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Abstract—Dempster-Shafer evidence theory is very important
in the fields of information fusion and decision making. However,
it always brings high computational cost when the frames of
discernments to deal with become large. To reduce the heavy
computational load involved in many rules of combinations, the
approximation of a general belief function is needed. In this paper
we present a new general principle for uncertainty reduction
based on hierarchical proportional redistribution (HPR) method
which allows to approximate any general basic belief assignment
(bba) at a given level of non-specificity, up to the ultimate level
1 corresponding to a Bayesian bba. The level of non-specificity
can be adjusted by the users. Some experiments are provided to
illustrate our proposed HPR method.

Index Terms—Belief functions, hierarchical proportional redis-
tribution (HPR), evidence combination, belief approximation.

I. INTRODUCTION

Dempster-Shafer evidence theory, also called belief function
theory [1], is an interesting and flexible tool to deal with
imprecision and uncertainty for approximate reasoning. It
has been widely used in many applications, e.g., information
fusion, pattern recognition and decision making [2].

Although evidence theory is successful in uncertainty mod-
eling and reasoning, high computational cost is a drawback
which is often raised against evidence theory [2]. In fact, the
computational cost of evidence combination increases expo-
nentially with respect to the size of the frame of discernment
(FOD) [3]–[5]. To resolve such a problem, three major types
of approaches have been proposed by he researchers.

The first type is to propose efficient procedures for perform-
ing exact computations. For example, Kennes [6] proposed an
optimal algorithm for Dempster’s rule of combination. Bar-
nett’s work [7] and other works [8] are also the representatives.

The second type is composed of Monte-Carlo techniques.
See details in the paper of Moral and Salmeron [9].

The third type is to approximate (or simplify) a belief
function to a simpler one. The papers of Voorbraak [4], Dubois
and Prade [10] are seminal works in this type of approaches.
Tessem proposed the famous 𝑘−𝑙−𝑥 approximation approach
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[3]. Grabisch proposed some approaches [11], which can build
a bridge between belief functions and other types of uncer-
tainty measures or functions, e.g., probabilities, possibilities
and 𝑘-additive belief function (those belief functions whose
cardinality of the focal elements are at most of 𝑘). Based on
pignistic transformation in transferable belief model (TBM),
Burger and Cuzzolin proposed two types of 𝑘-additive belief
functions [12]. Denœux uses hierarchical clustering strategy
to implement the inner and outer approximation of belief
functions [13].

In this paper, we focus on the approximation approach of
belief functions. This first reason obviously is that it can reduce
the computational cost of evidence combination. Furthermore,
human find that it is not intuitive to attach meaning to focal
elements with large cardinality [14]. Belief approximation can
either reduce the number or the cardinalities of focal elements,
or both of them can be reduced. Thus by using belief function
approximation, we can obtain a representation which is more
intuitive and easier to process. We propose a new method
called hierarchical proportional redistribution (HPR), which is
a general principle for uncertainty reduction, to approximate
any general basic belief assignment (bba) at a given level of
non-specificity, up to the ultimate level 1 corresponding to a
Bayesian bba. That is, our proposed approach can generate
an intermediate object between probabilities and original be-
lief function. The level of non-specificity can be controlled
by the users through the adjusting of maximum cardinality
of remaining focal element. Our proposed approach can be
considered as a generalized k-additive belief approximation.
Some experiments are provided to illustrate our proposed
HPR approach and to compare it with other approximation
approaches.

II. BASICS IN EVIDENCE THEORY

In Dempster-Shafer evidence theory [1], the frame of
discernment (FOD) denoted by Θ is a basic concept. The
elements in Θ are mutually exclusive. Suppose that 2Θ denotes
the powerset of FOD and define the function 𝑚 : 2Θ → [0, 1]
as the basic belief assignment (bba) satisfying:∑

𝐴⊆Θ
𝑚(𝐴) = 1, 𝑚(∅) = 0 (1)



A bba is also called a mass function. Belief function (𝐵𝑒𝑙)
and plausibility function (𝑃𝑙) are defined below, respectively:

𝐵𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵) (2)

𝑝𝑙(𝐴) =
∑

𝐴∩𝐵 ∕=∅ 𝑚(𝐵) (3)

Suppose that 𝑚1,𝑚2, ...,𝑚𝑛 are 𝑛 mass functions, Dempster’s
rule of combination is defined in (4):

𝑚(𝐴) =

⎧⎨⎩
0, 𝐴 = ∅∑
∩𝐴𝑖=𝐴

∏
1≤𝑖≤𝑛

𝑚𝑖(𝐴𝑖)∑
∩𝐴𝑖 ∕=∅

∏
1≤𝑖≤𝑛

𝑚𝑖(𝐴𝑖)
, 𝐴 ∕= ∅ (4)

Dempster’s rule of combination is used in DST to imple-
ment the combination of bodies of evidence (BOEs).

Evidence theory has been widely used in many application
fields due to its capability of approximate reasoning and
processing of uncertain information. However, as referred
in introduction section, there also exists the drawback of
high computational cost in evidence combination. Several
approaches have been proposed accordingly, which includes
efficient algorithms [6]–[8] for evidence combination, the
Monte-Carlo techniques and the approach of belief function
approximation [9]. We prefer to use the belief approximation
approach [10]–[13] to reduce the computational cost needed
in the combination operation because the approximation ap-
proach reduces the computational cost and also allow to deal
with smaller-size focal elements, which is more intuitive for
human to catch the meaning [14]. In the next section, we recall
some well-known basic approximation approaches.

III. BBA APPROXIMATION APPROACHES

1) 𝑘 − 𝑙 − 𝑥 approach: The approach of 𝑘 − 𝑙 − 𝑥 was
proposed by Tessem [3]. The simplified or compact bba
obtained by using 𝑘 − 𝑙 − 𝑥 satisfies:

1) keep no less than 𝑘 focal elements;
2) keep no more than 𝑙 focal elements;
3) the mass assignment to be deleted is no greater than 𝑥.
In algorithm of 𝑘−𝑙−𝑥, the focal elements of a original bba

are sorted according to their mass assignments. Such algorithm
chooses the first 𝑝 focal elements such that 𝑘 ≤ 𝑝 ≤ 𝑙
and such that the sum of the mass assignments of these
first 𝑝 focal elements is no less than 1 − 𝑥. The deleted
mass assignments are redistributed to the other focal elements
through a normalization.

2) 𝑘-additive belief function approximation: Given a bba
𝑚 : 2Θ → [0, 1], the 𝑘-additive belief function [11], [12]
induced by the mass assignment is defined in Eq.(5). Suppose
that 𝐵 ⊆ Θ,⎧⎨⎩ 𝑚𝑘(𝐵) = 𝑚(𝐵) +

∑
𝐴⊃𝐵,𝐴⊆Θ,∣𝐴∣>𝑘

𝑚(𝐴)⋅∣𝐵∣
𝒩 (∣𝐴∣,𝑘) , ∀ ∣𝐵∣ ≤ 𝑘

𝑚𝑘(𝐵) = 0, ∀ ∣𝐵∣ > 𝑘
(5)

where

𝒩 (∣𝐴∣ , 𝑘) =
𝑘∑

𝑗=1

( ∣𝐴∣
𝑗

)
⋅ 𝑗 =

𝑘∑
𝑗=1

∣𝐴∣!
(𝑗 − 1)!(∣𝐴∣ − 𝑗)!

(6)

is average cardinality of the subsets of 𝐴 of size at most 𝑘.
It can be seen that for 𝑘-additive belief approximation, the

maximum cardinality of available focal elements is no greater
than 𝑘.

In this section, 𝑘 − 𝑙 − 𝑥 approach and 𝑘-additive belief
function approximation approach are introduced, which will
be compared with our proposed approach introduced in next
section. There also other types of bba approximation approx-
imation approaches, see details in related references.

IV. HIERARCHICAL PROPORTIONAL REDISTRIBUTION
APPROXIMATION

In this paper we propose a hierarchical bba approximation
approach called hierarchical proportional redistribution (HPR),
which provides a new way to reduce step by step the mass
committed to uncertainties. Ultimately an approximate mea-
sure of subjective probability can be obtained if needed, i.e.
a so-called Bayesian bba in [1]. It must be noticed that this
procedure can be stopped at any step in the process and thus
it allows to reduce the number of focal elements in a given
bba in a consistent manner to diminish the size of the core
of a bba and thus reduce the complexity (if needed) when
applying also some complex rules of combinations. We present
here the general principle of hierarchical and proportional
reduction of uncertainties in order to obtain approximate bba’s
at different non-specificity level we expect. The principle of
redistribution of uncertainty to more specific elements of the
core at any given step of the process follows the proportional
redistribution already proposed in the (non hierarchical) DSmP
transformation proposed recently in [5]. Thus the proposed
HPR can be considered as a bba approximation approach
inspired by the idea of DSmP.

Let’s first introduce two new notations for convenience and
for concision:

1) Any element of cardinality 1 ≤ 𝑘 ≤ 𝑛 of the power
set 2Θ will be denoted, by convention, by the generic
notation 𝑋(𝑘). For example, if Θ = {𝐴,𝐵,𝐶}, then
𝑋(2) can denote the following partial uncertainties
𝐴 ∪ 𝐵, 𝐴 ∪ 𝐶 or 𝐵 ∪ 𝐶, and 𝑋(3) denotes the total
uncertainty 𝐴 ∪𝐵 ∪ 𝐶.

2) The proportional redistribution factor (ratio) of width 𝑛
involving elements 𝑋 and 𝑌 of the powerset is defined
as (for 𝑋 ∕= ∅ and 𝑌 ∕= ∅)

𝑅𝑠(𝑌,𝑋) ≜ 𝑚(𝑌 ) + 𝜖 ⋅ ∣𝑋∣∑
𝑌⊂𝑋

∣𝑋∣−∣𝑌 ∣=𝑠
𝑚(𝑌 ) + 𝜖 ⋅ ∣𝑋∣ (7)

where 𝜖 is a small positive number introduced here to
deal with particular cases where

∑
𝑌⊂𝑋

∣𝑋∣−∣𝑌 ∣=𝑠
𝑚(𝑌 ) = 0.

By convention, we will denote 𝑅(𝑌,𝑋) ≜ 𝑅1(𝑌,𝑋)
when we use the proportional redistribution factors of
width 𝑠 = 1.

The HPR is obtained by a step by step (recursive) proportional
redistribution of the mass 𝑚(𝑋(𝑘)) of a given uncertainty
𝑋(𝑘) (partial or total) of cardinality 2 ≤ 𝑘 ≤ 𝑛 to all the least



specific elements of cardinality 𝑘−1, i.e. to all possible 𝑋(𝑘−
1), until 𝑘 = 2 is reached. The proportional redistribution is
done from the masses of belief committed to 𝑋(𝑘−1) as done
classically in DSmP transformation. The ”hierarchical” masses
𝑚ℎ(.) are recursively (backward) computed as follows. Here
𝑚ℎ(𝑘) represents the approximate bba obtained at the step 𝑛−𝑘
of HPR, i.e., it has the maximum focal element cardinality of
𝑘.

𝑚ℎ(𝑛−1)(𝑋(𝑛− 1)) = 𝑚(𝑋(𝑛− 1))+∑
𝑋(𝑛)⊃𝑋(𝑛−1)

𝑋(𝑛),𝑋(𝑛−1)∈2Θ

[𝑚(𝑋(𝑛)) ⋅𝑅(𝑋(𝑛− 1), 𝑋(𝑛))];

𝑚ℎ(𝑛−1)(𝐴) = 𝑚(𝐴),∀∣𝐴∣ < 𝑛− 1

(8)

𝑚ℎ(𝑛−1)(⋅) is the bba obtained at the first step of HPR
(𝑛 − (𝑛 − 1) = 1), the maximum focal element cardinality
of 𝑚ℎ(𝑛−1) is 𝑛− 1.

𝑚ℎ(𝑛−2)(𝑋(𝑛− 2)) = 𝑚(𝑋(𝑛− 2))+∑
𝑋(𝑛−1)⊃𝑋(𝑛−2)

𝑋(𝑛−2),𝑋(𝑛−1)∈2Θ

[𝑚ℎ(𝑛−1)(𝑋(𝑛−1))⋅𝑅(𝑋(𝑛−2), 𝑋(𝑛−1))]

𝑚ℎ(𝑛−2)(𝐴) = 𝑚ℎ(𝑛−1)(𝐴),∀∣𝐴∣ < 𝑛− 2

(9)

𝑚ℎ(𝑛−2)(⋅) is the bba obtained at the second step of HPR
(𝑛− (𝑛− 2) = 2), the maximum focal element cardinality of
𝑚ℎ(𝑛−2) is 𝑛− 2.

This hierarchical proportional redistribution process can
be applied similarly (if one wants) to compute 𝑚ℎ(𝑛−3)(.),
𝑚ℎ(𝑛−4)(.), ..., 𝑚ℎ(2)(⋅), 𝑚ℎ(1)(⋅) with

𝑚ℎ(2)(𝑋(2)) = 𝑚(𝑋(2))+∑
𝑋(3)⊃𝑋(2)

𝑋(3),𝑋(2)∈2Θ

[𝑚ℎ(3)(𝑋(3)) ⋅𝑅(𝑋(2), 𝑋(3))]

𝑚ℎ(2)(𝐴) = 𝑚ℎ(3)(𝐴),∀∣𝐴∣ < 𝑛− 2

(10)

𝑚ℎ(2)(⋅) is the bba obtained at the first step of HPR (𝑛− 2),
the maximum focal element cardinality of 𝑚ℎ(2) is 2.

Mathematically, for any 𝑋(1) ∈ Θ, i.e. any 𝜃𝑖 ∈ Θ a
Bayesian belief function can be obtained by HPR approach
in deriving all possible steps of proportional redistributions of
partial ignorances in order to get

𝑚ℎ(1)(𝑋(1)) = 𝑚(𝑋(1))+∑
𝑋(2)⊃𝑋(1)

𝑋(1),𝑋(2)∈2Θ

[𝑚ℎ(2)(𝑋(2)) ⋅𝑅(𝑋(1), 𝑋(2))] (11)

In fact, 𝑚ℎ(1)(⋅) is a probability transformation, called here
the Hierarchical DSmP (HDSmP). Since 𝑋(𝑛) is unique and
corresponds only to the full ignorance 𝜃1 ∪ 𝜃2 ∪ . . . ∪ 𝜃𝑛, the
expression of 𝑚ℎ(𝑋(𝑛− 1)) in Eq.(10) just simplifies as

𝑚ℎ(𝑛−1)(𝑋(𝑛− 1)) = 𝑚ℎ(𝑋(𝑛− 1))+

𝑚(𝑋(𝑛)) ⋅𝑅(𝑋(𝑛− 1), 𝑋(𝑛)) (12)

Because of the full proportional redistribution of the masses
of uncertainties to the elements least specific involved in
these uncertainties, no mass of belief is lost during the step
by step hierarchical process and thus at any step of HPR,
the sum of masses of belief is kept to one, and of course the
Hierarchial DSmP also satisfies

∑
𝑋(1)∈2Θ 𝑚ℎ(𝑋(1)) = 1.

Remark: For some reasons depending of applications, it is
also possible to easily modify this HPR approach with little
effort into a constrained HPR version (CHPR for short) by
forcing the masses of some partial ignorances of cardinality
𝑘+1 to be (proportionally) redistributed back only to a subset
of the partial ignorances of cardinality 𝑘 included in them.
This possibility has not be detailed here due to space limitation
constraint and its little technical interest.

V. EXAMPLES

In this section we show in details how HPR can be applied
on very simple different examples. So let’s examine the
three following examples based on a simple 3D frame of
discernment Θ = {𝜃1, 𝜃2, 𝜃3} satisfying Shafer’s model.

A. Example 1

Let’s consider the following bba:

𝑚(𝜃1) = 0.10, 𝑚(𝜃2) = 0.17, 𝑚(𝜃3) = 0.03,

𝑚(𝜃1 ∪ 𝜃2) = 0.15, 𝑚(𝜃1 ∪ 𝜃3) = 0.20,

𝑚(𝜃2 ∪ 𝜃3) = 0.05, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30.

We apply the hierarchical proportional redistribution (HPR)
principle with 𝜖 = 0 in this example because there is no
mass of belief equal to zero. It can be verified that the result
obtained with small positive 𝜖 parameter remains (as expected)
numerically very close to that obtained with 𝜖 = 0.

The first step of HPR consists in redistributing back 𝑚(𝜃1∪
𝜃2∪𝜃3) = 0.30 committed to the full ignorance to the elements
𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 only, because these elements
are the only elements of cardinality 2 that are included in
𝜃1 ∪ 𝜃2 ∪ 𝜃3. Applying the Eq. (8) with 𝑛 = 3, one gets when
𝑋(2) = 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃1 ∪ 𝜃2 the following masses.

𝑚ℎ(2)(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.15 + (0.30 ⋅ 0.375) = 0.2625

because 𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) = 0.15
0.15+0.20+0.05 = 0.375.

Similarly, one gets

𝑚ℎ(2)(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.30 ⋅ 0.5) = 0.35



because 𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) = 0.20
0.15+0.20+0.05 = 0.5, and also

𝑚ℎ(2)(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.05 + (0.30 ⋅ 0.125) = 0.0875

because 𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) = 0.05
0.15+0.20+0.05 = 0.125.

Now, we go to the next step of HPR principle and one
needs to redistribute the masses of partial ignorances 𝑋(2)
corresponding to 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 back to the
singleton elements 𝑋(1) corresponding to 𝜃1, 𝜃2 and 𝜃3. We
use Eq. (11) for doing this as follows:

𝑚ℎ(1)(𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.10 + (0.2625 ⋅ 0.3703) + (0.35 ⋅ 0.7692)
= 0.10 + 0.0972 + 0.2692 = 0.4664

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.10

0.10 + 0.17
≈ 0.3703

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.10

0.10 + 0.03
≈ 0.7692

Similarly, one gets

𝑚ℎ(1)(𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.10 + (0.2625 ⋅ 0.6297) + (0.0875 ⋅ 0.85)
= 0.17 + 0.1653 + 0.0744 = 0.4097

because

𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =
0.17

0.10 + 0.17
≈ 0.6297

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17

0.17 + 0.03
= 0.85

and also

𝑚ℎ(1)(𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.03 + (0.35 ⋅ 0.2307) + (0.0875 ⋅ 0.15)
= 0.03 + 0.0808 + 0.0131 = 0.1239

because

𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =
0.03

0.10 + 0.03
≈ 0.2307

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.03

0.17 + 0.03
= 0.15

Hence, the result of final step of HPR is:

𝑚ℎ(1)(𝜃1) = 0.4664, 𝑚ℎ(1)(𝜃2) = 0.4097,

𝑚ℎ(1)(𝜃3) = 0.1239.

We can easily verify that

𝑚ℎ(1)(𝜃1) +𝑚ℎ(1)(𝜃2) +𝑚ℎ(1)(𝜃3) = 1.

1 2 3{ , , }   

1 2{ , }  1 3{ , }  2 3{ , }  

1{ } 2{ } 3{ } 

Step 1

Step 2

Figure 1. Illustration of Example 1

Table I
EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 1.

Focal elements
𝑚ℎ(𝑘)(⋅) - approximate baa
𝑘 = 3 𝑘 = 2 𝑘 = 1

𝜃1 0.1000 0.1000 0.4664
𝜃2 0.1700 0.1700 0.4097
𝜃3 0.0300 0.0300 0.1239
𝜃1 ∪ 𝜃2 0.1500 0.2625 0.0000
𝜃1 ∪ 𝜃3 0.2000 0.3500 0.0000
𝜃2 ∪ 𝜃3 0.0500 0.0875 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.0000 0.0000

The procedure can be illustrated in Fig. 1 below. The
approximate bba at each step with different maximum focal
elements’ cardinality are listed in Table I.

To compare our proposed HPR with the approach of 𝑘 −
𝑙 − 𝑥, we set the parameters of 𝑘 − 𝑙 − 𝑥 to obtain bba’s
with equal focal element number with HPR at each step. In
Example 1, for HPR at first step, it can obtain a bba with 6
focal elements. Thus we set 𝑘 = 𝑙 = 6, 𝑥 = 0.4 for 𝑘 − 𝑙 − 𝑥
to obtain a bba with 6 focal elements. Similarly, for HPR at
second step, it can obtain a bba with 3 focal elements. Thus
we set 𝑘 = 𝑙 = 3, 𝑥 = 0.4 for 𝑘−𝑙−𝑥. Based on the approach
of 𝑘 − 𝑙 − 𝑥, the results are in Table II.

Table II
EXPERIMENTAL RESULTS OF 𝑘 − 𝑙− 𝑥 FOR EXAMPLE 1

Focal elements
𝑚(⋅) obtained by 𝑘 − 𝑙− 𝑥
𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3

𝜃1 0.1031 0.0000
𝜃2 0.1753 0.2573
𝜃3 0.0000 0.0000
𝜃1 ∪ 𝜃2 0.1546 0.0000
𝜃1 ∪ 𝜃3 0.2062 0.2985
𝜃2 ∪ 𝜃3 0.0515 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3093 0.4478

B. Example 2

Let’s consider the following bba:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0.17, 𝑚(𝜃3) = 0.13,

𝑚(𝜃1 ∪ 𝜃2) = 0.20, 𝑚(𝜃1 ∪ 𝜃3) = 0.20,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30

The first step of HPR consists in redistributing back 𝑚(𝜃1∪
𝜃2∪𝜃3) = 0.30 committed to the full ignorance to the elements
𝜃1 ∪ 𝜃2, and 𝜃1 ∪ 𝜃3 only, because these elements are the only
elements of cardinality 2 that are included in 𝜃1 ∪ 𝜃2 ∪ 𝜃3.



Applying Eq. (8) with 𝑛 = 3, one gets when 𝑋(2) = 𝜃1 ∪ 𝜃2,
𝜃1 ∪ 𝜃3 and 𝜃1 ∪ 𝜃2 the following masses

𝑚ℎ(2)(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.5) = 0.35

because

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) =
0.20

0.20 + 0.20 + 0.00
= 0.5

Similarly, one gets

𝑚ℎ(2)(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.5) = 0.35

because

𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) =
0.20

0.20 + 0.20 + 0.00
= 0.5

and also

𝑚ℎ(2)(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.00 + (0.3 ⋅ 0.0) = 0.0

because

𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) =
0.0

0.20 + 0.20 + 0.00
= 0

Now, we go to the next step of HPR principle and one
needs to redistribute the masses of partial ignorances 𝑋(2)
corresponding to 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 back to the
singleton elements 𝑋(1) corresponding to 𝜃1, 𝜃2 and 𝜃3. We
use Eq. (11) for doing this as follows:

𝑚ℎ(1)(𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.00 + (0.35 ⋅ 0.00) + (0.35 ⋅ 0.00)
= 0.00 + 0.00 + 0.00 = 0.00

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.00

0.00 + 0.17
= 0.00

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.00

0.00 + 0.13
= 0.00

Similarly, one gets

𝑚ℎ(1)(𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.17 + (0.35 ⋅ 1) + (0.00 ⋅ 0.5667)
= 0.17 + 0.35 + 0.00 = 0.52

because
𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =

0.17

0.00 + 0.17
= 1

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17

0.17 + 0.13
≈ 0.5667

and also

𝑚ℎ(1)(𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.13 + (0.35 ⋅ 1) + (0.00 ⋅ 0.4333)
= 0.13 + 0.35 + 0.00 = 0.48

because
𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =

0.13

0.13 + 0.00
= 1

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.13

0.17 + 0.13
≈ 0.4333

Hence, the result of final step of HPR is

𝑚ℎ(1)(𝜃1) = 0.00, 𝑚ℎ(1)(𝜃2) = 0.52, 𝑚ℎ(1)(𝜃3) = 0.48

and we can easily verify that

𝑚ℎ(1)(𝜃1) +𝑚ℎ(1)(𝜃2) +𝑚ℎ(1)(𝜃3) = 1.

The HPR procedure of Example 2 with 𝜖 = 0 is Fig. 2.

1 2 3{ , , }   

1 2{ , }  1 3{ , }  

1{ } 2{ } 3{ } 

Step 1

Step 2

Figure 2. Illustration of Example 2.

If one takes 𝜖 = 0, there is no mass that will be reassigned
to {𝜃2 ∪ 𝜃3} as illustrated in Fig. 2. But if one takes 𝜖 > 0,
HPR procedure of Example 2 is the same as that illustrated in
Fig. 1, i.e., there also exist masses redistributed to {𝜃2 ∪ 𝜃3}
as illustrated in Fig. 1. That’s the difference between Fig. 1
and Fig. 2.

Suppose that 𝜖 = 0.001, the HPR calculation procedure is
as follows.

The first step of HPR consists in distributing back 𝑚(𝜃1 ∪
𝜃2∪𝜃3) = 0.30 committed to the full ignorance to the elements
𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3. Applying the Eq. (8) with 𝑛 = 3,
one gets when 𝑋(2) = 𝜃1∪𝜃2, 𝜃1∪𝜃3 and 𝜃1∪𝜃2 the following
masses

𝑚ℎ(2)(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.4963) = 0.3489

because

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) =
0.20 + 0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.4963

𝑚ℎ(2)(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.4963) = 0.3489



because

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) =
0.20 + 0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.4963

𝑚ℎ(2)(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.00 + (0.3 ⋅ 0.0073) = 0.0022

because

𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) =
0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.0073

Now, we go to the next step of HPR principle and one
needs to redistribute the masses of partial ignorances 𝑋(2)
corresponding to 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 back to the
singleton elements 𝑋(1) corresponding to 𝜃1, 𝜃2 and 𝜃3. We
use Eq. (11) for doing this as follows:

𝑚ℎ(1)(𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.00 + (0.3489 ⋅ 0.0115) + (0.3489 ⋅ 0.0149)
= 0.00 + 0.0040 + 0.0052 = 0.0092

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.00 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.17 + 0.001 ⋅ 2)
= 0.0115

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.00 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
= 0.0149

Similarly, one gets

𝑚ℎ(1)(𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.17 + (0.3489 ⋅ 0.9885) + (0.0022 ⋅ 0.5658)
= 0.17 + 0.3449 + 0.0012 = 0.5161

because

𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =
0.17 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.17 + 0.001 ⋅ 2)
= 0.9885

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17 + 0.001 ⋅ 2

(0.17 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
≈ 0.5658

and also

𝑚ℎ(1)(𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.13 + (0.3489 ⋅ 0.9851) + (0.0022 ⋅ 0.4342)
= 0.13 + 0.3437 + 0.0009 = 0.4746

because

𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =
0.13 + 0.001 ⋅ 2

(0.13 + 0.001 ⋅ 2) + (0.00 + 0.001 ⋅ 2)
= 0.9851

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.13 + 0.001 ⋅ 2

(0.17 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
≈ 0.4342

Hence, the final result of HPR approximation is

𝑚ℎ(1)(𝜃1) = 0.0092, 𝑚ℎ(1)(𝜃2) = 0.5161,

𝑚ℎ(1)(𝜃3) = 0.4746

and we can easily verify that

𝑚ℎ(1)(𝜃1) +𝑚ℎ(1)(𝜃2) +𝑚ℎ(1)(𝜃3) = 1.

The bba’s obtained in each step are listed in Table III (𝜖 = 0)
and Table IV (𝜖 = 0.001)

Table III
EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 2 (𝜖 = 0.001)

Focal elements
𝑚ℎ(𝑘)(⋅) - approximate baa
𝑘 = 3 𝑘 = 2 𝑘 = 1

𝜃1 0.0000 0.0000 0.0000
𝜃2 0.1700 0.1700 0.5200
𝜃3 0.1300 0.1300 0.4800
𝜃1 ∪ 𝜃2 0.2000 0.3500 0.0000
𝜃1 ∪ 𝜃3 0.2000 0.3500 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.0000 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.0000 0.0000

Table IV
EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 2 (𝜖 = 0.001)

Focal elements
𝑚ℎ(𝑘)(⋅) - approximate baa
𝑘 = 3 𝑘 = 2 𝑘 = 1

𝜃1 0.0000 0.0000 0.0092
𝜃2 0.1700 0.1700 0.5141
𝜃3 0.1300 0.1300 0.4746
𝜃1 ∪ 𝜃2 0.2000 0.3489 0.0000
𝜃1 ∪ 𝜃3 0.2000 0.3489 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.0022 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.0000 0.0000

When using 𝑘− 𝑙−𝑥 approach, the results are in Table V.

Table V
EXPERIMENTAL RESULTS OF 𝑘 − 𝑙− 𝑥 FOR EXAMPLE 2

Focal elements
𝑚(⋅) obtained by 𝑘 − 𝑙− 𝑥
𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3

𝜃1 0.0000 0.0000
𝜃2 0.1700 0.0000
𝜃3 0.1300 0.0000
𝜃1 ∪ 𝜃2 0.2000 0.2857
𝜃1 ∪ 𝜃3 0.2000 0.2857
𝜃2 ∪ 𝜃3 0.0000 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.4286



C. Example 3

Let’s consider the following bba:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0, 𝑚(𝜃3) = 0.70,

𝑚(𝜃1 ∪ 𝜃2) = 0, 𝑚(𝜃1 ∪ 𝜃3) = 0,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30

In this example, the mass assignments for all the focal ele-
ments with cardinality size 2 equal to zero. For HPR, when
𝜖 > 0, 𝑚(𝜃2 ∪ 𝜃3) will be divided equally and redistributed to
{𝜃1 ∪ 𝜃2}, {𝜃1 ∪ 𝜃3} and {𝜃2 ∪ 𝜃3}. Because the ratios are

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) = 𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) = 𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

=
0.00 + 0.001 ⋅ 3

(0.00 + 0.001 ⋅ 3) ⋅ 3 = 0.3333

For HPR, when 𝜖 = 0, it can not be executed directly. This
can show the necessity for the using of 𝜖.

The bba’s obtained through HPR𝜖=0.001 at different steps
are listed in Table VI

Table VI
EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 3 (𝜖 = 0.001)

Focal elements
𝑚ℎ(𝑘)(⋅) - approximate baa
𝑘 = 3 𝑘 = 2 𝑘 = 1

𝜃1 0.0000 0.0000 0.0503
𝜃2 0.0000 0.0000 0.0503
𝜃3 0.7000 0.7000 0.8994
𝜃1 ∪ 𝜃2 0.0000 0.1000 0.0000
𝜃1 ∪ 𝜃3 0.0000 0.1000 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.1000 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.0000 0.0000

When using 𝑘− 𝑙−𝑥 approach, the results are in Table VII.

Table VII
EXPERIMENTAL RESULTS OF 𝑘 − 𝑙 − 𝑥 FOR EXAMPLE 3

Focal elements
𝑚(⋅) obtained by 𝑘 − 𝑙 − 𝑥
𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3

𝜃1 0.0000 0.0000
𝜃2 0.0000 0.0000
𝜃3 0.7000 0.7000
𝜃1 ∪ 𝜃2 0.0000 0.0000
𝜃1 ∪ 𝜃3 0.0000 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.3000

D. Example 4 (vacuous bba)

Let’s consider the following bba:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0, 𝑚(𝜃3) = 0,

𝑚(𝜃1 ∪ 𝜃2) = 0, 𝑚(𝜃1 ∪ 𝜃3) = 0,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 1

In this example, the mass assignments for all the focal el-
ements with cardinality size less than 3 equal to zero. For
HPR, when 𝜖 > 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) will be divided equally
and redistributed to {𝜃1 ∪ 𝜃2}, {𝜃1 ∪ 𝜃3} and {𝜃2 ∪ 𝜃3}.

Similarly, the mass assignments for focal elements with
cardinality of 2 obtained in intermediate step will be divided
equally and redistributed to singletons. This is due to 𝜖 > 0.

For HPR, when 𝜖 = 0, it can not be executed directly. This
can show the necessity for the using of 𝜖. The bba’s obtained
through HPR𝜖=0.001 at different steps are listed in Table VIII.

Table VIII
EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 4 (𝜖 = 0.001)

Focal elements
𝑚ℎ(𝑘)(⋅) - approximate baa
𝑘 = 3 𝑘 = 2 𝑘 = 1

𝜃1 0.0000 0.0000 0.3333
𝜃2 0.0000 0.0000 0.3333
𝜃3 0.0000 0.0000 0.3333
𝜃1 ∪ 𝜃2 0.0000 0.3333 0.0000
𝜃1 ∪ 𝜃3 0.0000 0.3333 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.3333 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 1.0000 0.0000 0.0000

When using 𝑘− 𝑙−𝑥 approach, the results are in Table IX.
Table IX

EXPERIMENTAL RESULTS OF 𝑘 − 𝑙− 𝑥 FOR EXAMPLE 3

Focal elements
𝑚(⋅) obtained by 𝑘 − 𝑙− 𝑥
𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3

𝜃1 0.0000 0.0000
𝜃2 0.0000 0.0000
𝜃3 0.0000 0.0000
𝜃1 ∪ 𝜃2 0.0000 0.0000
𝜃1 ∪ 𝜃3 0.0000 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 1.0000 1.0000

From the results of Example 1 – Example 4, we can see
that based on 𝑘 − 𝑙 − 𝑥, the users can control the number of
focal elements but can not control the maximum cardinality
of focal elements. Although based on 𝑘 − 𝑙 − 𝑥, the number
of focal elements can be reduced, the focal elements with big
cardinality might also be remained. This is not good for further
reducing computational cost and not good for human to catch
the meaning.

E. Example 5

More generally, an approximation method 1 (giving 𝑚1(.))
is considered better than a method 2 (giving 𝑚2(.)) if both
conditions are fulfilled: 1) if Jousselme’s distance of 𝑚1(.)
to original bba 𝑚(.) is smaller than the distance of 𝑚2(.)
to original bba 𝑚(.), i.e. 𝑑(𝑚1,𝑚) < 𝑑(𝑚2,𝑚); 2) if the
approximate non-specificity value 𝑈(𝑚1) is closer (and lower)
to the true non-specificity value 𝑈(𝑚) than 𝑈(𝑚2), where
Jousselme’s distance is defined in [16], and non-specificity
[17] is given by 𝑈(𝑚) =

∑
𝐴⊆Θ

𝑚(𝐴) log2 ∣𝐴∣.
In this example, we make a comparison between HPR

(method 1) and 𝑘-additive approach (method 2). We consider
the FoD Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5} and we generate randomly
𝐿 = 30 bba’s by using the algorithm given below [15]:

Input: Θ : Frame of discernment;
𝑁𝑚𝑎𝑥: Maximum number of focal elements
Output: 𝐵𝑒𝑙: Belief function (under the form of a bba, 𝑚)
Generate the power set of Θ: 𝒫(Θ);



Generate a random permutation of 𝒫(Θ) → ℛ(Θ);
Generate a integer between 1 and 𝑁𝑚𝑎𝑥 → 𝑘;
FOReach First 𝑘 elements of ℛ(Θ) do
Generate a value within [0, 1] → 𝑚′

𝑘;
END Normalize the vector 𝑚′(.) = [𝑚′

1, ...,𝑚
′
𝑘] → 𝑚(.)

(that is 𝑚(𝐴𝑘) = 𝑚𝑘);
Algorithm 1: Random generation of bba.

We compute and plot 𝑑(𝑚𝑗
1,𝑚), 𝑑(𝑚𝑗

2,𝑚), 𝑈(𝑚), 𝑈(𝑚𝑗
1)

and 𝑈(𝑚𝑗
2) for several levels of approximation for 𝑗 =

1, 2, . . . , 𝐿 (where 𝑗 is the index of the Monte-Carlo run). The
results are shown in Fig. 3 and indicate clearly the superiority
of HPR over the 𝑘-additive approach.

0 10 20 30
1

1.1

1.2

1.3

1.4

N
o
n
−

s
p
e
c
if
ic

it
y

0 10 20 30
0.9

1

1.1

1.2

1.3

1.4

bba’s
0 10 20 30

0.7

0.8

0.9

1

1.1

1.2

1.3

 

 

0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

D
is

ta
n
c
e
 o

f 
e
v
id

e
n
c
e

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

bba’s
0 10 20 30

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 

 

non−specificity
of original bba’s

k−additive

HPR

Max size of focal element =3 Max size of focal element =2Max size of focal element =4

Figure 3. Illustration of Example 5.

We further use the Normalized Mean Square Error (NMSE)
statistics defined by

𝑁𝑀𝑆𝐸𝑖 =
1

𝐿

𝐿∑
𝑗=1

(𝑈(𝑚𝑗
𝑖 )− 𝑈(𝑚))

2

Var(𝑒⃗𝑖)
(13)

to evaluate the global quality of the approximation of the non-
specificity by HPR (if 𝑖 = 1) and by 𝑘-additive method (if 𝑖 =
2). 𝑒⃗𝑖 = [𝑒1𝑖 , . . . , 𝑒

𝑗
𝑖 , . . . , 𝑒

𝐿
𝑖 ] is the approximation error vector

of method #i where 𝑒𝑗𝑖 = 𝑈(𝑚𝑗
𝑖 ) − 𝑈(𝑚), for 𝑗 = 1, ..., 𝐿.

Var(𝑒⃗𝑖) is the variance of 𝑒⃗𝑖. The NMSE results are given in
Table X below.

Table X
NMSE RESULTS OF EXAMPLE 5

Max size of focal element 4 3 2
k-additive method 3.9003 21.8118 69.0191
HPR method 3.9003 19.0264 61.9468

Table X shows that HPR outperforms 𝑘-additive method
since it provides a lower NMSE, which means that in terms
of information loss, HPR is better (it generates less loss) than
the 𝑘-additive approximation method.

VI. CONCLUSIONS

We have proposed a new interesting and useful hierarchical
method, called HPR, to approximate any bba. The non-
specificity degree can be easily controlled by the user. Some
examples were provided to show how HPR works, and to show
its rationality and advantage in comparison with some well-
known bba approximation approaches. In future works, we
will compare this HPR method with more bba approximation
methods. In this paper, we have used only the distance of
evidence and non-specificity as performance criteria. We plan
to develop a more efficient evaluation criteria for capturing
more aspects of the information expressed in a bba to measure
the global performances of a method, and to design a better
bba approximation approach (if possible).

REFERENCES

[1] G. Shafer, A Mathematical Theory of Evidence, Princeton, NJ: Princeton
University, 1976.

[2] P. Smets, “Practical uses of belief functions”, in K. B. Lskey and H. Prade,
Editors, Uncertianty in Artificial Intelligence 15 (UAI 99), Stockholm,
Sweden, pp. 612-621, 1999.

[3] B. Tessem, “Approximations for efficient computation in the theory of
evidence”, Artificial Intelligence, Vol. 61, no. 2, pp. 315-329, June 1993.

[4] F. Voorbraak, “A computationally efficient approximation of Dempster-
Shafer theory”, Int. J. Man-Machine Studies, Vol. 30, pp. 525-536, 1989.

[5] F. Smarandache, J. Dezert (Editors), Applications and Advances of DSmT
for Information Fusion (Vol 3), Rehoboth, NM: American Research Press,
2009. http://www.gallup.unm.edu/˜smarandache/DSmT-book3.pdf.

[6] R. Kennes, “Computational aspects of the M𝑜bius transform of graphs”,
IEEE Transactions on SMC, Vol. 22, pp. 201-223, 1992.

[7] J.A. Barnett, “Computational methods for a mathematical theory of
evidence”, in Proceedings of IJCAI-81, Vancouver, pp. 868-875, 1981.

[8] G. Shafer, R. Logan, “Implementing Dempster’s rule for hierarchical
evidence”, Artificial Intelligence, Vol. 33, pp. 271-298, 1987.

[9] S. Moral, A. Salmeron, “A Monte Carlo algorithm for combining
Dempster-Shafer belief based on approximate pre-computation”, in A.
Hunter and S. Pearsons, Editors, Symbolic and quantitative approaches
to reasoning and uncertainty (ECSQARU’99), London, UK, pp. 305-315,
1999.

[10] D. Dubois, H. Prade, “An alternative approach to the handling of
subnormal possiblity distributions”, Fuzzy Sets and Systems, Vol. 24,
pp. 123-126, 1987.

[11] M. Grabisch, “Upper approximation of non-additive measures by 𝑘-
additive measures - the case of belief functions”, in Proc. of 1st Int.
Symp. on Imprecise Proba. and their applications, Ghent, Belgium, June
1999.

[12] T. Burger, F. Cuzzolin, “Two k-additive generalizations of the pignistic
transform”, submitted in 2011 to Fuzzy Sets and Systems, available on
line: http://cms.brookes.ac.uk/staff/FabioCuzzolin/files/fss11kadditive.pdf

[13] T. Denœux, “Inner and outer approximation of belief structures using a
hierarchical clustering approach”, Int. J. of Uncertainty, Fuzziness, and
Knowledge-based Systems, Vol. 9, no. 4, pp. 437-460, 2001.

[14] T. Burger, “Defining new approximations of belief functions by means
of Dempster’s combination”, in Proc. of the 1st International Workshop
on the Theories of Belief Functions (WTBF 2010), Brest, France, March
31st - April 2nd, 2010.

[15] A.-L. Jousselme, P. Maupin, “On some properties of distances in
evidence theory”, in Proc. of the 1st Workshop on Theory of Belief
Functions(WTBF2010), Brest, France, March 31st - April 2nd, 2010.

[16] A.-L. Jousselme, D. Grenier, E. Bosse, “A new distance between two
bodies of evidence”, Information Fusion, Vol. 2, no. 2, pp. 91-101, 2001.

[17] D. Dubois, H. Prade, “A note on measures of specificity for fuzzy sets”,
International Journal of General Systems, Vol. 10, no. 4, pp. 279-283,
1985.


