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Dempster-Shafer evidence theory is very important in the fields of information fusion and decision making. However, it always brings high computational cost when the frames of discernments to deal with become large. To reduce the heavy computational load involved in many rules of combinations, the approximation of a general belief function is needed. In this paper we present a new general principle for uncertainty reduction based on hierarchical proportional redistribution (HPR) method which allows to approximate any general basic belief assignment (bba) at a given level of non-specificity, up to the ultimate level 1 corresponding to a Bayesian bba. The level of non-specificity can be adjusted by the users. Some experiments are provided to illustrate our proposed HPR method.

I. INTRODUCTION

Dempster-Shafer evidence theory, also called belief function theory [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], is an interesting and flexible tool to deal with imprecision and uncertainty for approximate reasoning. It has been widely used in many applications, e.g., information fusion, pattern recognition and decision making [START_REF] Smets | Practical uses of belief functions[END_REF].

Although evidence theory is successful in uncertainty modeling and reasoning, high computational cost is a drawback which is often raised against evidence theory [START_REF] Smets | Practical uses of belief functions[END_REF]. In fact, the computational cost of evidence combination increases exponentially with respect to the size of the frame of discernment (FOD) [START_REF] Tessem | Approximations for efficient computation in the theory of evidence[END_REF]- [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF]. To resolve such a problem, three major types of approaches have been proposed by he researchers.

The first type is to propose efficient procedures for performing exact computations. For example, Kennes [START_REF] Kennes | Computational aspects of the Möbius transform of graphs[END_REF] proposed an optimal algorithm for Dempster's rule of combination. Barnett's work [START_REF] Barnett | Computational methods for a mathematical theory of evidence[END_REF] and other works [START_REF] Shafer | Implementing Dempster's rule for hierarchical evidence[END_REF] are also the representatives.

The second type is composed of Monte-Carlo techniques. See details in the paper of Moral and Salmeron [START_REF] Moral | A Monte Carlo algorithm for combining Dempster-Shafer belief based on approximate pre-computation[END_REF].

The third type is to approximate (or simplify) a belief function to a simpler one. The papers of Voorbraak [START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF], Dubois and Prade [START_REF] Dubois | An alternative approach to the handling of subnormal possiblity distributions[END_REF] are seminal works in this type of approaches. Tessem proposed the famous 𝑘 -𝑙-𝑥 approximation approach [START_REF] Tessem | Approximations for efficient computation in the theory of evidence[END_REF]. Grabisch proposed some approaches [START_REF] Grabisch | Upper approximation of non-additive measures by 𝑘additive measures -the case of belief functions[END_REF], which can build a bridge between belief functions and other types of uncertainty measures or functions, e.g., probabilities, possibilities and 𝑘-additive belief function (those belief functions whose cardinality of the focal elements are at most of 𝑘). Based on pignistic transformation in transferable belief model (TBM), Burger and Cuzzolin proposed two types of 𝑘-additive belief functions [START_REF] Burger | Two k-additive generalizations of the pignistic transform[END_REF]. Denoeux uses hierarchical clustering strategy to implement the inner and outer approximation of belief functions [START_REF] Denoeux | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF].

In this paper, we focus on the approximation approach of belief functions. This first reason obviously is that it can reduce the computational cost of evidence combination. Furthermore, human find that it is not intuitive to attach meaning to focal elements with large cardinality [START_REF] Burger | Defining new approximations of belief functions by means of Dempster's combination[END_REF]. Belief approximation can either reduce the number or the cardinalities of focal elements, or both of them can be reduced. Thus by using belief function approximation, we can obtain a representation which is more intuitive and easier to process. We propose a new method called hierarchical proportional redistribution (HPR), which is a general principle for uncertainty reduction, to approximate any general basic belief assignment (bba) at a given level of non-specificity, up to the ultimate level 1 corresponding to a Bayesian bba. That is, our proposed approach can generate an intermediate object between probabilities and original belief function. The level of non-specificity can be controlled by the users through the adjusting of maximum cardinality of remaining focal element. Our proposed approach can be considered as a generalized k-additive belief approximation. Some experiments are provided to illustrate our proposed HPR approach and to compare it with other approximation approaches.

II. BASICS IN EVIDENCE THEORY

In Dempster-Shafer evidence theory [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], the frame of discernment (FOD) denoted by Θ is a basic concept. The elements in Θ are mutually exclusive. Suppose that 2 Θ denotes the powerset of FOD and define the function 𝑚 : 2 Θ → [0, 1] as the basic belief assignment (bba) satisfying:

∑ 𝐴⊆Θ 𝑚(𝐴) = 1, 𝑚(∅) = 0 (1) 
A bba is also called a mass function. Belief function (𝐵𝑒𝑙) and plausibility function (𝑃 𝑙) are defined below, respectively:

𝐵𝑒𝑙(𝐴) = ∑ 𝐵⊆𝐴 𝑚(𝐵) (2) 𝑝𝑙(𝐴) = ∑ 𝐴∩𝐵∕ =∅ 𝑚(𝐵) (3) 
Suppose that 𝑚 1 , 𝑚 2 , ..., 𝑚 𝑛 are 𝑛 mass functions, Dempster's rule of combination is defined in (4):

𝑚(𝐴) = ⎧  ⎨  ⎩ 0, 𝐴 = ∅ ∑ ∩𝐴 𝑖 =𝐴 ∏ 1≤𝑖≤𝑛 𝑚𝑖(𝐴𝑖) ∑ ∩𝐴 𝑖 ∕ =∅ ∏ 1≤𝑖≤𝑛 𝑚𝑖(𝐴𝑖) , 𝐴 ∕ = ∅ (4)
Dempster's rule of combination is used in DST to implement the combination of bodies of evidence (BOEs).

Evidence theory has been widely used in many application fields due to its capability of approximate reasoning and processing of uncertain information. However, as referred in introduction section, there also exists the drawback of high computational cost in evidence combination. Several approaches have been proposed accordingly, which includes efficient algorithms [START_REF] Kennes | Computational aspects of the Möbius transform of graphs[END_REF]- [START_REF] Shafer | Implementing Dempster's rule for hierarchical evidence[END_REF] for evidence combination, the Monte-Carlo techniques and the approach of belief function approximation [START_REF] Moral | A Monte Carlo algorithm for combining Dempster-Shafer belief based on approximate pre-computation[END_REF]. We prefer to use the belief approximation approach [10]- [START_REF] Denoeux | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF] to reduce the computational cost needed in the combination operation because the approximation approach reduces the computational cost and also allow to deal with smaller-size focal elements, which is more intuitive for human to catch the meaning [START_REF] Burger | Defining new approximations of belief functions by means of Dempster's combination[END_REF]. In the next section, we recall some well-known basic approximation approaches.

III. BBA APPROXIMATION APPROACHES

1) 𝑘 -𝑙 -𝑥 approach: The approach of 𝑘 -𝑙 -𝑥 was proposed by Tessem [START_REF] Tessem | Approximations for efficient computation in the theory of evidence[END_REF]. The simplified or compact bba obtained by using 𝑘 -𝑙 -𝑥 satisfies:

1) keep no less than 𝑘 focal elements; 2) keep no more than 𝑙 focal elements;

3) the mass assignment to be deleted is no greater than 𝑥.

In algorithm of 𝑘-𝑙-𝑥, the focal elements of a original bba are sorted according to their mass assignments. Such algorithm chooses the first 𝑝 focal elements such that 𝑘 ≤ 𝑝 ≤ 𝑙 and such that the sum of the mass assignments of these first 𝑝 focal elements is no less than 1 -𝑥. The deleted mass assignments are redistributed to the other focal elements through a normalization.

2) 𝑘-additive belief function approximation: Given a bba 𝑚 : 2 Θ → [0, 1], the 𝑘-additive belief function [START_REF] Grabisch | Upper approximation of non-additive measures by 𝑘additive measures -the case of belief functions[END_REF], [START_REF] Burger | Two k-additive generalizations of the pignistic transform[END_REF] induced by the mass assignment is defined in Eq. [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF]. Suppose that

𝐵 ⊆ Θ, ⎧ ⎨ ⎩ 𝑚 𝑘 (𝐵) = 𝑚(𝐵) + ∑ 𝐴⊃𝐵,𝐴⊆Θ,|𝐴|>𝑘 𝑚(𝐴)⋅|𝐵| 𝒩 (|𝐴|,𝑘) , ∀ |𝐵| ≤ 𝑘 𝑚 𝑘 (𝐵) = 0, ∀ |𝐵| > 𝑘 (5) where 𝒩 (|𝐴| , 𝑘) = 𝑘 ∑ 𝑗=1 ( |𝐴| 𝑗 ) ⋅ 𝑗 = 𝑘 ∑ 𝑗=1 |𝐴|! (𝑗 -1)!(|𝐴| -𝑗)! (6)
is average cardinality of the subsets of 𝐴 of size at most 𝑘.

It can be seen that for 𝑘-additive belief approximation, the maximum cardinality of available focal elements is no greater than 𝑘.

In this section, 𝑘 -𝑙 -𝑥 approach and 𝑘-additive belief function approximation approach are introduced, which will be compared with our proposed approach introduced in next section. There also other types of bba approximation approximation approaches, see details in related references.

IV. HIERARCHICAL PROPORTIONAL REDISTRIBUTION

APPROXIMATION

In this paper we propose a hierarchical bba approximation approach called hierarchical proportional redistribution (HPR), which provides a new way to reduce step by step the mass committed to uncertainties. Ultimately an approximate measure of subjective probability can be obtained if needed, i.e. a so-called Bayesian bba in [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. It must be noticed that this procedure can be stopped at any step in the process and thus it allows to reduce the number of focal elements in a given bba in a consistent manner to diminish the size of the core of a bba and thus reduce the complexity (if needed) when applying also some complex rules of combinations. We present here the general principle of hierarchical and proportional reduction of uncertainties in order to obtain approximate bba's at different non-specificity level we expect. The principle of redistribution of uncertainty to more specific elements of the core at any given step of the process follows the proportional redistribution already proposed in the (non hierarchical) DSmP transformation proposed recently in [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF]. Thus the proposed HPR can be considered as a bba approximation approach inspired by the idea of DSmP.

Let's first introduce two new notations for convenience and for concision:

1) Any element of cardinality 1 ≤ 𝑘 ≤ 𝑛 of the power set 2 Θ will be denoted, by convention, by the generic notation 𝑋(𝑘). For example, if Θ = {𝐴, 𝐵, 𝐶}, then 𝑋(2) can denote the following partial uncertainties 𝐴 ∪ 𝐵, 𝐴 ∪ 𝐶 or 𝐵 ∪ 𝐶, and 𝑋(3) denotes the total uncertainty 𝐴 ∪ 𝐵 ∪ 𝐶.

2) The proportional redistribution factor (ratio) of width 𝑛 involving elements 𝑋 and 𝑌 of the powerset is defined as (for 𝑋 ∕ = ∅ and 𝑌 ∕ = ∅)

𝑅 𝑠 (𝑌, 𝑋) ≜ 𝑚(𝑌 ) + 𝜖 ⋅ |𝑋| ∑ 𝑌 ⊂𝑋 |𝑋|-|𝑌 |=𝑠 𝑚(𝑌 ) + 𝜖 ⋅ |𝑋| ( 7 
)
where 𝜖 is a small positive number introduced here to deal with particular cases where

∑ 𝑌 ⊂𝑋 |𝑋|-|𝑌 |=𝑠 𝑚(𝑌 ) = 0.
By convention, we will denote 𝑅(𝑌, 𝑋) ≜ 𝑅 1 (𝑌, 𝑋) when we use the proportional redistribution factors of width 𝑠 = 1. The HPR is obtained by a step by step (recursive) proportional redistribution of the mass 𝑚(𝑋(𝑘)) of a given uncertainty 𝑋(𝑘) (partial or total) of cardinality 2 ≤ 𝑘 ≤ 𝑛 to all the least specific elements of cardinality 𝑘-1, i.e. to all possible 𝑋(𝑘-1), until 𝑘 = 2 is reached. The proportional redistribution is done from the masses of belief committed to 𝑋(𝑘-1) as done classically in DSmP transformation. The "hierarchical" masses 𝑚 ℎ (.) are recursively (backward) computed as follows. Here 𝑚 ℎ(𝑘) represents the approximate bba obtained at the step 𝑛-𝑘 of HPR, i.e., it has the maximum focal element cardinality of 𝑘.

𝑚 ℎ(𝑛-1) (𝑋(𝑛 -1)) = 𝑚(𝑋(𝑛 -1))+ ∑ 𝑋(𝑛)⊃𝑋(𝑛-1) 𝑋(𝑛),𝑋(𝑛-1)∈2 Θ [𝑚(𝑋(𝑛)) ⋅ 𝑅(𝑋(𝑛 -1), 𝑋(𝑛))]; 𝑚 ℎ(𝑛-1) (𝐴) = 𝑚(𝐴), ∀|𝐴| < 𝑛 -1 (8) 𝑚 ℎ(𝑛-1) (⋅) is the bba obtained at the first step of HPR (𝑛 -(𝑛 -1) = 1), the maximum focal element cardinality of 𝑚 ℎ(𝑛-1) is 𝑛 -1. 𝑚 ℎ(𝑛-2) (𝑋(𝑛 -2)) = 𝑚(𝑋(𝑛 -2))+ ∑ 𝑋(𝑛-1)⊃𝑋(𝑛-2) 𝑋(𝑛-2),𝑋(𝑛-1)∈2 Θ [𝑚 ℎ(𝑛-1) (𝑋(𝑛-1))⋅𝑅(𝑋(𝑛-2), 𝑋(𝑛-1))] 𝑚 ℎ(𝑛-2) (𝐴) = 𝑚 ℎ(𝑛-1) (𝐴), ∀|𝐴| < 𝑛 -2 (9) 𝑚 ℎ(𝑛-2) (⋅) is the bba obtained at the second step of HPR (𝑛 -(𝑛 -2) = 2), the maximum focal element cardinality of 𝑚 ℎ(𝑛-2) is 𝑛 -2.
This hierarchical proportional redistribution process can be applied similarly (if one wants) to compute 𝑚 ℎ(𝑛-3) (.),

𝑚 ℎ(𝑛-4) (.), ..., 𝑚 ℎ(2) (⋅), 𝑚 ℎ(1) (⋅) with 𝑚 ℎ(2) (𝑋(2)) = 𝑚(𝑋(2))+ ∑ 𝑋(3)⊃𝑋(2) 𝑋(3),𝑋(2)∈2 Θ [𝑚 ℎ(3) (𝑋(3)) ⋅ 𝑅(𝑋(2), 𝑋(3))] 𝑚 ℎ(2) (𝐴) = 𝑚 ℎ(3) (𝐴), ∀|𝐴| < 𝑛 -2 (10) 𝑚 ℎ(2) (⋅) is the bba at the first step of HPR (𝑛 -2), the maximum focal element cardinality of 𝑚 ℎ(2) is 2.
Mathematically, for any 𝑋(1) ∈ Θ, i.e. any 𝜃 𝑖 ∈ Θ a Bayesian belief function can be obtained by HPR approach in deriving all possible steps of proportional redistributions of partial ignorances in order to get

𝑚 ℎ(1) (𝑋(1)) = 𝑚(𝑋(1))+ ∑ 𝑋(2)⊃𝑋(1) 𝑋(1),𝑋(2)∈2 Θ [𝑚 ℎ(2) (𝑋(2)) ⋅ 𝑅(𝑋(1), 𝑋(2))] (11)
In fact, 𝑚 ℎ(1) (⋅) is a probability transformation, called here the Hierarchical DSmP (HDSmP). Since 𝑋(𝑛) is unique and corresponds only to the full ignorance 𝜃 1 ∪ 𝜃 2 ∪ . . . ∪ 𝜃 𝑛 , the expression of 𝑚 ℎ (𝑋(𝑛 -1)) in Eq.( 10) just simplifies as

𝑚 ℎ(𝑛-1) (𝑋(𝑛 -1)) = 𝑚 ℎ (𝑋(𝑛 -1))+ 𝑚(𝑋(𝑛)) ⋅ 𝑅(𝑋(𝑛 -1), 𝑋(𝑛)) (12)
Because of the full proportional redistribution of the masses of uncertainties to the elements least specific involved in these uncertainties, no mass of belief is lost during the step by step hierarchical process and thus at any step of HPR, the sum of masses of belief is kept to one, and of course the Hierarchial DSmP also satisfies

∑ 𝑋(1)∈2 Θ 𝑚 ℎ (𝑋(1)) = 1.
Remark: For some reasons depending of applications, it is also possible to easily modify this HPR approach with little effort into a constrained HPR version (CHPR for short) by forcing the masses of some partial ignorances of cardinality 𝑘 + 1 to be (proportionally) redistributed back only to a subset of the partial ignorances of cardinality 𝑘 included in them. This possibility has not be detailed here due to space limitation constraint and its little technical interest.

V. EXAMPLES

In this section we show in details how HPR can be applied on very simple different examples. So let's examine the three following examples based on a simple 3D frame of discernment Θ = {𝜃 1 , 𝜃 2 , 𝜃 3 } satisfying Shafer's model.

A. Example 1

Let's consider the following bba:

𝑚(𝜃 1 ) = 0.10, 𝑚(𝜃 2 ) = 0.17, 𝑚(𝜃 3 ) = 0.03, 𝑚(𝜃 1 ∪ 𝜃 2 ) = 0.15, 𝑚(𝜃 1 ∪ 𝜃 3 ) = 0.20, 𝑚(𝜃 2 ∪ 𝜃 3 ) = 0.05, 𝑚(𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3 ) = 0.30.
We apply the hierarchical proportional redistribution (HPR) principle with 𝜖 = 0 in this example because there is no mass of belief equal to zero. It can be verified that the result obtained with small positive 𝜖 parameter remains (as expected) numerically very close to that obtained with 𝜖 = 0.

The first step of HPR consists in redistributing back 𝑚(𝜃 1 ∪ 𝜃 2 ∪𝜃 3 ) = 0.30 committed to the full ignorance to the elements 𝜃 1 ∪ 𝜃 2 , 𝜃 1 ∪ 𝜃 3 and 𝜃 2 ∪ 𝜃 3 only, because these elements are the only elements of cardinality 2 that are included in 𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3 . Applying the Eq. ( 8) with 𝑛 = 3, one gets when Now, we go to the next step of HPR principle and one needs to redistribute the masses of partial ignorances 𝑋(2) corresponding to 𝜃 1 ∪ 𝜃 2 , 𝜃 1 ∪ 𝜃 3 and 𝜃 2 ∪ 𝜃 3 back to the singleton elements 𝑋(1) corresponding to 𝜃 1 , 𝜃 2 and 𝜃 3 . We use Eq. [START_REF] Grabisch | Upper approximation of non-additive measures by 𝑘additive measures -the case of belief functions[END_REF] for doing this as follows: 

𝑋(2) = 𝜃 1 ∪ 𝜃 2 , 𝜃 1 ∪ 𝜃 3 and 𝜃 1 ∪ 𝜃 2 the following masses. 𝑚 ℎ(2) (𝜃 1 ∪ 𝜃 2 ) = 𝑚(𝜃 1 ∪ 𝜃 2 ) + 𝑚(𝑋(3)) ⋅ 𝑅(𝜃 1 ∪ 𝜃 2 ,
𝑚 ℎ(1) (𝜃 1 ) = 𝑚(𝜃 1 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 2 ) ⋅ 𝑅(𝜃 1 , 𝜃 1 ∪ 𝜃 2 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 1 , 𝜃 1 ∪ 𝜃 3 ) ≈ 0.
𝑚 ℎ(1) (𝜃 2 ) = 𝑚(𝜃 2 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 2 ) ⋅ 𝑅(𝜃 2 , 𝜃 1 ∪ 𝜃 2 ) + 𝑚 ℎ (𝜃 2 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 2 , 𝜃 2 ∪ 𝜃 3 )
≈ 0.10 + (0.2625 ⋅ 0.6297) + (0.0875 ⋅ 0.85) = 0.17 + 0.1653 + 0.0744 = 0.4097 because 𝑅(𝜃 2 , 𝜃 1 ∪ 𝜃 2 ) = 0.17 0.10 + 0.17 ≈ 0.6297 𝑅(𝜃 2 , 𝜃 2 ∪ 𝜃 3 ) = 0.17 0.17 + 0.03 = 0.85 and also Hence, the result of final step of HPR is:

𝑚 ℎ(1) (𝜃 3 ) = 𝑚(𝜃 3 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 3 , 𝜃 1 ∪ 𝜃 3 ) + 𝑚 ℎ (𝜃 2 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 3 , 𝜃 2 ∪ 𝜃 3 ) ≈ 0.
𝑚 ℎ(1) (𝜃 1 ) = 0.4664, 𝑚 ℎ(1) (𝜃 2 ) = 0.4097, 𝑚 ℎ(1) (𝜃 3 ) = 0.1239.
We can easily verify that

𝑚 ℎ(1) (𝜃 1 ) + 𝑚 ℎ(1) (𝜃 2 ) + 𝑚 ℎ(1) (𝜃 3 ) = 1. 1 2 3 { , , } T T T 1 2 { , } T T 1 3 { , } T T 2 3 { , } T T 1 { } T 2 { } T 3 { }

T

Step 1

Step 2 The procedure can be illustrated in Fig. 1 below. The approximate bba at each step with different maximum focal elements' cardinality are listed in Table I.

To compare our proposed HPR with the approach of 𝑘 -𝑙 -𝑥, we set the parameters of 𝑘 -𝑙 -𝑥 to obtain bba's with equal focal element number with HPR at each step. In Example 1, for HPR at first step, it can obtain a bba with 6 focal elements. Thus we set 𝑘 = 𝑙 = 6, 𝑥 = 0.4 for 𝑘 -𝑙 -𝑥 to obtain a bba with 6 focal elements. Similarly, for HPR at second step, it can obtain a bba with 3 focal elements. Thus we set 𝑘 = 𝑙 = 3, 𝑥 = 0.4 for 𝑘 -𝑙 -𝑥. Based on the approach of 𝑘 -𝑙 -𝑥, the results are in Table II. 

B. Example 2

Let's consider the following bba:

𝑚(𝜃 1 ) = 0, 𝑚(𝜃 2 ) = 0.17, 𝑚(𝜃 3 ) = 0.13,

𝑚(𝜃 1 ∪ 𝜃 2 ) = 0.20, 𝑚(𝜃 1 ∪ 𝜃 3 ) = 0.20, 𝑚(𝜃 2 ∪ 𝜃 3 ) = 0, 𝑚(𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3 ) = 0.30
The first step of HPR consists in redistributing back 𝑚(𝜃 1 ∪ 𝜃 2 ∪𝜃 3 ) = 0.30 committed to the full ignorance to the elements 𝜃 1 ∪ 𝜃 2 , and 𝜃 1 ∪ 𝜃 3 only, because these elements are the only elements of cardinality 2 that are included in 𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3 .

Applying Eq. ( 8) with 𝑛 = 3, one gets when 𝑋(2) = 𝜃 1 ∪ 𝜃 2 , 𝜃 1 ∪ 𝜃 3 and 𝜃 1 ∪ 𝜃 2 the following masses

𝑚 ℎ(2) (𝜃 1 ∪ 𝜃 2 ) = 𝑚(𝜃 1 ∪ 𝜃 2 ) + 𝑚(𝑋(3)) ⋅ 𝑅(𝜃 1 ∪ 𝜃 2 , 𝑋(3)) = 0.20 + (0.3 ⋅ 0.5) = 0.35 because 𝑅(𝜃 1 ∪ 𝜃 2 , 𝑋(3)) =
0.20 0.20 + 0.20 + 0.00 = 0.5

Similarly, one gets 3)) = 0.20 0.20 + 0.20 + 0.00 = 0.5 and also

𝑚 ℎ(2) (𝜃 1 ∪ 𝜃 3 ) = 𝑚(𝜃 1 ∪ 𝜃 3 ) + 𝑚(𝑋(3)) ⋅ 𝑅(𝜃 1 ∪ 𝜃 3 , 𝑋(3)) = 0.20 + (0.3 ⋅ 0.5) = 0.35 because 𝑅(𝜃 1 ∪ 𝜃 3 , 𝑋(
𝑚 ℎ(2) (𝜃 2 ∪ 𝜃 3 ) = 𝑚(𝜃 2 ∪ 𝜃 3 ) + 𝑚(𝑋(3)) ⋅ 𝑅(𝜃 2 ∪ 𝜃 3 , 𝑋(3)) = 0.00 + (0.3 ⋅ 0.0) = 0.0 because 𝑅(𝜃 2 ∪ 𝜃 3 , 𝑋(3)) = 0.0 0.20 + 0.20 + 0.00 = 0
Now, we go to the next step of HPR principle and one needs to redistribute the masses of partial ignorances 𝑋(2) corresponding to 𝜃 1 ∪ 𝜃 2 , 𝜃 1 ∪ 𝜃 3 and 𝜃 2 ∪ 𝜃 3 back to the singleton elements 𝑋(1) corresponding to 𝜃 1 , 𝜃 2 and 𝜃 3 . We use Eq. [START_REF] Grabisch | Upper approximation of non-additive measures by 𝑘additive measures -the case of belief functions[END_REF] for doing this as follows:

𝑚 ℎ(1) (𝜃 1 ) = 𝑚(𝜃 1 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 2 ) ⋅ 𝑅(𝜃 1 , 𝜃 1 ∪ 𝜃 2 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 1 , 𝜃 1 ∪ 𝜃 3 )
≈ 0.00 + (0.35 ⋅ 0.00) + (0.35 ⋅ 0.00) = 0.00 + 0.00 + 0.00 = 0.00 because 𝑅(𝜃 1 , 𝜃 1 ∪ 𝜃 2 ) = 0.00 0.00 + 0.17 = 0.00

𝑅(𝜃 1 , 𝜃 1 ∪ 𝜃 3 ) = 0.00 0.00 + 0.13 = 0.00
Similarly, one gets

𝑚 ℎ(1) (𝜃 2 ) = 𝑚(𝜃 2 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 2 ) ⋅ 𝑅(𝜃 2 , 𝜃 1 ∪ 𝜃 2 ) + 𝑚 ℎ (𝜃 2 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 2 , 𝜃 2 ∪ 𝜃 3 )
≈ 0.17 + (0.35 ⋅ 1) + (0.00 ⋅ 0.5667) = 0.17 + 0.35 + 0.00 = 0.52 because 𝑅(𝜃 2 , 𝜃 1 ∪ 𝜃 2 ) = 0.17 0.00 + 0.17 = 1 𝑅(𝜃 2 , 𝜃 2 ∪ 𝜃 3 ) = 0.17 0.17 + 0.13 ≈ 0.5667 and also 

𝑚 ℎ(1) (𝜃 3 ) = 𝑚(𝜃 3 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 3 , 𝜃 1 ∪ 𝜃 3 ) + 𝑚 ℎ (𝜃 2 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 3 , 𝜃 2 ∪ 𝜃 3 ) ≈ 0.
𝑚 ℎ(1) (𝜃 1 ) + 𝑚 ℎ(1) (𝜃 2 ) + 𝑚 ℎ(1) (𝜃 3 ) = 1.
The HPR procedure of Example 2 with 𝜖 = 0 is Fig. 2.

1 2 3 { , , } T T T 1 2 { , } T T 1 3 { , } T T 1 { } T 2 { } T 3 { } T Step 1
Step 2 If one takes 𝜖 = 0, there is no mass that will be reassigned to {𝜃 2 ∪ 𝜃 3 } as illustrated in Fig. 2. But if one takes 𝜖 > 0, HPR procedure of Example 2 is the same as that illustrated in Fig. 1, i.e., there also exist masses redistributed to {𝜃 2 ∪ 𝜃 3 } as illustrated in Fig. 1. That's the difference between Fig. 1 and Fig. 2.

Suppose that 𝜖 = 0.001, the HPR calculation procedure is as follows.

The first step of HPR consists in distributing back 𝑚(𝜃 1 ∪ 𝜃 2 ∪𝜃 3 ) = 0.30 committed to the full ignorance to the elements 𝜃 1 ∪ 𝜃 2 , 𝜃 1 ∪ 𝜃 3 and 𝜃 2 ∪ 𝜃 3 . Applying the Eq. ( 8) with 𝑛 = 3, one gets when 𝑋(2) = 𝜃 1 ∪𝜃 2 , 𝜃 1 ∪𝜃 3 and 𝜃 1 ∪𝜃 2 the following masses

𝑚 ℎ(2) (𝜃 1 ∪ 𝜃 2 ) = 𝑚(𝜃 1 ∪ 𝜃 2 ) + 𝑚(𝑋(3)) ⋅ 𝑅(𝜃 1 ∪ 𝜃 2 , 𝑋(3)) = 0.20 + (0.3 ⋅ 0.4963) = 0.3489 because 𝑅(𝜃 1 ∪ 𝜃 2 , 𝑋(3)) = 0.20 + 0.001 ⋅ 3 (0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3) = 0.4963 𝑚 ℎ(2) (𝜃 1 ∪ 𝜃 3 ) = 𝑚(𝜃 1 ∪ 𝜃 3 ) + 𝑚(𝑋(3)) ⋅ 𝑅(𝜃 1 ∪ 𝜃 3 , 𝑋(3)) = 0.20 + (0.3 ⋅ 0.4963) = 0.3489 because 𝑅(𝜃 1 ∪ 𝜃 2 , 𝑋(3)) = 0.20 + 0.001 ⋅ 3 (0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3) = 0.4963 𝑚 ℎ(2) (𝜃 2 ∪ 𝜃 3 ) = 𝑚(𝜃 2 ∪ 𝜃 3 ) + 𝑚(𝑋(3)) ⋅ 𝑅(𝜃 2 ∪ 𝜃 3 , 𝑋(3)) = 0.00 + (0.3 ⋅ 0.0073) = 0.0022 because 𝑅(𝜃 2 ∪ 𝜃 3 , 𝑋(3)) = 0.001 ⋅ 3 (0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3) = 0.0073
Now, we go to the next step of HPR principle and one needs to redistribute the masses of partial ignorances 𝑋(2) corresponding to 𝜃 1 ∪ 𝜃 2 , 𝜃 1 ∪ 𝜃 3 and 𝜃 2 ∪ 𝜃 3 back to the singleton elements 𝑋(1) corresponding to 𝜃 1 , 𝜃 2 and 𝜃 3 . We use Eq. [START_REF] Grabisch | Upper approximation of non-additive measures by 𝑘additive measures -the case of belief functions[END_REF] for doing this as follows:

𝑚 ℎ(1) (𝜃 1 ) = 𝑚(𝜃 1 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 2 ) ⋅ 𝑅(𝜃 1 , 𝜃 1 ∪ 𝜃 2 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 1 , 𝜃 1 ∪ 𝜃 3 )
≈ 0.00 + (0.3489 ⋅ 0.0115) + (0.3489 ⋅ 0.0149) = 0.00 + 0.0040 + 0.0052 = 0.0092 because

𝑅(𝜃 1 , 𝜃 1 ∪ 𝜃 2 ) = 0.00 + 0.001 ⋅ 2 (0.00 + 0.001 ⋅ 2) + (0.17 + 0.001 ⋅ 2) = 0.0115 𝑅(𝜃 1 , 𝜃 1 ∪ 𝜃 3 )
0.00 + 0.001 ⋅ 2 (0.00 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2) = 0.0149 Similarly, one gets

𝑚 ℎ(1) (𝜃 2 ) = 𝑚(𝜃 2 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 2 ) ⋅ 𝑅(𝜃 2 , 𝜃 1 ∪ 𝜃 2 ) + 𝑚 ℎ (𝜃 2 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 2 , 𝜃 2 ∪ 𝜃 3 )
≈ 0.17 + (0.3489 ⋅ 0.9885) + (0.0022 ⋅ 0.5658) = 0.17 + 0.3449 + 0.0012 = 0.5161 because 𝑅(𝜃 2 , 𝜃 1 ∪ 𝜃 2 ) = 0.17 + 0.001 ⋅ 2 (0.00 + 0.001 ⋅ 2) + (0.17 + 0.001 ⋅ 2) = 0.9885 𝑅(𝜃 2 , 𝜃 2 ∪ 𝜃 3 ) = 0.17 + 0.001 ⋅ 2 (0.17 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2) ≈ 0.5658 and also

𝑚 ℎ(1) (𝜃 3 ) = 𝑚(𝜃 3 ) + 𝑚 ℎ (𝜃 1 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 3 , 𝜃 1 ∪ 𝜃 3 ) + 𝑚 ℎ (𝜃 2 ∪ 𝜃 3 ) ⋅ 𝑅(𝜃 3 , 𝜃 2 ∪ 𝜃 3 )
≈ 0.13 + (0.3489 ⋅ 0.9851) + (0.0022 ⋅ 0.4342) = 0.13 + 0.3437 + 0.0009 = 0.4746 because 𝑅(𝜃 3 , 𝜃 1 ∪ 𝜃 3 ) = 0.13 + 0.001 ⋅ 2 (0.13 + 0.001 ⋅ 2) + (0.00 + 0.001 ⋅ 2) = 0.9851 𝑅(𝜃 3 , 𝜃 2 ∪ 𝜃 3 ) = 0.13 + 0.001 ⋅ 2 (0.17 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2) ≈ 0.4342 Hence, the final result of HPR approximation is

𝑚 ℎ(1) (𝜃 1 ) = 0.0092, 𝑚 ℎ(1) (𝜃 2 ) = 0.5161, 𝑚 ℎ(1) (𝜃 3 ) = 0.4746
and we can easily verify that

𝑚 ℎ(1) (𝜃 1 ) + 𝑚 ℎ(1) (𝜃 2 ) + 𝑚 ℎ(1) (𝜃 3 ) = 1.
The bba's obtained in each step are listed in Table III (𝜖 = 0) and Table IV (𝜖 = 0.001) When using 𝑘 -𝑙 -𝑥 approach, the results are in Table V. 

C. Example 3

Let's consider the following bba:

𝑚(𝜃 1 ) = 0, 𝑚(𝜃 2 ) = 0, 𝑚(𝜃 3 ) = 0.70, 𝑚(𝜃 1 ∪ 𝜃 2 ) = 0, 𝑚(𝜃 1 ∪ 𝜃 3 ) = 0, 𝑚(𝜃 2 ∪ 𝜃 3 ) = 0, 𝑚(𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3 ) = 0.30
In this example, the mass assignments for all the focal elements with cardinality size 2 equal to zero. For HPR, when 𝜖 > 0, 𝑚(𝜃 2 ∪ 𝜃 3 ) will be divided equally and redistributed to {𝜃 1 ∪ 𝜃 2 }, {𝜃 1 ∪ 𝜃 3 } and {𝜃 2 ∪ 𝜃 3 }. Because the ratios are

𝑅(𝜃 1 ∪ 𝜃 2 , 𝑋(3)) = 𝑅(𝜃 1 ∪ 𝜃 3 , 𝑋(3)) = 𝑅(𝜃 2 ∪ 𝜃 3 , 𝑋(3)) = 0.00 + 0.001 ⋅ 3 (0.00 + 0.001 ⋅ 3) ⋅ 3 = 0.3333
For HPR, when 𝜖 = 0, it can not be executed directly. This can show the necessity for the using of 𝜖. The bba's obtained through HPR 𝜖=0.001 at different steps are listed in Table VI When using 𝑘 -𝑙 -𝑥 approach, the results are in Table VII. 

D. Example 4 (vacuous bba)

Let's consider the following bba:

𝑚(𝜃 1 ) = 0, 𝑚(𝜃 2 ) = 0, 𝑚(𝜃 3 ) = 0, 𝑚(𝜃 1 ∪ 𝜃 2 ) = 0, 𝑚(𝜃 1 ∪ 𝜃 3 ) = 0, 𝑚(𝜃 2 ∪ 𝜃 3 ) = 0, 𝑚(𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3 ) = 1
In this example, the mass assignments for all the focal elements with cardinality size less than 3 equal to zero. For HPR, when 𝜖 > 0, 𝑚(𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3 ) will be divided equally and redistributed to

{𝜃 1 ∪ 𝜃 2 }, {𝜃 1 ∪ 𝜃 3 } and {𝜃 2 ∪ 𝜃 3 }.
Similarly, the mass assignments for focal elements with cardinality of 2 obtained in intermediate step will be divided equally and redistributed to singletons. This is due to 𝜖 > 0.

For HPR, when 𝜖 = 0, it can not be executed directly. This can show the necessity for the using of 𝜖. The bba's obtained through HPR 𝜖=0.001 at different steps are listed in Table VIII. When using 𝑘 -𝑙 -𝑥 approach, the results are in Table IX. From the results of Example 1 -Example 4, we can see that based on 𝑘 -𝑙 -𝑥, the users can control the number of focal elements but can not control the maximum cardinality of focal elements. Although based on 𝑘 -𝑙 -𝑥, the number of focal elements can be reduced, the focal elements with big cardinality might also be remained. This is not good for further reducing computational cost and not good for human to catch the meaning.

E. Example 5

More generally, an approximation method 1 (giving 𝑚 1 (.)) is considered better than a method 2 (giving 𝑚 2 (.)) if both conditions are fulfilled: 1) if Jousselme's distance of 𝑚 1 (.) to original bba 𝑚(.) is smaller than the distance of 𝑚 2 (.) to original bba 𝑚(.), i.e. 𝑑(𝑚 1 , 𝑚) < 𝑑(𝑚 2 , 𝑚); 2) if the approximate non-specificity value 𝑈 (𝑚 1 ) is closer (and lower) to the true non-specificity value 𝑈 (𝑚) than 𝑈 (𝑚 2 ), where Jousselme's distance is defined in [START_REF] Jousselme | A new distance between two bodies of evidence[END_REF], and non-specificity [START_REF] Dubois | A note on measures of specificity for fuzzy sets[END_REF] is given by 𝑈

(𝑚) = ∑ 𝐴⊆Θ 𝑚(𝐴) log 2 |𝐴|.
In this example, we make a comparison between HPR (method 1) and 𝑘-additive approach (method 2). We consider the FoD Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5} and we generate randomly 𝐿 = 30 bba's by using the algorithm given below [START_REF] Jousselme | On some properties of distances in evidence theory[END_REF] 2 ) for several levels of approximation for 𝑗 = 1, 2, . . . , 𝐿 (where 𝑗 is the index of the Monte-Carlo run). The results are shown in Fig. 3 and indicate clearly the superiority of HPR over the 𝑘-additive approach. Table X shows that HPR outperforms 𝑘-additive method since it provides a lower NMSE, which means that in terms of information loss, HPR is better (it generates less loss) than the 𝑘-additive approximation method.

VI. CONCLUSIONS

We have proposed a new interesting and useful hierarchical method, called HPR, to approximate any bba. The nonspecificity degree can be easily controlled by the user. Some examples were provided to show how HPR works, and to show its rationality and advantage in comparison with some wellknown bba approximation approaches. In future works, we will compare this HPR method with more bba approximation methods. In this paper, we have used only the distance of evidence and non-specificity as performance criteria. We plan to develop a more efficient evaluation criteria for capturing more aspects of the information expressed in a bba to measure the global performances of a method, and to design a better bba approximation approach (if possible).

  𝑋(3)) = 0.15 + (0.30 ⋅ 0.375) = 0.2625 because 𝑅(𝜃 1 ∪ 𝜃 2 , 𝑋(3)) = 0.15 0.15+0.20+0.05 = 0.375. Similarly, one gets𝑚 ℎ(2) (𝜃 1 ∪ 𝜃 3 ) = 𝑚(𝜃 1 ∪ 𝜃 3 ) + 𝑚(𝑋(3)) ⋅ 𝑅(𝜃 1 ∪ 𝜃 3 , 𝑋(3)) = 0.20 + (0.30 ⋅ 0.5) = 0.35 because 𝑅(𝜃 1 ∪ 𝜃 3 , 𝑋(3)) = 0.20 0.15+0.20+0.05 = 0.5, and also 𝑚 ℎ(2) (𝜃 2 ∪ 𝜃 3 ) = 𝑚(𝜃 2 ∪ 𝜃 3 ) + 𝑚(𝑋(3)) ⋅ 𝑅(𝜃 2 ∪ 𝜃 3 , 𝑋(3)) = 0.05 + (0.30 ⋅ 0.125) = 0.0875 because 𝑅(𝜃 2 ∪ 𝜃 3 , 𝑋(3)) = 0.05 0.15+0.20+0.05 = 0.125.

  03 + (0.35 ⋅ 0.2307) + (0.0875 ⋅ 0.15) = 0.03 + 0.0808 + 0.0131 = 0.1239 because 𝑅(𝜃 3 , 𝜃 1 ∪ 𝜃 3
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Table I EXPERIMENTAL

 I RESULTS OF HPR FOR EXAMPLE 1.

	Focal elements	𝑚 ℎ(𝑘) (⋅) -approximate baa 𝑘 = 3 𝑘 = 2 𝑘 = 1
	𝜃 1	0.1000	0.1000	0.4664
	𝜃 2	0.1700	0.1700	0.4097
	𝜃 3	0.0300	0.0300	0.1239
	𝜃 1 ∪ 𝜃 2	0.1500	0.2625	0.0000
	𝜃 1 ∪ 𝜃 3	0.2000	0.3500	0.0000
	𝜃 2 ∪ 𝜃 3	0.0500	0.0875	0.0000
	𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3	0.3000	0.0000	0.0000

Table II EXPERIMENTAL

 II RESULTS OF 𝑘 -𝑙 -𝑥 FOR EXAMPLE 1

	Focal elements	𝑚(⋅) obtained by 𝑘 -𝑙 -𝑥 𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3
	𝜃 1	0.1031	0.0000
	𝜃 2	0.1753	0.2573
	𝜃 3	0.0000	0.0000
	𝜃 1 ∪ 𝜃 2	0.1546	0.0000
	𝜃 1 ∪ 𝜃 3	0.2062	0.2985
	𝜃 2 ∪ 𝜃 3	0.0515	0.0000
	𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3	0.3093	0.4478

Table III EXPERIMENTAL

 III RESULTS OF HPR FOR EXAMPLE 2 (𝜖 = 0.001)

	Focal elements	𝑚 ℎ(𝑘) (⋅) -approximate baa 𝑘 = 3 𝑘 = 2 𝑘 = 1
	𝜃 1	0.0000	0.0000	0.0000
	𝜃 2	0.1700	0.1700	0.5200
	𝜃 3	0.1300	0.1300	0.4800
	𝜃 1 ∪ 𝜃 2	0.2000	0.3500	0.0000
	𝜃 1 ∪ 𝜃 3	0.2000	0.3500	0.0000
	𝜃 2 ∪ 𝜃 3	0.0000	0.0000	0.0000
	𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3	0.3000	0.0000	0.0000
		Table IV		
	EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 2 (𝜖 = 0.001)
	Focal elements	𝑚 ℎ(𝑘) (⋅) -approximate baa 𝑘 = 3 𝑘 = 2 𝑘 = 1
	𝜃 1	0.0000	0.0000	0.0092
	𝜃 2	0.1700	0.1700	0.5141
	𝜃 3	0.1300	0.1300	0.4746
	𝜃 1 ∪ 𝜃 2	0.2000	0.3489	0.0000
	𝜃 1 ∪ 𝜃 3	0.2000	0.3489	0.0000
	𝜃 2 ∪ 𝜃 3	0.0000	0.0022	0.0000
	𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3	0.3000	0.0000	0.0000

Table V EXPERIMENTAL

 V RESULTS OF 𝑘 -𝑙 -𝑥 FOR EXAMPLE 2

	Focal elements	𝑚(⋅) obtained by 𝑘 -𝑙 -𝑥 𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3
	𝜃 1	0.0000	0.0000
	𝜃 2	0.1700	0.0000
	𝜃 3	0.1300	0.0000
	𝜃 1 ∪ 𝜃 2	0.2000	0.2857
	𝜃 1 ∪ 𝜃 3	0.2000	0.2857
	𝜃 2 ∪ 𝜃 3	0.0000	0.0000
	𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3	0.3000	0.4286

Table VI EXPERIMENTAL

 VI RESULTS OF HPR FOR EXAMPLE 3 (𝜖 = 0.001)

	Focal elements	𝑚 ℎ(𝑘) (⋅) -approximate baa 𝑘 = 3 𝑘 = 2 𝑘 = 1
	𝜃 1	0.0000	0.0000	0.0503
	𝜃 2	0.0000	0.0000	0.0503
	𝜃 3	0.7000	0.7000	0.8994
	𝜃 1 ∪ 𝜃 2	0.0000	0.1000	0.0000
	𝜃 1 ∪ 𝜃 3	0.0000	0.1000	0.0000
	𝜃 2 ∪ 𝜃 3	0.0000	0.1000	0.0000
	𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3	0.3000	0.0000	0.0000

Table VII EXPERIMENTAL

 VII RESULTS OF 𝑘 -𝑙 -𝑥 FOR EXAMPLE 3

	Focal elements	𝑚(⋅) obtained by 𝑘 -𝑙 -𝑥 𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3
	𝜃 1	0.0000	0.0000
	𝜃 2	0.0000	0.0000
	𝜃 3	0.7000	0.7000
	𝜃 1 ∪ 𝜃 2	0.0000	0.0000
	𝜃 1 ∪ 𝜃 3	0.0000	0.0000
	𝜃 2 ∪ 𝜃 3	0.0000	0.0000
	𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3	0.3000	0.3000

Table IX EXPERIMENTAL

 IX RESULTS OF 𝑘 -𝑙 -𝑥 FOR EXAMPLE 3

	Focal elements	𝑚(⋅) obtained by 𝑘 -𝑙 -𝑥 𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3
	𝜃 1	0.0000	0.0000
	𝜃 2	0.0000	0.0000
	𝜃 3	0.0000	0.0000
	𝜃 1 ∪ 𝜃 2	0.0000	0.0000
	𝜃 1 ∪ 𝜃 3	0.0000	0.0000
	𝜃 2 ∪ 𝜃 3	0.0000	0.0000
	𝜃 1 ∪ 𝜃 2 ∪ 𝜃 3	1.0000	1.0000

  Generate a integer between 1 and 𝑁 𝑚𝑎𝑥 → 𝑘; FOReach First 𝑘 elements of ℛ(Θ) do Generate a value within [0, 1] → 𝑚 ′ 𝑘 ; END Normalize the vector 𝑚 ′ (.) = [𝑚 ′ 1 , ..., 𝑚 ′ 𝑘 ] → 𝑚(.) (that is 𝑚(𝐴 𝑘 ) = 𝑚 𝑘 ); Algorithm 1: Random generation of bba. We compute and plot 𝑑(𝑚 𝑗 1 , 𝑚), 𝑑(𝑚 𝑗 2 , 𝑚), 𝑈 (𝑚), 𝑈 (𝑚 𝑗 1 ) and 𝑈 (𝑚 𝑗

: Input: Θ : Frame of discernment; 𝑁 𝑚𝑎𝑥 : Maximum number of focal elements Output: 𝐵𝑒𝑙: Belief function (under the form of a bba, 𝑚) Generate the power set of Θ: 𝒫(Θ); Generate a random permutation of 𝒫(Θ) → ℛ(Θ);

  𝑒 𝑖 )[START_REF] Denoeux | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF] to evaluate the global quality of the approximation of the nonspecificity by HPR (if 𝑖 = 1) and by 𝑘-additive method (if 𝑖 = 2). ⃗ 𝑒 𝑖 = [𝑒 1 𝑖 , . . . , 𝑒 𝑗 𝑖 , . . . , 𝑒 𝐿 𝑖 ] is the approximation error vector of method #i where 𝑒 𝑗 𝑖 = 𝑈 (𝑚 𝑗 𝑖 ) -𝑈 (𝑚), for 𝑗 = 1, ..., 𝐿. Var(⃗ 𝑒 𝑖 ) is the variance of ⃗ 𝑒 𝑖 . The NMSE results are given in Table X below.
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