix is analyzed in several literature works. A possible strategy consists in modeling the joint between the coupled parts by reconstructing the coupling sequence between the features [START_REF] Berman | Shape and Position Uncertainty in Mechanical Assembly[END_REF]. Another possibility is to impose some analytical constraints on the assembly parameters (Whitney 2004).

When all the transformation matrices are obtained, it is possible to express all the features in the same global DRF of the assembly. Finally, the functional requirements can be modelled in the form of equation ( 1), obtained from the matrix multiplications described above. This model may be applied to assemblies involving joints which makes a linear structure among the parts (linear stack-up function, see Figure 1a) and joints which makes a complex structure among the parts (networks of stack-up functions, see Function 1b), such as vector loop does.

Once the stack-up functions are modelled, there are two approaches to solve them: the worst-case approach and the statistical approach. The worst-case analysis, consists in identifying the extreme configurations of the assembly under a given set of tolerances.

In the variational approach, the problem is generally handled as an optimization (maximization and/or minimization) problem, under constraints defined by the tolerances themselves. The statistical approach is generally handled by assigning predefined probability density functions, e.g. Gaussian, to the parameters identifying the main elements that contribute to the variation of each feature (often assumed independent, by simplification), and then solving the stack-up functions accordingly [START_REF] Salomons | A computer aided tolerancing tool II: Tolerance analysis[END_REF].

To better illustrate the variational method, its basic steps are illustrated in the following:

(1) Create the assembly graph -The first step is to create an assembly graph. The assembly graph is a simplified diagram of the assembly representing the parts, the features, the mating conditions and the functional requirements.

( (5) Derive the equations of the functional requirements -Once known the assembly parameters, all the features can be expressed in the same global DRF of the assembly. At this point, the functional requirements are defined in terms of functions, that can be solved by means of the previously described worstcase and/or statistical approaches.

Taxonomy descriptors

Variational model may be solved by means of both the worst case and the statistical approaches. It deals with the dimensional and the geometrical tolerances, form tolerance excepted. In fact, it considers the substitute feature as the actual feature. The model is not able to take into account the Envelope or the Independence principle applied to the dimensional tolerances and the interaction among the tolerance zones. Table 3 shows the results of the application of the variational model to the case study, when only the dimensional tolerances or both the dimensional and the geometrical tolerances are applied. All the mathematical steps are reported in (Marziale and Polini 2009). If only the dimensional tolerances are applied, the worst case approach gives small under estimated results of about 4%, when compared with the geometrical exact solution. This is probably due to the same way the dimensional tolerances are schematize (i.e. the first datum is nominal, the variability due to the dimensional tolerance is considered applied only on one of the two features delimiting the gives the same result. This is probably due to the fact that the variational model does not consider the effect of the form tolerances and the three applied orientation tolerances are few to have a significant effect on the g-dimension. The statistical approach gives similar results, when only dimensional tolerances or both dimensional and geometrical tolerances are applied. In this case the variability range is smaller than that of the worst case approach, as it is foreseen.

Matrix model

Instead of deriving equations that model a specific displacement a part or assembly may be subjected to as a function of given set of geometric dimensions (parameters) assuming specific values within the boundaries defined by tolerances (like in the variational approach), the matrix model aims at deriving an explicit mathematical representation of the boundary of the entire spatial region that encloses all possible displacements due to one or more variability sources. In order to do that, homogenous transform matrices are again considered as the foundation of the mathematical representation. A displacement matrix DT is used to describe any roto-translational variation a feature may be subjected to; the matrix is defined with respect to a local DRF. Since the goal is to represent the boundaries of the region of possible variations (i.e. extreme values), the approach is intrinsically a worst-case approach. No statistical approach may be implemented, such as vector loop and variational models do. To represent boundaries, constraints must be added to the displacements modelled within the DT matrices. types (e.g. a cylinder is invariant to any rotation about its axis) displacements -and the resulting displacement matrix-can be simplified [START_REF] Clément | Cotation tridimensionelle des systèmes mécaniques, théorie & pratique[END_REF].

A similar approach is followed to model the dimensions acting as functional requirements of the assembly; since in this case the resulting region (of possible values) is essentially contained in a segment, segment boundaries must be computed by means of a worst-case approach (min-max distances between the two points). The two points defining the boundaries of the segment must be defined as the result of stack-up functions [START_REF] Desrochers | A Matrix Approach to the Representation of Tolerance Zones and Clearances[END_REF]).

The matrix model is based on the positional tolerancing and the Technologically and Topologically Related Surfaces (TTRS) criteria [START_REF] Clément | The TTRSs: 13 Constraints for Dimensioning and Tolerancing[END_REF]. Geometric features are assumed as ideal, i.e. the form tolerances are neglected, such as variational model does. To better understand the matrix method for tolerance analysis, its basic steps are provided below.

(1) Transform the tolerances applied to the drawing -The first step is to transform the tolerances applied to the drawing to make them compliant to the positional tolerancing and the TTRS criteria.

(2) Create the assembly graph -The second step is to create an assembly graph.

The assembly graph allows for identifying the global DRF and the linkages among the features to which the tolerances are assigned. The assembly parts should be in contact, the joints with clearance may not be considered.

(3) Define the local DRF of each part feature -a DRF must be assigned to each part feature. (4) Identify the measurable points for each functional requirement -Points that locate the boundaries of each functional requirement must be identified and the path that connects them to the global DRF must be defined, taking into account all the tolerances stacking up along the way.

(5) Define the contributions of each single displacement and the related constraints -It is necessary to define the contribution of each displacement to the total displacement region, and the constraints necessary to identify its boundaries. Each surface can be classified into one of the seven classes of invariant surfaces; this allows to discard some displacements and to obtain a simplified displacement matrix. Additional information is necessary to specify the constraints ensuring that the feature remains inside the boundaries of the tolerance zone.

(6) Apply the superimposition principle and run the optimization -If more than one tolerance is applied on the same part, the total effect is computed through the superimposition principle. For example, if n tolerances are applied to the same feature, in the local DRF, the displacement of a generic point belonging to the feature is simply defined as a sum of single contributions. The aggregation of expressions obtained for each toleranced feature results in a constrained optimization problem, which can be solved with known, standard approaches.

This model has been developed for assemblies involving joints which makes a linear structure among the parts (linear stack-up function), while it is not able to deal with joints which makes a complex structure among the parts (network stack-up function). The worst case approach may be applied to the matrix model, since the statistical one has not been developed yet. The model is not able to distinguish the precedence among the datum. It may not take into account the MMC, since the Envelope principle is not included.

Table 3 shows the results of the application of the matrix model to the case study, when only the dimensional tolerances or both the dimensional and the geometrical tolerances are applied. All the mathematical steps are reported in (Marziale and Polini 2009). If only the dimensional tolerances are applied, the worst case approach gives small under estimated results of about 14%, when compared with the geometrical exact solution. This is probably due to the translation of the tolerance into the scheme of the TTRS and the application of superimposition principle. If the geometrical tolerances are applied too, the worst case approach gives the same result. This is due to the fact that the matrix model does not consider the effect of the form tolerances and the three applied orientation tolerances are few to have a significant effect on the g-dimension. The statistical approach may not be applied for this model. In the terminology adopted by the jacobian model approach, any relevant surface involved in the tolerance stack-up is referred to as functional element (FE). In the tolerance chain, FEs are considered in pairs: the two paired surfaces may belong to the same part (internal pair), or to two different parts, and paired since they interact as mating elements (kinematic pair, also referred to as external pair). The parts should be in contact to be modeled by this model.

Transform matrices can be used to locate a FE of a pair with respect to the other: such matrices can be used to model the nominal displacement between the two FEs, but also additional small displacements due to the variabilities modeled by the tolerances.

The form tolerance are neglected. The main peculiar aspect of the jacobian approach is how such matrices are formulated, i.e. by means of an approach derived from the description of kinematic chains in robotics. The transform that links two FEs belonging to a pair, and that includes both nominal displacement and small deviations due to tolerances, can be modeled by a set of six virtual joints, each associated to a datum reference frame. Each virtual joint is oriented so that a FE may have either a translation or a rotation along its z-axis. The aggregation of the six virtual joints gives origin to the transformation matrix linking one FE to the other FE of the pair (Laperrière andLafond 1999, Laperrière and[START_REF] Laperrière | Monte Carlo simulation of tolerance synthesis equations[END_REF]. The position of a point laying on the second FE of a pair, which may be assumed as depicting the FR element of the expression is the Jacobian matrix, which is relatively easy to compute, starting from the nominal position of the geometric elements involved. The tricky part, however, is to turn the assembly tolerances into displacements to assign to the virtual joints defined for each FE pair in the chain.

The main steps of the approach are described below.

(1) Identify the FE (functional element) pairs -The first step is the identification of the functional element pairs (i.e. pairs of relevant surfaces). The FEs are arranged in consecutive pairs to form a stack-up function aimed at computing each functional requirement.

(2) Define the datum reference frame (DRF) for each FE and the virtual joints -The next step is to define a DRF for each FE, and to create the chain of virtual joints representing the transformation that links the pair of FEs. Once such information is available, the transformation matrix for each FE can be obtained.

(3) Create the chain and obtain the overall Jacobian matrix -The transformation matrices can be chained to obtain the stack-up function needed to evaluate each FR. This model has been developed for assemblies involving joints which makes a linear structure among the parts (linear stack-up function), while it is not able to deal with joints which make a complex structure among the parts (network of stack-up functions), such as the matrix model does.

(4) Once obtained the required stack-up function, it may be solved by the usual methods of the literature [START_REF] Salomons | A computer aided tolerancing tool II: Tolerance analysis[END_REF] for the worst-case or statistical case approaches.

(5) Finally, it is necessary to observe that this model is based on the Technologically and Topologically Related Surfaces (TTRS) criterion [START_REF] Clément | The TTRSs: 13 Constraints for Dimensioning and Tolerancing[END_REF] 1999). Therefore, the tolerances of a generic drawing need to be converted in accordance with the previously defined criteria, before carrying out the tolerance analysis. Table 3 shows the results of the application of the Jacobian model to the case study, when only the dimensional tolerances or both the dimensional and the geometrical tolerances are applied. All the mathematical steps are reported in []. If only the dimensional tolerances are applied, the worst case approach gives small under estimated results of about 4%, when compared with the geometrical exact solution.

Taxonomy descriptors

This is probably due to the same way the dimensional tolerances are schematize (i.e.

the first datum is nominal, the variability due to the dimensional tolerance is considered applied only on one of the two features delimiting the dimension). If the geometrical tolerances are applied too, the worst case approach gives the same result, since it has been adopted the simplification to consider fixed the angles of the box in order to avoid the network. In fact, to solve the stack-up function, it is needed to relate the virtual joints displacements to the tolerances assigned on the components.

However, the form tolerances (the planar one applied on the bottom side of the box and the two circularities applied on the circles) do not produce any effect because in the jacobian model the features are considered with nominal shape; the other ones (the perpendicularity applied on the left side of the box, and the two parallelisms applied on the other sides of the box) cannot produce any orientation deviation, since the angles of the box are considered fixed. The statistical approach gives similar results, when only dimensional tolerances or both dimensional and geometrical tolerances are applied. In this case the variability range is smaller than that of the worst case approach, as it is foreseen.

Torsor model

The torsor model uses screw parameters to model three dimensional tolerance zones [START_REF] Chase | Including geometric feature variations in tolerance analysis of mechanical assemblies[END_REF]. Screw parameters are a common approach adopted in kinematics to describe motion, and since a tolerance zone can be seen as the region where a surface is allowed to move, screw parameters can be used to describe it. Each real surface of a part is modelled by a substitution surface. A substitution surface is a nominal surface characterized by a set of screw parameters that model the deviations from the nominal due to the applied tolerances. Seven types of tolerance zones are defined. Each one is identified by a subset of nonzero screw parameters, while the remaining ones are set to zero as they leave the surface invariant. The screw parameters are arranged in a particular mathematical operator called torsor, hence the name of the approach Considering a generic surface, if u A , v A , w A are the translation components of its point A, and α, β, γ are the rotation angles (considered small) with respect to the nominal, the corresponding torsor is:

R T           = A A A A w v u γ β α (5)
where R is the DRF that is used to evaluate the screw components.

To model the interactions between the parts of an assembly, three types of torsors (or Small Displacement Torsor SDT) are defined [START_REF] Ballot | A computational method for the consequences of geometric errors in mechanisms[END_REF] A union of SDTs is used to obtain the global behavior of the assembly. The aggregation can be done by considering that the worst-case approach computes the cumulative effect of a linear stack-up function of n-elements by adding the single components of the torsors. This is not true for a network of stack-up functions that has not been developed by the torsor model yet. The torsor method does not allow to apply a statistical approach, since the torsor's components are intervals of the small displacements; they are not parameters to which it is possible to assign easily a probability density function.

The torsor model operates under the assumption that both the TTRS and the positional tolerancing criteria are adopted, which means that the tolerances in the drawing may need to be updated before carrying out the tolerance analysis. The solution of stack-up functions arranged in a network is not completely developed. Finally, it is worth pointing out that, in relevant literature, the use of small displacement torsors for modelling tolerance analysis problems tends to follow two main approaches: on one hand, SDTs are used to develop functions for computing the position of geometric elements (belonging to the assembly) as they are subjected to displacement allowed by tolerances (e.g. see [START_REF] Chase | Including geometric feature variations in tolerance analysis of mechanical assemblies[END_REF]; on the other hand SDTs are used to model entire spatial volumes that encapsulate all the possible points in space that may be occupied by geometric elements during their variations (e.g. see Laperrière et al. 2002). In the analysis of the case study, only the second approach has been considered, since it looks more promising.

The basic steps of torsor model are described in the following (Villeneuve et al 2001, Teissandier et al. 1999).

(1) Identify the relevant surfaces of each part and the relations among them -The first step is to identify the relevant surfaces belonging to each part and the relationships among them; this information is usually collected in a surfaces graph. In this step the chains to relate the FRs to the relevant surfaces are identified.

(2) Derive the SDTs -A deviation SDT needs to be associated to each relevant surface of each part. This leads to the evaluation of a global SDT for each part.

Finally, the shape of the gap SDT is associated to each joint according to the functional conditions of the assembly.

(3) Obtain the FR stack-up functions: compute the cumulative effects of the displacements and obtain the final linear stack-up function of each FR.

Taxonomy descriptors

Torsor model may be solved only by means of the worst case approach. The torsor model does not allow to apply a statistical approach, since the torsor's components are intervals of the small displacements; they are not parameters to which it is possible to assign easily a probability density function. It deals with the dimensional and the Table 3 shows the results of the application of the torsor model to the case study, when only the dimensional tolerances or both the dimensional and the geometrical tolerances are applied. All the mathematical steps are reported in (Marziale and Polini 2009). If only the dimensional tolerances are applied, the worst case approach gives small under estimated results of about 4%, when compared with the geometrical exact solution. This is probably due to the same way the dimensional tolerances are schematize (i.e. the first datum is nominal, the variability due to the dimensional tolerance is considered applied only on one of the two features delimiting the dimension). If the geometrical tolerances are applied too, the worst case approach gives the same result, since it has been adopted the simplification to consider fixed the angles of the box in order to avoid the network. The statistical approach may not be applied for this model. 

Summary for tolerance analysis models

Sections 3-7 provide a fine description of five significant models for tolerance analysis of an assembly. As discussed earlier, a model for tolerance analysis allows to evaluate the effects of the tolerances assigned to an assembly components on the functional requirements of the assembly.

In this section, the five models are compared according to the taxonomy presented in Table 2. Identified criteria can be useful to evaluate and compare different models for tolerance analysis in all the aspects involved in a typical tolerance analysis problem.

The criteria adopted by the works of the literature, that are presented in paragraph 1.2, allow to underline only some of the steps of a tolerance analysis problem. The aim is to provide a selected scheme to select them, depending on model's characteristics (see Table 3). Considering the actual research issues related to tolerance analysis models, there is much room for improvement.

The vector loop model and the variational model appear more developed than the others; they are the only ones that provide support for solving tolerance stack-up functions involving networks. Moreover, they provide a method for assigning probably density functions to model parameters, once given the applied tolerances.

However, the vector loop model and the variational model are not completely consistent with the actual ISO and ASME standards and they do not provide support for handling interactions among tolerance zones. The vector loop model is the only one providing actual support for modelling form tolerances; all the other models adopt the simplification consisting in considering the real features as coincident with their substitute ones. The variational model supports the inclusion of precedence constraints among datums, and also the presence of material modifiers conditions.

The matrix model and the torsor model support only the worst-case approach for solving the tolerance analysis problem. This is a limitation, but their formalization allows them to handle joints with clearance, and interaction among tolerance zones.

The jacobian model has the advantage that the Jacobian matrix can be easily calculated from nominal conditions, while displacements of the functional requirements can be directly related to displacements of the virtual joints; however, it is difficult to derive such virtual joint displacements from the tolerances applied to the assembly components. On the other hand, the torsor model may allow for an easy evaluation of the ranges of the small displacements directly from the tolerances applied to the assembly components, but then, it is very difficult to relate these ranges to the ranges of the functional requirements of the assembly. These two considerations have suggested the idea of a unified jacobian-torsor model to evaluate the displacements of the virtual joints from the tolerances applied to the assembly components through the torsors and, then, to relate the displacements of the functional requirements to the virtual joint displacements through the Jacobian matrix [START_REF] Laperriére | Statistical and Deterministic tolerance analysis and synthesis using a Unified Jacobian-Torsor Model[END_REF][START_REF] Desrochers | Application of a Unified Jacobian-Torsor Model for Tolerance Analysis[END_REF]. Although this is theoretically possible, since the deviations are usually small and, therefore, the equations can be linearized, the actual feasibility of this approach is still subject of research.

Finally, the considered models have some common limits. The first deals with the Envelope Rule: the models do not allow to apply the Envelope Rule and the Independence Rule to different tolerances of the same part. The second is that it does not exist any criteria to assign a probably density function to the model parameters joined to the applied tolerances and that considers the interaction among the tolerance zones. The last deals with the assembly cycle: the models are not able to represent all the type of coupling with clearance between two parts. The results obtained by considering only the dimensional tolerances show that all the models give small under estimated results with the worst case approach, when compared with the exact geometrical solution. The matrix model presents the highest error (-14%), while all the other models provide the same result (-4%). This is probably due to the same way the dimensional tolerances are schematize (i.e. the first datum is nominal, the variability due to the dimensional tolerance is considered applied only on one of the two features delimiting the dimension). Moreover, the statistical approach gives similar results for all the considered models.

The results obtained by considering both dimensional and geometrical tolerances show that all the models, except the vector loop model, give similar results with the worst-case approach. This is probably due to the fact that the vector loop model considers the effect of a set of tolerances applied to a surface as the sum of the effects due to each single tolerance applied to the same surface. The effects of the different tolerances are considered independent. Therefore, increasing the number of tolerances applied to the same surface increases the variability of the functional requirement. This means that the interaction among tolerances defined on the same surface are not properly handled.

All the five models produce very similar results, when the statistical approach is applied.

Moreover, the results of Tables 3 obtained from the jacobian model and from the torsor model are basically identical. This is due to the fact that a simplification has been adopted when modelling the problem, i.e. to consider fixed at 90° the angles of the box. This assumption is due to the need to avoid the networks of stack-up functions that the two models are not able to deal. It means that all the applied tolerances may involves only translations of the sides of the box. This paper suggests a new taxonomy to help evaluate, compare and select tolerance analysis models, depending on the model characteristics and the type of application.

The paper focused on five tolerance analysis models, due to their better accuracy and their better chances of being applied to many contexts. Models have been discussed in detail in order to summarise their characteristics and peculiarities.

None of the models proposed by the literature provides a complete and clear mechanism for handling all the requirements included in the tolerancing standards [START_REF] Shen | A comparative study of tolerance analysis methods[END_REF]). This limitation is reflected also by the available commercial Computer Aided Tolerancing (CAT) software applications, which are based on the same models [START_REF] Prisco | Overview of Current CAT Systems[END_REF]. Like already discussed in detail in previous work (Marziale and Polini 2009), the main limitations of the actual models are the following: they do not properly support the application of the Envelope Rule and of the Independence Rule to different dimensional tolerances on the same part as prescribed by the ISO and ASME standards; they do not handle form tolerances (except for the vector loop model); they do not provide mechanisms for assigning probably density functions to model parameters starting from tolerances and considering tolerance zone interactions; finally, they are not capable of representing all the possible types of part couplings that may include clearance.

The overcoming of those limits through a new model and its application to case studies is subject of current ongoing research. Teissandier, D., Couétard, Y. and Gérard, A., 1999. A computer 

  able to represent the Envelope Principle (Rule # 1 of ASME standard) or the Independence Principle (according with ISO 8015 standard) applied to different dimensions of the same part. The local model has to define the range of variation of the model's parameters from the assigned tolerances and it has to schematize the

  Tolerance Analysis -assuming an assembly as made of p-parts. Each part is represented by a x-vector of its relevant dimensions and by an α α α α-vector containing additional dimensions, added for taking into account geometric tolerances. When parts are assembled together, the resulting product is characterized by a u-vector of the assembly variables and by a g-vector of measurable functional requirements. It is possible to calculate g-vector from the closed or open loop of constraints by means of the Direct Linearization Method (DLM).

a

  dimensional tolerance by a vector with only one parameter that can change (its length). The model allows easily to assign a probability density function to the model's parameters starting from the assigned tolerances. The model may deal with linear stack-up function and network stack-up functions. All the considered joints provide the contact among the mating parts. The functional requirements of the assembly may be represented through both features or points. The model is not able to distinguish the precedence among the datum. It may not take into account the MMC, principle is not included. A commercial Computer Aided Tolerancing (CAT) software, known as Cetol 6σ  of Sigmetrix, is based on vector loop model.

  assigns dimensional and geometrical tolerances to them. Each feature has its local Datum Reference Frame (DRF), while each component and the whole assembly have their own global DRF. In nominal conditions, a homogeneous transformation matrix (called TN) is defined that identifies the position of the feature DRF with respect to the part DRF. In real conditions (i.e. manufactured part), the feature will be characterized by a roto-translational displacement with respect to its nominal position. This displacement is modeled to summarize the complete effects of the dimensional and geometric variations affecting the part by means of another matrix: the differential homogeneous transformation matrix (called DT). The variational model may take into account the precedence among the datums by setting the parameters of DT matrix.The variational model is not able to deal with the form tolerances, such as vector loop model does; this means that the actual feature shape is assumed unchanged, i.e. feature shape variations are neglected. The position of the displaced feature in the part DRF can be simply obtained by matrix multiplication as a change of DRF.The model is parametric because different types and amounts of variations can be modeled by simply altering the contents (parameters) of the DT matrix. In some

)

  Define the DRF of each feature, of each part, and of the assembly -The next step is to identify the local DRF of each feature, the global DRF of each part and of the assembly (usually the DRF of the assembly coincides with the DRF of the first part). DRFs are positioned depending on surface type; from the DRFs, local parameters and the differential homogeneous transformation matrices DT are defined. (3) Transform the features -Once the transformation matrices are known, each feature of a part is transformed in the global DRF of the part.(4) Create the assembly -Using the assembly graph and the transformed features, the assembly conditions are extracted, i.e. the assembly parameters included into the matrix DA are calculated.

  The model allows easily to assign a probability density function to the model's parameters starting from the assigned tolerances The model may deal with linear stack-up function and network stack-up functions. All the considered joints provide the contact among the mating parts. The functional requirements of the assembly may be represented through both features or points. The model is able to distinguish the precedence among the datum. It may take into account the MMC.

  the geometrical tolerances are applied too, the worst case approach

  Matrix model may be solved only by means of the worst case approaches. It deals with the dimensional and the geometrical tolerances, form tolerance excepted. In fact, it considers the substitute feature as the actual feature. The model is not able to take into account the Envelope or the Independence principle applied to the dimensional tolerances. It considers the interaction among the tolerance zones. The model does not allow to assign a probability density function to the model's parameters starting from the assigned tolerances. The model may deal only with linear stack-up function. The considered joints may consider contact or clearance among the mating parts. The functional requirements of the assembly may be represented only through features.

(

  functional requirement) under scrutiny, with respect to the DRF of the first FE (assumed as the global DRF) may be expressed by considering the three small translations and the three small rotations of the point in the global DRF through the product of a Jacobian matrix associated with the FE with tolerances of all the involved FE pairs (internal or kinematic) and a vector of small deviations associated with the FE with tolerances of all the involved FE pairs, expressed in the local DRF. The main

  Jacobian model may be solved only by means of both the worst case and the statistical approaches. It deals with the dimensional and the geometrical tolerances, form tolerance excepted. In fact, it considers the substitute feature as the actual feature. The model is not able to take into account the Envelope or the Independence principle applied to the dimensional tolerances. It considers the interaction among the tolerance zones. The model does not allow to assign a probability density function to the model's parameters starting from the assigned tolerances. The model may deal only with linear stack-up function. The considered joints may consider contact or clearance among the mating parts. The functional requirements of the assembly may be represented through features and points. The model is not able to distinguish the precedence among the datum. It may not take into account the MMC, since the Envelope principle is not included.

  : a part SDT for each part of the assembly to model the displacement of the part; a deviation SDT for each surface of each part to model the geometrical deviations from nominal; a gap SDT between two surfaces linking two parts to model the mating relation. The form tolerances are neglected and they are not included in the deviation SDT.

  form tolerance excepted. In fact, it considers the substitute feature as the actual feature. The model is not able to take into account the Envelope or the Independence principle applied to the dimensional tolerances. It considers the interaction among the tolerance zones The model does not allow to assign a probability density function to the model's parameters starting from the assigned tolerances. The model may deal only with linear stack-up function. The considered joints may provide contact or clearance among the mating parts. The functional requirements of the assembly may be represented through features and points. The model is not able to distinguish the precedence among the datum. It may not take into account the MMC, since the Envelope principle is not included.

  models have been proposed and developed by many authors.

  .,Ameta, G., Shah, J.J. and Davidson, J.D., 2005, A comparative study of tolerance analysis methods. Journal of Computing and Information Science inEngineering, 5 (3),[247][248][249][250][251][252][253][254][255][256] 
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 1 Figure 1. a)Linear stack-up function and b)network stack-up function.
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  several additional variants have been proposed as well, and nowadays commercial CAT software packages are based on this approach, such as eM-TolMate of UGS  , 3-DCS of Dimensional Control Systems  , VisVSA of UGS  .
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  and on the positional tolerancing criterion(Legoff et al. 
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Models

References Vector loop [START_REF] Chase | General 2-D tolerance analysis of mechanical assemblies with small kinematic adjustments[END_REF][START_REF] Chase | Including geometric feature variations in tolerance analysis of mechanical assemblies[END_REF][START_REF] Chase | Tolerance analysis of 2-and 3D mechanical assemblies with small kinematic adjiustments[END_REF][START_REF] Gao | Generalized 3-D Tolerance Analysis of mechanical assemblies with small kinematic adjustments[END_REF][START_REF] Chase | Multi-Dimensional Tolerance Analysis (Automated Method)[END_REF][START_REF] Faerber | Tolerance Analysis of assemblies using kinematically derived sensitivities[END_REF][START_REF] Nigam | Review of statistical approaches to tolerance analysis[END_REF].

Variational [START_REF] Boyer | Modeling spaces for toleranced objects[END_REF][START_REF] Gupta | Variational solid modelling for tolerance analysis[END_REF][START_REF] Berman | Shape and Position Uncertainty in Mechanical Assembly[END_REF], Whitney 2004[START_REF] Salomons | A computer aided tolerancing tool II: Tolerance analysis[END_REF] Matrix [START_REF] Clément | Cotation tridimensionelle des systèmes mécaniques, théorie & pratique[END_REF][START_REF] Desrochers | A Matrix Approach to the Representation of Tolerance Zones and Clearances[END_REF][START_REF] Clément | The TTRSs: 13 Constraints for Dimensioning and Tolerancing[END_REF] Jacobian (Laperrière and Lafond 1999[START_REF] Laperrière | Monte Carlo simulation of tolerance synthesis equations[END_REF][START_REF] Salomons | A computer aided tolerancing tool II: Tolerance analysis[END_REF][START_REF] Clément | The TTRSs: 13 Constraints for Dimensioning and Tolerancing[END_REF][START_REF] Legoff | Geometrical tolerancing in process planning: a tridimensional approach[END_REF].

Torsor [START_REF] Chase | Including geometric feature variations in tolerance analysis of mechanical assemblies[END_REF][START_REF] Ballot | A computational method for the consequences of geometric errors in mechanisms[END_REF][START_REF] Chase | Including geometric feature variations in tolerance analysis of mechanical assemblies[END_REF], Laperrière et al. 2002, Villeneuve et al 2001, Teissandier et al. 1999).

Jacobian-Torsor [START_REF] Laperriére | Statistical and Deterministic tolerance analysis and synthesis using a Unified Jacobian-Torsor Model[END_REF][START_REF] Desrochers | Application of a Unified Jacobian-Torsor Model for Tolerance Analysis[END_REF].

T-maps [START_REF] Davidson | A new mathematical model for geometric tolerances as applied to round faces[END_REF][START_REF] Mujezinovic | A new mathematical model for geometric tolerances as applied to polygonal faces[END_REF][START_REF] Ameta | Influence of form on Frequency Distribution for 1-D clearance which is generated from Tolerance-Maps[END_REF]