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Chapter 1
Evolutionary Design of a Robotic Manipulator
for a Highly Constrained Environment

S. Rubrecht, E. Singla, V. Padois, P. Bidaud, M. de Broissia

Abstract This paper presents the design of a manipulator working in a highly con-
strained workspace. The difficulties implied by the geometry of the environment
lead to resort to evolutionary-aided design techniques. As the solution space is likely
to be shaped strangely due to the particular environment, a special attention is paid
to support the algorithm exploration and avoid negative impacts from the prob-
lem formulation, the fitness function or the evaluation. In that respect, a specific
genome able to encompass all cases is set up and a constraint compliant control law
is used to avoid the arbitrary penalization of robots. The presented results illustrate
the methodology adopted to work with the developped evolutionary-aided design
tool.

1.1 Introduction

In the field of robotic manipulator design, the classical methods [1] turn out to be
inefficient when the problem is highly constrained, as the expressions of the con-
straints (obstacles) cannot be formalized into a classical design formulation. Thus,
it is hard to check if a solution complies with the constraints. Moreover, the solution
space may be very large, and as the validations are time consuming, it is relevant
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to use performance indicators and to consider the problem as a multiobjective opti-
mization.

The presence of multiple objectives in a problem gives rise to a set of optimal
solutions, instead of a single optimal solution. This set of solutions is known as the
set of Pareto-optimal solutions and rely on the notion of Pareto-dominance [5] to
treat simultaneously and independently each performance indicator.

In a typical minimization problem where the fitness f is composed of n functions
fi (1≤ i≤ n), a solution x is dominating an other solution x′ if

∃ i such as fi(x) < fi(x′) (1.1)

and

∀ j 6= i, f j(x)≤ f j(x′) (1.2)

Based on this principle, the solution of a multiobjective optimization is a set of
non-dominated solutions (Pareto-optimal solutions) to the problem . In the absence
of any further information, one of these Pareto-optimal solutions cannot be said to
be better than the other.

Evolutionary Algorithms (EAs) have been widely used in robotics design op-
timization ([2],[3]) as they are very well adapted for optimization over vast, non
continuous search space. This field of application of EA is a growing trend and is
mentionned as evolutionary aided design in the introductory chapter of this book.
One of the first robot design problems using evolutionary algorithm was carried out
by Sims [4], generating creatures competing in walking, jumping, swimming, etc.

Since 1990, a large number of MultiObjective Evolutionary Algorithms (MOEAs)
has been proposed ([5], [6], [7], [8], [9], [10]). The primary reason for this is their
ability to find multiple Pareto-optimal solutions in one single simulation run. Since
EAs work with a population of solutions, a simple EA can be extended to main-
tain a diverse set of solutions. Evolutionary algorithms are now widely used, from
the whole system structure design to robots reconfiguration [11], controller design,
and in various domains such as cooperative robotics [12] and mini-invasive surgery
[13]. Amidst several works presented for optimal designs of fundamental robots,
Snyman et al. utilized in [19] Evolutionary Algorithms for the design of a 3R indus-
trial robot while aiming at minimizing joint torque over an entire given trajectory.
Another eminent contributions by Ceccaralli and Lanni ([20]) and Carbone et al. in
[21] involved the formation of the robot design problem as multiobjective optimiza-
tion problems. However, the complexity associated with cluttered environments and
larger number of degrees of freedom is left unaddressed.

This paper details some of the key issues in the design of a robotic serial arm
in a highly constrained environment with a special attention to keep the best con-
ditions for the EA to explore the solution space. In that scope, the way to set up
the problem (genome choice), the algorithm itself (type and genetic operators), the
evaluation step (trajectories, control law) and the indicators retained are fundamen-
tal elements. The work in [22, 23, 24] come close to the presented approach. In gen-
eral, these approaches employ modular robots to cater the task specifications and
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recommend specific encoding systems to employ evolutionary algorithms to handle
varying number of degrees of freedom. However, the work presented in these pa-
pers is limited to some specific exemplary workspaces and trajectories. In section
1.2, the environment and context of this design is presented. Section 1.3 details the
resolution method, from the problem analysis to the implementation. Section 1.4
exposes the first results. Finally, the last section presents concluding remarks and
the future work to be done on this subject.

1.2 Case Study

This research work is lead within the framework of a project dedicated to Tunnel
Boring Machine (TBM, see Fig. 1.1). The usual tasks are maintenance operations
in hostile conditions: hyperbaric atmosphere, high temperature, and even operation
immerged in mud.

The geometry of the problem is a typical excavation room geometry (diameter 10
m, depth 1 m). The missions defined for fitness are trajectories tracking all around
the upper part of the cutter head, focusing on key points to clean or inspect. Trans-
mission arms are obstacles to take into account. The basis of the robot is fixed near
the top of the excavation room, at the exit of the airlock.

Fig. 1.1 Example of a manipulator in a TBM.

The robots (EA individuals) are composed of elements taken from a pool of
robot segments inspired (shapes and joint limits) from the real robot segments of
the Maestro manipulator (Cybernetix 1, see Fig. 1.2). In particular, only 1 degree of
freedom (DOF) rotational joints are allowed.

1 http://www.cybernetix.fr/
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Fig. 1.2 Example of robot segments of the Maestro manipulator from which the elements of the
individuals are inspired.

1.3 Genetic Algorithm and Implementation

In this section, our implementation of the genetic algorithm is introduced. This im-
plementation relies on SFERES [15] which provides a general framework for evo-
lution based optimization.

1.3.1 Genetic Algorithm

The efforts made to approach the Pareto-optimal front involves two (possibly con-
flicting) objectives. First is the convergence — minimizing the distance between the
final pareto front and the optimal front and second is the diversity — maximizing
the difference in the generated solutions in terms of objectives or parameter values.
To consider both items, the popular technique of Nondominated Sorting Genetic
Algorithm II (NSGA-II) [10] is considered suitable for our design problem. This
technique possesses the features of elitism and parameter-less sharing. Elitism is
the process of selecting better solutions out of the combined population of parent
and child generations and, therefore, avoid the degrading of any good solution.

For a problem with the population size as N, NSGA-II works on 2N solutions at
each iteration. These solutions are sorted with respect to their non-domination and
are arranged into different Pareto optimal fronts. This is termed as non-dominated
sorting. To send N solutions to the next iteration, a new list is formed. Since each
Pareto front contains equally good candidates, therefore, unless there is less space
than the number of elements in a front, all the elements of each front are kept adding
to the new list. For further sorting at a particular level, say r− th front, crowded
distance sorting is utilized. Based on this, the upper ranked elements of the r− th
Pareto front are included in the new list. This sorting is based on the maximum
distance available around an element, in the objective function space, within which
there exists no other element. This helps maintaining some significant diversity in
the resulting solution, by selecting widely spread population.
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The genetic operators are generally used at various rates, in our case values are
taken around

• Mutation rate: 10%
• Cross over rate: 13%
• Generations: 500
• Individuals: 150

1.3.2 Genome

The design process focuses exclusively on the robot morphology using the elemen-
tary segments shown in Fig. 1.2. In that framework, each robot is described as a
concatenation of segments. A segment is composed of a link having a joint (rota-
tional or prismatic2 or not. Two frames are associated to each elementary segment.
The first one represents the three possible joint axes: every link is oriented along its z
axis. The second one represents the three possible orientations of the next segment.

According to this description, there are 11 elementary segments:

• 3 with a rotational joint about the x axis, the following segment being oriented
along x, y or z (called rxx,rxy, and rxz respectively)

• 3 with a rotational joint about the y axis (ryx, ryy and ryz)
• 2 with a rotational joint about the z axis (rzx and rzz)
• 3 segments without joint (ex, ey and ez)

rzy is not mentionned as it is the same as rzx rotated by π

2 rads around z axis.
In addition we define 10 possible lengths for the segments between 0.05 m and

1.05 m. The association table is presented in Table. 1.1.
As an example, a portion of a robot is represented on Fig. 1.3 (left). Each robot

is defined by a chromosome of 16 genes, each one representing a segment or not:
the genes from 100 to 109 does not match anything (segment ”None”) Actually, as
we do not want every robot to have 16 DOFs, we define genes that do not match
anything (segment ”none”).

When a fixed segment appears in the genotype of an individual (gene from 190 to
219), a segment combination is done, thus offering the possibility to have segments
which orientation differs from the x, y and z axes (Fig 1.3 right).

1.3.3 Trajectory tracking

The aim of the fitness function is to qualify the ability of an individual (robot) to
carry out a maintenance mission in the TBM. An efficient way to check the motion
skills of a robot is to simulate a trajectory tracking in the 3D environment. So, a

2 Prismatic joints are not used within the framework of the considered application.
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Table 1.1 Genome. Each gene is a number composed of 3 digits: the 2 first are the joint type, the
last being the link length. A gene value is between 100 and 219.

Gene ABC AB: Joint type
C: length (m)

Joint number - AB 10 11 12 13 14 15
Joint type None rxx rxy rxz ryx ryy
Joint number - AB 16 17 18 19 20 21
Joint type ryz rzx rzz ex ey ez

Length number - C 0 1 2 3 4
segment length (m) 0.05 0.15 0.25 0.35 0.45
Length number - C 5 6 7 8 9
segment length (m) 0.55 0.65 0.75 0.85 0.95

Fig. 1.3 Genotypes examples: portion of robot and combination of 2 segments. q is the rotational
joint angle.

relevant 3D trajectory has been defined (sequence of 361 3D points for a total length
of approximately 8.5m, which comes out to a mean distance of 24mm between 2
points) and the fitness function is a trajectory tracking. Dynamics is not computed
as it does not impact on the indicators retained (see 1.3.5). Each individual has to
track the same trajectory. The simulator uses the Kinematic and Dynamic Library
(KDL) which is part of the OROCOS project [14].
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Fig. 1.4 Section view of the TBM trajectory and manipulator example.

1.3.4 Control Law

The control law of the robots is in charge of computing at each simulation iteration
the joint velocities to reach the current point in the sequence of 3D points composing
the trajectory. In our case, two specifications led us to design our own control law to
handle the problem of tracking a given trajectory by any manipulator in a cluttered
environment. First, a guideline of this work is to compensate the impact of cluttered
environment by supporting the Evolutionary Algorithm exploration. Consequently,
the control law should neither be penalizing in terms of configurations (e.g. to deal
properly with singular configurations or proximity to constraints) nor in terms of
robots (redundant or not). Second, the framework of evolutionary aided design re-
quires meaningful fitnesses to be efficient: so, the constraints violations (such as
collisions between the robot and the environment), which would never occur in real
conditions, are not accepted.

1.3.4.1 Control framework

The huge number of individuals evaluations (trajectory trackings of manipulators)
prevents from using prediction or planification techniques in the control strategy
(for obvious computation time reasons), so the control law is reactive. Regarding
the framework, a velocity kinematics framework has been retained rather than a
purely kinematics one. Actually, as the robot is not known a priori, a general inver-
sion method is needed to be applied at each simulation iteration. In the kinematic
framework, the model linking the joints and the operational positions is not linear
and this operation is complex and time consuming.
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1.3.4.2 CCC

The control law briefly described here - Constraint Compliant Control (CCC) - is
detailed in [25]. The CCC is an iterative velocity kinematics control law. It is a strict
prioritized multiobjective law ([16], [28]) with 3 hierarchical levels:

1. The first level gathers the terms relative to passive avoidance: to satisfy the con-
sidered constraints (collisions) formulated as inequalities, the robot motion is
stopped along the directions of the critical constraints. The critical constraints
are determined through an iterative process;

2. The second level gathers the operational tasks, in our case the trajectory tracking;
3. The third level gathers the active avoidance terms: it tends to get the robot away

from the constraints. Most of the time, as the environment is cluttered, these
terms cannot be all satisfied, which justifies the existence of the first term.

The main property of the CCC is that it never violates its constraints, even if they
are not compatible with the trajectory tracking. As a result, indicators related to
these constraints are useless in the design process. Moreover, the CCC resorts to the
Damped Least Square (DLS) inverse [17], to avoid inconvenient behaviors around
kinematic singularities. As a consequence, the compliance with the constraints and
the approximation around singularities directly impacts the trajectory tracking error
rather than imposing dedicated indicators. It appears more relevant as it limits the
number of indicators without creating meaningless weighted sums of scores based
on non realistic behaviors.

1.3.4.3 Practical implementation

In practice, a computationally efficient implementation of the CCC does not per-
fectly ensure collision avoidance (one constraint per segment may not always be
sufficient, see [25]). So, the number of collisions per segment per iteration is in-
cluded in the set of indicators. Anyway, the use of the CCC is justified as only a
small portion of the evaluated robots collides, which minimizes the impact of this
indicator on the complexity of the problem (see 1.3.5).

1.3.5 Indicators

The indicators are the scores obtained by the robot through the fitness function. They
are voluntarily simple and composed of a single magnitude (no weighted sums rep-
resenting a priori tradeoffs between different magnitudes). The trajectory tracking
quality but also intrinsic parameters are rated, such as the number of DOFs. All the
indicators, listed below, are to be minimized:
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• Maximum linear error along the trajectory tracking. There are no strategic
points on which to compute the error with a higher weight w.r.t to others: the cur-
rent design being a preliminary design, the trajectory should be equally tracked;

• Number of DOFs. The number of DOFs is a technological difficulty (manufac-
turing, energy, control), even if a more redundant robot has, in general, better
reachability skills in a cluttered environment.

• Robot total length. The shorter robot able to perform the trajectory tracking has
usually better adaptability to other tasks.

• Number of collisions per segment per iterations. As mentionned previously,
despite the use of the CCC, the number of collisions is added as a fourth indicator
to minimize. However, the CCC considerably reduces the number of collisions
w.r.t. usual control laws. As a result, almost every robot obtain 0 (no collision),
and the size of the problem is not much increased by the presence of this indica-
tor. Actually, a robot failure on this indicator is most often due to a control failure
rather than because of antagonism between indicators. In order not to penalize
the individuals for which this failure occurs, it has been decided not to take this
indicator as a constraint (in the Evolutionary Algorithm sense : criteria which, if
not respected, disqualifies the individual).

1.4 Results

Even if the design process is still under progress, the results presented here are
conclusive regarding our particular problem.

1.4.1 Design with simple trajectory

Preliminary designs have been realized with a simple trajectory to set up the process
properly. The robot in Fig. 1.5 is a solution obtained with only 3 indicators:

• Maximum linear error of the trajectory tracking;
• Number of DOFs;
• Number of collision per segment per iteration.

The retained manipulator possesses 5 DOFs and tracks the path with a maximum
error of 80mm (shown on Fig. 1.5). However, the robot cannot be considered ac-
ceptable as the link lengths are too large, with a total robot length of 6.40m. Such
results encouraged to include the link sizes as one of the indicators of the optimiza-
tion process.

In order to obtain more reasonable robots, the total length of the robot had been
added to the set of objective functions. The resulting robot for the presented case
is much shorter (1.60 m), as shown in Fig. 1.6. The number of DOFs is 5 and the
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Fig. 1.5 Robot 1, indicators: linear tracking error, number of DOFs and collisions per segment per
iteration.

maximum trajectory tracking error is 90mm, which remains acceptable and tends to
prove that the robot total length is not antagonistic with other indicators in this case.

Fig. 1.6 Robot 2, indicators: linear tracking error, number of DOFs, collisions per segment per
iteration and robot total length.

1.4.2 Design with complex trajectory

As the solutions fit the specifications for the simple trajectory, a similar work had
been carried out with the trajectory representing a maintenance mission (inspection
of the cutter head). This path includes the complications of navigating the robot
deep into the narrow space, available between the cutter head and the robot base
(see 1.3.3 and Fig. 1.4). Using the 4 indicators of linear error, number of DOFs,
total length and number of collisions per segment per iteration, turned out to be
sufficient to obtain appropriate robots.
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The tracking of one of the final robots is represented in a sequence of simulation
pictures, shown in Fig. 1.7. This robot has 5 DOFs with a maximal linear error of
12 cm and a length of 2.80 m.

The selection of a suitable robot out of all the possible solutions of the final front
is another task in the complete design process, which is not a part of this paper.
It is worth mentioning here that since collision avoidance is an inherent part of the
chosen motion controller, the working of the resulting robots would certainly be free
from any collision when using such a controller.

1.5 Conclusions and Future Works

1.5.1 Conclusions

The work presented here finds its justification in the maintenance of TBM in hos-
tile conditions. The environment being very constrained, evolutionary design offers
many advantages, but attention must be paid to preserve a good exploration as the
solution space is not well shaped. A simple and exhaustive genotype has been set up
to cover easily all robot possibilities, including segment directions not only along
the absolute frame axes. The constraints compliant control law resorts to passive
constraint avoidance to make the behavior more realistic. It avoids individuals pe-
nalization, makes indicators more meaningful and reduces the impact of the colli-
sion based indicator on the problem size. The results obtained are suitable solutions
to our problem.

1.5.2 Future Works

As mentioned previously, a sensitivity analysis is needed to estimate the impact of
our work toward diversity maintenance in the population. In addition, more sophis-
ticated indicators are currently being tested, such as manipulability [18]. Finally,
implementation of recent works in evolutionary design will be carried out, such as:

• variation of the genetic operators individual by individual according to their po-
sition and repartition along the Pareto front [26];

• evolution of the indicator along the process to prevent from bootstrap [27];
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Fig. 1.7 Sequence of the complex trajectory tracking. Robot 3, indicators: linear tracking error,
number of DOFs, collisions per segment per iteration and robot total length.
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