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Abstract A widespread and successful approach to tackle unit-commitment problems is constraint de-
composition: by dualizing the linking constraints, the large-scale nonconvex problem decomposes into
smaller independent subproblems. The dual problem consists then in finding the best Lagrangian multi-
plier (the optimal “price”); it is solved by a convex nonsmooth optimization method. Realistic modeling
of technical production constraints makes the subproblems themselves difficult to solve exactly. Nons-
mooth optimization algorithms can cope with inexact solutions of the subproblems. In this case however,
we observe that the computed optimal dual variables show a noisy and unstable behaviour, that could
prevent their use as price indicators.

In this paper, we present a simple and easy-to-implement way to stabilize dual optimal solutions, by
penalizing the noisy behaviour of the prices in the dual objective. After studying the impact of a general
stabilization term on the model and the resolution scheme, we focus on the penalization by discrete
total variation, showing the consistency of the approach. We illustrate our stabilization on a synthetic
example, and real-life problems from EDF (the French Electricity Board).

Keywords Unit-commitment problems · Lagrangian duality · convex analysis · total variation
regularization · inexact bundle method

1 Introduction

Let us consider n production units over T periods of time. The unit-commitment (UC) problem can be
formulated as finding generation schedules pi ∈ RT for each production unit that minimize the total
generation cost, satisfy operational constraints (pi ∈ Pi) and match the demand forecast d ∈ RT (load
and safety). The abstract form of the problem can be written as (see e.g. (Sheble and Fahd, 1994; Padhy,
2004; Dubost et al, 2005)): min c(p) =

∑n
i=1 ci(pi)

s.t. Ap = d
p ∈ P = P1 × · · · × Pn,

where A is a constant matrix such that each component (Ap)t represents the total production of period t.
Since we only know a forecast of the demand, we do not impose the schedules to match exactly the
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demand, and instead, we penalize the mismatch with a function V . In this paper, we consider a general
UC problem written as: min c(p) + V (z)

s.t. z = d−Ap
p ∈ P, z ∈ RT .

(1)

This optimization problem is easy to state in an abstract form as above, but is difficult to model and
solve in practice. Operational constraints are numerous and often nonconvex or with a combinatorial
nature. Furthermore, load and safety requirements couple all units together. In real situations, we end
up with a large-scale, heterogeneous and nonconvex problem, with mixed integer variables.

Example 1 (EDF daily UC problem) The EDF short-term electricity production management problem is
described precisely in (Dubost et al, 2005; Hechme-Doukopoulos et al, 2010). We give here only its main
characteristics. The model includes nearly n = 200 independent power plants of three types (nuclear,
classical thermal and hydro-valleys). Every day, the state of the production park is known (available
units and their operational constraints) as well as a demand forecast for the next 48 hours. Time being
discretized in half-hourly time steps, the number of periods is T = 96. The UC problem is written as (1)
and contains about 106 variables and 106 constraints. EDF provided us with 27 realistic instances of this
problem, on which we will illustrate the interest of our approach. ut

Example 2 (A simple synthetic UC problem) In this paper, we also use a simple UC problem (provided
to us by Claudia Sagastizábal) to precisely illustrate our results. In this problem, the costs are linear,
the technical constraints are simply capacity constraints, and we impose the production to match the
demand min c>p

Ap = d
0 ≤ p ≤ pmax .

(2)

This linear program can be solved by any linear programming solver for the instances size that we
consider here. We will use the exact solution as a reference point to illustrate our method. ut

Many exact methods and heuristics have been proposed to solve UC problems; see the surveys (She-
ble and Fahd, 1994; Padhy, 2004). One of the most efficient and wide-spread approaches is based on
constraint (or price) decomposition and Lagrangian duality (Borghetti et al, 2003; Dubost et al, 2005;
Frangioni, 2010). By penalizing the supply-demand constraint in the objective function, using a La-
grangian multiplier u ∈ RT , the problem decomposes into smaller and independent subproblems:

min
pi∈Pi

{ci(pi)− u>pi} =: θi(u) , (3)

that represent the answer of the generation mix to the “price signal” u ∈ RT . As in the linear case,
the optimal dual variables u∗ can indeed also be interpreted in this (nonlinear, nonconvex) context, as
marginal costs or prices (see e.g. (Boyd and Vandenberghe, 2004)). By denoting θ(u) :=

∑
i θi(u), and

up to a change of sign, the dual problem consists in finding the best prices by solving{
min Θ(u) := −θ(u)− u>d+ V ∗(u)
s.t. u ∈ RT , (4)

where V ∗ is the convex conjugate of V (Hiriart-Urruty and Lemaréchal, 2001, §E). The dual problem is
solved by a convex nonsmooth optimization algorithm, among which bundle methods are the methods
of choice (Hiriart-Urruty and Lemaréchal, 1993, §XV). More and more realistic modeling of technical
constraints makes the subproblems (3) difficult to solve within the strict computational time limits that
are often required in our applications. For example, in EDF daily UC problem, subproblems associated
with hydro-valleys are large mixed-integer linear programs, out of reach of current state of the art solvers.
This implies that we only have an approximation of θi, and thus of the dual function. Bundle methods can
handle inexact solutions of the subproblems and solve inexactly the dual problem (Kiwiel, 2006; Emiel
and Sagastizábal, 2010; Oliveira et al, 2012). In that case however, we observe (see following Section 2)
that the dual optimal solutions show a noisy and unstable behaviour.

This paper presents a method to enforce some structure to the dual solutions computed by bundle
methods; which can in particular reduce the noisy aspect of the prices resulting from inexact computa-
tions. Our idea is simple: we add a stabilization term in the dual objective function in order to penalize
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the undesirable behaviour of the solutions. We will see that this approach is versatile, easy to implement
and gives good results. For example, numerical results on real-life problems of the final section show that
we are able to compute dual solutions with 80% less variability on average, without loosing in quality,
even though the error in the subproblems is significant.

The structure of the paper is as follows. In Section 2, we recall the standard inexact resolution by
Lagrangian duality and show the resulting bad behaviour of inexact prices. In Section 3, we present
our general dual stabilization and its impact on the resolution scheme and on the primal UC problem.
We give several possible stabilizations, and illustrate our approach on both synthetic and real-life UC
problems. In Section 4, we focus on the case of total variation regularization and we show in a particular
example that this regularization enables to recover the exact prices. Finally, in Section 5, we present
some practical issues and we validate our approach regarding the global problem.

2 Inexact dual resolution and noisy behaviour

This section gives more details about the inexact unit-commitment resolution and exhibits the noisy
behaviour that we observe and want to reduce. Let us start with some notations.

We call oracle a procedure that solves the Lagrangian subproblems (3) and evaluates the dual func-
tion Θ: for a given multiplier u ∈ RT , it returns the value Θ(u) and a subgradient g ∈ ∂Θ(u), i.e. by
definition, a vector g ∈ RT , such that Θ(v) ≥ Θ(u) + g>(v − u), for all v ∈ RT . In our case, some
subproblems cannot be solved exactly within the time limit; which leads to an inexact oracle producing
an approximate value of the dual function and an approximate subgradient, in the following sense. We
suppose that the oracle computes a feasible, possibly non-optimal, solution and that we know an upper
bound ε on the difference to the optimal solution. Thus, for u ∈ RT , the inexact oracle returns a value
Θu ∈ R such that

Θ(u)− ε ≤ Θu ≤ Θ(u) , (5)

and an ε-subgradient g̃ ∈ RT satisfying

∀v ∈ RT , Θ(v) ≥ Θ(u) + g̃>(v − u)− ε .

In our synthetic Example 2, we introduce and control the noise of the oracle. For EDF problems from
Example 1, the mixed-integer linear solver used for the hydro-valleys subproblems gives the best feasible
solution found in a given time as well as an upper bound on the error (computed using the optimal value
of the linear relaxation). In our 27 instances, the average upper bound on the relative error is about 30/00.

The objective now is to solve (4), i.e. to minimize the dual function, which is convex by construction
(as a maximum of affine functions), generally nonsmooth, and inexactly known via the oracle. Inexact
bundle methods (Kiwiel, 2006; Emiel and Sagastizábal, 2010; Oliveira et al, 2012) are then the methods
of choice to solve this type of problems. In this paper, we consider implicitly inexact proximal bundle
method, since this is the method used at EDF. Note however that our development is actually independent
of the bundle algorithm used to solve (4).

Inexact (proximal) bundle methods converge to an approximate solution ũ such that:

Θ(u∗) ≤ Θ(ũ) ≤ Θ(u∗) + δ + ε , (6)

where δ is the stopping tolerance of the bundle method and u∗ the exact optimal prices (Kiwiel, 2006).
Such an a priori guarantee is quite strong: since we know Θ with an error of ε, we inevitably undergo
an error of ε on the “optimal” value that we compute and if we neglect the stopping tolerance δ, the
approximation (6) says precisely that we minimize Θ with an error of at most ε. However, there is no
such guarantee on how close the inexact prices ũ are to the exact solution u∗. In practice, we observe
in our two examples that these solutions can be very different; more precisely, the inexact price show a
perturbed behaviour. To measure the variability of the prices, let us introduce the (weighted) discrete
total variation (see e.g. (Rudin et al, 1992; Chambolle, 2004)) defined for given weights α ∈ RT−1+ as

TVα(u) =

T−1∑
t=1

αt|ut+1 − ut| . (7)
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Example 3 (Inexact prices in EDF UC problem) Figure 1 represents the prices for a real-life UC instance
provided to us by EDF, with two models and two oracles. The full-line prices are obtained when the
hydro-valleys subproblems are modeled as linear programs (LP); in this case the oracle is exact. The
dotted-line prices are obtained when hydro-valleys subproblems are modeled as mixed-integer linear
programs (MILP). These subproblems turn out to be out of reach for current MILP solvers in a reasonable
time; in this case, the oracle is inexact (with a relative error bound of 50/00).
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Fig. 1 Exact and inexact prices over time periods in EDF problem. For industrial privacy, price scales are not provided.

We observe that the inexact prices (dotted line) show an erratic behaviour: they have more variations
and oscillations than the exact prices (full line), and some large peaks. In particular, their total variation
(7) is more than 6 times larger than the total variation of the exact prices. We assume here that the
form of the exact solution is better for practitioners, in the sense that it can be used more easily as an
electricity price indicator. Thus, we would like to stabilize the dotted-line so that it looks more like the
full-line.

Note that there are two possible causes for this noisy aspect of the inexact prices: (1) the change in
the model (LP to MILP), and (2) the inexactness of the oracle. To give an idea of the role of each cause,
we make the oracle more precise: we drop the maximal error from 5 to 10/00 and we obtain prices that
have the same pattern as in Figure 1 but with an attenuation of the oscillations; more precisely, the total
variation (7) decreases by 8%. Since EDF real-life subproblems are very difficult, we cannot go beyond
10/00 in the optimization process. To further highlight the effect of oracle inexactness, we reproduce a
similar phenomenon with the simple UC problem. ut
Example 4 (Inexact prices in the synthetic problem) Figure 2 shows the demand and the computed exact
prices for a particular instance of the synthetic problem (2) with T = 14 time periods, n = 18 production
units. In this example, exact prices are a few euros most of the time, with a peak to around 400 euros
at t = 4 and t = 5 (which correspond to the highest demand periods). Figure 3 shows again the exact
prices, together with inexact prices obtained with two different oracle errors. We see that inexact prices
show more variations and in particular large peaks at t = 7 and t = 9, for an oracle error bounded by
ε = 15%. We note that in this case, the total variation of the inexact prices is more than 3 times larger
than that of the the exact prices. ut

These examples suggest that the oracle inexactness gives undesirable behaviour to the dual solutions,
which may trouble their use as price indicators. Our objective now is to get rid of the artificial oscillations
caused by the noisy oracle to improve the quality of the computed prices.

3 Prices stabilization by penalization

3.1 Dual penalization and primal interpretation

A first idea to limit the price instability would be to smooth the curves a posteriori (by taking a moving
average for example). The drawback of this blind approach is that all the oscillations would be treated
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Fig. 2 Demand and exact prices over T = 14 time periods for the synthetic problem
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Fig. 3 Prices corresponding to different oracle error bounds ε ∈ {0, 10, 15}%, over time periods

the same way: the “natural” ones (due to peak hours for example) as well as the “artificial” ones (due to
oracle inexactness). For instance, for our simple problem (2), in Figure 3, such approach would attenuate
similarly the meaningful jump of periods t = 4, 5, as well as the noisy peaks of periods t = 7, 9. This
example shows that we should incorporate the stabilization within the computation of the prices rather
than treating it as a separate task.

To reduce the instability of the prices without loosing pertinent information, our idea is simple:
we propose to add a parametrized penalization term in the dual objective function, that limits prices
variations. Instead of (4), we consider a “stabilized dual” problem:{

min Θ(u) + S(u)
s.t. u ∈ RT , (8)

where S is a well-chosen (closed) convex penalization function designed to force the dual variables to
follow a certain desirable behaviour.

In this paper, we focus on the discrete total variation (7), which is meant to remove peaks as the ones
of Figures 1 and 3. This is a popular regularization function, used successfully in many fields (for example
in image processing for noise removal, see e.g. (Rudin et al, 1992; Strong and Chan, 2003; Chambolle,
2004)). We will see that for our two examples TV stabilized prices show indeed less variability. For real-
life UC problems, more sophisticated stabilizations should be considered following the a priori structure
desired for the prices. For example, we could use any combination of a norm with a function expressing
the price variation (as first or second order discrete derivatives) as:

S1
∞(u) = maxt{αt|ut+1 − ut|} ; S1

2(u) =
∑
t αt|ut+1 − ut|2

S2
1(u) =

∑
t αt| − ut + 2ut+1 − ut+2| ; S2

2(u) =
∑
t αt| − ut + 2ut+1 − ut+2|2 ,

where α = (αt) ∈ RT−1+ is a vector of nonnegative coefficients. We could also consider constrained versions
of the above penalties.

5



In general, when α = 0 the function S(·) is null and the corresponding problem (8) is the initial
problem (4). When α is very large, any constant u ∈ RT is a solution of the problem. For well-chosen α ∈
RT−1+ , we will see in our numerical experiments (Examples 5 and 6 and Table 1) that the noisy behaviour
can be substantially reduced. Tuning the parameter α to get the desirable behaviour is obviously a delicate
point. First, α should be adapted to make S(·) have the same order of magnitude as Θ in (8). Second, α
could also be chosen to more or less penalize the price variations according to the period. Typically, if we
know peak periods where it is natural that the prices jump, we can choose the corresponding components
αt small or even null.

A primal view on the dual stabilization in (8) can also help in choosing a good α. The next proposition
studies the case of a general stabilization. Latter in Section 4, Corollary 1 specializes the result to the
case of total variation regularization.

Proposition 1 (Stabilized primal problem) The dualization of the balance constraint in the follow-
ing problem (9) leads to the stabilized dual problem (8) .

min c(p) + V (z) + S∗(δ)
z = (d− δ)−Ap
p ∈ P
z, δ ∈ RT .

(9)

Proof We can get this result by applying Fenchel duality (Borwein and Lewis, 2000). For sake of com-
pleteness, we give here a simple and direct argument. The dual function corresponding to the dualization
of the linking constraint of (9) is for u ∈ RT : (with the same change of signs as in (4))

ΘS(u) := −min
p,z,δ

{
c(p) + V (z) + S∗(δ) + u>(d− δ −Ap− z)

}
= −min

p∈P

{
c(p) + u>(d−Ap)

}
− min
z∈RT

{
V (z)− u>z

}
− min
δ∈RT

{
S∗(δ)− u>δ

}
= −min

p∈P

{
c(p) + u>(d−Ap)

}
+ max
z∈RT

{
u>z − V (z)

}
+ max
δ∈RT

{
u>δ − S∗(δ)

}
= −θ(u) + V ∗(u) + S∗∗(u)

= Θ(u) + S(u) (because S is closed and convex) .

Therefore, the corresponding dual problem is (8), as claimed. ut

The effects of price stabilization on the primal problem can be interpreted as follows: at each period
of time t, the demand forecast can be perturbed by a quantity δt, and this perturbation is penalized in
the objective through the convex conjugate S∗ of the stabilization function S.

Remark (Modeling versus algorithmic stabilization) The “modeling” stabilization we introduced is differ-
ent from the usual “algorithmic” stabilization used within bundle methods. Recall that, roughly speaking,
an iteration of bundle methods consists in solving a subproblem constructed from the bundle information
(i.e the values of the function and subgradients at previous iterates) and improved by an additional al-
gorithmic stabilization term (preventing the next iterate to get far away from the current best point). In
standard bundle method, the stabilization term is a quadratic penalization of the distance to the current
best point (Hiriart-Urruty and Lemaréchal, 1993); but more generalized bundle methods allow the use
of sophisticated convex functions (Frangioni, 2002).

The two stabilizations (modeling vs algorithmic) are different, conceptually and mathematically. First
the goal of our modeling stabilization is to impose a structure to the solution whereas the algorithmic
stabilization aims at controlling the iterations of the bundle algorithm. This lead naturally to different
type of stabilization terms: our examples feature discrete derivatives whereas the algorithmic stabiliza-
tion are usually polyhedral or quadratic norms. Moreover the only requirement on S is to be convex,
whereas even the most general algorithmic stabilizations must satisfy several properties (among those
some coercivity see (Frangioni, 2002)) to guarantee convergence. ut
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3.2 Penalization in practice, and illustration

It is important to note that the additional term S(u) in the dual objective does not change the nature
of the dual problem (4): this is still an unconstrained convex nonsmooth problem, that can be solved
by (inexact) bundle methods. Actually, there are two ways to handle such extra additional term: (1) we
can use the same bundle method and change the oracle to include S; or (2) we can use a disaggregate
bundle method (Bacaud et al, 2001) that handle explicitly the different terms of the objective and thus
can exploit the structure of S. For simplicity, we consider in our computational tests the first strategy;
so we deal with an oracle that returns, for u in RT

• the inexact dual objective value: Θu + S(u), which has the same absolute error bound ε as Θu,
• the vector g̃ + gS , with g̃ ∈ ∂εΘ(u) and gS ∈ ∂S(u), which is also an ε-subgradient of (Θ + S) at u.

We apply our stabilization approach on our test problems.

Example 5 (Price stabilization for the synthetic problem) Let us come back to the instance presented
in Example 4. We set the oracle error bound to 15%, and use the stabilization by total variation, with
constant coefficients (αt = α, for all t) for simplicity. This means that we apply the same penalization to
all the price jumps. Then, for different values of α, we obtain the range of prices represented in Figure 4.
When α = 0, we have the inexact prices of Figure 3. When α increases, we see that the oscillations are
more and more attenuated, in particular at periods 7 and 9. Finally, for α ≥ 300, the peak between
periods 4 and 5 is altered and it finally disappears. For even larger α, the prices are totally flat. Note
that for α ≈ 50, we almost recover the exact prices: artificial peaks of periods 7 and 9 are hardly
visible whereas natural jumps of periods 4 and 5 are unaltered. It is remarkable that the total variation
penalization erases first the artificial variations; we will give some theoretical insights into this fact in
Theorem 1 bellow. ut
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Fig. 4 Variation of stabilized prices for different weights of total variation regularization in our simple problem

Example 6 (Price stabilization for EDF UC problem) We apply our total variation stabilization to a
realistic instance provided by EDF (for industrial privacy, we only give relative values). Figure 5 represents
the prices of the stabilized problem with the function TVα, for different constant vectors α. When α is
small, we observe that the stabilized prices have roughly the same look as the initial ones, with each
peak attenuated. Some oscillations disappeared, for example between periods t = 55 to t = 60. For a
medium α, prices are much more stable. We can notice though that they follow the main tendencies of
the initial prices. When α is larger, the prices tend to be flat.

Since rush hours are generally predictable, we can take them into account when choosing the coeffi-
cients αt. For example, we tried:

αtadaptive =

{
αtsmall if t in rush hours of the first day ,
αtmedium otherwise .
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Fig. 5 Variation of stabilized prices for different weights of total variation regularization in EDF problem
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Fig. 6 Variation of stabilized prices with TVα using a non constant vector α in EDF problem. The components corre-
sponding to rush hours of the first day are less penalized than the regular periods

Figure 6 gives the corresponding stabilized prices. We see clearly attenuated oscillations at the rush hours
of the first day, and more stable prices on the other periods. Note finally that we do not pretend that the
stabilized prices are (close to) the inaccessible “true” prices, but they have a more stable aspect which is
possibly preferable in practice.

ut

4 More on total variation regularization

In this section, we examine closely the stabilization by the total variation (7) and give some theoretical
insight. Note first that we can write TVα as the composition of the norm ‖·‖1 with Bα, where Bα is the
matrix of RT−1 × RT defined by:

Bα =


−α1 α1 0

−α2 α2

. . .
. . .

0 −αT−1 αT−1

 . (10)

Being as the composition of a norm and a linear function, the total variation TVα is a closed convex
function. Subdifferential calculus rules (see (Hiriart-Urruty and Lemaréchal, 2001, §D.4.2)) give that
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∂TVα(u) = B>α ∂ ‖·‖1 (Bαu) and therefore a subgradient g of TVα at u has components:

gt =

 −α1s1 if t = 1 ,
αt−1st−1 − αtst if t ∈ {2, . . . , T − 1} ,
αT−1sT−1 if t = T ,

(11)

where st = −1 if ut+1 < ut, st = 1 if ut+1 > ut and st ∈ [−1; 1] if ut+1 = ut.

4.1 Total variation stabilized primal problem

We now consider how the total variation penalization impacts on the primal UC problem, by applying
Proposition 1 with the explicit expression (7).

Corollary 1 (Primal interpretation of total variation regularization) Consider the following
total variation stabilized dual problem {

min Θ(u) + TVα(u)
s.t. u ∈ RT . (12)

A primal problem leading to the dual problem (12) (by dualizing the supply-demand constraint) is the
following 

min c(p) + V (z)
s.t. z = (d− δ)−Ap∑T

i=1 δi = 0∣∣∣∑t
i=1 δi

∣∣∣ ≤ αt, for all t = 1, . . . , T − 1

p ∈ P , z ∈ RT , δ ∈ RT .

(13)

Proof Using Proposition 1, we just have to compute the convex conjugate function TV∗. Theorem
(Hiriart-Urruty and Lemaréchal, 2001, §E.2.2) gives:

TV∗α(δ) = inf{‖u‖∗1 : u ∈ RT−1, B>α u = δ} = inf{iB(1)(u) : u ∈ RT−1, B>α u = δ} ,

where B(1) is the unit ball of the infinite norm. We can therefore write:

TV∗α(δ) =

{
0 if there exists u ∈ B(1) such that B>α u = δ ,
+∞ otherwise .

Suppose now that δ is in the image of B>α , then simple computations give

T∑
t=1

δt = 0 and for all t such that αt = 0 ,

t∑
i=1

δi = 0 . (14)

Let u be in the inverse image (B>α )−1({δ}). We can show that two cases are possible for its components:

• For t such that αt > 0, ut = − 1
αt

t∑
i=1

δi, and |ut| ≤ 1 is equivalent to

∣∣∣∣∣
t∑
i=1

δi

∣∣∣∣∣ ≤ αt.
• For t such that αt = 0, ut is free. Let us take ut = 0 in this case.

By writing the second part of condition (14) as

∣∣∣∣∣
t∑
i=1

δi

∣∣∣∣∣ ≤ αt, for all t such that αt = 0, the set of vectors

where TV∗α is zero is

C =

{
δ ∈ RT :

∣∣∣∣∣
t∑
i=1

δi

∣∣∣∣∣ ≤ αt,∀t = 1, . . . , T − 1,

T∑
i=1

δi = 0

}
.

Finally, we can write TV∗α = iC and plugging this expression in the problem (9), we get (13). ut
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In this case, demand perturbation is constrained: its mean must be zero and the partial sums of its
components are bounded by α. Note that the larger αt (i.e. the more we penalize price jumps between
periods t and t+ 1), the less constrained the demand perturbation at t. Conversely, if αt = 0, i.e. price
jumps between t and t + 1 are free, then the cumulative perturbation until period t must be zero: in
other words, the cumulative original and perturbed demand coincide at period t.

Furthermore, we can see that this implies an implicit control of the perturbations δ’s by the α’s.
Indeed, if (p, z, δ) is a feasible solution for (13) then δ satisfies{

−αi ≤
∑t
i=1 δi ≤ αt , t = 1, . . . , T − 1 (t)

0 ≤
∑T
i=1 δi ≤ 0 (T )

and by subtracting inequalities (t − 1) from (t) for t = 2, . . . , T , we see that δ satisfies the following
conditions  |δ1| ≤ α1

|δt| ≤ αt−1 + αt for t = 2, . . . , T − 1
|δT | ≤ αT−1

(15)

Thus if an acceptable threshold for the demand perturbation is available (for example 5% of the forecast),
such value could be used to choose α.

Example 7 (Control of the demand perturbation in the synthetic example) Using (15), we choose the
stabilization coefficients α’s such that δt ≤ λ dt, for all the periods t = 1, . . . , T , for a given threshold λ.
Figure 7 reports the results for different choices of the λ. First, we observe that when λ increases (i.e.
when we allow more flexibility on the demand perturbation), the prices are more stable. As in Example 5,
we see that the “artificial” peaks of periods 7 and 9 are strongly reduced whereas the “natural” peak of
periods 4 and 5 remains unaltered. Also we note that for λ = 11%, the stabilized prices are close to the
exact ones. ut
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Fig. 7 Variation of the stabilized prices in our simple problem, when choosing the total variation weights to make the
primal perturabation within λ of the demand forecast, for each time step.

4.2 Exact prices recovery in a particular case

In Example 5, we observed that for certain choices of the stabilization parameter α, the stabilized prices
are close to the exact ones. In this section, we prove that, in a particular simple context, the stabilized
prices coincide with the exact prices. We prove that we can indeed recover piecewise constant prices with
a jump (see Figure 8). We consider a general convex (dual) function Θ and a specific (artificial) oracle
noise, which pushes the solutions toward a chaotic behaviour. Then, we show that there exists a constant
vector α such that the stabilized problem using TVα gives the exact prices.
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The assumptions on the oracle noise are inspired from results on noise removal in image processing.
In (Strong and Chan, 2003), it is shown that total variation regularization recovers exactly properties
of the image in certain situations. Contrary to (Strong and Chan, 2003) though, we use directly convex
analysis tools to prove our recovery result.

Theorem 1 Let Θ be a convex function from RT → R. Assume that an optimal solution of the “initial”
problem

min
u∈RT

Θ(u) ,

denoted by u∗, has the following form: u∗t = 1 if t ≤ t0, u
∗
t = 0 otherwise, for some t0 ∈ {2, . . . , T − 1}.

Given β ≥ 0, let v be a “noisy” vector of RT satisfying the following conditions (see Figure 8 for an
illustration):

1

t0

t0∑
i=1

vi = 1 +
β

t0
,

1

T − t0

T∑
i=t0+1

vi = − β

T − t0
, (16)

min
1≤i≤t0

vi ≥ 1 , max
t0<i≤T

vi ≤ 0 . (17)

Then for α = βσ, u∗ is also the optimal solution of the “stabilized” noisy problem

min
u∈RT

Θ(u) +
σ

2
‖u− v‖2 + TVα(u) .

Fig. 8 Simple configuration of exact and inexact prices

Proof Denote f(u) = Θ(u) + σ
2 ‖u− v‖

2
+ TVα(u). As a sum of convex functions and a norm, f is

strongly convex and u∗ is its unique minimum if and only if 0 ∈ ∂f(u∗). We have:

∂f(u∗) = ∂Θ(u∗) + σ(u∗ − v) + ∂TVα(u∗)

By construction, we have 0 ∈ ∂Θ(u∗). So, it is sufficient to find a vector g ∈ ∂TVα(u∗) such that

σ(u∗ − v) + g = 0 . (18)

Let us write TVα = ‖·‖1 ◦Bα, where Bα is defined in (10), with the abuse of notation αt = α, for all t.
From the expression (11) of a subgradient of TVα at u = u∗, it follows easily that finding g ∈ ∂TVα(u∗)
satisfying (18) amounts to finding s1, . . . , st0−1, st0+1, . . . , sT−1 ∈ [−1; 1] such that:

σ(u∗1 − v1) − αs1 = 0
σ(u∗t − vt) + α(st−1 − st) = 0 for 2 ≤ t ≤ t0 − 1
σ(u∗t0 − vt0) + α(st0−1 + 1) = 0
σ(u∗t0+1 − vt0+1) + α(−1− st0+1) = 0
σ(u∗t − vt) + α(st−1 − st) = 0 for t0 + 2 ≤ t ≤ T − 1
σ(u∗T − vT ) + αsT−1 = 0

11



Using assumptions (16), the previous system gives :

st = σ
α

t∑
i=1

(u∗i − vi) =
σ

α

t∑
i=1

(1− vi) if 1 ≤ t ≤ t0 − 1 ,

st = −σ
α

T∑
i=t+1

(u∗i − vi) =
σ

α

T∑
i=t+1

vi if t0 + 1 ≤ t ≤ T − 1 .

(19)

It remains to check that these components st lie in [−1; 1]. Using assumptions (17), we see from expression
(19) that for 1 ≤ t ≤ t0 − 1, st are nonpositive, decreasing and bounded from below by st0−1 =
−1 + σ

α (vt0−1 − 1) ≥ −1. Similarly, for t0 + 1 ≤ t ≤ T − 1, st are nonpositive, increasing and bounded
from below by st0+1 = −1 + σ

α (−vt0−1) ≥ −1. Therefore, equation (18) holds for the vector g defined by
(11) using st of (19), i.e. 0 ∈ ∂f(u∗). ut

5 Numerical experiments on real-life UC problems

In this section, we illustrate our approach on real-life UC problems, provided by EDF. We will show that
we can drastically reduce the noisy behaviour of the prices, without loosing pertinent information on the
optimization problem.

Observed and exact gain Recall that approximation (6) essentially says that the computed prices ũ
minimize the dual function Θ with the “minimal” possible error, that is the oracle error ε. We would
like the same guarantee for ũs the optimal prices of the stabilized problem (8); that is, we would like
that ũs also minimizes Θ up to an error of ε. As explained in Example 3, for EDF industrial problems,
we cannot compute – and therefore compare – the exact values of Θ at the optimal prices u∗ and the
stabilized prices ũs. Fortunately, properties of inexact bundle methods recalled in Section 2 imply that
the “exact” (inaccessible) error

∆ex := Θ(u∗)−Θ(ũs)

is close to the computable error

∆obs := Θũ −Θũs
,

where ũ are the inexact (non-stabilized) prices. More precisely, we have the following lemma.

Lemma 1 Let ε be the maximum error of the oracle and δ the stopping tolerance of the inexact bundle
method as in (6). Then we have:

|∆obs −∆ex| ≤ δ + 2ε

Proof First, using (5) and (6), we get that

Θ(u∗)− ε ≤ Θũ ≤ Θ(u∗) + δ + ε .

This implies that Θũ approximates Θ(u∗) up to δ + ε. Second, using (5) at ũs, we have

Θ(ũs)− ε ≤ Θũs
) ≤ Θ(ũs) ,

so Θũs approximates Θ(ũs) with again an error of ε. Therefore, it follows that:

|∆obs −∆ex| ≤ |Θ(u∗)−Θũ|+ |Θũs
−Θ(ũs)| ≤ δ + ε+ ε ,

which is the desired approximation. ut

If we can neglect the stopping tolerance δ (e.g. assume δ ≤ ε), we deduce that ∆obs approximates ∆ex

with an error of the order of ε. Thus, if ∆obs is itself of the order of ε then, so is ∆ex. In other words,
the stabilized prices ũs would have the same quality in terms of Θ as the initial prices ũ.
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Numerical illustration We analyze now the impact of the stabilization on the 27 EDF instances. The
(relative) error of the oracle is between 0.10/00 and 2%, with an average of about 30/00 and we use a
stopping tolerence of 10/00. Since the stabilizing term does not add difficulty to the original (nonsmooth)
problem, computing times remain roughly the same.

In Table 1, we compare the stabilized prices ũs and the original (inexact) ones ũ, for the different
settings of the stabilization parameter α of Section 3.2. Specifically, we report the (minimum, average
and maximum)

• gain in total variation: (TV(ũ)− TV(ũs))/TV(ũ); in other words, the reduction of the noisy aspect,
• lost in Θ: ∆obs/Θũ; in other words, the deterioration of the objective function.

First, we observe that the total variation of the stabilized prices is considerably lower than the original
one. Even for a small α, total variation decreases, in average, by half; and when α is larger the gain in
total variation is more important. In general, we see that the loss in Θ also increases with α, but much
less than the total variation decreases. Indeed, we note that for medium and adaptive α, the prices of the
stabilized problem give, in average, an error on Θ̃ smaller than the oracle error 30/00. Thus, these prices
(for medium and adaptive α) minimize the dual function with an error of the same order as the oracle
error, while being significantly more stable (more than 80% of total variation reduction). This suggests
that the dual function is quite “flat” near the minimum, and therefore we can find very different prices
giving similar values of Θ. Our TV stabilization technique is able to produce smoother prices without
significant loss in the optimality of Θ. Note that in some problems, we observed that the loss in Θ is
negative, which means that the stabilized prices give a better value of the objective function. This is
simply due to the oracle inexactness (it would be impossible if the oracle were exact).

Table 1 Results summery on the 27 real-life UC instances for different values of α

Gain in TV (%) Lost in Θ (0/00)
Stabilization min avg max min avg max
Small α 36 52 64 −1.4 0.6 1.3
Medium α 59 88 94 −0.1 2.6 7.4
Large α 82 93 96 0.6 3.3 7.7
Adaptive α 66 83 92 0.3 2.2 6.3

6 Conclusions

In this paper, we considered unit-commitment dual problem, in the case where the Lagrangian subprob-
lems are solved inexactly. We showed that the minimization of the inexact dual function leads to unstable
dual solutions. To limit this noisy aspect, we proposed to add a stabilization term in the dual objective,
which penalizes the variations of the solutions. This can be interpreted as introducing a perturbation of
the demand forecast in the primal problem.

In a simple context, we proved that a certain choice of the stabilizer allows to recover the exact
solutions. For a synthetic UC problem, we observed that we can indeed obtain stabilized prices close to
the exact ones. For EDF industrial problems, we obtained practical prices achieving both stabilization and
optimization: the computed stabilized prices show a (controllable) stable aspect, without deteriorating
significantly the objective function. We emphasize that our approach is general, easy to implement
and test; it also requires adequate knowledge of the particular UC problem to set up the stabilization
parameter.

We finish with two remarks about practical use of our method within the overall scheme to solve unit-
commitment problems by duality. First, efficient implementation of the dual stabilization can exploit the
simple structure of the penalization function to accelerate the bundle algorithm: instead of including the
stabilization term in the black-box oracle, one could consider explicitly the two terms of the dual function
and use a disaggregate bundle method (Bacaud et al, 2001). Finally, we note that our dual stabilization
can also be easily added to strategies to recover primal solutions to unit-commitment problems. Indeed,
the primal proximal heuristic and the augmented Lagrangian approach presented in (Dubost et al, 2005)
using the stabilized optimal dual solution could incorporate the stabilization term in their objective
function for consistency.
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