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The theory of belief function, also called Dempster-Shafer evidence theory, has been proved to be a very useful representation scheme for expert and other knowledge based systems. However, the computational complexity of evidence combination will become large with the increasing of the frame of discernment's cardinality. To reduce the computational cost of evidence combination, the idea of basic belief assignment (bba) approximation was proposed, which can reduce the complexity of the given bba's. To realize a good bba approximation, the approximated bba should be similar (in some sense) to the original bba. In this paper, we use the distance of evidence together with the difference between the uncertainty degree of approximated bba and that of the original one to construct a comprehensive measure, which can represent the similarity between the approximated bba and the original one. By using such a comprehensive measure as the objective function and by designing some constraints, the bba approximation is converted to an optimization problem. Comparative experiments are provided to show the rationality of the construction of comprehensive similarity measure and that of the constraints designed.

I. INTRODUCTION

The theory of belief function [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], which is also called Dempster-Shafer evidence theory (DST), provides an interesting and useful computational scheme for representing and integrating (or fusing) uncertain information. DST has been widely used in many applications, e.g., information fusion, pattern recognition and decision making [START_REF] Smets | Practical uses of belief functions[END_REF]. However, high computational cost of evidence combination is a drawback which is often raised against DST [START_REF] Smets | Practical uses of belief functions[END_REF]. It is well known that the computational cost of evidence combination increases exponentially with respect to cardinality of the frame of discernment (FOD) [START_REF] Tessem | Approximations for efficient computation in the theory of evidence[END_REF]- [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF].

Many approaches have been proposed by the researchers to reduce the computational cost caused by evidence combination. Some researchers proposed efficient procedures for performing exact computations. For example, Kennes [START_REF] Kennes | Computational aspects of the M¨ bius transform of graphs[END_REF] proposed an optimal algorithm for Dempster's rule of combination. Barnett's work [START_REF] Barnett | Computational methods for a mathematical theory of evidence[END_REF] and other works [START_REF] Shafer | Implementing Dempster's rule for hierarchical evidence[END_REF] are also the representatives. Moral and Salmeron [START_REF] Moral | A Monte Carlo algorithm for combining Dempster-Shafer belief based on approximate pre-computation[END_REF] proposed the approach based on Monte-Carlo techniques. Wickramarathne also proposed bba approximation approaches based Monte-Carlo and statistical sampling [START_REF] Wickramarathne | Monte-Carlo approximations for Dempster-Shafer belief theoretic algorithms[END_REF]. Another important idea to reduce the computational cost caused by evidence combination is to approximate (or simplify) a bba to a simpler one. The papers of Voorbraak [START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF], Dubois and Prade [START_REF] Dubois | An alternative approach to the handling of subnormal possibility distributions[END_REF] are seminal works in this type of approaches. Tessem proposed the famous -approximation approach [START_REF] Tessem | Approximations for efficient computation in the theory of evidence[END_REF]. Grabisch proposed some approaches [START_REF] Grabisch | Upper approximation of non-additive measures byadditive measures -the case of belief functions[END_REF], which can build a bridge between belief functions and other types of uncertainty measures or functions, e.g., probabilities, possibilities and -additive belief function (those belief functions whose cardinality of the focal elements are at most of ). Based on pignistic transformation in transferable belief model (TBM) [START_REF] Smets | The transferable belief model[END_REF], Burger and Cuzzolin proposed two types of -additive belief functions [START_REF] Burger | The barycenters of the k-additive dominating belief functions and the pignistic k-additive belief functions[END_REF]. Denoeux uses hierarchical clustering strategy to implement the inner and outer approximation of belief functions [START_REF] Denoeux | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF]. In our recent research, a hierarchical proportional redistribution (HPR) approach is proposed to approximate bba [START_REF] Dezert | Hierarchical proportional redistribution for bba approximation[END_REF].

In this paper, we focus on the bba approximation approach to reduce the computational cost of evidence combination. Although there have emerged many bba approximation approaches, we aim to design a new approach which can generate the optimal approximated bba using a reasonable criterion. A good approximated bba should have a structure (core) simpler than the original one, and at the same time it should be as similar as possible to the original bba. To obtain such a good approximated bba, we preset the maximum size of the focal element of the approximated bba and attempt to approximate bba by minimizing the dissimilarity between the original bba and the approximated one in this paper. Distance of evidence [START_REF] Jousselme | A new distance between two bodies of evidence[END_REF] is used together with the difference between the uncertainty degree of the approximated bba and that of the original one to measure the dissimilarity, which is used as the objective function of the optimization (minimization) problem. Different constraints for the optimization are also analyzed in this paper. Some examples are provided to show the rationality of the objective function and constraints used and to compare different bba approximation approaches. It can be experimentally shown that our proposed bba approximation approach is rational and efficient with respect to other approaches.

II. BASICS OF BELIEF FUNCTION THEORY

Let Θ = { 1 , ..., } be the frame of discernment (FOD), which is a set of exhaustive and mutually exclusive hypothe-ses. ∅ denotes the empty set. If : 2 Θ → [0, 1] satisfies the requirements of (∅) = 0 and ∑ ⊆Θ ( ) = 1, is called the basic belief assignment (bba, or mass function) over the FOD Θ [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. The belief function (

) and the plausibility function ( ) are defined below [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], respectively:

( ) = ∑ ⊆ ( ) (1) 
( ) = ∑ ∩ ∕ =∅ ( ) (2) 
In DST framework, Dempster's rule of combination was proposed for combining two distinct bodies of evidence (BOEs) characterized by bba's 1 (.) and 2 (.). Mathematically this rule is defined by:

( ) = ⎧ ⎨ ⎩ 0, = ∅ ∑ ∩ = 1( ) 2 ( ) 1- , ∕ = ∅ (3) 
where coefficient

= ∑ ∩ =∅ 1 ( ) 2 (
) represents the conflict between the BOEs.

Dempster's rule of combination is both associative and commutative and can be extended for combining > 2 distinct sources of evidence as well. Aside debates on its validity, Dempster's rule of combination requires significantly large computational cost with the increasing of the FOD's cardinality. Given a FOD with cardinaltiy of , bba (.) can have up to 2 -1 focal elements (empty-set ∅ here is excluded), Furthermore, the combination of two bba's requires the computation of up to 2 +1 -2 intersections.

To work with large FOD and make DST tractable, several approaches have been proposed either by proposing efficient algorithms [START_REF] Kennes | Computational aspects of the M¨ bius transform of graphs[END_REF]- [START_REF] Shafer | Implementing Dempster's rule for hierarchical evidence[END_REF] for evidence combination, by using Monte-Carlo techniques, or by approximating bba [START_REF] Moral | A Monte Carlo algorithm for combining Dempster-Shafer belief based on approximate pre-computation[END_REF], [START_REF] Wickramarathne | Monte-Carlo approximations for Dempster-Shafer belief theoretic algorithms[END_REF]. We prefer to use the bba approximation approach [START_REF] Dubois | An alternative approach to the handling of subnormal possibility distributions[END_REF] - [START_REF] Burger | The barycenters of the k-additive dominating belief functions and the pignistic k-additive belief functions[END_REF] to reduce the computational cost needed in the combination operation because the approximation approach reduces the computational cost and also allow to deal with smaller-size focal elements, which is more intuitive for human to catch the meaning [START_REF] Burger | Defining new approximations of belief functions by means of Dempster's combination[END_REF].

III. RECENT BBA APPROXIMATION APPROACHES

For the purpose of comparisons, some recent bba approximation approaches are recalled in this section.

1) -additive belief function approximation: Given a bba : 2 Θ → [0, 1], the -additive belief function [START_REF] Grabisch | Upper approximation of non-additive measures byadditive measures -the case of belief functions[END_REF] induced by the mass assignment is defined in Eq.( 5). Suppose that ⊆ Θ,

⎧  ⎨  ⎩ ( ) = ( ) + ∑ ⊃ ⊆Θ | |> ( )⋅| | (| |, ) , ∀ | | ≤ ( ) = 0, ∀ | | > (4) 
where

(| | , ) = ∑ =1 ( | | ) ⋅ = ∑ =1 | |! ( -1)!(| | -)! (5) 
is average cardinality of the subsets of of size at most .

It can be seen that for -additive belief approximation, the maximum cardinality of available focal elements is no greater than .

2) Hierarchical Proportional Redistribution approximation: In our previous research work [START_REF] Dezert | Hierarchical proportional redistribution for bba approximation[END_REF], we have proposed a new bba approximation approach called hierarchical proportional redistribution (HPR), which provides a new way to reduce step-by-step the mass committed to uncertainties. Ultimately an approximate measure of subjective probability can be obtained if needed, i.e. a so-called Bayesian bba. The HPR procedure can be stopped at any step in the process and thus it allows to reduce the number of focal elements of a given bba in a simple manner to diminish the size of the core of a bba. Thus we can reduce the complexity (if needed) when applying also some complex rules of combinations. By using HPR, we can obtain approximate bba's at any different nonspecificity level that we want. Let's first introduce two new notations for convenience and for concision:

1) Any element of cardinality 1 ≤ ≤ of the power set 2 Θ will be denoted, by convention, by the generic notation ( ). For example, if Θ = { , , }, then

(2) can denote the following partial uncertainties ∪ , ∪ or ∪ , and (3) denotes the total uncertainty ∪ ∪ .

2) The proportional redistribution factor (ratio) of width involving elements and of the powerset is defined as (for

∕ = ∅ and ∕ = ∅) ( , ) ≜ ( ) + ⋅ | | ∑ ⊂ | |-| |= ( ) + ⋅ | | (6) 
where is a small positive number introduced here to deal with particular cases where

∑ ⊂ | |-| |= ( ) = 0.
By convention, we will denote ( , ) ≜ 1 ( , ) when we use the proportional redistribution factors of width = 1. The HPR is obtained by a step by step (recursive) proportional redistribution of the mass ( ( )) of a given uncertainty ( ) (partial or total) of cardinality 2 ≤ ≤ to all the least specific elements of cardinality -1, i.e., to all possible ( -1), until = 2 is reached. The proportional redistribution is done from the masses of belief committed to ( -1) as done classically in DSmP transformation. The "hierarchical" masses ℎ (.) are recursively (backward) computed as follows. Here ℎ( ) represents the approximate bba obtained at the stepof HPR, i.e., it has the maximum focal element cardinality of .

ℎ( -1) ( ( -1)) = ( ( -1))+ ∑ ( )⊃ ( -1) ( ), ( -1)∈2 Θ [ ( ( )) ⋅ ( ( -1), ( ))]; ℎ( -1) ( ) = ( ), ∀| | < -1 (7) 
ℎ( -1) (⋅) is the bba obtained at the first step of HPR ( -( -1) = 1), the maximum focal element cardinality of

ℎ( -1) is -1. ℎ( -2) ( ( -2)) = ( ( -2))+ ∑ ( -1)⊃ ( -2) ( -2), ( -1)∈2 Θ [ ℎ( -1) ( ( -1))⋅ ( ( -2), ( -1))] ℎ( -2) ( ) = ℎ( -1) ( ), ∀| | < -2 (8) 
ℎ( -2) (⋅) is the bba obtained at the second step of HPR ( -

( -2) = 2), the maximum focal element cardinality of ℎ( -2) is -2.
This hierarchical proportional redistribution process can be applied similarly (if one wants) to compute ℎ( -3) (.),

ℎ( -4) (.), ..., ℎ(2) (⋅), ℎ(1) (⋅) with ℎ(2) ( (2)) = ( (2))+ ∑ (3)⊃ (2) (3), (2)∈2 Θ [ ℎ(3) ( (3)) ⋅ ( (2), (3))] ℎ(2) ( ) = ℎ(3) ( ), ∀| | < -2 (9) 
ℎ(2) (⋅) is the bba obtained at the first step of HPR ( -2), the maximum focal element cardinality of ℎ(2) is 2.

Mathematically, for any (1) ∈ Θ, i.e. any ∈ Θ a Bayesian belief function can be obtained by HPR approach in deriving all possible steps of proportional redistributions of partial ignorances in order to obtain

ℎ(1) ( (1)) = ( (1))+ ∑ (2)⊃ (1) (1), (2)∈2 Θ [ ℎ(2) ( (2)) ⋅ ( (1), (2))] (10)
In fact, ℎ(1) (⋅) is a probability transformation, called here the Hierarchical DSmP (HDSmP). Since ( ) is unique and corresponds only to the full ignorance 1 ∪ 2 ∪ . . . ∪ , the expression of ℎ ( ( -1)) in Eq.( 7) just simplifies as

ℎ( -1) ( ( -1)) = ℎ ( ( -1))+ ( ( )) ⋅ ( ( -1), ( )) (11) 
For the full proportional redistribution of the masses of uncertainties to the elements least specific involved in these uncertainties, no mass is lost during the step-by-step hierarchical process and thus at any step of HPR, the sum of masses is kept to one. Illustrative examples of HPR can be found in [START_REF] Dezert | Hierarchical proportional redistribution for bba approximation[END_REF].

IV. BBA APPROXIMATIONS BASED ON OPTIMIZATION

A "good" approximated bba should be simpler 1 than the original one and at the same time should be as similar as possible to the original bba. To obtain such a "good" approximated bba, in this paper we predefine the maximum focal element size of the approximated bba as to ensure the "simplicity" and we attempt to approximate bba by minimizing the dissimilarity between the original one and the approximated one to ensure the "similarity". That is to say, the problem of bba approximation is converted to an optimization problem. For the optimization problem, we need to define the objective function and some constraints which will be detailed in the next subsections.

A. Design of objective function

Our purpose is to minimize the dissimilarity between the original bba and the approximated one. But how to measure the dissimilarity between bba's? The distance of evidence seems to be a good primary choice and several types of distance of evidence have been proposed in the literature (see Jousselme et al's latest survey in [START_REF] Jousselme | Distances in evidence theory: Comprehensive survey and generalizations[END_REF] for details). Among all the proposals for distances of evidence, we have chosen Jousselme's distance based on the form of Euclidean metric because it is a strict distance metric [START_REF] Jousselme | Distances in evidence theory: Comprehensive survey and generalizations[END_REF] and takes into account the specificity of focal 2 elements of the bba. This distance is defined by

( 1 , 2 ) = √ ( 1 -2 ) Jac ( 1 -2 ) (12) 
Jac is the Jaccard's weighting matrix whose elements are given by

Jac( , ) = | ∩ | | ∪ | (13) 
where and represent the focal elements of 1 (.) and 2 (.), respectively. Aside Jousselme's distance, we propose to use also the difference between the uncertainty degree of two different bba's to describe their dissimilarity. Several measures of uncertainty have been proposed in the literature and we just recall the most important ones below:

1) Aggregated Uncertainty (AU): Let (.) be a bba on the FOD Θ. The AU associated with (.) is defined by [START_REF] Abellan | Requirements For Total Uncertainty Measures In Dempster-shafer theory Of Evidence[END_REF]:

AU( ) = max [- ∑ ∈Θ log 2 ] ( 14 
)
where the maximum is taken over all probability distributions that are consistent with the given bba. consists of all probability distributions ⟨ | ∈ Θ⟩ satisfying the constraints:

⎧ ⎨ ⎩ ∈ [0, 1], ∀ ∈ Θ ∑ ∈Θ = 1 ( ) ≤ ∑ ∈ ≤ 1 - ( ¯ ), ∀ ⊆ Θ (15) 
1 The core of approximated bba must be smaller than the core of the original bba.

2 is a focal element of a bba (.) if ( ) > 0.

As illustrated in Eq. ( 14) and Eq. ( 15), in the definition of AU, the calculation of AU is an optimization problem and bba's (or belief functions) are used to establish the constraints of the optimization problem. It is also called the "upper entropy". AU is a strict uncertainty measure satisfying the five requirements for uncertainty measure [START_REF] Abellan | Requirements For Total Uncertainty Measures In Dempster-shafer theory Of Evidence[END_REF]. However, AU has a high computing complexity and a high insensitivity to the changes of evidence [START_REF] Jousselme | Measuring ambiguity in the evidence theory[END_REF] which makes this measure not very attractive.

2) Ambiguity measure (AM): Let Θ = { 1 , 2 , ..., } be a FOD with elements. Let be a bba defined on Θ. The Ambiguity Measure (AM) [START_REF] Jousselme | Measuring ambiguity in the evidence theory[END_REF] is defined by

AM(m) = - ∑ ∈Θ BetP ( ) log 2 (BetP ( )) (16) 
where BetP [START_REF] Smets | The transferable belief model[END_REF] computed from the bba (.). In fact AM does not satisfy the subadditivity as pointed out by Klir in [START_REF] Klir | Remarks on "Measuring Ambiguity in the Evidence Theory[END_REF]. Also AM is logically non-monotonic under some circumstances as proved by Abellan [START_REF] Abellan | Requirements For Total Uncertainty Measures In Dempster-shafer theory Of Evidence[END_REF]. AU and AM are both established based on Shannon entropy over some probability transformation resulting from a given bba.

({ }) = ∑ ∈ , ⊆Θ ( )/ | | is the pignistic probability distribution
3) Non-specificity: This measure introduced in [START_REF] Dubois | A note on measures of specificity for fuzzy sets[END_REF] and denoted ( ) is defined directly from (.) by

( ) = ∑ ⊆Θ ( ) log 2 | | (17) 
It is worth noting that this measure describes the nonspecificity aspect (when two or more alternatives left unspecified) of the uncertain degree incorporated in a body of evidence but cannot well discriminate two distinct bba's in some cases. For example, let's consider the two bba's 1 (.) and 2 (.) given by

{ 1 ( 1 ∪ 2 ) = 0.1, 1 ( 2 ∪ 3 ) = 0.8, 1 ( 1 ∪ 3 ) = 0.1 2 ( 1 ∪ 2 ) = 1/3, 2 ( 2 ∪ 3 ) = 1/3, 2 ( 1 ∪ 3 ) = 1/3
It is clear that their corresponding non-specificity values are the same: ( 1 ) = ( 2 ) = 1, although 1 (.) and 2 (.) are obviously different.

As already mentioned, AU and AM have their drawbacks. Because AU and AM are established based on some bba approximations (in fact, probability transformations), so there exist the loss of information and that is why we don't recommend them as efficient measures of uncertainty degree of a body of evidence. Although the non-specificity measure (.) represents only one aspect of the uncertainty, it is defined directly based on bba and it is easy to calculate. For these reasons, we prefer to use the non-specificity jointly with Jousselme's distance to construct the objective function in our optimization problem.

The construction of our objective function to minimize is based both on Jousselme's distance (., .) and the nonspecificity measure (.) as follows:

1) we use distance of evidence in Eq. ( 12) to construct the objective function

obj 1 ( ) = ( , ) 
2) we use the non-specificity to construct the objective function

obj 2 ( ) = ( ) -( ) ( )
where (.) denotes the original bba to be approximated by the bba (.).

In this paper, we propose to use these measures of distance of evidence and non-specificity to construct the global objective function to minimize. How to combine them into one comprehensive global objective function? Since one does not have a priori clear answer to this problem, we have examined the simplest two methods for doing this.

1) Additive global objective: It is defined by

obj( ) = ⋅ obj 1 ( ) + ⋅ obj 2 ( )
More precisely, by

obj( ) = ⋅ ( , ) + ⋅ ( ) -( ) ( ) (18) 
where , ∈ [0, 1] represent the importance or degree of preference of obj 1 and obj 2 , respectively.

2) Multiplicative global objective: It is defined by

obj( ) = (obj 1 ( )) ⋅ (obj 2 ( ))
More precisely, by

obj( ) = ( ( ) ⋅ ( ( ) -( ) ( ) ) (19) 
B. Design of constraints 1) Weak constraints: The approximated bba (.) should at first satisfy the definition of bba. Suppose the maximum cardinality of the approximated bba (.) is , then we must have

⎧ ⎨ ⎩ 0 ≤ ( ) ≤ 1, ∀ ⊆ Θ ∑ ⊆Θ | |≤ ( ) = 1 (20) 
Because the purpose of the bba approximation is to reduce the complexity of a given bba, the uncertainty degree of the approximated bba should not be higher than the original one. This principle introduces naturally the constraint ( ) ≤ ( ). Therefore the constraints that the approximated bba (.) must satisfy are

⎧   ⎨   ⎩ 0 ≤ ( ) ≤ 1, ∀ ⊆ Θ ∑ ⊆Θ | |≤ ( ) = 1 ( ) < ( ) (21) 
These constraints above are in fact too weak as shown in Example 1.

In our tests, we have set the cardinality of the FOD to 5 and fixed the number of focal elements to = = 2 5 -1 = 31. We randomly generate bba's for = 30 times. At each time, different bba approximations are executed with remaining maximum focal element's size of 4, 3, and 2, respectively. Non-specificity and distance of evidence are used to evaluate their corresponding approximated bba's, which are shown in Fig. 1 and Fig. 2. The parameter of optimization problem (additive way and multiplicative way) are = = 1

As we can see in Fig. 1 and Fig. 2, the optimization approach based on the global additive objective and the optimization approach based on the global multiplicative objective always have lowest distance values and have the nonspecificity values being closest to the those of the original bba's. This means that our proposed optimization approach for bba approximation is rational and it is better than -additive and HPR. However, according to the non-specificity criterion, HPR performs as good as our bba approximation approaches based on optimization of our objective functions.

It should be noted that the experimental results of the optimization approach based on global additive objective and based on global multiplicative objective are very close, so we plot two figures to respectively illustrate their comparisons with other approaches.

Furthermore, we have used also the normalized mean squared error (NMSE) criterion to evaluate their performances. NMSE is defined by

( ) = 1 ∑ =1 (⃗ ( )) 2 variance(⃗ ) (26) 
where is the number of tests, and the error vectors are defined for = 1, 2, . . . , by

⃗ ( ) = obj( ) -obj( ( ))
with obj(⋅) given by Eq. ( 18). Our simulations results of NMSE obtained by the different approaches are list in Table I below. VI. CONCLUSION In this paper, new bba approximation approaches have been proposed based on optimization. The construction of objective functions and the constraints were also discussed and analyzed. Experimental results show the rationality of our proposed approaches. It should be noted that although our new approaches performs well, they are based on optimization, which will cause more computational complexity. That is to say the good performance is at the price of computational complexity. Our previously proposed HPR has comparable performances with respect to the performances of our new optimization approaches, but HPR does not has so high computational complexity as bba approximations based on optimization. So in some time-sensitive applications, HPR is a better choice. Furthermore, in our objective function construction, there still exists the problem of selection of the weighting parameters and . Their effects on the results of the bba approximations will be analyzed in details in future research works.

Fig. 1 .

 1 Fig. 1. Comparisons of Opt additive with HPR and -additive.

Fig. 2 .

 2 Fig. 2. Comparisons of Opt multiplicative with HPR and -additive.

  As we can see in TableI, the optimization approach based on global additive objective always provides the lowest NMSE values, which indicates that the optimization approach based on global additive objective performs the best.

	Table I NMSE COMPARISONS AMONG DIFFERENT APPROACHES
	Approaches	= 4	= 3	= 2
	Opt add	13.5052 17.9532 43.2814
	Opt multi	13.5123 17.9533 43.2816
	HPR	13.5715 18.1212 43.3821
	-additive	14.1915 20.4053 54.9697
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Example 1: Suppose that the FOD is Θ = { 1 , 2 , 3 , 4 } and the given bba is

( 1) = 0.8,

( 2) = 0.04, ( 3) = 0.04;

( 4) = 0.04, ( 2 ∪ 3) = 0.04, ({ 2 ∪ 3 ∪ 4}) = 0.04

If we use the constraints in Eq. ( 21) and the minimization of the global multiplicative objective, we obtain the following approximated bba

( 1) = 0.7850, ( 2) = 0.0272, ( 3) = 0.0272;

( 4) = 0.0573, ( 2 ∪ 3) = 0.1034;

One sees that we have also diluted (diminished) the precise information focused on 1 only (0.8), focused on 2 only (0.04), focused on 3 only (0.04) and focused on 4 only (0.04) to other partial uncertainty.

If we use the constraints in Eq. ( 21) and according to the minimization of the global additive objective ( = = 1), we obtain the approximated bba as Based on the minimization of the global additive objective under constraints, one has also diluted the precise information focused on 2 only (0.04) and focused on 3 only (0.04) to other partial uncertainty. In both cases (with additive or multiplicative global objectives), we don't see any serious and legitimate reasons for justifying such behavior in practice. There exists another extreme case as shown in Example 2.

Example 2: Suppose that the FOD is Θ = { 1 , 2 , 3 } and the given bba is

If we minimize the global additive (or multiplicative) objective under the constraints in Eq. ( 21) with = = 1, we obtain the following approximated bba

and one sees that the mass assignments for singletons are completely diluted. There is no legitimate reason for doing that. This phenomenon is due to the weakness of the constraints used. Therefore to circumvent the problem, we need to consider stronger constraints.

2) Strong constraints: To be assured that there is no dilution phenomenon as illustrated in Examples 1 or 2, we add the following additional constraint

where is the maximum allowed focal element size of the approximated bba. We thus prevent the dilution by doing this. Then the enforced set of constraints is

If we use the strong constraints [START_REF] Dubois | A note on measures of specificity for fuzzy sets[END_REF] in Example 1 for bba approximation, we obtain the following bba 3 ( 1 ) = 0.8, ( 2 ) = 0.04, ( 3 ) = 0.04;

( 3 ) = 0.04, ( 4 ) = 0.04, ( 2 ∪ 3 ) = 0.08.

If we use the strong constraints [START_REF] Dubois | A note on measures of specificity for fuzzy sets[END_REF] in Example 2 for bba approximation, we obtain the following bba 4 ( 1 ) = 0.1, ( 2 ) = 0.1, ( 3 ) = 0.0;

As we can see, there is no phenomena of dilution. The strong constraints are more rational than the weak constraints.

C. In summary

Based on the strong constraints and by using either the global additive or the global multiplicative objectives, we can establish two optimization problems for bba approximations which can be summarized as follows:

Optimization additive

and Optimization multiplicative

) )

. .

V. EXPERIMENTS In this section, we randomly generate bba's and compare different bba approximation approaches including the new proposed bba approximation approaches, -additive and HPR approaches. The bba's are generated according to Algorithm 1 below [START_REF] Jousselme | On some properties of distances in evidence theory[END_REF]: Algorithm 1. Random generation of bba Input: Θ : Frame of discernment; : Maximum number of focal elements Output:

: Belief function (in the form of a bba, ) Generate (Θ), which is the power set of Θ; Generate a random permutation of (Θ) → ℛ(Θ); Generate an integer between 1 and → ; FOReach First elements of ℛ(Θ) do Generate a value within [0, 1] → , = 1, ..., ;

( ) = ; END Normalize the vector = [ 1 , ..., ] → ′ ; 3 The same result is obtained with multiplicative or with additive global objective with = = 1.

4 idem as footnote 3.