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ABSTRACT
Embedded systems are usually composed of several com-
ponents and in practice, these components generally have
been independently verified to ensure that they respect
their specifications before being integrated into a larger
system. Therefore, we would like to exploit the specifica-
tion (i.e. verified CTL properties) of the components in
the objective of verifying a global property of the system.
A complete concrete system may not be directly verifiable
due to the state explosion problem, thus abstraction and
eventually refinement process are required. In this pa-
per, we propose a technique to select properties in order
to generate a good abstraction and reduce refinement
iterations. We have conducted several preliminary exper-
imentations which show that our approach is promising
in comparison to other abstraction-refinement techniques
implemented in VIS [1].

Index Terms— Compositional verification, CTL
properties, CEGAR, model-checking

1. INTRODUCTION

The embedded systems correspond to the integration into
the same electronic circuit, a huge number of complex
functionalities performed by several heterogeneous compo-
nents. Current SoC (System on Chips) contain multiple
processors executing numerous cooperating tasks, spe-
cialized co-processors (for particular data treatment or
communication purposes), Radio-Frequency components,
etc. These systems are usually submitted to safety and
robustness requirements. Depending on their application
domains, their failure may induce serious damages and
catastrophic consequences.

Therefore, it is important to ensure, during their
design phase, their correctness with respect to their speci-
fications. Errors found late in the design of these systems
is a major problem for electronic circuit designers and
programmers as it may delay getting a new product to the
market or cause failure of some critical devices that are

already in use. System verification using formal methods
such as model checking guarantees a high level of quality
in terms of safety and reliability while reducing financial
risk.

The main challenge in model checking is dealing with
the state space combinatorial explosion phenomenon. A
strategy to overcome the state explosion problem is by
performing abstraction. A method for the construction of
an abstract state graph of an arbitrary system automati-
cally was first proposed by Graf and Saidi [2] using Pvs
theorem prover. Here, the abstract states are generated
from the valuations of a set of predicates on the concrete
variables. The construction approach is automatic and
incremental.

In 2000, an interesting abstraction-refinement method-
ology called counterexample-guided abstraction refine-
ment (CEGAR) was proposed by Clarke and al. [3]. The
abstraction was done by generating an abstract model of
the system by considering only the variables that possibly
have a role in verifying a particular property. In this tech-
nique, the counterexample provided by the model-checker
in case of failure is used to refine the system.

Several tools using counterexample-guided abstrac-
tion refinement technique, like those implemented in the
VIS model-checker, have been developed such as SLAM, a
software model-checker by Microsoft Research [4], BLAST
(Berkeley Lazy Abstraction Software Verification Tool),
a software model-checker for C programs [5] and VCE-
GAR (Verilog Counterexample Guided Abstraction Re-
finement), a hardware model-checker which performs ver-
ification at the RTL (Register Transfer Language) level
[6]. However, relying on counterexamples generated by
the model checker as the only source for refinement may
not be conclusive.

Recently, a CEGAR based technique that combines
precise and approximated methods within one abstraction-
refinement loop was proposed for software verification [7].
This technique uses predicate abstraction and provides a
strategy that interleaves approximated abstraction which



is fast to compute and precise abstraction which is slow.
The result shows a good compromise between the number
of refinement iterations and verification time.

An alternative method to get over the state explosion
problem is the compositional strategy. The strategy is
based on the assume-guarantee reasoning where assump-
tions are made on other components of the systems when
verifying one component. Several works have manipu-
lated this technique notably in [8] where Grumberg and
Long described the methodology using a subset of CTL
in their framework and later in [9] where Henzinger and
al. presented their successful implementations and case
study regarding this approach.

Xie and Browne have proposed a method for software
verification based on composition of several components
[10]. Their main objective is developing components that
could be reused with certitude that their behaviors will
always respect their specification when associated in a
proper composition. Therefore, temporal properties of
the software are specified, verified and packaged with the
component for possible reuse. The implementation of this
approach on software has been successful and the applica-
tion of the assume-guarantee reasoning has considerably
reduced the model checking complexity. A comprehen-
sive approach to model-check component-based systems
with abstraction refinement technique that uses verified
properties as abstractions has been presented in [11].

In [12], Peng, Mokhtari and Tahar have presented a
possible implementation of assume-guarantee approach
where the specifications are in ACTL. Moreover, they
managed to perform the synthetisation of the ACTL
formulas into Verilog HDL behavior level program. The
synthesized program can be used to check properties that
the system’s components must guarantee. Since, there
have been other works on construction of components
from interval temporal logic properties which could be
used to speed up verification process [13] [14].

In 2007, a method to build abstractions of components
into AKS (Abstract Kripke Structure), based on the set
of the properties (CTL) each component verifies was
presented in [15]. The method is actually a tentative
to associate compositional and abstraction-refinement
verification techniques. The generations of AKS from
CTL formula have been successfully automated [16]. This
work will be the base of the techniques in this paper.

Contribution : In this paper we present a strategy
to exploit the properties of verified component in the
goal of verifying complex systems with a good initial
abstraction and eventually being conclusive in minimal
refinement iterations. We propose a technique to clas-
sify component properties according to their pertinency
towards the global property, thus, enabling a better se-
lection of properties for the initial abstraction generation.
Furthermore, in the case where the verification is not con-

clusive, we propose a technique guided by the counterex-
ample given by the model-checker to select supplementary
properties to improve the abstraction.

In the next section, we will give an overview of our
framework and introduce the notations that will be used
later. The rest of the paper is organized as follows: section
3 details our strategy of refinement. Section 4 presents
the experimentation results and finally, section 5 draws
the conclusions and summarize our possible future works.

2. OUR FRAMEWORK

The model-checking technique we propose is based on
the Counterexample-guided Abstraction Refinement (CE-
GAR) methodology [3]. The overall description of our
methodology is shown in Figure 1. We take into account
the structure of the system as a set of synchronous compo-
nents, each of which has been previously verified and a set
of CTL properties is attached to each component. This
set refers to the specification of the component. We would
like to verify whether a concrete model, M presumably
big sized and composed of several components, satisfies a
global ACTL property Φ. Instead of building the product
of the concrete components, we replace each concrete
component by an abstraction of its behavior derived from
a subset of the CTL properties it satisfies. Each abstract
component represents an over-approximation of the set
of behaviors of its related concrete component [15].

As shown in [17] for over-approximation abstraction,
if Φ holds in the abstract model then it holds in the
concrete model as well. However, if Φ does not hold in
the abstract model then one cannot conclude anything
regarding the concrete model until the counterexample
has been analyzed. The test of spurious counter-example
is then translated into a SAT problem as in [3]. When
a counterexample is proven to be spurious, the refine-
ment phase occurs, injecting more preciseness into the
(abstract) model to be analyzed.

Fig. 1. Verification Process



2.1. Concrete system definition

As mentioned earlier, our concrete model consists of sev-
eral components and each component comes with its
specification. The concrete system is a synchronous com-
position of components, each of which described as a
Moore machine.

Definition 1. A Moore machine C is defined by a tuple
〈I,O,R, δ, λ,R0〉, where,

• I is a finite set of Boolean input signals.
• O is a finite set of Boolean output signals.
• R is a finite set of Boolean sequential elements

(registers).
• δ : 2I × 2R → 2R is the transition function.
• λ : 2R → 2O is the output function.
• R0 ⊆ 2R is the set of initial states.

States (or configurations) of the circuit correspond to
Boolean configurations of all the sequential elements.

Definition 2. A Concrete system M is obtained by syn-
chronous composition of the component.
M = C1 ‖ C2 ‖ . . . ‖ Cn,where each Ci is a Moore
machine with a specification associated ϕi = {ϕ1

i . . . ϕ
k
i }.

Each ϕji is a CTL\X formula whose propositions AP
belong to {Ii ∪Oi ∪Ri} .

2.2. Abstraction definition

Our abstraction reduces the size of the representation
model by letting free some of its variables. The point is to
determine the good set of variable to be freed and when
to free them. We take advantage of the CTL specification
of each component: a CTL property may be seen as a
partial view of the tree of behaviors of its variables. All
the variables not specified by the property can be freed.
We introduced the Abstract Kripke Structure (AKS for
short) which exactly specifies when the variable of the
property can be freed. The abstraction of a component
is represented by an AKS, derived from a subset of the
CTL properties the component satisfies. Roughly speak-
ing, AKS(ϕ), the AKS derived from a CTL property ϕ,
simulates all execution trees whose initial state satisfies
ϕ. In AKS(ϕ), states are tagged with the truth values
of ϕ’s atomic propositions, among the four truth values
of Belnap’s logic [18]: inconsistent (⊥), false (f), true
(t) and unknown (>)). States with inconsistent truth
values are not represented since they refer to non possible
assignments of the atomic propositions. A set of fairness
constraints eliminates non-progress cycles. The transfor-
mation algorithm of a CTL\X property into an AKS is
described in [15, 19].

Definition 3. Given a CTL\X property ϕ whose set of
atomic propositions is AP , An Abstract Kripke Structure,
AKS(ϕ) = (AP, Ŝ, Ŝ0, L̂, R̂, F̂ ) is a 6-tuple consisting of:

• AP : The finite set of atomic propositions of prop-
erty ϕ

• Ŝ : a finite set of states
• Ŝ0 ⊆ Ŝ : a set of initial states
• L̂ : Ŝ → B|AP| with B = {⊥, f , t,>}: a labeling

function which labels each state with configuration
of current value of each atomic proposition.

• R̂ ⊆ Ŝ × Ŝ : a transition relation where ∀s ∈
Ŝ,∃s′ ∈ Ŝ such that (s, s′) ∈ R̂

• F̂ : a set of fairness constraints (generalized Büchi
acceptance condition)

We denote by L̂(s), the configuration of atomic propo-
sitions in state s, and by L̂(s)[p], the projection of con-
figuration L̂(s) according to atomic proposition p.

As the abstract model M̂ is generated from the con-
junction of verified properties of the components in the
concrete model M , it can be seen as the composition of
the AKS of each property. The AKS composition has
been defined in [19]; it extends the classical synchronous
composition of Moore machine to deal with four-valued
variables.

Definition 4. An Abstract model M̂ is obtained by
synchronous composition of components abstractions. Let
n be the number of components in the model and m be the
number of selected verified properties of a component; let
Cj be a component of the concrete model M and ϕkj is a
CTL formula describing a satisfied property of component
Cj. Let AKS(ϕCk

j
) the AKS generated from ϕkj . We

have ∀j ∈ [1, n] and ∀k ∈ [1,m]:
• Ĉj = AKS(ϕC1

j
) || AKS(ϕC2

j
) || ... || AKS(ϕCk

j
) ||

... || AKS(ϕCm
j

)

• M̂ = Ĉ1 || Ĉ2 || ... || Ĉj || ... || Ĉn

In an AKS, a state where a variable p is unknown can
simulate all states in which p is either true or false. It is
a concise representation of the set of more concrete states
in which p is either true or false. A state s is said to be
an abstract state if one of its variable p is unknown.

Definition 5. The concretization of an abstract state
s with respect to the variable p (unknown in that state),
assigns either true or false to p.
The abstraction of a state s with respect to the variable p
(either true or false in that state), assigns unknown to p.

Property 1 (Concretization). Let Ai and Aj two ab-
stractions such that Aj is obtained by concretizing one
abstract variable of Ai (resp. Ai is obtained by abstract-
ing one variable in Aj). Then Ai simulates Aj, denoted
by Aj v Ai.



Proof. As the concretization of state reduces the set of
concrete configuration the abstract state represents but
does not affect the transition relation of the AKS. The
unroll execution tree of Aj is a sub-tree of the one of Ai.
Then Ai simulates Aj .

Property 2 (Composition and Concretization). Let M̂i

be an abstract model of M and ϕkj be a property of a
component Cj of M, M̂i+1 = M̂i ‖ AKS(ϕkj ) is more
concrete that M̂i, M̂i+1 v M̂i.

Proof. Let s = (si, sϕk
j
) be a state in Si+1, such that

si ∈ Si and sϕk
j
∈ Sϕk

j
. The label of si+1 is obtained by

applying the Belnap’s logic operators and to the four-
valued values of variables in si and sϕk

j
. For all p ∈

APi ∪APϕk
j

we have the following label :
• L̂i+1[p] = > iff p is unknown in both states or does

not belong to the set of atomic proposition.
• L̂i+1[p] = t (or f) iff p is true (or false) in sϕk

j
(resp.

si) and unknown in si (resp. sϕk
j
).

By Property 1, M̂i+1 is more concrete than M̂i and by the
property of parallel composition, M̂i v M̂i ‖ AKS(ϕkj ).

2.3. Initial abstraction

Given a global property Φ, the property to be verified
by the composition of the concrete components model,
an abstract model is generated by selecting some of the
properties of the components which are relevant to Φ.
In the initial abstraction generation, all variables that
appear in Φ have to be represented. Therefore the prop-
erties in the specification of each component where these
variables are present will be used to generate the initial
abstraction, M̂0 and we will verify the satisfiability of the
global property Φ on this abstract model. If the model-
checking failed and the counterexample given is found
to be spurious, we will then proceed with the refinement
process.

3. REFINEMENT

3.1. Properties of good refinement

When a counterexample is found to be spurious, it means
that the current abstract model M̂i is too coarse and has
to be refined. In this section, we will discuss about the
refinement technique based on the integration of more
verified properties of the concrete model’s components
in the abstract model to be generated. Moreover, the
refinement step from M̂i to M̂i+1 respects the properties
below:

Definition 6. An efficient refinement verifies the follow-
ing properties:

1. The new refinement is an over-approximation of
the concrete model: M̂ v M̂i+1.

2. The new refinement is more concrete than the pre-
vious one: M̂i+1 v M̂i.

3. The spurious counterexample in M̂i is removed from
M̂i+1.

Furthermore, the refinement steps should be easy to
compute and ensure a fast convergence by minimizing
the number of iterations of the CEGAR loop.

Refinements based on the concretization of selected
abstract variables in M̂i ensure item 2. Concretization
can be performed by modifying the AKS of M̂i by chang-
ing some abstract value to concrete ones. However, this
approach is rude: in order to ensure item 1, the con-
cretization needs to be consistent with the sequences of
values in the concrete system. The difficulty resides in
defining the proper abstract variable to concretize, at
which precise instant, and with which Boolean value.

We propose to compose the abstraction with another
AKS to build a good refinement according to Definition
6. We have several options. The most straightforward
method consists in building an AKS representing all pos-
sible executions except the spurious counterexample; how-
ever the AKS representation may be huge and the process
is not guaranteed to converge. A second possibility is
to build an AKS with additional CTL properties of the
components; the AKS remains small but item 3 is not
guaranteed, hence delaying the convergence. The final
proposal combines both previous ones: first local CTL
properties eliminating the spurious counterexample are
determined, and then the corresponding AKS is synchro-
nized with the one of M̂i.

3.2. Negation of the counterexample

The counterexample at a refinement step i, σ, is a path
in the abstract model M̂i which dissatisfies Φ. In the
counterexample given by the model-checker, the variable
configuration in each state is Boolean. We name L̂i this
new labeling. The spurious counterexample σ is defined
such that:

Definition 7. Let σ be a spurious counterexample in
M̂i = 〈ÂP i, Ŝi, Ŝ0i, L̂i, R̂i, F̂i〉 of length |σ| = n: σ =
s0 → s1 . . .→ sn with (sk, sk+1) ∈ R̂i ∀k ∈ [0..n− 1].

• All its variables are concrete: ∀si and ∀p ∈ ÂP i,
p is either true or false according to L̂i. (not un-
known), and s0 is an initial state of the concrete
system: s0 ∈ R0

• σ is a counterexample in M̂i: s0 6|= Φ.
• σ is not a path of the concrete system M : ∃k ∈

[1..n − 1] such that ∀j < k, (sj , sj+1) ∈ R and
(sk, sk+1) 6∈ R.



The construction of the AKS representing all execu-
tions except the one described by the spurious counterex-
ample is done in two steps.

3.2.1. Step 1 : Build the structure of the AKS.

Definition 8. Let σ be a spurious counterexample of
length |σ| = n, the AKS of the counterexample negation
AKS(σ) = 〈ÂPσ, Ŝσ, Ŝ0σ, L̂σ, R̂σ, F̂σ〉 is such that:

• APσ = AP i: The set of atomic propositions coin-
cides with the one of σ

• Ŝσ: {sT } ∪ {s′i|∀i ∈ [0..n − 2] ∧ si ∈ σ} ∪ {s̄i|∀i ∈
[0..n− 1] ∧ si ∈ σ}

• L̂σ with Lσ(s′i) = Li(si),∀i ∈ [0..n−2] and L(sT ) =
{>,∀p ∈ APσ̄}, Lσ(s̄i) is explained in the next
construction step.

• Ŝ0σ = {s′0, s̄0}
• R̂σ = {(s̄i, sT ),∀i ∈ [0..n − 1]} ∪ {(s′i, ¯si+1),∀i ∈

[0..n− 2]} ∪ {(s′i, s′i+1,∀i ∈ [0..n− 3]}
• F̂σ = ∅

The labeling function of s′i represents (concrete) con-
figuration of state si and state s̄i represents all config-
urations but the one of si. This last set may not be
representable by the labeling function defined in Defini-
tion 3. State labeling is treated in the second step. sT is
a state where all atomic propositions are unknown.

3.2.2. Step 2 : Expand state configurations representing
the negation of a concrete configuration.

The set of configurations associated with a state s̄i repre-
sents the negation of the one represented by Li(si). This
negation is not representable by the label of a single state
but rather by a union of | AP | labels.

Example. Assume AP = {v0, v1, v2} and σ = s0 → s1
and L̂(s0) = {f , f , f} the configuration associated with
s0 assigns false to each variable. The negation of this
configuration represents a set of seven concrete configura-
tions which are covered by three (abstract) configurations:
{{t,>,>}, {f , t,>}, {f , f , t}}.

To build the final AKS representing all sequences
but spurious counterexample σ, one replaces in AKS(σ)
each state s̄i by k =| APσ | states s̄ji with j ∈ [0..k −
1] and assigns to each of them a label of k variables
{v0, . . . , vk−1} defined such that : L̂(s̄ji ) = {∀l ∈ [0..k −
1], vl = ¬Li(si)[vl],∀l ∈ [j+1..k−1], vl = >}. Each state
s̄ji is connected to the same predecessor and successor
states as state s̄i.

This final AKS presents a number of states in O(|
σ | × | AP |). However, removing, at each refine-
ment step, the spurious counterexample only induces
a low convergence. Moreover, in some cases, this strat-
egy may not converge: suppose that all sequences of

the form a.b∗.c are spurious counterexamples (here a,
b and c represent concrete state configurations). As-
sume, at a given refinement step i, a particular coun-
terexample σi = s0 → s1 → . . . sn with L(s0) = a,∀k ∈
[1, n− 1], L(sk) = b, L(sn) = c. Removing this counterex-
ample does not prevent from a new spurious counterex-
ample at step i + 1 : σi+1 = s0 → s1 → . . . sn+1 with
L(s0) = a,∀k ∈ [1, n], L(sk) = b, L(sn+1) = c. The strat-
egy consisting of elimination spurious counterexample
one by one diverges in this case. However, we cannot
eliminate all the sequences of the form a.b∗.c in a unique
refinement step since we do not a priori know if at least
one of these sequences is executable in the concrete model.

From these considerations, we are interested in remov-
ing sets of behaviors encompassing the spurious counterex-
ample but still guaranteeing an over-approximation of the
set of tree-organized behaviors of the concrete model. The
strengthening of the abstraction M̂i with the addition of
AKS of already verified local CTL properties eliminates
sets of behaviors and guarantees the over-approximation
(Property 2) but does not guarantee the elimination of
the counterexample. We present in the following section
a strategy to select sets of CTL properties eliminating
the spurious counterexample.

3.3. Ordering of properties

We propose a heuristic to order the properties depending
on the structure of each component. In order to do so,
the variable dependency of the variables present in global
property has to be analyzed. After this point, we refer to
the variables present in the global property as primary
variables.

We observed that the closer a variable is to the pri-
mary variable, the higher influence it has on it. Moreover,
a global property often specifies the behavior at the inter-
face of components. Typically, a global property ensures
that a message sent is always acknowledged or the good
target gets the message. This kind of behavior relates the
input-output behaviors of components. We have decided
to allocate an extra weight for interface variables whereas
variables which do not interfere with a primary variable
are weighted 0. Here is how we proceed:

1. Build the structural dependency graph for all pri-
mary variables.

2. Compute the depth of all variables in all dependency
graphs. Note that a variable may belong to more
than one dependency graph, in that case we consider
the minimum depth.

3. Give a weight to each variable (see Algorithm 1).
4. Compute the weight of properties for each compo-

nent: sum of the property variables weight.



The Algorithm 1 gives weight according to the variable
distance to the primary variable with extra weight for
interface variable and primary variable.

Algorithm 1: Compute Weight
Input: G, the set of all dependency graph variable

V , the set of variables
Output: {(v, w)|v ∈ V,w ∈ N}, The set of

variables with their weight
begin

p = max(depth(G))
for v ∈ V do

d = depth(v) ;
w = 2p−d ∗ p;
if d == 0 then v is primary variable

w = 5 ∗ w;
end
if v ∈ I ∪O then v is an interface variable

w = 3 ∗ w
end

end
end

It is definitely not an exact pertinence calculation of
properties but provides a good indicator of their possible
impact on the global property. After this pre-processing
phase, we have a list of properties ordered according to
their pertinence with regards to the global property.

3.4. Filtering properties

The refinement step consists of adding new AKS of prop-
erties selected according to their pertinence. As we would
like to ensure the elimination of the counterexample pre-
viously found, we filter out properties that do not have an
impact on the counterexample σ thus will not eliminate
it. In order to reach this objective, a Abstract Kripke
structure of the counterexample σ, K(σ) is generated.
K(σ) is a succession of states corresponding to the coun-
terexample path which dissatisfies the global property Φ.

Definition 9. Let σ be a counterexample of length n
in M̂i such that σ = s0 → s1 → . . . → sn−1. The
Kripke structure derived from σ is 6-tuple K(σi) =
(APσ, Sσ, S0σ, Lσ, Rσ, Fσ) such that:

• APσ = ÂP i : a finite set of atomic propositions
which corresponds to the variables in the abstract
model

• Sσ = {si|si ∈ σ} ∪ {sT }
• S0σ = {s0}
• Lσ = L̂i ∪ L(sT ) = {>,∀p ∈ APσ}
• Rσ = {(sk, sk+1)|(sk → sk+1) ∈ σ} ∪ {(sn−1, sT )}
• Fσ = ∅

All the properties available for refinement are then
model-checked on K(σ). If the property holds then the
property will not eliminate the counterexample. Hence
this property is not a good candidate for refinement.
Therefore the highest weighted property not satisfied in
K(σ) is chosen to be integrated in the next refinement
step. This process is iterated for each refinement step.

Property 3. Counterexample eviction
1. If K(σ) � ϕ⇒ AKS(ϕ) will not eliminate σ.
2. If K(σ) 2 ϕ⇒ AKS(ϕ) will eliminate σ.

Proof. 1. By construction, AKS(ϕ) simulates all mod-
els that verify ϕ. Thus the tree described by K(σ)
is simulated by AKS(ϕ), it implies that σ is still a
possible path in AKS(ϕ).

2. K(σ), where ϕ does not hold, is not simulated by
AKS(ϕ), thus σ is not a possible path in AKS(ϕ)
otherwise AKS(ϕ) 6|= ϕ that is not feasible due to
AKS definition and the composition with Mi with
AKS(ϕ) will eliminate σ.

The proposed approach ensures that the refinement
excludes the counterexample and respects the Definition
6. We will show in our experiments that first, the time
needed to build an AKS is negligible and secondly the
refinement converges rapidly.

4. EXPERIMENTAL RESULTS

We have conducted preliminary experiments to test and
compare the performance of our strategy with existing
techniques available in VIS. There are several abstraction-
refinement techniques implemented in VIS accessible
via approximate_model_check, iterative_model_check,
check_invariant and incremental_ctl_verification com-
mands. However, among the available techniques, in-
cremental_ctl_verification is the only one that supports
CTL formulas and fairness constraints which are neces-
sary in our test platforms. It is an automatic abstraction
refinement algorithm which generates an initial conser-
vative abstraction principally by reducing the size of the
latches by a constant factor. If the initial abstraction is
not conclusive, a goal set will then be computed in order
to guide the refinement process [20] [21].

We have executed and compared the execution time
and the number of refinement iterations for two exam-
ples: VCI-PI platform consisting of Virtual Component
Interface (VCI), a PI-Bus and VCI-PI protocol converter
and a simplified version of a CAN bus platform consisting
of 3 nodes on a CAN bus. Table 1 gives the size and
the statistics concerning the VCI-PI platform and CAN
bus platform verified. All the values are obtained using
the compute_reach command with option -v 1 in VIS



except the number of BDD variables, computed using
the print_bdd_stats command. The experiments have
been executed on a PC with an AMD Athlon dual-core
processor 4450e and 1.8GB of RAM memory.

Experim. Global Verification Refine. Verif.
Platform Property Technique Iter. Time (s)

Prop. Select. 1 2.2
VCI-PI: φ1 Incremental 0 6.3
1 Master Standard MC - 6.06

- Prop. Select. 0 1.0
1 Slave φ2 Incremental 562 200.9

Standard MC - 6.13

Prop. Select. 1 2.0
VCI-PI: φ1 Incremental 0 20.4

2 Masters Standard MC - 37.9
- Prop. Select. 0 1.0

1 Slave φ2 Incremental 74 786.3
Standard MC - 39.4

Prop. Select. 1 2.1
VCI-PI: φ1 Incremental 0 261.6

4 Masters Standard MC - >1 day
- Prop. Select. 0 1.0

1 Slave φ2 Incremental 0 263.5
Standard MC - >1 day

Prop. Select. 1 2.2
VCI-PI: φ1 Incremental N/A >1 day

4 Masters Standard MC - >1 day
- Prop. Select. 0 1.1

2 Slaves φ2 Incremental N/A >1 day
Standard MC - >1 day

Prop. Select. 0 1.02
φ3 Incremental N/A >1 day

CAN Standard MC - 2645.4
Bus Prop. Select. 0 1.01

φ4 Incremental N/A >1 day
Standard MC - 1678.1

Table 2. Verification Results

In Table 2, we compare the execution time and the
number of refinement between our technique (Prop. Se-
lect.), incremental_ctl_verification (Incremental) and
the standard model checking (Standard MC) computed
using the model_check command in VIS (Note: Dynamic
variable ordering has been enabled with sift method). For
the VCI-PI platform, the global property φ1 is the type
AF ((p = 1)∗AF (q = 1)) and φ2 is actually a stronger ver-
sion of the same formula with AG(AF ((p = 1) ∗AF (q =
1))). We have a total of 26 verified components properties
to be selected in the VCI-PI platform. In comparison to
φ2, we can see that, a better set of properties available
will result in a better abstraction and less refinement
iterations.

In the case of the CAN bus platform, the global prop-

erty φ3 is the type AG(((p′ = 1) ∗ (q′ = 1) ∗ AF (r1 =
1))→ AF ((s1 = 1) ∗ AF (t1 = 1))) and φ4 = AG(((p′ =
1) ∗ (q′ = 1) ∗ AG(r2 = 0)) → AG((s2 = 0) ∗ (t2 = 0))).
We have at our disposal 103 verified component properties
and after the selection process for the initial abstraction,
3 selected component properties were sufficient to verify
both global properties without refinement.

Globally, we can see that our technique, for these
examples, systematically computes faster than the other
two methods and interestingly in the case where the
size of the platform increases by adding more connected
components, in contrary to the other two methods, our
computation time remains stable. This is mainly due to
the fact that for small number of properties, our abstrac-
tion is generated almost instantly and as only pertinent
properties are selected, not many refinement iterations
are required in order to complete the verification process.
It is also important to note that the properties tested
are simple and we have in our property selection list the
local properties required to satisfy the global property.

5. CONCLUSION AND FUTURE WORKS

We have presented a new strategy in the abstraction
generation and refinement which is well adapted for com-
positional embedded systems. This verification technique
is compatible and suits well in the natural development
process of complex systems. Our preliminary experimen-
tal results show an interesting performance in terms of
duration of abstraction generation and the number of
refinement iteration. Furthermore, this technique enables
us to overcome repetitive counterexamples due to the
presence of cycles in the system’s graph.

Nevertheless, in order to function well, this refinement
technique requires a well constituted specification of every
components of the concrete model. Furthermore, it may
be possible that none of the properties available is capable
of eliminating the counterexample which is probably due
to an incomplete specification or a counterexample that
should be eliminated by the product of local properties.
In this case, other refinement techniques such as the
refinement by eliminating the counterexample only, or
the identification of a good set of local properties to be
integrated simultaneously, should be considered. We are
currently investigating other complementary techniques
to overcome these particular cases. The work of Kroening
[22], for example, could also help us in improving the
specification of the model: at the component level, or for
groups of components.
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