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Abstract—Photonic crystals will play a fundamental role in the
future of optical communications. The relevance of the numerical
modeling for the success of this technology is assessed by using
some examples concerning the experience of the COPERNICUS
Project.

I. I NTRODUCTION

Photonic crystals are periodic dielectric nanostructuresthat
permit to control the light flow at sub-micrometer scales.
They exhibit disrupting capabilities of routing, switching, and
multiplexing in an ultra-compact integrated format and will
play a key role in the future of optical communications and
interconnects. COPERNICUS (Compact Otdm/wdm oPtical
rEciveRs based on photoNic crystal Integrated CircUitS) is
a European project whose aim is to develop a cutting-edge
photonic crystal technology for the high density integration of
basic optical functions. The scientific and technological ob-
jectives of COPERNICUS target the development of compact
demultiplexing receivers for100Gb/s optical time division
multiplexed (OTDM) and wavelength division multiplexed
(WDM) signals, including high-speed integrated photodetec-
tors. Coordinated by Thales Research and Technology (TRT),
France, the Consortium brings together different academic
and industrial partners with high profiles in photonics, nan-
otechnology, modeling and developing new technologies for
telecommunications and aerospace (the University of Notting-
ham UK (UNott); the Laboratory for Photonics and Nanos-
tructures (LPN) and the Laboratory of Optical Functions for
Information and Communication Technologies (FOTON), both
research units of the French National Center of Scientific
Research (CNRS); DTU Fotonik at the Technical University
of Denmark; the University of Ferrara (UniFe) in Italy and
industrial partners u2t Photonics (U2T), Germany and Thales
Syst̀emes Áeroport́es (TSA), France). The aim of this paper
is to highlight the pivotal role of numerical modeling in the
development of this disruptive technology.

II. T HE COPERNICUS’S EXPERIENCE

The Project focuses on the development and integration of
photonic crystal devices for OTDM and WDM receivers. The
design of the different components is addressed by means
of several techniques such as, for example, Coupled Mode
Theory (CMT), the Finite Difference in the Time Domain
(FDTD), etc. For brevity, only some examples are reported
here. More details can be found on the project website
(http://www.copernicusproject.eu).

A. OTDM Receiver

The realization of an all-optical time domain receiver op-
erating at100Gb/s is a real challenge. In this component,
the extraction of the output signal from the input frame is
obtained by means of an optical control pulse. Nonlinear
effects in a nanocavity system permit to achieve this operation
[1]. Material and structural properties influence each other
and require a thorough understanding of a complex dynamical
evolution as well as an estimation of physical properties (e.g.
carrier lifetime). Design procedures are performed by different
partners (DTU, TRT, UniFe) whereas LPN leads the activity
on material engineering, which is required to manipulate the
carrier lifetime of the active medium. Fabrication is performed
at DTU and TRT and final characterization at both FOTON and
TRT. As an example, fig.1 shows a schematic representation
of the three-ports AOG and the simulated evolution of a signal
pulse at different pump levels.

B. WDM Receiver

The second key component for COPERNICUS is a four
channel WDM receiver operating at25Gb/s per channel. The
core of this device is a wavelength drop filter. As an example,
the layout of a two stage filter (operating atλ1 = 1.46µm
and λ2 = 1.48µm respectively) is shown on fig.2 (right).
Each stage is realized with two L3 coupled cavities [2]. A
reliable filter is obtained by the careful adjustment of structural
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Fig. 1. Schematic representation of the AOG (right). Pump-probe operations
in a three-ports AOG optimized design (left). The curves showthe probe
efficiency at the drop port for different control power injected into the
structure. The corresponding values of the switching contrast (SC) are also
indicated.

parameters, such as the hole positions and radii. The left part
of this figure reports the reflection (S11) and transmission
coefficients for the through port (S21) and the two drop
ports (S31 and S41). The final device with four channels is
realized by duplicating this configuration. The design has been
performed by UniFe, fabrication by DTU, LPN and TRT. Final
measurements will be made at both TRT and FOTON.

Fig. 2. Sketch of a two stage filter realized with two coupled L3 cavities
(right) and S parameters of the filter (left).

C. Photodetector

Electronic output is provided by a compact integrated pho-
todetector. The requirements for the photodetector are high
responsivity (> 0.5A/W ) and fast response (> 28GHz).
This presents a number of design challenges. For example,
a vertical PIN structure with an absorbing layer must be
integrated with the PhC waveguide. The bandwidth requires
devices with a small RC time constant, so the junction area
must be kept small. For high responsivity, the optical field
must be transmitted from a single-mode PhC waveguide into
the small photodetector, requiring careful optical matching and
efficient lateral optical confinement. Optical and electrical sim-
ulations have been performed using FDTD (UniFe) and bipolar
electro-thermal models (UNott), respectively. The electric field
dependence of the carrier velocity is taken into account using a
field-dependent mobility model. Fig.3 shows that the constant
low-field mobility overestimates the modulation response at
high reverse bias. The use of field dependent carrier mobilities
gives good agreement with published experimental results [3].

D. Photonic Crystal Circuitry

The different key components of each device must be prop-
erly connected by means of single mode optical ”circuitry”
integrated on the same chip. Examples of circuit components

Fig. 3. Frequency response of the photodetector. LCM: constant low-field
mobility model (dashed lines), FDM: field-dependent mobility model (solid
lines).

are signal splitters, bends and delay lines. To optimize the
layout, DTU and UniFe have set-up a design procedure based
on 3D-FDTD and Topological Optimization (TO) [4]. This
procedure has been successfully applied to the design of a
Y-junction and a double60 ◦ bend, whose optimized layout
is illustrated in fig. 4 (right). The same figure (left) show
the transmission (S21) and the reflection (S11) coefficients for
the optimized (continuous lines) and the unoptimized (dashed
lines) configurations; the impressive positive effects of TO are
evident.

Fig. 4. Optimization procedure for the design of a double60
◦ bend (right)

with the final layout of the device. Transmission (S21) and reflection (S11)
coefficients (left) for the optimized (continuous lines) andthe unoptimized
(dashed lines) configurations.

III. CONCLUSIONS

The ground-breaking capabilities of PhC circuits and sys-
tems demand a comprehensive design strategy in order to
promptly provide reliable design guidelines. The ambitious
goals of the COPERNICUS project are pursued by means of
different tools according to a multiphysics approach.
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