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Abstract Unit-commitment problems in electricity production appeal to constraint decomposition tech-
niques: by dualizing the linking constraints, the large-scale nonconvex problem decomposes into smaller
independent subproblems. The dual problem consists then in finding the best Lagrangian multiplier (the
optimal “price”); it is solved by a convex nonsmooth optimization method. Realistic modeling of technical
production constraints makes the Lagrangian subproblems themselves difficult to solve. Nonsmooth opti-
mization algorithms can cope with inexact solutions of the subproblems. In this case however, we observe
that the computed optimal dual variables show a noisy and unstable behaviour, that could prevent their
use as price indicators.

In this paper, we present a simple and easy-to-implement way to stabilize dual optimal solutions, by
penalizing the noisy behaviour of the prices in the dual objective. After studying the impact of a general
stabilization term on the model and the resolution scheme, we focus on the penalization by discrete total
variation, showing the consistency of the approach. We illustrate our approach on a synthetic example,
and real-life problems from EDF (the French Electricity Board).

Keywords Unit-commitment problems · Lagrangian duality · convex analysis · total variation
regularization · inexact bundle method

1 Introduction

Let us consider n production units over T periods of time. Unit-commitment (UC) problem can be
formulated as finding production schedules pi ∈ R

T for each production unit, that minimize the total
generation cost, satisfy operational constraints (pi ∈ Pi) and match the demand forecast d ∈ R

T (load
and safety). The abstract form of the problem can be written as (see e.g. (Sheble and Fahd, 1994; Padhy,
2004; Dubost et al, 2005)):







min c(p) =
∑n

i=1 ci(pi)
s.t. Ap = d

p ∈ P = P1 × · · · × Pn,

A preliminary version of this work was presented at the EDF workshop “Advanced Optimization methods and their
applications to unit commitment in energy management” (November 2011).
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where A is a constant matrix such that each component (Ap)t represents the total production of period t.
Since we only know a forecast of the demand, we do not impose the schedules to match exactly the
demand, and instead, we penalize the mismatch with a function V . In this paper, we consider a general
UC problem written as:







min c(p) + V (z)
s.t. z = d − Ap

p ∈ P, z ∈ R
T .

(1)

This optimization problem is easy to state in an abstract form as above, but is difficult to model and
solve in practice. Operational constraints are numerous and often nonconvex or with a combinatorial
nature. Furthermore, load and safety requirements couple all units together. In real situations, we end
up with a large-scale, heterogeneous and nonconvex problem, with mixed integer variables (Hechme-
Doukopoulos et al, 2010).

Example 1 (EDF daily UC problem) The EDF short-term electricity production management problem is
described precisely in (Dubost et al, 2005; Hechme-Doukopoulos et al, 2010). We give here only its main
characteristics. The model includes nearly n = 200 independent power plants of three types (nuclear,
classical thermal and hydro-valleys). Every day, the state of the production park is known (available
units and their operational constraints) as well as a demand forecast for the next 48 hours. Time being
discretized in half-hourly time steps, the number of periods is T = 96. The UC problem is written as (1)
and contains about 106 variables and 106 constraints. EDF provides us with 27 realistic instances of this
problem, on which we will illustrate the interest of our approach. ⊓⊔

Example 2 (A simple synthetic UC problem) In this paper, we also use a simple UC problem (provided
to us by Claudia Sagastizabal) to precisely illustrate our results. In this problem, the costs are linear,
the technical constraints are simply capacity constraints, and we impose the production to match the
demand.







min c⊤p
Ap = d
0 ≤ p ≤ pmax .

(2)

This linear program can be solved by any linear programming solver for the instances size that we
consider here. We will use the exact solution as a reference to illustrate our method. ⊓⊔

Many exact methods and heuristics have been proposed to solve UC problems; see the surveys (Sheble
and Fahd, 1994; Padhy, 2004). One of the most efficient and wide-spread approach is based on constraint
(or price) decomposition and Lagrangian duality (Frangioni, 2010). By penalizing the supply-demand
constraint in the objective function, using a Lagrangian multiplier u ∈ R

T , the problem decomposes into
smaller, homogeneous and independent subproblems:

min
pi∈Pi

{ci(pi) − u⊤pi} =: θi(u) , (3)

that represent the answer of the production park to the “price signal” u ∈ R
T . As in the linear case,

the optimal dual variables u∗ can indeed also be interpreted in this (nonlinear, nonconvex) context, as
marginal costs or prices (see e.g. (Boyd and Vandenberghe, 2004)). By denoting θ(u) :=

∑

i θi(u), the
dual problem consists then (up to a change in signs) of finding the best prices:

{

min Θ(u) := −θ(u) − u⊤d + V ∗(u)
s.t. u ∈ R

T ,
(4)

where V ∗ is the convex conjugate of V (Hiriart-Urruty and Lemaréchal, 2001). The dual problem is
solved by a convex nonsmooth optimization method, bundle methods are methods of choice (Hiriart-
Urruty and Lemaréchal, 1993, § XV). More and more realistic modeling of technical constraints makes
the subproblems (3) themselves difficult to solve within the strict computational time limits. For example,
in EDF daily UC problem, subproblems associated with hydro-valleys are large mixed integer linear
programs, out of reach of current state of the art solvers. This implies that we only have an approximation
of θi, and thus of the dual function. Bundle methods can handle inexact solutions of the subproblems
and solve inexactly the dual problem (Kiwiel, 2006; Emiel and Sagastizábal, 2010; Oliveira et al, 2012).
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In that case however, we observe (see following Section 2) that the dual optimal solutions show a noisy
and unstable behaviour.

The objective of this paper is to stabilize the dual solutions of the UC problem, computed by the
inexact bundle method. Our idea is simple: we add a stabilization term in the dual objective function in
order to penalize the noisy behaviour of the solutions. We will see that this approach is versatile, easy to
implement and gives good results. For example, numerical results of the final section show that we are
able to compute dual solutions with 80% less variability on average, without loosing in quality.

The structure of the paper is as follows. In Section 2, we recall the standard inexact resolution by
Lagrangian duality and show the resulting bad behaviour of inexact prices. In Section 3, we present
our general dual stabilization and its impact on the resolution scheme and on the primal UC problem.
We give several possible stabilizations, and illustrate our approach on both a synthetic and real-life UC
problems. In Section 4, we focus on the case of total variation regularization and we show in a particular
example that this regularization enable to recover the exact prices. Finally, in Section 5, we present some
practical issues and we validate our approach regarding the global problem.

2 Inexact dual resolution and noisy behaviour

This section gives more details about the inexact unit-commitment resolution and exhibits the noisy
behaviour that we observe and want to reduce. Let us start with some notations.

We call oracle a procedure that solves the Lagrangian subproblems (3) and evaluates the dual func-
tion Θ: for a given multiplier u ∈ R

T , it returns the value Θ(u) and a subgradient g ∈ ∂Θ(u), i.e. by
definition, a vector g ∈ R

T , such that Θ(v) ≥ Θ(u) + g⊤(v − u), for all v ∈ R
T . In our case, some

subproblems cannot be solved exactly within the time limit; this which leads to an inexact oracle, which
produces an approximate value of the dual function and an approximate subgradient, in the following
sense. We suppose that the oracle computes a feasible possibly non-optimal solution and that we know
an upper bound ε on the distance to the optimal solution. Thus, for u ∈ R

T , the inexact oracle returns
a value Θ̃(u) ∈ R such that

Θ(u) − ε ≤ Θ̃(u) ≤ Θ(u) , (5)

and an ε-subgradient g̃ ∈ R
T satisfying

∀v ∈ R
T , Θ(v) ≥ Θ(u) + g̃⊤(v − u) − ε .

In our synthetic example, we introduce and control the noise of the oracle. For the EDF problem, the
mixed integer linear solver used to solve the hydro-valleys subproblems gives the best feasible solution
found in a given time and an upper bound on the error (computed using the optimal value of the linear
relaxation). On our 27 instances, the average upper bound on the error is about 30/00.

The objective now is to solve (4), i.e. to minimize the dual function, which is convex by construction
(as a maximum of affine functions), generally nonsmooth, and inexactly known via the oracle. Inexact
bundle methods (Oliveira et al, 2012; Kiwiel, 2006; Emiel and Sagastizábal, 2010) are then the methods
of choice to solve this problem. Indeed, one can show (Kiwiel, 2006) that the inexact bundle method
converges to a price vector ũ such that:

Θ(u∗) ≤ Θ(ũ) ≤ Θ(u∗) + δ + ε , (6)

where δ is the stopping tolerance of the bundle method and u∗ the exact optimal prices. This previous
guarantee is quite strong: since we know Θ with an error of ε, we inevitably undergo an error of ε on
the “optimal” value that we compute and if we neglect the stopping tolerance δ, the approximation (6)
says precisely that we minimize Θ with an error of at most ε. However, there is no such guarantee on
how the inexact prices ũ are close to the exact one u∗. In practice, we observe on our two examples that
they can be very different.

Example 3 (Inexact prices in EDF UC problem) Figure 1 represents the prices for an instance provided to
us by EDF, with two models and two oracles. Red prices are obtained when the hydro-valleys subproblems
are modeled as linear programs (LP) so that the oracle is exact. Blue prices are obtained when hydro-
valleys subproblems are modeled as mixed integer linear programs (MILP) and then the oracle is inexact.
For industrial privacy, price scales are not provided.
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Fig. 1 Exact and inexact prices over time periods in EDF problem

The inexact prices (in blue) show a noisy behaviour: they have more variations and oscillations
than the exact prices (in red), and more important peaks. There are two possible causes for this noisy
behaviour:

1. the change in the model (LP to MILP),
2. the inexactness of the oracle.

We could distinguish the role of each cause by dropping the computing time constraint to give to the
MILP solver the time to reach optimality. Unfortunately, the complexity of EDF subproblems modeling
makes this impossible. To clearly highlight the effect of inexactness, we reproduce a similar phenomenon
with the simple UC problem. ⊓⊔

Example 4 (Inexact prices in the synthetic problem) Figure 2 shows the demand and the computed exact
prices for a particular instance of the synthetic example (2) with T = 14, n = 18. In this example, exact
prices are a few euros most of the time, with a peak to around 400 euros at t = 4 and t = 5 (which
correspond to the highest demand periods). Figure 3 shows again the exact prices, together with inexact
prices obtained with two different oracle errors. We see that inexact prices show more variations and in
particular important peaks at t = 7 and t = 9, for oracle error ε = 15%.
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Fig. 2 Demand and exact prices over T = 14 time periods for the synthetic problem

⊓⊔

These examples suggest that the oracle inexactness gives undesirable behaviour to the dual solutions,
which may trouble their use as price indicators. Our objective now is to get rid of the artificial oscillations
caused by the noisy oracle to improve the quality of the computed prices.
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Fig. 3 Prices corresponding to different oracle error ε = 0, 10, and 15%, over time periods

3 Prices stabilization by penalization

3.1 Dual penalization and primal interpretation

A first idea to limit the instability of the prices would be to smooth the curves a posteriori (by a running
average for example). The drawback of this blind approach is that all the oscillations would be treated
the same way: the “natural” ones (due to peak hours for example) as well as the “artificial” ones (due to
oracle inexactness). For instance, for our simple problem (2), in figure 3, such approach will attenuate
similarly the meaningful jump of periods t = 4 and t = 5, and the noisy peaks of periods t = 7 and t = 9.
This example shows that we should incorporate the stabilization within the computation of the prices
and not treat it as a separate task.

To reduce the instability of the prices without loosing pertinent information, our idea is simple:
we propose to add a parametrized penalization term in the dual objective function, that limits prices
variations. Instead of (4), we consider a “stabilized dual” problem:

{

min Θ(u) + S(u)
s.t. u ∈ R

T ,
(7)

where S is a well-chosen (closed) convex penalization function that aims to impose to the dual variables
a desirable behaviour. We can think of different types of stabilization. For example, we can choose a
function which is the combination of a norm and a function expressing the variation of the prices (as
first or second order discrete derivatives):

S1
1(u) = TVα(u) =

T−1
∑

t=1

αt|ut+1 − ut| (discrete total variation)

S1
∞(u) = max

t
{αt|ut+1 − ut|}

S1
2(u) =

∑

t

αt|ut+1 − ut|
2

S2
1(u) =

∑

t

αt| − ut + 2ut+1 − ut+2|

S2
∞(u) = max

t
{αt| − ut + 2ut+1 − ut+2|}

S2
2(u) =

∑

t

αt| − ut + 2ut+1 − ut+2|
2

where α = (αt) ∈ R
T−1
+ is a vector of nonnegative coefficients. We could also consider constrained versions

of the above penalties. In Section 4, we will give a particular emphasis on the first penalty function, the
discrete total variation, which is a popular regularization function, used successfully in many fields (for
example in image processing for noise removal, see e.g. (Rudin et al, 1992; Chambolle, 2004)). Similar
developments can be made for other stabilization functions.
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In general, when α = 0, the corresponding problem (7) is the initial problem (4). When α is very large,
any constant u ∈ R

T is a solution of the problem. For well-chosen α ∈ R
T−1
+ , we will see in forthcoming

experiments that the solutions do not show the noisy behaviour anymore. Tuning the parameter α to
get the desirable behaviour is obviously a delicate point. First, α should be adapted to make S have the
same order of magnitude as Θ in (7). Second, α could also be chosen to more or less penalize the price
variations according to the period. Typically, if we know peak periods where it is natural that the prices
jump, we can choose the corresponding components αt small or even null.

A primal view on the dual stabilization in (7) can also help in choosing a good α. The next proposition
studies the case of a general stabilization. Forthcoming Corollary 1 specializes it in the case of total
variation regularization.

Proposition 1 (Stabilized primal problem) The dualization of the balance constraint in the follow-
ing problem (8) leads to the stabilized dual problem (7) .















min c(p) + V (z) + S∗(δ)
z = (d − δ) − Ap
p ∈ P
z, δ ∈ R

T .

(8)

Proof The dual function corresponding to the dualization of the linking constraint of (8) is for u ∈ R
T :

(with the same change of signs as in (4))

ΘS(u) := −min
p,z,δ

{

c(p) + V (z) + S∗(δ) + u⊤(d − δ − Ap − z)
}

= −min
p∈P

{

c(p) + u⊤(d − Ap)
}

− min
z∈RT

{

V (z) − u⊤z
}

− min
δ∈RT

{

S∗(δ) − u⊤δ
}

= −min
p∈P

{

c(p) + u⊤(d − Ap)
}

+ max
z∈RT

{

u⊤z − V (z)
}

+ max
δ∈RT

{

u⊤δ − S∗(δ)
}

= −θ(u) + V ∗(u) + S∗∗(u)

= Θ(u) + S(u) (because S is closed and convex) .

Therefore, the corresponding dual problem is (7). ⊓⊔

The effects of price stabilization on the primal problem interpret as follows: at each period of time t,
demand forecast can be perturbed by a quantity δt, and this perturbation is penalized in the objective
through the convex conjugate S∗ of the stabilization function S.

3.2 Penalization in practice, and illustration

The additional term S(u) in the dual objective does not change the nature of the dual problem (4). This
is still an unconstrained convex nonsmooth problem, that can be solved by (inexact) bundle method.
Actually, there are two ways to handle the additional term: (1) we can use the same bundle method and
change the oracle, including S; or (2) we can use a disaggregated bundle method (Bacaud et al, 2001) to
exploit the simple structure of S. For simplicity, we consider in our computational tests the first strategy;
so we deal with an oracle that returns, for u in R

T

• the inexact dual objective value: Θ̃(u) + S(u), which has the same absolute error ε as Θ̃(u),
• the vector g̃ + gS , with g̃ ∈ ∂εΘ(u) and gS ∈ ∂S(u), which is also an ε-subgradient of (Θ + S) at u.

We apply our stabilization approach on both our synthetic and real-life UC problems.

Example 5 (Price stabilization for the synthetic problem) Let us come back to the instance presented
in Example 4. We set oracle error to 15%, and use as stabilization function the total variation, with
constant coefficients (αt = α, for all t) for simplicity. Which means that we apply the same penalization
to all the jumps of the prices. Then, for different values of α, we obtain the range of prices represented
in Figure 4. When α = 0, we have the inexact prices of Figure 3. When α increases, we see that the
oscillations are more and more attenuated, in particular on periods 7 and 9. Finally, for α ≥ 300, the
peak between periods 4 and 5 is altered and it finally disappears. For α even larger, the prices are totally
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flat. Note that for α ≈ 50, we almost recover the exact prices: artificial peaks of periods 7 and 9 are
hardly visible whereas natural jumps of periods 4 and 5 are unaltered. It is remarkable that the total
variation penalization erases first the artificial variations; we will give some theoretical insights into this
fact in forthcoming Theorem 1. ⊓⊔
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Fig. 4 Variation of stabilized prices for different weights of total variation regularization in our simple problem

Example 6 (Price stabilization for EDF) We apply our total variation stabilization to a realistic instance
provided by EDF (for industrial privacy, we only give the relative value of prices). Figure 5 represents
the prices of the stabilized problem with the function TVα, for different constant vectors α. When α is
small, we observe that the stabilized prices have roughly the same look as the initial ones, with each
peak attenuated. Some oscillations disappeared, for example between periods t = 55 to t = 60. For a
medium α, prices are much more stable. We can notice though that they follow the main tendencies of
the initial prices. When α is larger, the prices tend to be flat.
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Fig. 5 Variation of stabilized prices for different weights of total variation regularization in EDF problem

Since rush hours are generally predictable, we can take them into account when choosing the coeffi-
cients αt. For example, we tried:

αt
adaptive =

{

αt
small if t in rush hours of the first day ,

αt
medium otherwise .

Figure 6 gives the corresponding stabilized prices. We see clearly attenuated oscillations at the rush hours
of the first day, and more stable prices on the other periods. ⊓⊔
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Fig. 6 Variation of stabilized prices with TVα using a non constant vector α in EDF problem. The components corre-
sponding to rush hours of the first day are less penalized than the regular periods

4 More on total variation regularization

In this section, we look closely to the stabilization by total variation to give some more theoretical
insights. Given α ∈ R

T−1
+ , we consider the (weighted) total variation function:

TVα(u) :=

T−1
∑

t=1

αt|ut+1 − ut| . (9)

Note that we can write TVα = ‖·‖1 ◦ Bα, where Bα is the matrix of R
T−1 × R

T defined by:

Bα =











−α1 α1 0
−α2 α2

. . .
. . .

0 −αT−1 αT−1











. (10)

Obviously, TVα is a (closed) convex function, as the composition of a norm and a linear function. Subdif-
ferential calculus rules (see (Hiriart-Urruty and Lemaréchal, 2001)) give that ∂TVα(u) = B⊤

α ∂ ‖·‖1 (Bαu)
and thus a subgradient of TVα at u has the form:

gt =







α1s1 if t = 1 ,
αt−1st−1 − αtst if t ∈ {2, . . . , T − 1} ,
αT−1sT−1 if t = T ,

(11)

where st = −1 if ut+1 < ut, st = 1 if ut+1 > ut and st ∈ [−1; 1] if ut+1 = ut.

4.1 Total variation stabilized primal problem

We give the impact of the total variation penalization on the primal UC problem. Using Proposition 1
with the explicit expression (9), we get the following corollary:

Corollary 1 (Primal interpretation of the regularization) A primal problem giving the dual prob-
lem (7) stabilized with TVα by dualizing the supply-demand constraint is the following



























min c(p) + V (z)
s.t. z = (d − δ) − Ap

∑T

i=1 δi = 0
∣

∣

∣

∑t

i=1 δi

∣

∣

∣ ≤ αt,∀t = 1, . . . , T − 1

p ∈ P , δ ∈ R
T .

(12)
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Proof Using Proposition 1, we just have to compute the convex conjugate function TV∗. Theorem
(Hiriart-Urruty and Lemaréchal, 2001, §E.2.2) gives:

TV∗
α(x) = inf{‖y‖

∗

1 : y ∈ R
T−1, B⊤

α y = x} = inf{iB∞(1)(y) : y ∈ R
T−1, B⊤

α y = x}

We can therefore write:

TV∗
α(x) =

{

0 if there exists y ∈ B∞(1) such that B⊤
α y = x ,

+∞ otherwise .

Suppose now that x is in the image of B⊤
α , then simple computations give

T
∑

t=1

xt = 0 and for all t such that αt = 0 ,

t
∑

i=1

xi = 0 . (13)

Let y be in the inverse image (B⊤
α )−1({x}). We can show that two cases are possible for its components:

• For t such that αt > 0, yt = − 1
αt

t
∑

i=1

xi, and |yt| ≤ 1 is equivalent to

∣

∣

∣

∣

∣

t
∑

i=1

xi

∣

∣

∣

∣

∣

≤ αt.

• For t such that αt = 0, yt is free. Let us take yt = 0 in this case.

By writing the second part of condition (13) as

∣

∣

∣

∣

∣

t
∑

i=1

xi

∣

∣

∣

∣

∣

≤ αt, for all t such that αt = 0, the set of vectors

where TV∗
α is zero is

C1 =

{

δ ∈ R
T :

∣

∣

∣

∣

∣

t
∑

i=1

δi

∣

∣

∣

∣

∣

≤ αt,∀t = 1, . . . , T − 1,

T
∑

i=1

δi = 0

}

.

Finally, we can write TV∗
α = iC1

and plugging this expression in the problem (8), we get (12). ⊓⊔

In this case, demand perturbation is constrained: its mean must be zero and the partial sums of its
components are bounded by α. Note that the larger an αt is (i.e. the more we penalize prices jump
between periods t and t + 1), the less constrained is the demand perturbation at t. Conversely, if αt = 0,
i.e. prices jump between t and t + 1 is free, then the total perturbation until period t must be zero. It
means that the cumulative demand and perturbed demand until period t coincide. Note that if we know
a limit under which a perturbation of the demand is acceptable (for example 1% of the forecast), we
could use it to choose α.

4.2 Exact prices recovery in a particular case

In Example 5, we observed that for a certain choice of the stabilization parameter α, the stabilized prices
are close to the exact ones. In this section, we prove that in a particular simple context, the stabilized
prices are precisely the exact prices. We prove that we can indeed recover piecewise constant prices with
a jump. We consider a general convex (dual) function Θ and a specific (artificial) oracle noise, which
pushes the solutions toward a chaotic behaviour. Then, we show that there exists a constant vector α
such that the solution of the stabilized problem using TVα is precisely the exact prices.

The assumptions on the oracle noise are inspired from results on noise removal in image processing.
In (Strong and Chan, 2003), it is shown that total variation regularization recovers exactly properties
of the image in certain situations. Contrary to (Strong and Chan, 2003) though, we use directly convex
analysis tools to prove our recovery result.

Theorem 1 Let Θ be a convex function from R
T → R. Assume that an optimal solution of the “initial”

problem

min
u∈RT

Θ(u) ,
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denoted by u∗, has the following form: u∗
t = 1 if t ≤ t0, u∗

t = 0 otherwise, for some t0 ∈ {2, . . . , T − 1}.
Let v be a “noisy” vector of R

T satisfying the following conditions:

1

t0

t0
∑

i=1

vi = 1 +
β

t0
,

1

T − t0

T
∑

i=t0+1

vi = −
β

T − t0
, (14)

min
1≤i≤t0

vi ≥ 1 , max
t0<i≤T

vi ≤ 0 . (15)

If α = βσ, then u∗ is also the optimal solution of the “stabilized” noisy problem

min
u∈RT

Θ(u) +
σ

2
‖u − v‖

2
+ TVα(u) .

Proof Denote f(u) = Θ(u) + σ
2 ‖u − v‖

2
+ TVα(u). As a sum of convex functions and a norm, f is

strongly convex and u∗ is its unique minimum if and only if 0 ∈ ∂f(u∗). We have:

∂f(u∗) = ∂Θ(u∗) + σ(u∗ − v) + ∂TVα(u∗)

By construction, we have 0 ∈ ∂Θ(u∗). So, it is sufficient to find a vector g ∈ ∂TVα(u∗) such that

σ(u∗ − v) + g = 0 . (16)

Let us write TVα = ‖·‖1 ◦ Bα, where Bα is defined in (10), with the abuse of notation αt = α, for all t.
From the expression (11) of a subgradient of TVα at u = u∗, it follows easily that finding g ∈ ∂TVα(u∗)
satisfying (16) amounts to finding s1, . . . , st0−1, st0+1, . . . , sT−1 ∈ [−1; 1] such that:

σ(u∗
1 − v1) − αs1 = 0

σ(u∗
t − vt) − α(st−1 − st) = 0 for 2 ≤ t ≤ t0 − 1

σ(u∗
t0
− vt0) − α(st0−1 + 1) = 0

σ(u∗
t0+1 − vt0+1) − α(−1 − st0+1) = 0

σ(u∗
t − vt) − α(st−1 − st) = 0 for t0 + 2 ≤ t ≤ T − 1

σ(u∗
T − vT ) − αsT−1 = 0

Using assumptions (14), the previous system gives :

st = σ
α

t
∑

i=1

(u∗
i − vi) =

σ

α

t
∑

i=1

(1 − vi) if 1 ≤ t ≤ t0 − 1 ,

st = −σ
α

T
∑

i=t+1

(u∗
i − vi) =

σ

α

T
∑

i=t+1

vi if t0 + 1 ≤ t ≤ T − 1 .

(17)

It remains to check that these components st lie in [−1; 1]. Using assumptions (15), we see from expression
(17) that for 1 ≤ t ≤ t0 − 1, st are negative, decreasing and bounded from below by st0−1 = −1 +
σ
α
(vt0−1 − 1) ≥ −1. Similarly, for t0 + 1 ≤ t ≤ T − 1, st are negative, increasing and bounded from below

by st0+1 = −1 + σ
α
(−vt0−1) ≥ −1. Therefore, equation (16) holds for the vector g, i.e. 0 ∈ ∂f(u∗). ⊓⊔

5 Numerical experiments for EDF

In this section, we illustrate our approach on real-life UC problems, provided to us by EDF. We will show
that we can drastically reduce the noisy behaviour of the prices, without loosing pertinent information
on the optimization problem.

Recall that approximation (6) essentially says that the computed prices ũ minimize the dual function
Θ with the “minimal” error, which is ε the error of the oracle. We would like the same guarantee for ũs

the optimal prices of the stabilized problem (7); that is, we would like that ũs also minimizes Θ up to
an error of ε.
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For EDF industrial problems, we cannot compute – and therefore compare – the exact values of Θ
at the optimal prices u∗ and the stabilized prices ũs. Fortunately, properties of inexact bundle methods
recalled in Section 2 imply that the “exact” difference

∆ex := Θ(u∗) − Θ(ũs)

is close to the observed difference

∆obs := Θ̃(ũ) − Θ̃(ũs) .

More precisely, we have the following lemma:

Lemma 1 Let ε be the maximum error of the oracle and δ the stopping tolerance of the inexact bundle
method. Then we have:

|∆obs − ∆ex| ≤ δ + 2ε

Proof First, using (5) and (6), we get that

Θ(u∗) − ε ≤ Θ̃(ũ) ≤ Θ(u∗) + δ + ε .

This implies that Θ̃(ũ) approximates Θ(u∗) up to δ + ε. Second, using (5) at ũs, we have

Θ(ũs) − ε ≤ Θ̃(ũs) ≤ Θ(ũs) ,

so Θ̃(ũs) approximates Θ(ũs) with again an error of ε. Therefore, we have:

|∆obs − ∆ex| ≤ |Θ(u∗) − Θ̃(ũ)| + |Θ̃(ũs) − Θ(ũs)| ≤ δ + ε + ε ,

which is the desired approximation. ⊓⊔

Neglecting the stopping tolerance δ, we deduce that ∆obs approximates ∆ex with an error of 2ε. Thus,
if ∆obs is of the order of ε then, so is ∆ex. In other words, the stabilized prices ũs have the same quality
in terms of Θ as the initial prices ũ.

We analyze the impact of the stabilization on the 27 EDF instances. The (relative) error of the oracle
is between 0.10/00 and 2%, with an average of about 30/00. Table 1 summarizes the average results between
the stabilized prices ũs and the original ones ũ for the different settings of the stabilization parameter α
of Section 3.2. Are reported:

• the average gain in total variation (TV(ũ) − TV(ũs))/TV(ũ),
• the average lost in Θ̃: ∆obs/Θ̃(ũ).

We observe that the total variation of the stabilized prices is considerably lower than the original
one. Even for a small α, total variation decreases, in average, by half; and when α is larger the gain in
total variation is more important.

We see that the loss in Θ also increases with α, but to a lesser extent. We note that for medium
and adaptive α, the prices of the stabilized problem give an error on Θ̃ smaller than the oracle error
30/00. Thus, these prices (for medium and adaptive α) minimize the dual function with an error of the
same order as the oracle error, while being significantly more stable (more than 80% of total variation
reduction).

Table 1 Average results on the 27 real-life UC instances for different values of α

Stabilization Avg. gain in TV Avg. lost in Θ̃

Small α 52% 0.6 0/00
Medium α 88% 2.8 0/00
Large α 93% 3.3 0/00
Adaptive α 83% 2.6 0/00
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6 Conclusions

In this paper, we considered unit-commitment resolution by Lagrangian duality, in the case where the
subproblems are solved inexactly. We showed that the minimization of the resulting approximate dual
function leads to unstable dual solutions. To limit this phenomenon, we proposed to add a stabilization in
the dual objective, which penalizes the variations of the solutions. We showed that this can be interpreted
as introducing a perturbation of the demand forecast in the primal problem.

We showed in a simple context that a certain choice of the stabilizer allows to actually recover the
exact solutions. For a synthetic UC problem, we observed that we can indeed obtain stabilized prices
close to the exact ones. For EDF industrial problems, we obtained a good compromise between the
stabilization of the prices and the optimization of the dual function.

We finish with emphasizing that our approach is general, easy to implement and test, but requires
adequate knowledge of the particular UC problem to fix the stabilization parameter. Efficient imple-
mentation can exploit the simple structure of the stabilization function in the optimization algorithm.
Instead of including the stabilization term in the black-box oracle, one could consider explicitly the two
terms of the dual function and use a disaggregated bundle method to accelerate the resolution.
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production management problem at EDF. Optima 84 104:2–6
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