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Cylindrically bounded constant mean curvature surfaces in H 2 × R

In this paper we prove that a properly embedded constant mean curvature surface in H 2 × R which has finite topology and stays at a finite distance from a vertical geodesic line is invariant by rotation around a vertical geodesic line.

Introduction

In 1988, W. Meeks [START_REF] William | The topology and geometry of embedded surfaces of constant mean curvature[END_REF] proved that, in R 3 , a properly embedded annulus with non vanishing constant mean curvature (cmc, in the following) must stay at a bounded distance from a straight line. Then N. Korevaar, R. Kusner and B. Solomon [START_REF] Korevaar | The structure of complete embedded surfaces with constant mean curvature[END_REF] proved that any properly embedded constant mean curvature surface staying at a bounded distance of a straight line is rotationally invariant and then a Delaunay surface.

These results imply that any end of a finite topology properly embedded cmc surface is asymptotic to a Delaunay surface. So this allows a description of the space of all finite topology properly embedded cmc surfaces (see the paper of R. Kusner, R. Mazzeo and D. Pollack [START_REF] Kusner | The moduli space of complete embedded constant mean curvature surfaces[END_REF]).

N. Korevaar, R. Kusner and B. Solomon used the Alexandrov reflection procedure to prove their results. In fact, their proof works in higher dimension and also in H n [START_REF] Korevaar | Constant mean curvature surfaces in hyperbolic space[END_REF].

Recently the theory of cmc surfaces is developed in 3-dimensional homogeneous spaces. One interesting case is the ambient space H 2 × R. The group of isometries of H 2 × R possesses rotations around vertical geodesic lines p × R where p is a point of H 2 . So one can look for embedded cmc surfaces invariant by rotation around such a geodesic line, this was done by Hsiang and Hsiang in [START_REF] Hsiang | On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces[END_REF]. For any mean curvature H 0 , they find rotationally invariant surfaces but these surfaces stay at a bounded distance from the vertical geodesic axis only for H 0 > 1/2. In the sequel, we will focus on the case H 0 > 1/2. Among these rotationally invariant surfaces, certain are spheres and, actually, they are the only compact embedded cmc surface in H 2 ×R [START_REF] Hsiang | On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces[END_REF]. The other ones are periodic with respect to a vertical translation. For example, we have the vertical cylinder C × R where C is a circle in H 2 . So these surfaces correspond to the Delaunay surfaces in R 3 and they are also called Delaunay surfaces in H 2 × R.

A subset of H 2 ×R which is at a bounded distance from a vertical geodesic line will be called cylindrically bounded. So, as in the paper of Korevaar, Kusner and Solomon: can we classify properly embedded cmc surface that are cylindrically bounded? The main result of the paper (Theorem 14) gives an answer to this question.

Theorem. Let Σ be a properly embedded cmc surface in H 2 ×R. If Σ has finite topology and is cylindrically bounded, Σ is a Delaunay surface.

We notice that a vertical cylinder C × R has mean curvature larger than 1/2. Thus, any properly embedded cmc surface which is cylindrically bounded has mean curvature H 0 > 1/2. This is a consequence of the half space theorem in H 2 × R (see [START_REF] Nelli | Global properties of constant mean curvature surfaces in H 2 × R[END_REF] and [START_REF] Mazet | A general halfspace theorem for constant mean curvature surfaces[END_REF], for example). So we can only focus ourselves on the H 0 > 1/2 case.

The proof of the theorem is also based on the Alexandrov reflection technique but the space of planar symmetries in H 2 × R is smaller than in R 3 (in R 3 it is a 4 dimensional space and in H 2 × R it is only 2 dimensional). So the ideas of Korevaar, Kusner and Solomon can not be applied.

First we remark that we already know that a compact embedded cmc surface is a rotational sphere so we only consider non compact surfaces. For a non compact cylindrically bounded cmc surface Σ and a foliation of H 2 ×R by vertical planes, we associate a function defined on R called the Alexandrov function α. If α admits a maximum, it is constant and Σ is symmetric with respect to a vertical plane of the foliation. So to prove that Σ is rotationally invariant, it suffices to prove that it is symmetric with respect to a lot of vertical planes. So we want to prove that any Alexandrov function has a maximum.

If the surface Σ has finite topology, we know by previous results [START_REF] Hoffman | Constant mean curvature surfaces in M 2 × R[END_REF] that it has bounded curvature. So we can control the asymptotic behavior of the surface. This gives information about the behavior of the Alexandrov function near ±∞. Then we prove that the α is decreasing closed to +∞ and increasing close to -∞: this implies that α has a maximum. To prove this monotonicity result we use a flux argument similar to the one of the Positive flux lemma proved by Korevaar, Kusner, Meeks and Solomon in [START_REF] Korevaar | Constant mean curvature surfaces in hyperbolic space[END_REF].

The paper is divided as follows. In Section 2, we recall several result concerning cylindrically bounded cmc surfaces in H 2 × R. In Section 3, we recall the construction of the Delaunay surfaces. In Section 4, we define the Alexandrov function and give its properties, we study the asymptotic behavior of an annular end of a cylindrically bounded cmc surface. Finally we state our main result and give the main step of the proof. Section 5 is devoted to the study of horizontal Killing graph, i.e. cmc surfaces that are transverse to the horizontal Killing vector field generating the horizontal translation in H 2 × R. The last section is devoted to the study of the monotonicity of the Alexandrov function near ±∞. The main idea is to compare a flux along the surface with the flux along a comparison surface which is constructed as a horizontal Killing graph.

All along the paper, we use z to denote the real coordinate in H 2 × R. On H 2 , we consider the polar coordinates (ρ, θ) in Section 3 and a (s, r) coordinate system in Sections 5 and 6. This last coordinate system is adapted to the Killing vector field that generates translations along a geodesic line.

Previous results

In this section, we recall different results concerning properly embedded cmc surfaces in H 2 × R. Most of them can be found in the paper of D. Hoffman, J. de Lira and H. Rosenberg [START_REF] Hoffman | Constant mean curvature surfaces in M 2 × R[END_REF] and the one by N. Korevaar, R. Kusner and B. Solomon [START_REF] Korevaar | The structure of complete embedded surfaces with constant mean curvature[END_REF]. We also explain the convergence we will consider for sequences of cmc surfaces with bounded curvature.

Flux

This first subsection is devoted to the notion of flux for cmc surfaces that was introduced in several preceding papers (see for example [START_REF] Korevaar | The structure of complete embedded surfaces with constant mean curvature[END_REF][START_REF] Hoffman | Constant mean curvature surfaces in M 2 × R[END_REF]).

Let U be a bounded domain in H 2 × R whose boundary is the union of a smooth surface Σ and a smooth surface Q with common boundary ∂Σ = ∂Q. So the boundary ∂U is piecewise smooth. Let us denote by n the unit outgoing normal along ∂U and n Σ and n Q the respective restriction of n along Σ and S (see Figure 1).

Let Y be a Killing vector field of

H 2 × R, we have 0 = U div H 2 ×R Y = Σ Y • n Σ + Q Y • n Q where div H 2 ×R is the divergence operator on H 2 × R.
Let ν be the outgoing unit conormal to Σ along ∂Σ. Along Σ the vector field Y can be decomposed into the sum of a tangent part Y ⊤ and a normal part Y ⊥ . We have

0 = Σ div Σ Y = Σ div Σ Y ⊤ + Σ div Σ Y ⊥ = ∂Σ Y • ν + Σ 2HY • n Σ
where div Σ is the divergence operator on Σ acting on any vector field of H 2 × R defined along Σ and H is the mean curvature of Σ computed with respect ton Σ .

Thus, if Σ has constant mean curvature H 0 , we have 

0 = ∂Σ Y • ν -2H 0 Q Y • n Q . ( 1 
)
n Σ n Q U Q Σ ν
F γ (Y ) = γ Y • ν -2H 0 Q Y • n Q
where, as above, ν is the conormal unit vector field of Σ along γ and n Q is a unit normal along Q (the choice of these normal vectors is consistent with the above computations). Because of the formula (1), the quantity F γ (Y ) does not depend on the choice of Q and depends only on the homology class of γ in Σ. F γ (Y ) is called the flux of Σ along γ in the direction Y .

In fact, the map Y → F γ (Y ) is linear so it can be seen as an element of the dual of the vector space of Killing vector fields. This element is called the flux of Σ along γ.

Linear area growth

In this subsection, we recall a result concerning the area growth of a cylindrically bounded properly embedded cmc surface in H 2 × R.

Let Σ be a properly embedded cmc surface with possibly non-empty compact boundary. We say that Σ has linear area growth if there exists two constants α and β such that

Area(Σ ∩ {a ≤ z ≤ b}) ≤ α(b -a) + β for any a ≤ b ∈ R.
We then have the following result.

Proposition 1 (Corollary 1 in [START_REF] Hoffman | Constant mean curvature surfaces in M 2 × R[END_REF]). Let Σ ⊂ H 2 × R be a properly embedded cmc surface with possibly non-empty compact boundary. If Σ is cylindrically bounded, Σ has linear area growth.

We notice that in this result we do not make any hypothesis on the topology of the surface Σ. Besides, the original proof in [START_REF] Hoffman | Constant mean curvature surfaces in M 2 × R[END_REF] contains a mistake, it has been corrected by Rosenberg in [START_REF] Rosenberg | Some recent developments in the theory of minimal surfaces in 3-manifolds[END_REF].

The height function

On a properly embedded surface Σ in H 2 × R the restriction to the surface of the real coordinate is called the height function on Σ. For a cmc H 0 surface, this height function has several properties. Lemma 2. Let Σ be a non compact properly embedded cylindrically bounded cmc H 0 surface in H 2 × R. The height function can not be neither bounded from above nor bounded from below.

The idea of the proof can be found in the proof of Theorem 1.1 in [START_REF] Nelli | Simply connected constant mean curvature surfaces in H 2 × R[END_REF] or Proposition 2 in [START_REF] Hoffman | Constant mean curvature surfaces in M 2 × R[END_REF].

Proof. For example, let us assume that the height function is bounded from below. We can apply Alexandrov reflection technique with respect to horizontal slice H 2 × {t}. Since Σ is bounded from below, for t small, Σ does not intersect H 2 × {t}. Thus we can start the reflection procedure up to a first contact point. But since Σ is non compact, a first contact point can not exist. Indeed, if there is a first contact point, the maximum principle would imply that Σ is symmetric with respect to some H 2 × {t 0 } and thus compact.

So the reflection procedure can be done for any t and this implies that the part of Σ below {z = t} is a vertical graph with boundary in {z = t}. The height of such a vertical graph is bounded from above by a constant that depends only on H 0 (see [START_REF] Aledo | Height estimates for surfaces with positive constant mean curvature in M 2 × R[END_REF]); thus the Alexandrov procedure has to stop. We get a contradiction.

When the surface Σ is an annulus we have the following property (see Lemma 4.1 in [START_REF] Korevaar | The structure of complete embedded surfaces with constant mean curvature[END_REF]). Lemma 3. Let H 0 > 1/2 be a real number, there exists an M > 0 that depends only on H 0 > 0 such the following is true. Let A be an embedded annulus A ⊂ H 2 × R of constant mean curvature H 0 with boundary outside

H 2 × [0, M ]. Then A ∩ H 2 × [0, M ] has at most one connected component à such that z( Ã) = [0, M ].

Uniform curvature estimate

In this subsection, we recall an estimate of the norm of the second fundamental form of a cylindrically bounded properly embedded cmc surface in H 2 × R. Precisely, Hoffman, de Lira and Rosenberg proved the following result.

Proposition 4 (Theorem 3 in [START_REF] Hoffman | Constant mean curvature surfaces in M 2 × R[END_REF]). Let Σ be a properly embedded cmc surface with finite topology and possibly non-empty compact boundary. If Σ is cylindrically bounded, the norm of the second fundamental form |A| is bounded on Σ.

Convergence of sequences of cmc surfaces

In the following, we will consider sequences of cmc surfaces coming from the translations of a given cmc surfaces with bounded curvature. In this subsection, we explain how these sequences converge to a limit cmc surface. The surfaces we consider have a uniform curvature bound.

In fact, considering the normal coordinates around a point in H 2 × R, a constant mean curvature surface in H 2 × R can be viewed has an immersed surface in R 3 . A bound of its second fundamental form in H 2 ×R is equivalent to a bound in R 3 . We have the following classical result. Proposition 5. [START_REF] Korevaar | The structure of complete embedded surfaces with constant mean curvature[END_REF][START_REF] Pérez | Properly embedded minimal surfaces with finite total curvature[END_REF] Let Σ be an immersed surface in R 3 whose second fundamental form satisfies |A| ≤ 1/(4δ) for some δ > 0. Then for any x ∈ Σ with d(x, ∂Σ) > 4δ there is a neighborhood of x in Σ which is a graph of a function u over the Euclidean disk of radius √ 2δ centered at x in the tangent plane to Σ at x. Moreover |u| < 2δ, |∇u| < 1, and |∇ 2 u| < 1 δ

Let Σ be a cmc H 0 surface (H 0 = 0) that bounds a domain D in H 2 × R (D is in the mean convex side of Σ) and with a uniform curvature bound. Let p ∈ Σ be a point and γ be the geodesic line starting from p in the direction of the mean curvature vector. Let q be a the first point where γ meets Σ (if it exists). If q is close to p, Proposition 5 implies that γ is close to be normal to Σ at q. Moreover, since γ is in D between p and q, the mean curvature vector to Σ at q points in the opposite direction to the velocity vector of γ at q. But since H 0 > 0, this implies that p and q can not be too close from each other. More precisely, we have the following result that gives a local description of the surface. Proposition 6. Let Σ be an embedded cmc H 0 surface in H 2 × R (H 0 > 0) which bounds a domain D in its mean convex side. Moreover we assume that its second fundamental form satisfies |A| ≤ k for some k > 0. Then there exists R = R(k) > 0 such that the following is true. For any p ∈ H 2 × R, there exists at most two disks

∆ 1 and ∆ 2 in Σ ∩ B(p, 2R) such that Σ ∩ B(p, R) = (∆ 1 ∪ ∆ 2 ) ∩ B(p, R).
Moreover, when there is two disks, the domain between the two disks in B(p, R) is outside D

The above proposition says that a local description of the surface Σ is given by one of the pictures in Figure 2. Now let us assume that we have a sequence (Σ n ) of properly embedded cmc H 0 surfaces with uniformly bounded curvature and bounding a domain D n in their mean convex side. For each compact K of H 2 × R, (K ∩ Σ n ) is a sequence of compacts sets so by a diagonal process we can assume that for each K the sequence converges in the Hausdorff topology to a limit that we call Σ. Let p be in Σ, there exists p n ∈ Σ n such that p n → p. From Proposition 5, p n is the center of a geometrically controlled disk ∆ 1 n . By considering a subsequence we can assume that ∆ 1 n ′ converges to a cmc H 0 disk ∆ 1 . We then have ∆ 1 ⊂ Σ.

Let R be given by Proposition 6.

If Σ ∩ B(p, R) = ∆ 1 ∩ B(p, R), this implies that the whole sequence ∆ 1 n converges to ∆ 1 . If there is q ∈ (Σ ∩ B(p, R)) \ ∆ 1 , there exist q n ∈ Σ n and q n is in the second disk ∆ 2 n given by ∆ 1 ∆ 2 ∆ 1
One disk:

Two disks:

No disk:

D D D Figure 2:
The local description of a cmc surface Proposition 6. By considering a subsequence we can assume ∆ 2 n ′ converges to a cmc H 0 disk ∆ 2 . We notice that ∆ 2 is different from ∆ 1 since it contains q. We then have ∆ 2 ⊂ Σ. From Proposition 6, we can be sure that Σ ∩ B(p, R) = (∆ 1 ∪ ∆ 2 ) ∩ B(p, R). In fact this implies that the whole sequence (∆ 2 n ) converges to ∆ 2 . To complete our local description of Σ, we notice that ∆ 1 and ∆ 2 can touch each other but, at these contact points, the mean curvature vector have opposite value. Besides Σ bounds the domain D which is constructed has the limit of the domain D n . This prove that Σ is what we call a weakly embedded cmc H 0 surface. Definition 1. A properly immersed cmc surface Σ is said to be weakly embedded if there exists an open set Ω such that Σ is the boundary of Ω and the mean curvature vector of Σ points into Ω.

As an example, two rotational cmc spheres that are tangent form a weakly embedded surface. The union of two vertical cylinders tangent along a common vertical geodesic line is also weakly embedded.

We say that a weakly embedded surface is connected if the underlying surface Σ is connected. As an example, two rotational cmc sphere tangent at a point is not a connected weakly embedded surface. Finally, we remark that we have proved that the sequence Σ n converges smoothly in any compact sets to the surface Σ.

Delaunay surfaces

In this section, we briefly recall the construction of the embedded cmc surfaces that are rotationally invariant around a vertical axis. We only focus on surfaces with H > 1/2 (see [START_REF] Hsiang | On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces[END_REF] and [START_REF] Renato | Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems[END_REF] for more details).

Let (ρ, θ) be the polar coordinates on H 2 so the metric is dρ 2 +(sinh ρ) 2 dθ 2 . We look for surfaces of revolution; so we can look for the graph of a function u = f (ρ), we will orient this graph using the up pointing unit normal. Since we want the graph to have constant mean curvature H, the function f satisfies the following equation

f ′ 1 + f ′2 sinh ρ -2H(cosh ρ -1) = τ
where τ is a constant. In order to have a solution, τ has to satisfy

-sinh ρ -2H(cosh ρ -1) ≤ τ ≤ sinh ρ -2H(cosh ρ -1)
The graphs of these two functions are given in Figure 3. So in order to have a solution with non empty definition set, τ has to be chosen less than 2H -√ 4H 2 -1. Actually, for τ = 2H -√ 4H 2 -1, we find the surface ρ = argth 2H which is the vertical cylinder of constant mean curvature H.

For all value of τ < 2H -√ 4H 2 -1, a solution f can be defined for ρ ∈ [ρ min (τ ), ρ max (τ )]. This solution f has the following properties (see Figure 4):

• if 0 < τ , 0 < ρ min (τ ), f is increasing and f ′ (ρ min (τ )) = +∞ = f ′ (ρ max (τ )). • if τ = 0, 0 = ρ min (0), f is increasing, f ′ (0) = 0 and f ′ (ρ max (0)) = +∞. • if τ < 0, 0 < ρ min (τ ), f ′ (ρ min (τ )) = -∞ and f ′ (ρ max (τ )) = +∞.
In each case, the graph of the function u is a piece of a cmc H surface of revolution that can be extended along its boundary by symmetry to produce a complete rotationally invariant cmc H surface D τ . When τ > 0 we produce

-sinh ρ -2H(cosh ρ -1) 2H - √ 4H 2 -1 ρ min (τ ) sinh ρ -2H(cosh ρ -1) ρ max (τ ) τ Figure 3:
The domain of definition of solutions an embedded surface called unduloid. When τ = 0 we produce a cmc sphere. For τ < 0, we get a non-embedded surface called a nodoid.

The parameter τ can be interpreted as a flux on the surface. More precisely, if γ is the circle In this section we introduce the notion of Alexandrov functions. Then we study the annular end of a cylindrically bounded properly embedded cmc surface. We then explain the proof of our main theorem

D τ ∩ {z = t}, 2πτ is the flux of D τ along γ in the direction ∂ z . τ > 0 τ = 0 τ < 0 ρ min (τ ) ρ max (τ ) ρ max (0) ρ min (τ ) ρ max (τ )

Alexandrov function

The notion of Alexandrov function was introduced by Korevaar, Kusner and Solomon in [START_REF] Korevaar | The structure of complete embedded surfaces with constant mean curvature[END_REF] for R 3 . Let us explain what is the situation in H 2 × R.

Let Γ = (γ t ) t∈R be a smooth family of geodesic lines that foliates H 2 . We define Γ + t = ∪ s>t γ s , Γ + t is a half hyperbolic space bounded by γ t ; we also define Γ - t = ∪ s<t γ s . Let Π t be the vertical plane γ t × R in H 2 × R. Let S t be the symmetry of H 2 with respect to γ t . S t extend to the symmetry of H 2 × R with respect to Π t , we still denote by S t this symmetry. Among all these foliations, we say that Γ is a translation foliation if all the geodesic lines γ s are orthogonal to one geodesic line g.

For I a open interval of R, let G be a cylindrically bounded domain in H 2 × Ī such that ∂G ∩ (H 2 × I) is a smooth connected surface Σ with possibly non empty boundary in the horizontal slices at height given by the end points of I.

Let us fix some z 0 in I, we focus on what happens at height z 0 . So we denote Σ z 0 = Σ ∩ {z = z 0 } which bounds G z 0 = G ∩ {z = z 0 } and we consider that Γ foliates H 2 × {z 0 }. Since G is cylindrically bounded, for t large Σ z 0 (t) = Σ z 0 ∩ Γ + t is empty. If Σ z 0 is non empty, there is a largest t 1 such that Σ z 0 (t 1 ) = ∅. For t ≤ t 1 we consider Σ z 0 (t) = S t (Σ z 0 (t)) the symmetric of Σ z 0 (t) with respect γ t . We notice that Σ z 0 (t) is included in Γ - t and that, for small t, Σ z 0 (t) is outside G z 0 . So we can define

t 2 (z 0 ) = sup{t ≤ t 1 | Σ z 0 (t) ∩ Σ z 0 = ∅}
We also define

t 3 (z 0 ) = sup{t ≤ t 1 | ∃p ∈ Σ z 0 ∩ γ t , T p Σ is orthogonal to γ t × R} Finally we define α Γ (z 0 ) = max(t 2 (z 0 ), t 3 (z 0 )), if Σ z 0 is empty we define α Γ (z 0 ) = -∞.
This number can be understood as the first time where there is a contact between Σ z 0 (t) and Proof. Let (z n ) be a sequence in I converging to z 0 in I. If Σ z 0 is empty, Σ zn is empty for large n, so α Γ is upper semi-continuous if α Γ (z 0 ) = -∞. So we can assume α Γ (z n ) > -∞ for every n. We can also assume that either α Γ (z n ) = t 2 (z n ) for all n or α Γ (z n ) = t 3 (z n ) for all n. In the second case, we have a sequence of point p n ∈ Σ zn ∩ γ t 3 (zn) such that T pn Σ is orthogonal to

Σ z 0 ∩ Γ - t . In fact, for t > α Γ (z 0 ), Σ z 0 (t) ⊂ G z 0 . The function z 0 → α Γ (z 0 ) is
γ t 3 (zn) × R. We can assume that t 3 (z n ) → lim sup α Γ (z n ) = t 0 and p n → p 0 . Then p 0 ∈ Σ z 0 ∩ γ t 0 and T p 0 Σ is orthogonal to γ t 0 × R. This implies that t 0 ≤ t 3 (z 0 ) ≤ α Γ (z 0 ).
If we are in the first case, there is a sequence of point

p n in Σ zn (t 2 (z n )) such that S t 2 (zn) (p n ) ∈ Σ zn . We can assume that t 2 (z n ) → lim sup α Γ (z n ) = t 0 and p n → p 0 . Thus p 0 ∈ Σ z 0 (t 0 ) or p 0 ∈ Σ z 0 ∩ γ t 0 . In the first case S t 0 (p 0 ) ∈ Σ z 0 so t 0 ≤ t 2 (z 0 ) ≤ α Γ (z 0 ). In the second, since S t 2 (zn) (p n ) ∈ Σ zn and converge to p 0 , the tangent space T p 0 Σ is orthogonal to γ t 0 × R. So t 0 ≤ t 3 (z 0 ) ≤ α Γ (z 0 ). This finishes the proof.
The second important property is a consequence of the maximum principle when Σ has constant mean curvature. Lemma 8. Assume that Σ is connected, has constant mean curvature and the mean curvature vector points into G. If the Alexandrov function α Γ has a local maximum at z, α Γ is constant on the connected component J of {α Γ > -∞} containing z and Σ ∩ (H 2 × J) is symmetric with respect to

Π α Γ (z) . Proof. Assume that z is a local maximum of α Γ . Let p ∈ Σ z such that p ∈ Σ z (α Γ (z)) and S α Γ (z) (p) ∈ Σ z if α Γ (z) = t 2 (z) or p ∈ γ α Γ (z) × R and T p Σ is orthogonal to γ α Γ (z) × R if α Γ (z) = t 3 (z). In both case, since z is a local maximum of α Γ , near S α Γ (z) (p), S α Γ (z) (Σ) is on one side of Σ.
Moreover these two surfaces have the same orientation at S α Γ (z) (p). So applying the maximum principle or the maximum principle at the boundary for cmc surface, we get that Σ is symmetric with respect to Π α Γ (z)

These two results has the following consequence Lemma 9. With the same hypotheses as in Lemma 8 

, if α Γ > -∞ on [a, b] then: • α Γ is monotonous, or • there exists c ∈ [a, b] such that α Γ is decreasing on [a, c
α Γ = sup{α Γ (x), α Γ (y)}. Let (x n ) be a monotonous sequence converging to c ∈ [a, b] such that lim α Γ (x n ) = inf [a,b] α Γ .
We assume that (x n ) decreases (the same argument can be done if it increases).

Let us consider x < y < c.

If α Γ (y) = inf [a,b] α Γ , for any z ∈ (y, c), α Γ (z) ≤ α Γ (x n ) so α Γ (z) = inf [a,b] α Γ . α Γ is constant on (y, c) so it is constant on [a, b]. So we can assume α Γ (y) > lim α Γ (x n ). Since α Γ (y) ≤ max{α Γ (x), α Γ (x n )}, we get α Γ (x) ≥ α Γ (y): α Γ decreases on [a, c).
Let us now consider c < x < y. As above we can assume

α Γ (x) > lim α Γ (x n ). Since α Γ (x) ≤ max{α Γ (y), α Γ (x n )}, we get α Γ (x) ≤ α Γ (y): α Γ increases on (c, b].
If Σ is a weakly embedded cmc surface which is cylindrically bounded, we notice that the Alexandrov functions can also be defined on it. These functions satisfies also to Lemmas 8 and 9.

Asymptotical Delaunay ends

In this subsection we prove that a cylindrically bounded annular ends of a cmc surface is asymptotic to one of the Delaunay surface D τ .

Let A be a properly embedded annular end with cmc H and which is cylindrically bounded. The annulus A can be viewed as the punctured disk embedded in H 2 × R with boundary in H 2 × {0}. The height function converges to ±∞ at the puncture. If the limit of the height function is +∞ A is said to be a top end and if the limit is -∞ A is a bottom end. In the sequel we always study top ends and since the property of bottom ends can be deduced by symmetry with respect to {z = 0}. The annular end A bounds a cylindrically bounded domain G so we can define Alexandrov functions on A.

From Proposition 1, A has linear area growth. Proposition 4 gives a uniform bound on the second fundamental form on A. This two properties are sufficient to study the limit of slight-back sequences t -zn (A) where (z n ) is an increasing sequence going to +∞ and t z denote the vertical translation by z. Proposition 10. Let A be a properly embedded annular end with cmc H which is cylindrically bounded (H > 1/2). Let (z n ) be an increasing sequence converging to +∞. There is a parameter τ ∈ (0, 2H -√ 4H 2 -1] that depends only on A and a subsequence (z n ′ ) of (z n ) such that t -z n ′ (A) converges to a rotationally invariant Delaunay surface D τ . Moreover the axis of D τ only depends on A.

Proof. Let s → γ(s) be a geodesic in H 2 . Let γ 1 s denote the geodesic line of H 2 orthogonal to γ at γ(s). Then Γ 1 = (γ 1 s ) s∈R is a foliation of H 2 , so we can consider the Alexandrov function α Γ 1 of A. From Lemma 9, α Γ 1 is monotonous close to +∞. Moreover, it is bounded so it has a limit at +∞. by changing the parametrization of γ, we assume that this limit is 0.

Let θ be an irrational angle and consider γ 2 t to be the geodesic line of H 2 which meets γ 1 0 with an angle θ at γ 1 0 (t). Γ 2 = (γ 2 t ) t∈R is a foliation of H 2 so we consider the Alexandrov function α Γ 2 of A. As above, this function has a limit at +∞ and we can assume it is 0. We denote by p the point where γ 1 0 and γ 2 0 meet. We notice that the position of this point p will fix the axis of the Delaunay limit surface. Now let us consider an increasing sequence (z n ) with limit +∞. From Subsection 2.5, a subsequence of t -zn (A) (still denoted t -zn (A)) converges to a properly weakly embedded surface Σ with constant mean curvature H. Moreover Σ is cylindrically bounded.

Claim 11. The surface Σ is connected and non-compact.

Proof of the Claim. Assume Σ has a compact connected component Σ ′ . This implies that, for large n, there is a part of t -zn (A) that is graph over Σ ′ . So A would possess a compact component, this gives a contradiction.

Assume now that Σ has two non compact connected components Σ ′ and Σ ′′ . We recall that the height function on Σ ′ and Σ ′′ can not be lower or upper bounded (Lemma 2). So there is a connected component of Σ ′ ∩ {0 ≤ z ≤ M } and one of Σ ′′ ∩ {0 ≤ z ≤ M } with boundary in both {z = 0} and {z = M }. So this implies that for large n, A ∩ {z n ≤ z ≤ z n + M } possesses at least two connected components with boundary in both {z = z n } and {z = z n + M }. This is a contradiction with Lemma 3.

Since Σ is connected, we can consider the Alexandrov functions α Γ 1 ,Σ and α Γ 2 ,Σ of Σ.

Claim 12. The Alexandrov functions α Γ 1 ,Σ and α Γ 2 ,Σ are equal to 0.

Proof of the Claim. We give the proof for the first Alexandrov function. Let z 0 be a regular value of the height function on Σ. Because of the properness, any value z close to z 0 is also a regular value of the height function. So Σ ∩ {z 0ε ≤ z ≤ z 0 + ε} consist of a finite union of annuli transverse to horizontal slices of H 2 × R. Now, because of the smooth convergence of t -zn (A) to Σ, we get that α Γ 1 ,Σ (z 0 ) = lim α Γ 1 (z 0 + z n ) = 0. Thus, for any regular value of the height function on Σ, α Γ 1 ,Σ vanishes so, by monotonicity, the Alexandrov function is constant equal to 0.

Since the Alexandrov function are constants, Σ is symmetric with respect to γ 1 0 × R and γ 2 0 × R. It is thus invariant by the rotation R of angle 2θ around the vertical axis {p} × R. Since 2θ is irrational, Σ is invariant by rotation around {p} × R.

This implies that Σ is equal to some Delaunay surface D τ of axis {p}×R. The height 0 is a regular value of D τ and 2πτ is the flux of D τ along D τ ∩{z = 0} in the direction ∂ z . So 2πτ is the limit of the flux of A along A ∩ {z = z n } in the direction ∂ z . This flux does not depends on n and is equal to the flux of A along A ∩ {z = 0} in the direction ∂ z . So the parameter τ only depends on A.

The main theorem

In this section we settle the main theorem of this paper and explain its proof.

Actually, the main theorem is based on the following proposition which is proved in Section 6.

Proposition 13. Let A be a properly embedded annular top end with cmc H which is cylindrically bounded. Let Γ = (γ s ) s∈R be a translation foliation of H 2 by geodesic lines. The Alexandrov function α Γ : R + → R is then decreasing.

With this proposition we can prove our main result. Theorem 14. Let Σ be a properly embedded cmc surface in H 2 × R. If Σ has finite topology and is cylindrically bounded, Σ is a Delaunay surface (i.e.

Σ is rotationally invariant).

If Σ is compact the result is already know [START_REF] Hsiang | On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces[END_REF], so we focus on the non compact case.

Proof. Let us consider Γ = (γ s ) s∈R be a translation foliation of H 2 . Let us denote by E + 1 , . . . , E + p the annular top end of Σ and E - 1 , . . . , E - q the annular bottom ends of Σ. We consider the Alexandrov functions α Γ,Σ and α Γ,E ± i . We can assume that the Alexandrov functions α Γ,E + i are defined on [M, +∞) and the α Γ,Ei are defined on (-∞, -M ]. By Proposition 13, the functions α Γ,E + i decrease and the functions α Γ,E - i increase.

Besides, on [M, +∞), we have:

α Γ,Σ (z) = max 1≤i≤p α Γ,E + i (z)
and, on (-∞, -M ], we have:

α Γ,Σ (z) = max 1≤i≤q α Γ,E - i (z)
So the function α Γ,Σ increases on (-∞, -M ] and decreases on [M, +∞). By Lemma 9, this implies that α Γ,Σ is constant and Σ is symmetric with respect to some γ s × R.

Let Γ 1 be a translation foliation of H 2 , Σ is then symmetric with respect to some γ 1 s . We can assume that it is symmetric with respect to γ 1 0 × R. Let Γ 2 be the translation foliation of H 2 composed by the geodesic line orthogonal to γ 1 0 . Σ is then symmetric with respect to some γ 2 s × R. We can also assume it is γ 2 0 . Let p be the intersection point of γ 1 0 and γ 2 0 . Let g be a geodesic passing by p and Γ 3 be the translation foliation composed by the geodesic lines orthogonal to g. Σ is then symmetric with respect to some γ 3 s × R. Since Σ is cylindrically bounded γ 3 s passes by p. This implies that Σ is symmetric with respect to any vertical plane passing by p, so Σ is invariant by rotation around the vertical axis p × R.

Horizontal Killing graphs

Let us consider a new model for H 2 : H 2 = {(s, r) ∈ R 2 } with the metric dr 2 + (cosh r) 2 ds 2 . In this model {r = 0} is a geodesic and {r = c} are its equidistant lines. Moreover ∂ s is the Killing vector field corresponding to the translation along {r = 0}. In this section, we will use this model of H 2 to describe H 2 × R. The surfaces {s = c} are then totally geodesic flat planes.

Let Ω be a domain in R 2 and u be a smooth function on Ω. Using the above model for H 2 , we can consider the surface in H 2 × R parametrized by (r, z) → (u(r, z), r, z). Such a surface is called the horizontal Killing graph of u, it is transverse to the Killing vector field ∂ s and any integral curve of ∂ s intersect at most once the surface.

The mean curvature equation

In the following, we are interested in horizontal Killing graph with constant mean curvature H 0 . This condition implies that the function u satisfies a partial derivatives equation.

Let Ω and u be as above. A unit normal vector to the horizontal Killing graph of u is given by the following expression:

N = -∂ s + (cosh r) 2 ∇u cosh r 1 + (cosh r) 2 |∇u| 2 (2)
where ∇ is the Euclidean gradient operator and | • | is the Euclidean norm.

In the sequel, we will use this unit normal vector to compute the mean curvature of a horizontal Killing graph.

Lemma 15.

Let Ω and u be as above, the mean curvature H of the horizontal Killing graph of u satisfies:

-2H cosh r = div (cosh r) 2 ∇u 1 + (cosh r) 2 |∇u| 2 (3)
with div the Euclidean divergence operator.

Proof. We extend the vector field N to the whole R × Ω by using the expression given in [START_REF] Collin | Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés[END_REF]. The mean curvature of the horizontal Killing graph of u is then given by

-2H = div H 2 ×R N = (∇ ∂s cosh r N, ∂ s cosh r ) + (∇ ∂r N, ∂ r ) + (∇ ∂z N, ∂ z )
Let W denote 1 + (cosh r) 2 |∇u| 2 , we then have:

(∇ ∂s cosh r N, ∂ s cosh r ) = 1 (cosh r) 2 -1 W cosh r (∇ ∂s ∂ s , ∂ s ) + cosh r W (u r (∇ ∂s ∂ r , ∂ s ) + u z (∇ ∂s ∂ z , ∂ s ) = u r W cosh r (∇ ∂s ∂ r , ∂ s ) = u r sinh r W
and for a = r or a = z:

(∇ ∂a N, ∂ a ) = (∇ ∂a -∂ s W cosh r , ∂ a ) + (∇ ∂a (cosh r)∇u W , ∂ a ) = (∇ ∂a (cosh r)∇u W , ∂ a )
Summing all this terms and using the fact that the surfaces {s = c} are totally geodesic and flat, we get:

-2H = u r sinh r W + div( (cosh r)∇u W ) = 1 cosh r (∇(cosh r), (cosh r)∇u) W + (cosh r) div( (cosh r)∇u W ) = 1 cosh r div( (cosh r) 2 ∇u W )
Thus the constant mean curvature H 0 equation for a function u can be written div (cosh r) 2 ∇u

1 + (cosh r) 2 |∇u| 2 = -2H 0 cosh r (4) 
or after expanding all the terms

1 + (cosh r) 2 u 2 z 2 + (cosh r) 2 |∇u| 2 urr -2 (cosh r) 2 uruz 2 + (cosh r) 2 |∇u| 2 urz + 1 + (cosh r) 2 u 2 r 2 + (cosh r) 2 |∇u| 2 uzz + (tanh r)ur = -2H0 (1 + (cosh r) 2 |∇u| 2 ) 3/2 (cosh r)(2 + (cosh r) 2 |∇u| 2 ) ( 5 
)
For H 0 = 0, we get the minimal surface equation:

div (cosh r) 2 ∇u 1 + (cosh r) 2 |∇u| 2 = 0 (6)
We notice that the maximum principle is true for these equations. Thus we have uniqueness of a solution to the Dirichlet problem associated to these equation on bounded domains.

A gradient estimate

An important result concerning solutions of ( 4) is a gradient estimate. Proposition 16. Let u be a nonnegative solution of (4) on a disk centered at p = (r p , z p ) and radius R. Then there is a constant M that depends only on r p , R and H 0 such that

|∇u|(p) ≤ max(2, 32M (u(p)/R))e 6M u(p)+4M 2 (u(p)/R) 2
The proof of this result is similar to the one of the gradient estimate proved by J. Spruck in [START_REF] Spruck | Interior gradient estimates and existence theorems for constant mean curvature graphs in M n × R[END_REF]; but our result does not seem to be a corollary of his result.

Before beginning the proof, let us make some preliminary computation. So let u be as in the proposition and let Σ denote the horizontal Killing graph of u. We denote Ñ = -N (see [START_REF] Collin | Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés[END_REF])and define ν = ( Ñ , ∂ s ) and µ = ν/(cosh r). We have ν > 0 and, ∂ s being a Killing vector field,

∆ Σ ν = -(Ric( Ñ , Ñ ) + |A| 2 )ν
where |A| 2 is the square of the norm of the second fundamental form and Ric is the Ricci tensor.

Let us denote by h the restriction of s along Σ. We have

∇ Σ h = 1 (cosh r) 2 ∂ ⊤ s and |∇ Σ h| 2 = 1 (cosh r) 2 (1 -µ 2 )
If (e 1 , e 2 ) is an orthonormal basis of T Σ we have

∆ Σ h = div Σ ( 1 (cosh r) 2 ∂ ⊤ s ) = - 2 tanh r (cosh r) 2 (∂ ⊤ r , ∂ ⊤ s ) + 1 (cosh r) 2 div Σ (∂ s -ν Ñ ) = 2 tanh r cosh r µ(∂ r , Ñ ) + 1 (cosh r) 2 (-ν) 2 i=1 (∇ e i Ñ , e i ) = 2 tanh r cosh r µ(∂ r , Ñ ) - 2H 0 µ cosh r
Let us define the distance function d = ((rr p ) 2 + (zz p ) 2 ) 1/2 . The vector field ∂ d = ((rr p )∂ r + (zz p )∂ z )/d is well defined in H 2 × R outside R × {p} and has unit length; d∂ d is well defined everywhere. We have:

∇ Σ d 2 = 2d∂ ⊤ d and |∇ Σ d 2 | 2 = 4d 2 |∂ ⊤ d | 2
We denote r = rr p and z = zz p . We then have:

∆ Σ d 2 = 2 div Σ (r∂ ⊤ r + z∂ ⊤ z ) = 2(|∂ ⊤ r | 2 + |∂ ⊤ z | 2 ) + 2 2 i=1 r(∇ e i (∂ r -(∂ r , Ñ ) Ñ , e i ) + z(∇ e i (∂ z -(∂ z , Ñ ) Ñ , e i ) = 2(1 + µ 2 ) + 2 2 i=1 r(∇ e i ∂ r , e i ) -r(∂ r , Ñ ) + z(∂ z , Ñ ) (∇ e i Ñ , e i ) = 2(1 + µ 2 ) + 2r 2 i=1 (∇ e i ∂ r , e i ) -2H 0 (d∂ d , Ñ )
We define f 1 = ∂ s /(cosh r), f 2 = ∂ r and f 3 = ∂ z an orthonormal basis of T H 2 × R and we write e i = j λ j i f j . We then have

2 i=1 (∇ e i ∂ r , e i ) = 2 i=1 3 k,l=1 λ k i λ l i (∇ f k ∂ r , f l ) = 2 i=1 (λ 1 i ) 2 1 (cosh r) 2 (∇ ∂s ∂ r , ∂ s ) = tanh r(1 -µ 2 ) So ∆ Σ d 2 = 2(1 + µ 2 ) + 2r tanh r(1 -µ 2 ) -2H 0 d(∂ d , Ñ ).
Using the above computations, we are ready to write the proof.

Proof of Proposition 16. Let us introduce the second order operator

Lf = ∆ Σ f -2ν(∇ Σ 1 ν , ∇ Σ f ) on Σ.
We notice that the maximum principle is true for L. We have:

∆ Σ 1 ν = div Σ (- 1 ν 2 ∇ Σ ν) = 2ν|∇ Σ 1 ν | 2 + (Ric( Ñ , Ñ ) + |A| 2 ) 1 ν Since Ric( Ñ , Ñ ) ≥ -1, we have L 1 ν ≥ -1 ν .
Let us define u = η 1 ν with η a positive function. We have:

Lu = ηL 1 ν + 1 ν ∆ Σ η ≥ (∆ Σ η -η) 1 ν
We define on Σ the function ϕ = ((-

h 2h 0 + 1 -ε -( d R )
2 ) + which is less than 1 (ε > 0) where h 0 = u(p) = h(P ) with P = (u(p), p). Moreover, ϕ(P ) = 1/2ε and ϕ = 0 close to ∂Σ. We define η = e Kϕ -1 with K a positive constant that will be chosen later. We then have max u > 0 and it is reached inside the support of ϕ.

We have

∆ Σ η = div Σ (e Kϕ K∇ Σ ϕ) = e Kϕ (K 2 |∇ Σ ϕ| 2 + K∆ Σ ϕ) so: ∆ Σ η -η = e Kϕ (K 2 |∇ Σ ϕ| 2 + K∆ Σ ϕ -1) + 1 ≥ e Kϕ (K 2 |∇ Σ ϕ| 2 + K∆ Σ ϕ -1)
We have

|∇ Σ ϕ| 2 = | - 1 2h 0 ∇ Σ h - 1 R 2 ∇ Σ d 2 | 2 = 1 4h 2 0 cosh 2 r (1 -µ 2 ) + 4d 2 R 2 |∂ ⊤ d | 2 + 2d h 0 R 2 cosh 2 r (∂ ⊤ s , ∂ ⊤ d ) ≥ 1 4h 2 0 cosh 2 r (1 -µ 2 ) - 2d h 0 R 2 cosh r µ(∂ d , N ) ≥ 1 4h 2 0 cosh 2 r (1 -µ 2 -8 h 0 R M µ)
where we use d ≤ R and M is a constant chosen to be larger than cosh r √ 4 + 2R + 2H 0 R on the disk of center p and radius R. So:

if µ ≤ min( 1 2 , R 32M h 0 ), |∇ Σ ϕ| 2 ≥ 1 8h 2 0 (cosh r) 2
Besides, we have

∆ Σ ϕ = - 1 2h 0 ∆ Σ h - 1 R 2 ∆ Σ d 2 = - 1 2h 0 ( 2 tanh r cosh r µ(∂ r , Ñ ) - 2H 0 µ cosh r ) - 1 R 2 (2(1 + µ 2 ) + 2r tanh r(1 -µ 2 ) -2H 0 d(∂ d , Ñ )) ≥ - µ h 0 cosh r - 1 R 2 (2(1 + µ 2 ) + 2R(1 -µ 2 ) + 2H 0 R) ≥ - 1 h 2 0 (cosh r) 2 M h 0 + h 2 0 (cosh r) 2 R 2 (4 + 2R + 2H 0 R) ≥ - 1 h 2 0 (cosh r) 2 M h 0 + h 2 0 M 2 R 2
We deduce from the above computation that, if µ ≤ min( 1 2 , R 32M h 0 ),

K 2 |∇ Σ ϕ| 2 + K∆ Σ ϕ -1 ≥ 1 8h 2 0 (cosh r) 2 K 2 + K(- 1 h 2 0 (cosh r) 2 ) M h 0 + h 2 0 M 2 R 2 -1 ≥ 1 8h 2 0 (cosh r) 2 K 2 -8K(M h 0 + h 2 0 M 2 R 2 ) -8h 2 0 M 2 So if K = (12M h 0 + 8h 2 0 M 2 /R 2 )
we obtain that K 2 |∇ Σ ϕ| 2 + K∆ Σ ϕ -1 > 0 and then Lu > 0. By the maximum principle applied to L, it implies that the maximum of u can only be attained at a point q where µ ≥ min( 12 , R 32M h 0 ). This implies that

u(p) = (e K(1/2-ε) -1) 1 ν(p) ≤ e K -1 ν(q) ≤ e K -1 min( 1 2 , R 32M h 0 )
So letting ε tending to 0 we get:

ν(p) ≥ min( 1 2 , R 32M h 0 )e -K/2
So:

|∇u|(p) ≤ max(2, 32M (h 0 /R))e 6M h 0 +4M 2 (h 0 /R) 2

An existence result for the Dirichlet problem

In this subsection, we give a result concerning the existence of a solution of the Dirichlet problem for the equation ( 4) on small domains. Actually, it is a consequence of the work of J. Serrin in [START_REF] Serrin | The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables[END_REF]. Proof. if ϕ is C 2 the result is a consequence of Theorem 14.3 in [START_REF] Serrin | The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables[END_REF]. We notice that the hypotheses of this theorem are satisfied by Equation (4). In fact in order to have the same notation as J. Serrin, the equation has to be written in the form [START_REF] Korevaar | Constant mean curvature surfaces in hyperbolic space[END_REF]. Moreover, since the coefficients of (5) only depend on r and H 0 , the radius R only depends on r p and H 0 . When ϕ is only continuous, we proceed by approximation. Let (ϕ n ) be a sequence of C 2 functions converging to ϕ in the C 0 norm. We denote by u n the solution of (4) with ϕ n as boundary value. The sequence u n is uniformly bounded. So, by the gradient estimate (Proposition 16) and elliptic estimates, the sequence (u n ) converges to a solution u of (4) on the disk. Let us consider ε > 0 and n ∈ N such that ϕ

n -ε ≤ ϕ -ε/2 < ϕ + ε/2 ≤ ϕ n + ε, for m large we have ϕ n -ε ≤ ϕ m ≤ ϕ n + ε. So by the maximum principle, u n -ε ≤ u m ≤ u n + ε. This implies u n -ε ≤ u ≤ u n + ε, so on the boundary of the disk ϕ -3ε/2 ≤ ϕ n -ε ≤ lim inf ∂D(p, R) u ≤ lim sup ∂D(p, R) u ≤ ϕ n + ε ≤ ϕ + 3ε/2
Letting ε going to 0, we see that u is continuous up to the boundary and u = ϕ there.

A uniqueness result

In this section we give a uniqueness result for the Dirichlet problem associated to (4) when the domain is unbounded.

Proposition 18. Let Ω be an unbounded domain in R 2 such that the r coordinate is bounded on Ω. Let u and v be two solutions of (4) on Ω which are continuous up to the boundary of Ω and such that u = v along this boundary. If the function |v -u| is bounded on Ω, then u = v.

The proof is based on the same ideas as Theorem 2 in [START_REF] Collin | Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés[END_REF] Proof. Let us define Ω a = {p ∈ Ω | |p| < a} and

C a = {p ∈ Ω | |p| = a}. let us define w = v -u and X = cosh r∇v √ 1+cosh 2 r|∇v| 2 - cosh r∇u √ 1+cosh 2 r|∇u| 2 .
We denote by η the outgoing normal to Ω a .

We then have By Lemma 1 in [START_REF] Collin | Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés[END_REF],

∇w • (cosh rX) = (cosh r∇v -cosh r∇u) • cosh r∇v 1 + cosh 2 r|∇v| 2 - cosh r∇u 1 + cosh 2 r|∇u| 2 ≥ cosh r∇v 1 + cosh 2 r|∇v| 2 - cosh r∇u 1 + cosh 2 r|∇u| 2 2 ≥ |X| 2
Let a 0 > 0 be such that Ω a 0 = ∅ and denote µ = Ωa 0 ∇w • (cosh rX); µ > 0 if u = v. Since w is bounded by a constant M and r is bounded on Ω, cosh r is bounded also by M . We then have:

µ + Ωa\Ωa 0 |X| 2 ≤ M 2

Ca

|X|

Let us define I(a) = Ca |X| and l a to be the length of C a ; we remark that l a ≤ 2πa. We have

I 2 (a) = Ca |X| 2 ≤ l a Ca |X| 2 Then µ + a a 0 I 2 (t) 2πt dt ≤ M 2 I(a) (7) 
Let ζ be the function defined on [a 0 , a 0 exp(4πM 4 /µ)) by the following equation: 7) then implies that I(a) ≥ ζ(a). But this is impossible since ζ(a) converge to +∞ when a → a 0 exp(4πM 4 /µ). Then u and v are equal.

- 1 ζ + 2M 2 µ = 1 2πM 2 ln a a 0 ζ satisfies ζ(a 0 ) = µ/(2M 2 ) and M 2 ζ ′ = ζ 2 /(2πa). Equation (

The monotonicity of the Alexandrov function

This section is entirely devoted to the proof of Proposition 13. This will finish the proof of our main result (Theorem 14).

The geometric configuration

Let us consider A a properly embedded annular top end with cmc H 0 which is cylindrically bounded. Let Γ = (γ t ) t∈R be a translation foliation of H 2 by geodesic lines. We assume that α Γ is not decreasing.

By considering only A ∩ {z ≥ z 0 } for some z 0 > 0 large, we can assume that α Γ is increasing. Because of Proposition 10, we can also assume that any horizontal section A ∩ {z = z ′ } is composed of one curve with curvature strictly larger than 1.

Using the model introduced in Section 5 for H 2 , we can assume that the foliation Γ is given by γ t = {s = t}. Moreover, by changing the origin of the s variable, we can assume that α Γ (0) < 0 and lim +∞ α Γ > 0. We also can assume that the intersection A ∩ {s = 0} is transverse. We define

A + = A ∩ {s > 0} and A -= A ∩ {s < 0}.
The idea of the proof of Proposition 13 is to obtain a control of the flux of A along ∂A + in the direction ∂ s . 

{s = 0} {z = 0} A + D A - A -

A Dirichlet problem

The annulus A bounds a cylindricaly bounded domain D in H 2 × R * + . Let Ω denote the domain {(r, z) ∈ R × R * + | (0, r, z) ∈ D}. Let us denote by A -the symmetric of A -by {s = 0}. We then define on Ω the function f by f (r, z) = inf{s ∈ R + | (s, r, z) ∈ A + ∪ A }. Since A is cylindrically bounded, f is uniformly bounded on Ω. Since the curvature of the curve A ∩ {z = z ′ } is larger than 1, f extend continuously to ∂Ω and this boundary value is 0 along ∂Ω ∩ {z > 0}.

Since α Γ (0) < 0, the reflection procedure described in Section 4.1 implies that A + ∩ {z = 0} is the horizontal Killing graph of f over ∂Ω ∩ {z = 0}.

Besides, if p ∈ ∂Ω ∩ {z > 0} and the tangent space to A at (0, p) is not normal to {s = 0}, for q ∈ Ω f (q) d(q, ∂Ω) is bounded in neighborhood of p where d(q, ∂Ω) is the Euclidean distance from q to ∂Ω. The aim of this section is to solve a Dirichlet problem for (4): we prove the following result.

Lemma 19. There exists a unique nonnegative solution u on Ω of Equation (4) which is continuous up to the boundary with boundary value f and such that u ≤ f on Ω.

Proof. The uniqueness comes from Proposition 18 since Ω is cylindrically bounded.

For the existence part, we use the Perron method to solve the Dirichlet problem. Let us recall the framework of the Perron method.

Let v be a continuous function on Ω, v is called a subsolution for our problem if v ≤ f and if, for any compact subdomain U ⊂ Ω and any solution h of ( 4) with v ≤ h on the boundary of U , we have v ≤ h on U . If S denote the set of all subsolutions, we define our solution by the following formula:

u(q) = sup v∈S v(q)
We notice that S is non empty since the function 0 is a subsolution; thus u ≥ 0. Moreover if v and w are subsolutions, the continuous function max(v, w) is also a subsolution. It is also clear that u ≤ f but it is not clear that u is a solution to our problem.

Since Ω is cylindrically bounded, Proposition 17 implies there is a R > 0 such that, for any disk ∆ ⊂ Ω of radius less than R, the Dirichlet problem can be solved on ∆ for Equation (4). Thus for any such disk ∆ and subsolution v, we can define the continuous function M ∆ (v) on Ω as M ∆ (v) = v outside ∆ and M ∆ (v) is equal to the solution of (4) in ∆ with v as boundary value. Since v is a subsolution, v ≤ M ∆ (v). The graph of v is below A + and A - so, by the maximum principle for cmc H 0 surfaces, the graph of M ∆ (v) is below A + and A -. This imlpies that M ∆ (v) is a subsolution.

Claim 20. The function u is a solution of (4) in Ω.

Proof of Claim 20. Let us consider p ∈ Ω and ∆ a disk in Ω centered at p with radius less than R. Let v n be a sequence of subsolutions such that v n (p) → u(p). By considering max(0, v n ) we can assume v n ≥ 0. We have M ∆ (v n ) is also a sequence of subsolutions with M ∆ (v n )(p) → u(p). On ∆, M ∆ (v n ) is a bounded sequence of solutions of (4). So by considering a subsequence if necessary, we can assume that it converges to a solution v on ∆ with u ≥ v and v(p) = u(p). Let us prove that u = v on ∆, so u will be a solution of (4).

If it is not the case there is a point q ∈ ∆ where u(q) > v(q). So there is a subsolution w such that w(q) > v(q). So let us consider the sequence of subsolutions M ∆ (max(w, v n )). We have M ∆ (max(w, v n )) ≥ M ∆ (v n ) and M ∆ (max(w, v n )) ≥ w. Moreover on ∆, it is a sequence of solutions of (4); so considering a subsequence, it converges to a solution w of (4) with w ≥ v and w(q) ≥ w(q) > v(q). But since w(p) = v(p), we have w = v on ∆ which contradicts w(q) ≥ w(q) > v(q). The claim is proved.

Since 0 ≤ u ≤ f , the function u is continuous up to the part of ∂Ω not in {z = 0} and u = 0 = f there. For ∂Ω ∩ {z = 0}, we need to construct some barriers for the problem.

Claim 21. Let r 0 , M > 0 and ε > 0 be real numbers. There exist a neighborhood V of (r 0 , 0) in R × R + as small as we want and a solution h of (6) in V which is continuous up to ∂V such that 0 ≤ h ≤ M on V , h = 0 on ∂V ∩ (R × R * + ) and h(r 0 , 0) = Mε.

Proof of Claim 21. Let us consider r 0 ∈ R, M > 0, ε > 0 as in the claim and R > 0 such that the Dirichlet problem for the minimal surface equation ( 6) can be solved on the disk ∆ centered at (r 0 , 0) and radius R (Proposition 17). On ∂∆, let ϕ n be a continuous function such that

• 0 ≤ ϕ n ≤ 2M .

• 0 = ϕ n on ∂∆ ∩ {z > 1/n} and ϕ n ≤ M on {z ≥ 0}.

• ϕ n (r, z) = 2Mϕ n (r, -z).

Moreover, we assume ϕ n ≥ ϕ n+1 on ∂∆ ∩ {z ≥ 0}. Let h n be the solution of ( 6) on ∆ such that h n = ϕ n on ∂∆. By uniqueness of the solution and the maximum principle, we have

• 0 ≤ h n ≤ 2M .
• h n (r, z) = 2Mh n (r, -z) so h n (r, 0) = M .

• h n is decreasing and h n ≤ M on ∆ ∩ {z ≥ 0}

Since the sequence is bounded, it converges to a solution h of (6) on ∆. Because of the monotonicity, h is continuous up to the boundary except at the points (r 0 + R, 0) and (r 0 -R, 0). h is equal to 0 on ∂∆ ∩ {z > 0} and to M on ∆ ∩ {z = 0}. So by continuity there is an η > 0 such that h(r 0 , η) = Mε. So if we consider the restriction of h to ∆ ∩ {z ≥ η} we have constructed a neighborhood V of (r 0 , η) in {z ≥ η} and a solution h of (6) on V which is continuous up to the boundary such that 0 ≤ h ≤ M on V , h = 0 on ∂V ∩ {z > η} and h(r 0 , η) = Mε. We notice that by choosing R small, we can assume V as small as we want.

With these barriers we can finish the proof of Lemma 19.

Claim 22. The function u is continuous up to the boundary of Ω and takes the value f on it.

Proof of Claim 22. The problem is only on ∂Ω ∩ {z = 0} minus its end points; so take a point p ∈ ∂Ω ∩ {z = 0}. Let us consider ε > 0 and I a segment in {z = 0} containing p such that f ≥ f (p)ε on I. Now from our construction of barriers, we know that there exist an neighborhood V of p in Ω such that V ∩ {z = 0} ⊂ I and a solution h of (6) on V continuous up to the boundary and such that h = 0 on ∂V ∩ Ω, h ≤ f (p)ε on ∂V ∩ {z = 0} and h(p) = f (p) -2ε. Let us extend the definition of h by 0 to the whole Ω. By the maximum principle, h is a subsolution for our problem, so u ≥ h. This implies that lim inf p u ≥ f (p) -2ε. Since u ≤ f on Ω we have lim sup p u ≤ f (p). Then u is continuous at p and takes the value f (p).

The asymptotic behaviour of u

We know from Proposition 10 that the annular end A is asymptotic for large z to a Delaunay surface. In this subsection, we will see that this asymptotic behavior passes to the function u.

Let (z n ) be a sequence such that z n ր +∞ and t -zn (A) converges to a Delaunay surface D τ , let us denote by G the cylindrically bounded domain whose boundary is D τ . We notice that by our normalization of A, the axis of D τ is {r = 0, s = lim +∞ α Γ }.

Let us also denote by t -zn the translation by -z n in the (r, z) plane. Because of the asymptotic behavior of A, the sequence of domains t -zn (Ω) converges to the domain Ω 0 defined by Ω 0 = {(r, z) ∈ R 2 | (0, r, z) ∈ G} (the
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  called the Alexandrov function of Σ associated to the foliation Γ. This Alexandrov function has a first important property. Lemma 7. The Alexandrov function α Γ is upper semi-continuous.

Proposition 17 .

 17 Let p = (r p , z p ) be a point R 2 and H 0 be a nonnegative constant. Then, there exists a constant R > 0 that depends only on H 0 and |r p | such that the Dirichlet problem for the equation (4) can be solved on the disk D(p, R) centered at p and radius R less than R. More precisely, for any continuous function ϕ on the boundary of D(p, R) ( R ≤ R) there exists u ∈ C 2 (D(p, R)) ∩ C 0 (D(p, R)) such that u solves (4) and u = ϕ on the boundary of the disk.

  Ca w(cosh rX) • η = ∂Ωa w(cosh rX) • η = Ωa ∇w • (cosh rX)
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  ) and increasing on (c, b]. Proof. Assume α Γ is not monotonous on [a, b]. Let x, y be in [a, b]. Since α Γ is upper semi-continuous, sup [x,y] α Γ is reached and because of Lemma 8 it can only be reached at x or y. So we have sup [x,y]

convergence is smooth on any compact). Let us define D - τ = D τ ∩ {s < 0} and D - τ the symmetric of D - τ by {s = 0}. D - τ is a horizontal Killing graph of a function f 0 on Ω 0 . Actually, f 0 = lim f • t zn .

Let us consider the sequence u•t zn ≤ f •t zn on t -zn (Ω), it is a uniformly bounded sequence. So if we consider a subsequence, we can assume that u•t zn converges to a solution u 0 of (4) on Ω 0 . Moreover we have 0 ≤ u 0 ≤ f 0 . This implies that u 0 is continuous up to ∂Ω 0 and takes value 0 there. We then have u 0 and f 0 two solutions of (4) on Ω 0 with the same vanishing boundary value; so, by Proposition 18, u 0 = f 0 .

The uniqueness of the possible limit implies that the whole sequence u • t zn converges to f 0 .

Computation of fluxes

The idea of this section is to compute the flux of A along the boundary of A + in the direction of ∂ s and find a contradiction which will prove Proposition 13.

Let (z n ) be an increasing sequence such that z n → +∞ and Ω 0 be the associated limit domain. This domain is either a strip if τ = 2H 0 -4H 2 0 -1 or a periodic domain composed of successive "bubbles" if 0 < τ < 2H 0 -4H 2 0 -1. By adding a constant to (z n ), we assume that {z = 0} is a line of symmetry of Ω 0 . If u 0 = lim u • t zn , we get that u 0 (r, z) = u 0 (r, -z) and D τ is symmetric with respect to {z = 0}.

The boundary of A + n = A + ∩ {0 < z < z n } is composed of four smooth arcs:

n is actually composed of two arcs). The flux of A along ∂A + n in the direction of ∂ s is equal to 0 since ∂A + n is homologically trivial. The idea is to use the graph of u as a barrier for the computation of F ∂A + n (∂ s ) to prove that it can not vanish for large n.

Let us denote by Ω zn the subdomain Ω ∩ {0 < z < z n }. In order to compute the flux, we need a surface Q bounded by ∂A + n : we define Q as the union of G ∩ {s ≥ 0, z = 0}, G ∩ {s ≥ 0, z = z n } and {0} × Ω zn . The term (∂ s , n Q ) is zero along the first two parts and is equal tocosh r along the second part so the flux of A along ∂A + n is equal to

On an other hand, we have from ( 4)

with η the outgoing unit normal to Ω zn . We notice that, even if we do not know that u is smooth up to the boundary of Ω, the first integral is well defined since the vector field cosh 2 r∇u √ 1+cosh 2 r|∇u| 2 is bounded and Equation ( 4) is satisfied.

Thus Equations ( 8) and ( 9) give

In order to compare the terms in the above equality, we need to study the regularity of u at the boundary of Ω.

Let us define

We notice that γ 3 n = {0} × c 3 n , so the same notation can be used to denote the two curves.

Claim 23. The function is C 2 up to the boundary at each point of c 1 (except its end-points) and each point in c 3 n where A is not normal to {s = 0}.

Proof. Let p be a point c 3 n where A is not normal to {s = 0}. As written at the beginning of subsection 6.2, there is a neighborhood of p such that f /d(•, ∂Ω) is bounded. Since 0 ≤ u ≤ f , Proposition 16 gives a uniform upper-bound for |∇u| in a neighborhood of p. Since u satisfies Equation ( 4) and the boundary data are smooth, elliptic regularity theory implies that u is C 2 up to the boundary near p (see for example [START_REF] Ladyzhenskaya | Linear and quasilinear elliptic equations[END_REF], Theorem 4.6.1 gives C 1,α regularity and Theorem 4.6.3 gives C 2 regularity).

For the regularity at a point in c 1 , the argument is the same but we have to prove the uniform upper bound for the gradient. We notice that, near γ 1 , A + is the graph of f . So, near c 1 , f is a smooth function. Since u ≤ f this give a barrier from above with bounded gradient for u. The problem is to obtain a barrier from below.

The curves γ 1 and {0} × c 1 bounded a convex domain in H 2 × {0} whose boundary is thus composed of an arc of curvature larger than 1 and a geodesic arc. Let us denote by U this domain viewed in H 2 × {0}. Let q be the middle of {0} × c 1 . Let ε be positive and Γ ε be the Jordan arc in H 2 × R composed by γ 1 and two geodesic arc joining the end points of γ 1 to t ε (q). When ε is small, the two geodesic arcs are included in {0} × Ω. Let Σ ε be the solution of the Plateau problem in H 2 × R with Γ ε as boundary. Since Γ ε is a vertical graph above the boundary of the convex domain U , Σ ε is unique and is a vertical graph above U . Moreover, this graph is smooth up to the boundary (barriers from above and can be easily found). Σ ε is included in {z ≥ 0} and can not be tangent to {z = 0} by the maximum principle. The translate t -a (Γ ε ) for a > 0 never meets the graph of u. So by the maximum principle, t -a (Σ ε ) never meets the graph of u and then Σ ε is inside

We then get a uniform bound for the gradient of u near any points of c 1 (Proposition 16); this gives us the C 2 regularity up to the boundary.

Using the regularity of the function u, we prove the following statement.

Claim 24. We have:

Proof. The curve γ 1 is the graph of the function f over c 1 and, in fact, close to γ 1 , A + is the graph of f so we have

Now since u ≤ f and by the maximum principle u and f can not have the same gradient on c 1 this implies that along c 1 we have

This give the first inequality. For a point p in γ 3 n , if A is normal to {s = 0} ( ν, ∂ s ) =cosh r. Since cosh 2 r∇u √ 1+cosh 2 r|∇u| 2 has a norm less than cosh r everywhere, we get a large inequality at p between the to integrand.

If A is not normal to {s = 0} at p, we remark that the term ( ν, ∂ s ) give the same result if ν is the conormal to A + or A -. Besides the graph of u is regular up to the boundary and is below A + and A -. So, with ν u the conormal to the graph of u and ν A the one for A + , the maximum principle implies that ( ν u , ∂ s ) > ( ν A , ∂ s ) at p. After integration we get the second inequality since there is always point where A is not normal to {s = 0} on γ 3 n .

We have the following limits for the integrals along γ 2 n and c 2 n . Claim 25. We have the following limits:

Proof. Since t -zn (A) converges to D τ , the first limit is equal to the integral of ( ν, ∂ s ) along the curve D τ ∩ {s ≥ 0, z = 0}. By our choice of (z n ), the surface D τ is symmetric with respect to {z = 0}. The conormal is then equal to ∂ z and the scalar product vanishes. The limit is then 0. For the second limit, we know that u • t zn converges to u 0 this implies that the limit of the integral is equal to

We notice that a priori the convergence of u•t zn is smooth only on compact subdomains of Ω 0 but since the integrand is uniformly bounded it is sufficient to take the limit of the integral. Now, we have u 0 (r, z) = u 0 (r 0 , -z) so ∇u 0 is normal to ∂ z on Ω 0 ∩ {z = 0} and the limit integral vanishes. Now using Equation [START_REF] William | The topology and geometry of embedded surfaces of constant mean curvature[END_REF] and Claims 24 and 25, we get our contradiction which finishes the proof of Proposition 13 0 = lim