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How to draw combinatorial map? From graphs
and edges to corner rotations and permutations

Dainis Zeps, Paulis Kikusts

Institute of Mathematics and Computer Science,
University of Latvia,
29 Rainis blvd., Riga, Latvia
dainize@mii.lu.lv
paulis@mii.lu.lv

Abstract. In this article we consider combinatorial maps approach to
graphs on surfaces, and how between them can be establish termino-
logical uniformity in favor of combinatorial maps in way rotations are
set as base structural elements and all other notions are derived from
them. We set this approach as rotational prevalence principle. We con-
sider simplest way how to draw combinatorial map, and ask how this
approach in form of rotational prevalence could be used in graphs draw-
ing practice and wider in algorithms. We try to show in this paper that
the use of corners in the place of halfedges is much more natural than
that of halfedges. Formally there is no difference between both choices,
but corner approach is much more clear and concise, thus we advocate
for that.

1 Introduction

We deal in this article with some simple considerations and observations of how
to draw combinatorial map, and how it comes in connection with traditional
drawing of graphs, fig. 1, see fig. 4 in 3.2 too.

Fig. 1. Images of the same combinatorial map drawn in the plane.
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To draw either graph or combinatorial map doesn’t much differ if both require
to come to picture of points and lines confining areas in the plane. Combinatorial
map’s approach suggest its own natural way how to come to its image and we try
to follow directly this line. Moreover, we aim to build some base for graph’s image
what would follow from rotational approach, and, even more, establish it as sort
of principle, calling it rotational prevalence when we go out from assumption that
rotations in the graph defined as combinatorial map might serve as starting point
for all other notions around the topology of the graph. We apply this approach
in our case of building combinatorial map’s drawer, accompanying with some
questions what would be helpful for graph drawing environments.

Combinatorial map theory is new area of combinatorics which development
may have considerable impact on topological graph theory. Besides, combina-
torial functions around these maps are both theoretical tools and effectively
calculable means that could be developed in complex environments for applica-
tions. These directions, as it seems to us, are weakly developed, partially maybe
due to fact that combinatorial maps and apparatus around them as if repeat all
what is already present in topological graph theory. But combinatorial maps as
branch of combinatorics may be investigated independently from graph theory
using e.g. such simple tools as permutations, and use whatever results already
achieved in e.g. permutational group theory. Astonishing results of application of
constellations (what is some generalization of combinatorial maps) in Riemann
geometry [11] show that this area deserve to be researched with much more effort
than before.

Combinatorial maps invention is attributed to Tutte [22,23], developed by
Stahl [19-21] and many other researchers, see e.g. [12, 1, 13]. Combinatorial map
approach is based on discoveries of rotations in graphs, see Heffter [6,7], Ed-
monds [2] and Jacques [8]. These facts are researched by many, see e.g. [5, 24,
16, 14]. One way to introduce combinatorial map is by pair of permutations, see
[1,11]. Lando and Zvonkin in their book ” Graphs on Surface and Their Appli-
cations” [11] points at Jacques [8], who first used these constructions under the
name of constellations. Constellations as generalization of combinatorial maps
are used by Lando and Zvonkin in Riemann geometry [11], see [15] too. We do
researches in these area since 1993 [26,9,27-32, 34, 35], that is based on permu-
tational representation of rotations.

Specifically, combinatorial maps as purely combinatorial structure could de-
serve wider application in graph theory and some of its applications as e.g.
graph drawing, where combinatorial maps could serve as more basic structure
than graph itself. Rotations could be the combinatorial objects on which all
other graph-theoretical invariants could be represented. In this article we try to
reconstruct such option with questioning how to implement these observations
more directly.

We tried to built combinatorial map drawing tool where we used directly
combinatorial map approach to depict its eventual visual image, see fig. 4 in
3.3, in the same time giving account to the fact that all programming tradition
used by graph drawings is based on rather far from rotational way of thinking
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in combinatorics. The question we post in this article is - Can rotations before
edges and vertices approach be applied directly in graph drawings particularly
with some sensible outcome that could serve for applications?

By developing tools for combinatorial map drawing and by giving ways to
the visualization of combinatorial maps we hope to widen the use of them in
topological graph theory.

2 From graph on surface to set of rotations in the graph

For purposes of this paper we consider combinatorial map as arbitrary pair of
permutations.

Combinatorial map as purely combinatorial object naturally models graph
(in general hypergraph) embedded into oriented surfaces. By discovery of Heffter
[6,7] and reminder of Edmonds [2] we know that vertex rotation, i.e., rotational
order of edges around vertex, taken for all vertices, fixes graph on some orientable
surface. But, if we fix rotational order of edges in faces too, than these two
rotations, vertex rotation and face rotation, are sufficient to code all the graph,
i.e., no sets of vertices and edges are to be specified, because these two rotations
already cipher the graph on some orientable surface.

Moreover, coding these rotations with permutations and performing opera-
tions within purely permutational calculus, we may maintain all operations upon
graph in the same way, i.e., using operations on permutations, that usually is
done in vertices-edges-faces operational framework.

There is very natural way how to come from vertices and edges to permuta-
tional setting. Let graph G = (V, E) be fixed by vertex rotation. If we depict each
unoriented edge as pair of oriented edges in a way that outgoing edge comes first
before incoming edge in rotation of edges around vertices in clockwise direction,
we observe that oriented edges around faces are oriented all in one direction,
and this direction is anticlockwise. See fig. 2 left. Now we are to do one more
abstract operation — we replace the corner of the face that was formed by two
oriented edges by halfedges, i.e., incoming head and outgoing tale, and call this
new object corner. By the way, doing this, trivially, we replace double cover of
borders of faces with corners of oriented edges with simple cover of corners of
halfedges. See fig. 2.

These corners are as many as oriented edges in the graph, i.e., double as
many as edges in the graph. Of course, these corners cover all oriented edges
only once. Now, by fixing vertex and face rotations we actually fix two corner
rotations, correspondingly around vertices and faces. The size of both rotations
is the same, that of number of corners. Actually two more rotations of the same
size appear, i.e., two edge rotations, which we get if we establish new adjacency
of corners across what former was edge. Edge rotations in graphs have only 2-
cycles, thus corresponding permutations are involutions. In case of hypergraphs
edge rotations may have orbits of arbitrary size, i.e., corresponding to size of
hyperedge.
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Fig. 2. Graphs K4 embedding in plane fixed by rotation of alternatively outgoing
and incoming edges around vertices, left, and by vertex rotation and face rotation
of corners of edges, right. Numbering corners we come to permutations, which stand
for rotations. Corners around vertices represent permutation (181)(260)(352)(479) and
around faces permutation (170)(251)(369)(482). Two edge rotations are respectively
(12)(34)(56)(78)(90)(12) and (14)(23)(58)(67)(92)(01).

Now, in case of graphs with possibly hyperedges we have four rotations of
equal size that fix this graph on surface and without any necessary additional
information, of course. But, four rotations are redundant. Both edge rotations
have the same cycle structure, or passport [11]. Besides, taking only three ro-
tations, but all in one direction, say, anticlockwise, multiplication of them is
equal to identity permutation, [11]. (For that reason combinatorial map is 3-
constellation.) This means that third permutation always may be calculated
from the two given. Now, in case of graphs without hyperedges edge rotations
are involutions without fixed points with respect to number of corners. If we
fix edge rotation once and for ever, because its passport is constant, we may
calculate all permutations from only one given permutation except two edge ro-
tations which don’t fix particular graph but some larger class. We further should
see that this class is the class of the knot, to which this graph belongs.

2.1 From operations with graphs on surfaces to permutational
calculus

With having corners (C) introduced we directly and naturally come to per-
mutational calculus. Corners are as many as oriented edges in the graph, so
number of corners ||C|[(= m) is equal to 2||Eg|, i.e., for graphs without hy-
peredges this number is always even. Thus, corners we may label (or equate at
least for practical purposes) with natural numbers from interval [1..m]. We have
four permutations corresponding to four rotations of the same size m. By the
way, identical permutation of degree m as vertex rotation should have graph
consisting from m/2 isolated edges in correspondence.
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2.2 Hypergraphs and pairs of permutations

By the way, for graphs we should have only even permutations, but in case
of hypergraphs arbitrary permutations come before. To fix hypergraph we need
three permutations, or, by fixing edge rotation, both vertex and face rotation. In
general, two permutations always have some hypergraph in correspondence[29].
In [29] we call combinatorial maps corresponding to hypergraphs partial maps in
opposition to graphical maps for corresponding to graphs without hyperedges.
The name of partial map is motivated by the fact that partial map may be
considered as map with cut out some faces, thus being as if partial with respect
of that graphical map with restituted cut out faces.

Fig. 3. Example of partial map with vertex rotation P = (15)(26)(37)(48), face rotation
Q = (17452896) and edge rotation R = (1423)(56)(78). One of edges, (1423), is not
graphical but hyperdedge. See cover of two books [11] and [33].

See in fig. 3 example of hypergraph, graphs K, embedding on torus with cut
out face. The cut out face stands for hyperedge of degree four. That we are to
do with hypergraph we get from the fact that edge rotation is not graphical.

3 Graphical combinatorial maps introduced

Now we are ready to start combinatorial map calculus, which are based on
permutational calculus, where permutations act on elements of set C, that stand
for corners earlier introduced.

We multiply permutations from left to right. Graphical combinatorial map
is pair of permutations, (P, Q), with P - Q~!(= p) being involution (i.e., orbits
only of length two) without fixed elements. P and @) are correspondingly vertex
rotation and face rotation. For graphical combinatorial map we distinguish two
edge rotations, inner edge rotation m = Q~'P and edge rotation p = P - Q1.
We assume permutations acting on set of elements C', usually natural numbers
from 1 to m, m = ||C||. We try to work within set of maps with fixed 7 calling
them normalized maps. Mostly we use one particular choice of 7 equal to (12) ...
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(2k—1 2k), k > 1. The same convention is used in [11]. Under these assumptions,
graphical combinatorial map is characterized by one permutation or one rotation,
say vertex rotation P.

3.1 One-one correspondence between permutations and graphs on
surface

The fact we come to is worth to be appreciated specially. Two rotations fix com-
binatorial map, but under convention that inner edge rotation is fixed for some
whole class of combinatorial maps it suffices only one permutation to specify
graphical combinatorial map, see 3.5 lower. This feature is preserved under mul-
tiplication of permutations, as it is shown in [28]. As the result most of operations
may be done within this convention.

Permutational calculus and theory around permutations usually coming un-
der name of permutational group theory is very developed, e.g. [25]. What does
it mean that graphs on surface one-one correspond to permutations? One way to
perceive this is to state that whatever theorem in permutations work equally in
this class of graphs. One of our aims of this article is to turn attention on how to
maintain this permutational calculus available in graph theoretical applications,
thus giving eventual access to whatever useful in theory around permutations.

However, there may appear applications where we need to go outside the
class of normalized maps, but it is easy to bookkeep these situations, but use,
whenever possible, benefits of normalized maps.

3.2 Drawing graph on surface

A graph with loops and multiedges on an orientable surface corresponds to
arbitrary graphical combinatorial map in very natural way. One intuitively well
based way to persuade oneself about this is to draw directly this graph in the
plane in the following way. Let first put as many points in the plane as orbits
in the vertex rotation with edge-ends clockwise around with corners following in
cyclical order for each corresponding point, see fig.1, a. Further, let us unite two
edge-ends with corners (following clockwise) a and b(= a™). Le., corners that
form orbit of inner edge rotation 7w are to be united with an edge in the drawing,
thus justifying an option to speak about edges of combinatorial maps. It is easy
to see that changing orientation from clockwise to anticlockwise we had to use
edge rotation p in place of inner edge rotation 7. Thus, two opposite directions of
rotations give two distinct edge rotations both in drawings and combinatorially.

See e.g. fig. 4 where combinatorial map P = (18753)(264) is drawn. In a)
we place points in the plane corresponding to orbits in vertex rotation. In b)
to d) to get drawing of combinatorial map, we are to unite pairs of edge-ends
(2k — 1,2k) with curves for edges from k = 1 to 4. In d) we have the drawing
fulfilled. Notice that loops correspond to edge-ends that go out from the same
point in the plane.

Further examples of combinatorial map drawings performed with programmed
map drawer see in section 4.2.
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c) d)

Fig. 4. a) Putting two points in the plane with edge-ends and corresponding corners
from orbits of the given permutation (18753)(264). b) Uniting edge-ends with corners
1 and 2. Notice the order edge-end and the corresponding corner in the clockwise
direction. ¢) Uniting edge-ends 3 and 4. d) Uniting two left edge-end pairs. Notice that
last ”edge” of the map is loop.

3.3 Definition of edge of combinatorial map

Higher we started to speak about edge of combinatorial map in some informal,
intuitively based way.

Thus, we are motivated to consider the edge of combinatorial map in some
more formally way.

Let (2, and w, be correspondingly set of orbits and some orbit of permutation

p-

Definition 1 Let for a given map P,Q, 7, p sextet e= (w}g, W123§ a,b, c,d) be such
that a,b € wh, c,d € w%, (ac) € 2, (bd) € 2, and (ac)”” = (bd). We call e edge
of combinatorial map.

Let us use some denotations for transitive permutations in cyclical form. For
one corner orbit (a) we use small letter, i.e., a, for arbitrary length orbit (or part
of orbit) we use capital letter, i.e., A might be orbit or its part (a1, ...,ax), k > 0.
In this manner aA denotes some transitive permutation p in cyclical form with
corner a being distinguished and rest part being A.

Using this convention we may write an edge of a map in the form

(baA,dcC;a(= c™),b(=d”),c(= a™),d(= b°)).

Let us fix this as a lemma.
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Lemma 2 Orbits (ac) and (bd) correspondingly of inner edge rotation and edge
rotation have edge

(baA,dcC;a(= c™),b(=dP),c(=a™),d(= b))
of combinatorial map in correspondence with corresponding equalities being held.

We must observe that the edge we speak about turns actually into a loop
in case orbits baA and dcC coincide. But corners a, b, ¢, d all should be distinct
nevertheless except in cases of isolated or hanging edges or loops. So isolated
edges or loops has two distinct corners, {(a, b;a, a,b, b) being isolated edge, and
(ab,ab; a,b,b,a) being isolated loop. Hanging edge or loop has three distinct
corners, e.g., (ba,c;a,b,c,c) being hanging edge, and (abc, cab;a,b,c,b) being
hanging loop.

E.g., for normalized map P = (18753)(264) e = ((18753), (264);1,3,2,4) is
an edge, comp. fig. 4. In case we don’t want to specify rotations from where
edges go out we use shorter form, quartet notation only for four corners, e.g.,
we write for edge e = (1, 3,2,4).

3.4 Graphs on surfaces

Usually treating graphs on surface we start from graph G = (V| F) and then sup-
ply it with cyclical succession of neighboring edges, i.e., with some permutation,
say, II that works on set of unoriented edges. It turns out that graph on surface
might be considered as simpler structure than graph supplied with rotations, i.e.,
rotations of vertices and faces already fix all graph-on-surface structure without
taking much concern on what kind on surface ”graph” was ”embedded”.

This may be adequately taken into account by fixing graph on surface by
corners between neighboring edges in rotations. Let graph G be fixed by edge
rotations around vertices. Let C be set of corners between edges and two rotations
(or actually permutations) are given: rotation of corners around vertices Ry and
rotation of corners around faces Rp. It is easy to see that now some pairs of

Ro—1
. . RyF .

corners (c1,c2) are connected via edge in the way that ¢V = co. This fact

is sufficient and crucial to establish one-one correspondence between graphs on

surface and combinatorial maps.

Lemma 3 For a graph G on surface with given rotations of corners of meigh-
boring edges around vertices and faces Ry and Rp the pair of permutations
(Rv, Rp) is graphical combinatorial map.

Proof. To prove this assertion it suffices to show that multiplication Ry - R;l
is involution without fixed points. But for arbitrary corner z its edge-adjacent

Ra—1

corner " = y is some other corner at some vertex and applying backwards
R -1

we get that edge-adjacent corner to y is z, i.e., vaF = z. But this means that

multiplication Ry - R;l is involution without fixed points.
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To conclude we state that edge of combinatorial map (Ry, Rp) may be in-
terpreted as edge of graph G on surface fixed by this pair of rotations (Ry, Rp).

Corollary 4 For combinatorial map (Ry, Rr) corresponding to graph G on sur-
face sextet

_1Rp Rp 1 _1Rp Rp~!
(baA = wy,,dcC = wy,,a=cv ~ b=d c=dP " d=0 )

is map’s edge that has edge (b,d) uniting corners b and d of graph G on surface
in correspondence.

3.5 Combinatorial map as combinatorial structure of graph on
surface

We may establish one-one correspondence between graphs on surfaces and graph-
ical combinatorial maps. To get it we are to take set of corners C' that should
serve as set of elements of combinatorial maps. Further, we fix as arbitrary graph
on surface pair of rotations, for vertices and faces correspondingly, say, R,(= P)
and Rr(= Q). Now, inner edge rotation should be 7 = P~! . @ and edge ro-
tation p = P - Q~!. Now, combinatorial map base assumptions says that graph
on surface is well defined whenever edge rotation p is involution without fixed
points. This means that under these assumptions we have established one-one
correspondence between graphs on surfaces and combinatorial maps.

In [28] we saw that we may fix one of edge rotation, say, inner edge rotation
and work, whenever possible, within this constraint. Rightly, we may get along
with one edge rotation, second edge rotation actually as variable being superflu-
ous. We chose to fix inner edge rotation, and, by the way, in a very convenient
way, fixing it (12)(34)(56)...(2m — 12m). Such maps we call normalized maps.
Further, in [35] we see that we may go on with normalization and normalize
knot in the map too. Then corresponding graphs on surfaces behave in complete
correspondence with maps and we don’t loose one-one correspondence between
maps and graphs on surfaces.

All this taking into account we are not to be too specific to specify always
what we have in mind when we speak, say, about corners, or some else aspect,
either corresponding to maps or graphs on surfaces: we always use map-graph-
on-surface correspondence.

3.6 Zig-zag walk and the knot

Let us perform zig-zag walk in the graph on surface. Taking corner ¢ let us go
on with applying 7 and p alternatively and we are to return to corner ¢, see [35].
Le., this routine is cyclical. If we haven’t exhausted all corners we take some
free one and go on. In this way we get another rotation for a graph on surface,
or map, that we call zig-zag walk for graphs on surface, and knot for maps.
However, this rotation is not unique, i.e, it has 2* possible values for k orbits in
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the knot. It is easy to see that each change of orientation of some orbit of knot
gives another well defined value of knot.

If we fix one particular value of knot we actually divide set of corners C' into
two equal size parts C; and C5 so that we may express this particular knot as
= {Cl : ﬂ-, where the expression p = {Cl P say, that within set C we

Cs:p Cy:q
apply p, and within Cs we apply q.

Let us color corners into two colors according their belonging either to C; or
Cs. Usually we use for C green color and for Cs red color.

Particular choice of knot u partitions 7 into 71 - w2, where we call 71 cut
edges and mo cycle edges. For cut edge (a,b,c,d) corners a,b receive one color
and ¢, d another color. Correspondingly, for cycle edge {a,b,c,d) corners a,d
receive one color and b, ¢ another color. Thus we have that P -7 : C; — C5 or
P-m :Cy— (1, ie., changes color, and P -7y : C; — Cy or P-my : Cy — O,
i.e., retains color. In [28] was shown that by fixing 1 map P may be expressed
as multisplication 7y - 72 - w2, where 1 acts within C and -5 acts within Cs.
From this we get formula for knot y. = 42 -7-7;7 ', see [35]. Finally, in general
we get

_ {Cl cT {02:727771_1
F=1Caip Crimpys

One might ask what is knot for graph on surface? In [35] we show that
actually the equivalence class of zig-zag walks is graph’s on surface invariant. To
come closer to the knot and what it means we may observe that partial map
(P, 1) has edge rotation @, i.e., this partial map, which face rotation is p, is
hypergraph with edges these of faces of original map. This fact says that fixing
graph G on surface fixes another hypergraph with the same vertex rotation but
hyperdeges these of faces of G, in which case faces of this hypergraph should be
knot of the graph.

3.7 Knotting of the map

Fixing knot p for map P we get by multiplying permutations new rotation for
maps «, i.e.,

P=pu-a.

We call this rotation « knotting of map because of its peculiar features. Knotting
belongs to selfconjugate class of maps, i.e., @™ = «, which form a group against
multiplication[28].

Knotting « is responsible for edge structure of maps[35]. To see this we define
knotting’s symmetric form A = a-m =7 ~’yf1, involution § = 77 and edge
gl g . In [35] we show that 2 = A, i.e., one of square

2 :
roots of knotting’s symmetric form is equal to edge structuring knot.

structuring knot € =
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3.8 Normalizing knots

In [28] we considered class of maps with fixed knot. Actually this class has fixed
both inner edge rotation 7 and edge rotation p. Such class may be called class
of maps with normalized knot. We add one more restriction: normalized knot
should have corners in augmented order.

In fig. 8 we see map with normalized knot. Odd corners have received one
color and even corners another. But to get this feature we don’t need to knot be
normalized. It suffices for it to be only partially normalized, i.e., all edge should
appear in the knot in the same order, that is, for all edges its less valued corner
should come before, or reversely. In [35] we show for knot and edge structuring
knot that if one of them is normalized then other is partially normalized.

3.9 Combinatorial adjacency of corners

By drawing graph we use vertices, edges and faces. Replacing these three types
of objects with rotations we retain minimally necessary for what is the picture
of the graph in the essence. One more way to see this clearly is to notice that
combinatorial maps may be treated as adjacency relations of corners of halfedges
of three types, vertex, face and edge adjacencies, see fig.5. Taking corners of
two halfedges we may assemble them into rotation in three ways, see fig. 6:
a) around common apex of corners, forming vertex rotation, b) by adjacing
halfedges in way forming face rotation, and c¢) by flipping one corner to its
mirror image and adjacing halfedges in way forming an edge rotation. In this we
may replace vertices, edges and faces with adjacencies of corners of three types,
and do just the same in replacing graphs with rotations in combinatorial maps.
Let us name these three adjacencies correspondingly p-adjacency, g-adjacency
and r-adjacency.

T
< >

a) vertex or b) facet or queu  ¢) _edge or hurdle
point adjacency adjacency adjacency
(p-adjacency)  (g-adjacency) (r-adjacency)

Fig. 5. Combinatorial adjacency of corners.

Let us say that map is fixed by p-adjacency and g-adjacency if rotations P
and @ are given. Thus, normalized maps are fixed by p-adjacency or g-adjacency,
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r-adjacency being fixed for whole class of maps. Knot appear to us as clockwise
anticlockwise alternation of r-adjacency, or left-right r-adjacency. Edge struc-
turing knot is as much as possible right along forwarded edges alternation of
r-adjacencies. But this last in its name fixed behavior of edge structuring knot
reveals itself only in case it is at least partially normalized.

Vi L7

a) corner b) vertex c) edge d) face
made adjacendy adjacency adjacency
asymmetric

Fig. 6. Combinatorial adjacency of corners symmetrized with asymmetric corner.
Asymmetry in corner made by marking vertex or red vertex, edge or blue vertex and
face or red vertex. Uniting in rotations green, blue and red vertices we get correspond-
ingly vertex, edge and face adjacency. Notice that in face adjacency one corner is flipped
by mirror reflection.

In [11] similar result is achieved via canonical triangulation of faces of the
graph and getting three involutions, see Construction 1.5.20 on page 49, [11].
We may do the same by making our corner asymmetric by labeling it with three
vertices of different color, apex with green label, calling it vertex’s vertex, left
to apex with blue label, calling it edge vertex, and right to apex with red label,
calling it face vertex. Now we make three color rotations, green rotation for
vertex, blue rotation for edges and red rotation for faces. Now we have come to
complete symmetry, what complies with symmetry in rotations in combinatorial
map.

By the way, all considerations in this chapter persuades us that the choice
to number corners in the graph picture to get combinatorial map is as legitime
operation as replacing the drawing of the graph with combinatorial map.

3.10 Constellations as combinatorial structure of Riemann surfaces
[11,15]

Rotational approach gives direct generalization from Euclidean plane to ramified
Riemann sphere [11, 15] where we are to imagine graph being drawn on oriented
surface X of arbitrary genus that serves as domain of ramified covering f of
sphere S?, f : X =Y.
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How to use it here, and what it could mean for us here? This says that
rotational structures are more basic and before choice of where and how we
are to perform our picture’s structure itself. We are as if before choice either
to draw one nontrivial pictures on trivial surface, or many trivial pictures on
sheets of nontrivial surface. But maybe, for technical reasons, we may get used
to something in the middle, i.e., to divide global picture in smaller ones each
of which we put on separate sheets. The use of rotational approach is quite
insensible of where we are going to choose these middle points. But this might be
only one of perspectives of rotational prevalence. Thus, in projecting whatever
around rotational system we are to place them in the base, both rotations,
operations with them and all apparatus around them, and only after all the
rest.

4 On rotational prevalence

All before was told with the aim to show that rotations and permutations may
be basic units of some combinatorial structures. In this order we would like
to speak about rotational prevalence that would suggest to use these rotational
aspects whenever and however necessary according their prevalence in theoretical
settings.

4.1 Drawing maps

Fig. 7. Two examples of randomly generated maps. Drawings may make maps look
beautiful, as we see!
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If one used to combinatorial maps comes to someone graph drawing specialist
with request to draw a map the latter asks the former to prepare graphical code
for his/her combinatorial map. Doesn’t it occur to him/her that combinatorial
map is a simpler structure than the code of the graph to be drawn? This situation
is paradigmatic, and requests to be cured somehow, or at least to ask how to
teach graph drawing community to learn more about rotational systems in order
to make rotational prevalence we speak about in this article as working principle.

Fig. 8. Example of combinatorial map with normalized knot. Cover of set of cor-
ners with green and red cycles clearly seen. Corresponding graph is a 4-critical multi-
wheel[36].

What would be that that first had to teach to the second in case one needs
to draw a graph? One way is to work according the schema given in this article,
i.e., code the graph as two rotations of corners and calculate edges of the corre-
sponding map. It would be formal implementation of rotational prevalence. But
it wouldn’t give much if we came to necessity to start to implement rotations
as points, lines and bordered areas in the plane, that would correspond to the
elements of the pictures of the graphs we are used to. Would these last objects
to be redesigned in terms of some rotational geometry that with such easy could
be done in case of Riemann geometry? In graph’s rotational geometry classes of
vertices, edges and faces don’t differ, that is not the case for their opposites -
points, lines and areas.

On the other hand, if we follow the line how rotational prevalence would
work on level of theoretical considerations, we might keep as close as possible
to it, and turn our attention on how to develop this ground level of rotational
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calculus. Possibility to visualize maps and especially partial maps should be very
useful in these efforts.

Fig. 9. Dual map of previous example.

4.2 Combinatorial map drawer used in this article

We have endeavored to build a small drawer for combinatorial maps using the
simplest way by placing points supplied with edge-ends with corners for vertices
in the plane and uniting them by edges from edge rotation according 3.3. The
edge ends first was united by rectangular lines, which afterwards were smoothed
into curve-like edges. The drawer was supplied with manual operation to move
vertex in the plane, that was supported with corrector of all rest edge lines with
respect to this relocated vertex.

The drawer used in this article was built by Paulis Kikusts. The experience
used here was typical for graph drawing area, see e.g., [10, 3,4]. See pictures of
combinatorial maps and partial maps in figures 7, 8, 9, 10, 11 and 12.

In fig. 10 examples of simplest partial maps are given. In fig. 8 an example of
4-critical multigraph from [36] implemented planar and coded as map is drawn.
Here, map is normalized with respect to its knot, and green and red cycles that
cover corner set are clearly seen. In fig. 7 drawing examples of two arbitrary
generated maps are seen.

Similarly as in rotational case we are to choose two notions from triple -
points, lines and areas - to be varied independently. Tradition says that we leave
areas to be determined by first two. Thus, our rotational prevalence doesn’t
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Fig.10. Four examples of small partial maps: 1) (idi,id1); 2) ((12),(12)); 3)
((12), (123)); 4) (ids, ids)

(D

Fig. 11. Prism map (P) with cut out faces as example of partial map (P, ).

exceed this border of point-line-area geometry. The break into this area would
need new ideas. By the way, on simple way of uniforming these three geometrical
quantities in a geometry of areas is suggested by cubic combinatorial maps in
the approach of C.H.C. Little, see [12,1].

4.3 Combinatorial maps as combinatorial structure of algorithms
and data structures

One way to widen the application of rotational relations would be to remember
that rotations work as sort of theorems starting from rotational data structures,
cycles, graphs, constellations, and going on to operations and rotational theo-
rems, and more daring theoretical principles, as in the case of Riemann geometry.
It may find applications in how we build computer algorithms and before all the
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Fig.12. Partial map with two hyperedges of size 5 and 13 correspond-
ingly defined by pair of permutations (177)(203)(318)(486)(654)(592) and
(138)(224)(419)(568)(537)(760).

graph algorithms and maybe starting with implementing permutational calculus
itself. First author of this article tried to use such philosophy in programming of
a graph algorithm with but some practical outcome in somewhat good organized
program.

However, rotational prevalence need be supported with theoretical investiga-
tions. We need to develop combinatorial map theory itself. Application of partial
maps particularly might be useful there. Because of this possibility to visualize
maps and especially partial maps would be very useful in these efforts.

5 Conclusions

Combinatorial map approach as purely combinatorial may serve as good exam-
ple for graph theory and applications that combinatorial approaches may be
used not only as theoretical support but as direct operational tools as well. By
building operational outset of some systems combinatorial base may be used
not only as required invariants of the elements of system, but the base for its
structure itself already on level of its design and implementation. In this ap-
proach we suggest to use rotations-before-edges-faces-and-vertices approach as
some rotational prevalence principle. We ask how we could apply this rotational
prevalence in real conditions of graph drawing systems.
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