Hierarchical Proportional Redistribution Principle for Uncertainty Reduction and BBA Approximation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Hierarchical Proportional Redistribution Principle for Uncertainty Reduction and BBA Approximation

Jean Dezert
Deqiang Han

Résumé

Dempster-Shafer evidence theory is very important in the fields of information fusion and decision making. However, it always brings high computational cost when the frames of discernments to deal with become large. To reduce the heavy computational load involved in many rules of combinations, the approximation of a general belief function is needed. In this paper we present a new general principle for uncertainty reduction based on hierarchical proportional redistribution (HPR) method which allows to approximate any general basic belief assignment (bba) at a given level of non-specificity, up to the ultimate level 1 corresponding to a Bayesian bba. The level of non-specificity can be adjusted by the users. Some experiments are provided to illustrate our proposed HPR method.
Fichier principal
Vignette du fichier
HPRWCICA2012.pdf (212.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00720453 , version 1 (24-07-2012)

Identifiants

Citer

Jean Dezert, Deqiang Han, Zhun-Ga Liu, Jean-Marc Tacnet. Hierarchical Proportional Redistribution Principle for Uncertainty Reduction and BBA Approximation. WCICA 2012 - World Congress on Intelligent Control and Automation, Jul 2012, Beijing, China. pp.8, ⟨10.1109/WCICA.2012.6357962⟩. ⟨hal-00720453⟩
126 Consultations
282 Téléchargements

Altmetric

Partager

More