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Pore fluid pressure diffusion in defluidizing granular columns

S. Montserrat,1,2 A. Tamburrino,1,2 O. Roche,3,4,5 and Y. Niño1,2

[1] Pore fluid pressure variations play an important role in the motion of natural granular
flows like debris and pyroclastic flows. Pore pressure in a defluidizing air-particle bed
was investigated by means of experiments and numerical modeling. Experiments consisted
of recording the defluidization process, measured as the decay of the basal pore fluid
pressure in initially aerated granular mixtures. Mixtures were aerated to different degrees of
fluidization by introducing a vertical air flux at the base of a granular column. The degree
of fluidization was characterized by the parameter bo (pore fluid pressure/lithostatic
pressure). Bed expansion occurred for bo > 0.8–0.9, with maximum expansions near 8% at
bo �1. Pore pressure diffusion in our mixtures was modeled by a simple diffusion
equation, taking into account a variable diffusion coefficient. When mixtures were
expanded (bo > 0.8–0.9), continuous consolidation introduced nonlinearities in the
diffusion coefficients, which retarded the decay of pore pressure. In contrast, for
non-expanded mixtures, the diffusion coefficient remained constant (linear diffusion).
Our results highlight that mixture compressibility can effectively reduce the pressure
diffusion coefficient in initially expanded granular mixtures, thus increasing the duration of
pressure diffusion. In our experiments, as well as for most self-consolidating natural
granular mixtures, changes in permeability due to mixture consolidation appear to be
negligible for the defluidizing process, as they are counteracted by changes in porosity and
because the fluid behaves as incompressible, even when the fluid is air.

1. Introduction and Objective

[2] Geophysical granular flows consist of solid-fluid
mixtures driven by gravity, which propagate over natural
terrains. The solid phase typically consists of grains of dif-
ferent sizes, commonly ranging from microns to decimeters
and possibly meters, while the fluid phase is either water or
gas. In case of water-solid mixtures, fine sediments and
water act as an equivalent fluid phase, with a different
effective fluid viscosity, and possibly rheology, with respect
to pure water [Iverson, 1997; Major, 2000]. Examples of
geophysical granular flows include debris flows, pyroclastic
flows, snow avalanches, and rock avalanches [Iverson,
1997; Iverson and Denlinger, 2001; Jain et al., 2004;

Freundt et al., 2000]. Since Bagnold [1954] introduced the
concept of dispersive stress, important advances have been
made regarding the understanding of fluid-particle flow
dynamics. Nevertheless, the formulation of general consti-
tutive laws and their relation with mixture constituents and
terrain characteristics remains an active research field.
[3] Geophysical granular flows have been commonly

modeled using shallow water equations to solve their bulk
behavior [Savage and Hutter, 1989; Denlinger and Iverson,
2001; Iverson et al., 2004; Vollmöller, 2004; Pudasaini
et al., 2005]. A major issue arises when considering an
appropriate flow resistance relationship to adequately
describe the flow regime. Such flows have often been
modeled as plastic materials, and two plastic theories are
commonly used: viscoplasticity and Coulomb plasticity. A
viscoplastic model often assumes an equivalent single-phase
viscous fluid with a specific rheology, typically of Bingham
or Herschel-Bulkley type, as considered in pure fluid
mechanics [Ancey, 2007; Naef et al., 2006]. In contrast,
Coulomb plasticity derives from soil-mechanics considera-
tions. Coulomb models are two-phase models that consider
both a solid and a fluid phase. The fluid-phase energy dis-
sipation is commonly treated as a viscous term, while inter-
particle interactions are assumed to be dominated by friction,
which is well described by the Coulomb law [Savage and
Hutter, 1989; Iverson, 1997; Iverson and Denlinger, 2001;
Savage and Iverson, 2003; Iverson et al., 2004; Hutter et al.,
2005; Pudasaini et al., 2005; Ancey, 2007]. Inter-particle
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friction is controlled by pore fluid pressure, which counter-
balances the weight of the particles, thus reducing contact
shear stresses according to the Terzaghi effective-stress
principle [Iverson, 1997; Iverson and Denlinger, 2001;
Savage and Iverson, 2003; Goren et al., 2010]. Thus, inter-
granular pore fluid pressure appears important for under-
standing the dynamics and mobility of granular flows. When
dilute mixtures are highly agitated, particle collisions
dominate energy dissipation within the flow. In these cases,
constitutive equations derived from the kinetic theory of
gases have provided good flow descriptions [Campbell,
1990; Azanza et al., 1999; Goldhirsch, 2003]. In most
natural granular flows, as well as in industrial applications,
the two limiting regimes, frictional and collisional, coexist
[Ancey and Evesque, 2000; Armanini et al., 2005]. Two-
dimensional numerical simulations of sheared granular
layers have shown the appearance of force chains, formed
by long-lasting contact networks (frictional forces), which
transmit most of the stress within the flow [Aharonov and
Sparks, 1999]. Vertical rheological stratification has been
experimentally observed by Armanini et al. [2005, 2008] in
chute flows, where distinct sub-layers are characterized by
either frictional or collisional regimes.
[4] Observations made at different scales support the idea

that pore fluid pressure in excess of hydrostatic or atmo-
spheric pressure, respectively, in wet and dry mixtures
(hereafter named excess pore fluid pressure), can be retained
for long durations. High pore fluid pressure has been mea-
sured in experimental and natural debris flows [Iverson,
1997; Major and Iverson, 1999; McArdell et al., 2007] and
in laboratory experiments on initially fluidized air-particle
flows [Roche et al., 2010], and explains why the run-out of
fluidized flows can be twice that of non-fluidized flows
[Roche et al., 2004, 2008; Girolami et al., 2008]. In spite of
the prevailing idea that differential fluid-particle motion
generates excess pore fluid pressure that may diffuse in ways
that depend on the mixtures characteristics [Iverson and
LaHusen, 1989; Iverson, 1997; Iverson and Denlinger,
2001; Goren et al., 2010, 2011], the details of the associ-
ated pore pressure dynamics (generation, transport and dif-
fusion) are still poorly understood. Based on experimental
data, Iverson and Denlinger [2001] proposed that basal pore
pressure should advect passively with the flow in the hori-
zontal directions (x and y) and simultaneously diffuse in the
vertical direction (z) following a simple linear diffusion
model [Iverson and Denlinger, 2001, equation 59]. This
approach has been used by different authors to model debris
flows and has led to good results, requiring a prescribed
model for the pore pressure diffusion coefficient [Vollmöller,
2004; Denlinger and Iverson, 2001; Pudasaini et al., 2005].
Savage and Iverson [2003] explicitly coupled a pore
pressure-diffusion equation to changes in debris flow thick-
ness and showed that pore pressure can be generated due to
changes in flow height. Recently, a numerical model cou-
pling the evolution of dilatancy, solid and fluid volume
fractions, pore fluid pressure, and flow depth and velocity
has demonstrated the ability to simulate debris flows
from initiation to deposition [George and Iverson, 2011].
Numerical results compared well with experimental data.
[5] Previous one-dimensional experimental results on a

defluidizing static column have shown that above a critical

value of about �80–90% of full initial fluidization, occur-
ring at the onset of bed expansion, the pore pressure
diffusion coefficient drops abruptly. Linear pore pressure
diffusion models [Major, 2000; Iverson and Denlinger,
2001] fail to represent the pore pressure diffusion in static
granular columns for fluidization degrees exceeding those
triggering the onset of bed expansion [Montserrat et al.,
2007]. At the same critical fluidization threshold, an
important increase in the run-out distance of initially
expanded mixtures occurs [Montserrat et al., 2007; Roche
et al., 2004, 2008, 2010], suggesting that changes in the
pore pressure diffusion dynamics may significantly affect
flow behavior. This work aims to extend the present
understanding of pore pressure diffusion at fluidization
degrees exceeding the critical value, for expanded mixtures,
toward a better description of the implications and modeling
of pore pressure in granular flows. To this purpose, we
carried out coupled experimental and numerical studies on
the pore pressure diffusion process in a static granular bed.
Experiments focused on the decay of pore pressure at the
base of a reservoir filled with an air-particle mixture
that can be fluidized at different degrees by introducing a
vertical upward air flux through the granular medium
[Montserrat et al., 2007]. Similar, fluidization techniques
have been used since the early 1970s in studies related to
industrial applications as well as to pyroclastic flows [e.g.,
Davidson and Harrison, 1971; Geldart, 1973;Wilson, 1980;
Geldart and Wong, 1985; Lorences et al., 2003; Roche et al.,
2004, 2008, 2010; Druitt et al., 2007]. In our experiments,
fluidization was used to generate an initial excess pore
pressure gradient, above atmospheric, within the granular
mixture. In nature, excess pore fluid pressure can be caused
by particle settling or by the presence of an upward fluid
flux, both configurations being dynamically equivalent
[Richardson and Zaki, 1954; Druitt et al., 2007]. Our results
show that pore pressure diffusion can be well represented,
from nil to complete fluidization, by a simple linear diffu-
sion model taking into account a variable diffusion coeffi-
cient. The coefficient is a strong function of the mixture
compressibility, which in turns depends on the initial degree
of fluidization. For low degrees of fluidization, the linear
diffusion model (with a constant pore pressure diffusion
coefficient) is recovered.
[6] The experiments presented here are probably the

simplest way to study pore pressure diffusion in granular
mixtures, and represent a first step toward the study of pore
pressure in flowing mixtures. We acknowledge that in
sheared flows, however, complex processes such as deposi-
tion, varying flow height [Girolami et al., 2008; Roche et al.,
2010], continuous grain rearrangement (dilative-compactive
grains motion [Iverson and LaHusen, 1989; Goren et al.,
2010]), self-fluidization due to flow instabilities and gas
entrainment [Bareschino et al., 2008], and other processes
can affect pore pressure dynamics.

2. Experimental Device and Procedure

[7] The experimental device (Figure 1) consisted of a
0.5 m tall rectangular Plexiglas reservoir having a cross-
sectional area of 0.1 � 0.2 m2, which contained a dry par-
ticle mixture. An air flux was introduced through a 10 mm
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thick porous plate (pore size �20 mm) located at the bottom
of the reservoir in order to fluidize the mixture. Air was first
introduced in a wind box separated from the tank by the
porous plate (Figure 1). A pressure transducer, placed per-
pendicular to the upward air flux, continuously measured
the pore pressure at the base of the reservoir. Airflow
velocities (with maximum interstitial values �10 mm/s)
were low enough to not affect the pressure transducer
readings. The air flux could be stopped almost instanta-
neously (in �0.01 s) by means of a solenoid valve, thus
starting the defluidizing process. Pore pressure could not
diffuse back toward the porous plate because pressure was
maximum in the wind box. Measurements taken inside the
wind box showed that pressure diffused almost instanta-
neously (<0.01 s) when no particles were placed above the
porous plate. Thus, the wind box could be neglected in the
analysis, and the porous plate could be assumed as an
impermeable wall above the granular column after the
solenoid valve was closed. Therefore, pore pressure diffu-
sion only occurred in the upward direction. Special care was
taken to control the mixture humidity in order to avoid
excessive cohesion and electrostatic effects and to ensure
reproducibility of the experiments. Air was dried before
entering the reservoir. A humidity transducer placed at the
top of the reservoir controlled the air flux relative humidity
(RH), which had a mean value of 35% � 5%. Before each
experiment, the particles were aerated for about one hour.
[8] When a vertical airflow is supplied at the bottom of a

granular column, an upward drag force is exerted on the

particles. When the drag force is less than the weight of the
particles, the granular column is commonly termed aerated
[Gibilaro, 2001]. If the weight of the particles is fully
counterbalanced by the drag force, the column is termed
fluidized. In fluidized granular columns, intergranular fric-
tional stress is negligible and the fluid-particle mixture
acquires fluid-like properties, with the internal pore fluid
pressure equaling that generated by the particle network. A
linear pressure gradient is established during the aeration
procedure, with maximum pore pressure at the base of the
mixture and atmospheric pressure at the top of the granular
column. The degree of fluidization is defined by comparing
the pore pressure at the base of the granular column (pbed)
with the lithostatic pressure, PL, (defined as the particles
weight divided by the cross-sectional area of the container).
Thus, when pbed/PL = b0 < 1, the bed is aerated, and when
pbed /PL = b0 = 1, the bed is fully fluidized.
[9] We used nearly spherical glass beads, with a density of

2500 kg/m3 (Ballotini, Potters Industries), which had almost
the same characteristics as those used by Roche et al. [2004,
2008, 2010] in their dam break studies on air-particle flows.
Particle diameter ranged from 45 to 90 mm, with a mean
diameter of about 60 mm (measured by a Mastersizer 2000
particle analyzer, Malvern Instruments Ltd.). The bulk den-
sity of the granular bed was 1400 � 40 kg/m3, which indi-
cated a porosity of 0.44 � 0.02. In terms of their gas
fluidization properties, the particles belonged to the Geldart
[1973] group A. This means that once particles are fully
fluidized at a critical airflow velocity, Umf (minimum flu-
idization velocity), gas bubbles form at a second critical
velocity, Umb > Umf. Note that airflow velocity is defined as
the volumetric airflow rate (introduced at the bottom of the
reservoir) divided by the reservoir cross-sectional area.
Between Umf and Umb, the homogeneously fluidized bed
expands linearly as the flow rate is increased [Gibilaro,
2001; Roche et al., 2004]. In practice, fluidization may not
be fully homogeneous throughout the granular column, as
airflow channeling tends to occur. Thus, bed expansion may
occur before complete fluidization is achieved [Gilbertson
et al., 2008]. For this reason, Umf is defined in practice as
the air velocity at the onset of bed expansion, which com-
monly occurs at velocity slightly smaller than that for which
full bed support is achieved. This definition is used here [cf.
Roche et al., 2004; Druitt et al., 2007].
[10] At the laboratory scale, the use of group A particles

of small grain size (and hence small permeability) is
required for allowing pore pressure measurements, as mix-
tures of coarser particles diffuse pore pressure too fast and
are almost immediately defluidized [Iverson, 1997; Major,
2000; Iverson and Denlinger, 2001, Druitt et al., 2007,
Roche et al., 2004]. It is important to note that our experi-
ments best apply to natural gas-particle mixtures, such as
pyroclastic flows, because fluidized beds of pyroclastic
debris that consist of a matrix of fine ash have a typical
group-A behavior, including homogenous expansion [Druitt
et al., 2007]. In addition, the defluidization process char-
acteristics of our beds of group-A particles share similarities
with pore pressure diffusion in consolidating debris flow
deposits [Iverson, 1997; Major, 2000]. In particular, Major
[2000] showed experimentally that pore fluid pressure in
debris flow deposits can diffuse in a few seconds to several

Figure 1. Sketch of the experimental device.
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hours depending on the amount of fine sediment in the
debris.

3. Pore Pressure Modeling

[11] The complete equation describing the dynamics of
pore pressure in porous media is well known and can be
easily derived by coupling the fluid-phase continuity equa-
tion (equation (1)) with the Darcy equation (equation (2)),
which is a reduced form of the fluid-momentum equation
assuming negligible inertia [Goren et al., 2010]:

∂
∂t

rafð Þ þ ∂
∂x

rafuð Þ ¼ 0 ð1Þ

fu ¼ � k

m
∂p
∂x

ð2Þ

where p is the pore pressure, t is time, k is the mixture
permeability, m is the fluid dynamic viscosity f is the bed
porosity, x is the length coordinate, u is the interstitial air-
flow velocity, and ra is the fluid density. Inertia can be
neglected because of low Reynolds numbers, Re = ra u l/m,
where l is a characteristic length scale of the flow. In our
experiments, u has maximum values of �10 mm/s, ra =
1.2 kg/m3 and m = 1.8 � 10�5 Pa s (typical values of ra and
m for air at ambient temperature). The characteristic length,
l, scales with pore sizes that are about equal to the particle
diameter. Thus, l � 60 mm. With these considerations,
Reynolds numbers Re < 0.1, justifying the assumption of
negligible inertia. Coupling equations (1) and (2), the 1-D
pore pressure equation can be expressed as [Yilmaz et al.,
1994; Liang et al., 2001]:

∂p
∂t

¼ D
∂2p
∂x2

þ D g þ cf
� � ∂p

∂x

� �2

ð3Þ

where

D ¼ k

mf cf þ cf
� � ð4Þ

cf ¼ 1

f
∂f
∂p

; cf ¼ 1

ra

∂ra
∂p

; g ¼ 1

k

∂k
∂p

: ð5Þ

[12] D corresponds to the pore pressure diffusion coeffi-
cient. The term cf is the so-called porosity compressibility,
cf is the fluid compressibility, and g is known as the per-
meability compliance since it describes the variation of
permeability with pore pressure [Yilmaz et al., 1994]. The
Darcy equation used for the derivation of equations (3)–(5)
neglect particles velocity, and can be used for the analysis
of quasi-static consolidation [Major, 2000]. Although this
assumption appears reasonable for cases such as that inves-
tigated in the present study on the consolidation of moder-
ately expanded mixtures, the above equations fail to predict
pore pressure variations when significant grain rearrange-
ment occurs [cf. Iverson and LaHusen, 1989; Goren et al.,
2010, 2011]. Compared with other proposed formulations

[see Goren et al., 2010], our model (equations (3)–(5))
appears to be adequate for studying pore pressure dynamics
for a prescribed initial pore pressure (generated by means of
fluidization or rapid initial particle settling) when relative
particle motion is negligible (quasi-static consolidation).
[13] If volume changes of the mixture are negligible,

f remain constant so that cf � 0. With this assumption,
a characteristic pore pressure diffusion coefficient can be
defined as Do = ko/(m fo cfR), where the subscript o indicates
reference values of the mixture in the non-expanded and
non-aerated (i.e., no air flux) state, and cfR denotes a refer-
ence value for the fluid (air or water) compressibility.
[14] In the following analysis, dimensionless variables are

introduced,

p* ¼ p=PL; x* ¼ x=H ; t* ¼ t*=t; k* ¼ k=ko; f* ¼ f=fo

cf* ¼ cf =cfR; cf* ¼ cf=cfR; g* ¼ g=cfR

ð6Þ

where the superscript * denotes dimensionless variables. PL

is the lithostatic pressure at the bottom of the mixture given
by PL = r g H, r and H are the mixture density and height
respectively, and g is gravitational acceleration. The time
scale for pore pressure diffusion is given by t = L2/Do,
where L is a characteristic length scale along which pressure
is diffused. As in our experiments the base of the tank can
be considered impermeable, the characteristic length scale
L � H [Iverson, 1997; Major, 2000; Iverson and Denlinger,
2001]. Substituting the dimensionless variables of equation (6)
into the pore pressure diffusion equations (equations (3)–(5)),
a dimensionless form of the system of equations describing
pore pressure evolution is then obtained:

∂p*
∂t*

¼ D*
∂2p*
∂x*2

þ D* g*þ cf *
� �

cfRPL
∂p*
∂x*

� �2

ð7Þ

D* ¼ D

Do
¼ k*

f*
�
cf*þ cf*

� ð8Þ

where D* represents a dimensionless diffusion coefficient.
As stated by Yilmaz et al. [1994], it is known that the
(dimensional) coefficients cf and g are functions of p. To
assess the relative impact of these parameters in highly con-
fined porous media, they assumed cf and g to be pressure
invariant. Here we relax such a hypothesis by assuming that
the dimensionless quantities cf* and g* are proportional to p*:

cf* ¼ ap* ð9Þ

and

g* ¼ dp* ð10Þ

where a and d are unknown constants. As it will be
shown hereafter, this assumption is validated by agreement
between the model and the experimental data. Substituting
these relationships in the definitions of cf and g in
equation (5) (using the dimensionless parameters defined
in equation (6)), and integrating between the limits [0, p*],
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[1, f*] and [1, k*], the dimensionless porosity and per-
meability can be expressed as

f* ¼ exp
acfRPL

2
p*2

� �
ð11Þ

k* ¼ exp
dcfRPL

2
p*2

� �
: ð12Þ

[15] Replacing equations (11) and (12) in equations (7)
and (8) leads to

∂p*
∂t*

¼ D*
∂2p*
∂x*2

þ D* dp*þ c*f

� �
cfRPL

∂p*
∂x*

� �2

ð13Þ

D* ¼ 1

ap*þ c*f

� � exp d � að Þ cfRPL

2
p*2

� �
: ð14Þ

[16] Solutions of pore pressure evolution from equations (13)
and (14) depend on the value of cfR PL, which is a dimen-
sionless parameter that compares the reference fluid com-
pressibility with the lithostatic pore pressure. Thus, highly
compressible fluids as well as thick mixtures are character-
ized by high values of cfR PL. In contrast, for low fluid
compressibility and/or shallow mixtures, it is obvious from
equation (13) that if cfR PL≪ 1 the quadratic term on the right
hand side becomes negligible, and in equation (14) the
exponential tends toward 1, thus rendering the pore pressure
time variation independent of d. Hence, equations (13) and
(14) can be reduced to a nonlinear diffusion equation inde-
pendent of both d and cfRPL,

∂p*
∂t*

¼ D*
∂2p*
∂x*2

ð15Þ

D* ¼ 1

ap*þ c*f

� � : ð16Þ

[17] Low values of cfR PL can be found in many granular
mixtures, making the above simplifications relevant for the
analysis. Water and air have a compressibility of �5 �
10�10 Pa�1 and �10�5 Pa�1, respectively. Heights of �0.1
to �20 m are representative of many experimental and
geophysical flows, for both wet and dry mixtures [Iverson,
1997; Iverson and Denlinger, 2001; Freundt et al., 2000].
Considering mixture densities in the range 500–2500 kg/m3

for both air- and water-solid mixtures, PL ranges from �102

to �106 Pa. With these limits, cfR PL takes values of �10�8

to �10�4 for water-solid mixtures and of 10�3 to 10 for air-
solid mixtures. Thus, equations (15) and (16) might be
applicable for most cases of debris flows (water-solid
mixtures) as well as very thin air-solid mixtures. For the
experiments reported here, themixture density is�1400 kg/m3

and height is always lower than 0.5 m, so that cfR PL < 0.07.
Hence, the assumption cfR PL ≪ 1 may be suitable for our
experiments. As it will be shown hereafter, the nonlinear pore
pressure diffusion model described by equations (15) and
(16) approximates well our experimental data, and so cfR
PL ≪ 1 will be considered in the following analysis.

[18] If pore volume changes are negligible (i.e., cf* � 0)
and the fluid can be considered incompressible (i.e., cf* � 1),
as expected for water-solid mixtures, the dimensionless pore
pressure diffusion coefficient, D*, is approximately 1. Under
these conditions, equation (15) reduces to a linear diffusion
equation (equation (17)), as proposed for pore pressure dif-
fusion in debris-flows modeling [Iverson and Denlinger,
2001] and for consolidating debris-flow deposits [Major,
2000]:

∂p*
∂t*

¼ ∂2p*
∂x*2

: ð17Þ

[19] An initial condition (IC) and two boundary conditions
(BC) are required to solve equation (15). The initial condi-
tion corresponds to a linear pore pressure profile, ranging
from the initial dimensionless pore pressure value bo =
pbed/PL at the base of the tank (where pbed is the initial pore
pressure at the base of the tank), to 0 at the free surface of the
mixture. Boundary conditions are given for zero pore pres-
sure at the top and zero pore pressure flux at the base.
Because a pore pressure flux in the experiments persists for a
short time while the valve is turned off, an exponential decay
is used to model the valve closing. Initial and boundary
conditions are thus expressed as:

IC : p* x*; 0ð Þ ¼ bo 1� x*ð Þ ð18Þ

BC; p* 1; t*ð Þ ¼ 0
∂p* 0; t*ð Þ

dx
¼ �bo exp �lt*ð Þ ð19Þ

where l = t/tc, t = H2/Do is the vertical pore pressure dif-
fusion time scale, and tc corresponds to the characteristic
closing time of the solenoid valve, �0.01 s.
[20] The dimensionless pore pressure equations (15) and

(16), satisfying the specified initial and boundary conditions,
were solved numerically using a finite-volume scheme with
101 nodes and a dimensionless time spacing Dt* = 0.01
[Patankar, 1980; Versteg and Malalasekera, 1995]. The
analytical solution of Carslaw and Jaeger [1959, pp. 97,
equations 14–15] was used as a benchmark to validate our
numerical model for the case of linear diffusion (i. e. cf* = 1
and cf* = 0).

4. Experimental and Numerical Studies

4.1. Pore Pressure Diffusion Coefficient

[21] The vertical air flux at the bottom of the tank imposed
a pore fluid pressure, which determined the degree of flu-
idization, bo. Onset of bed expansion was observed over a
narrow range of critical fluidization values ranging from
boc � 0.8 for a column height of H = 5 cm to boc � 0.9 for
column heights in the range 10–25 cm (Figure 2). Channel-
ing and heterogeneities were observed in beds at H = 5 cm,
which caused early onset of bed expansion [Gilbertson
et al., 2008]. The values of 80–90% of complete fluidiza-
tion corresponding to onset of expansion agree with the find-
ings of Gilbertson et al. [2008] for bed depths of 5–30 cm.
Once the value of bo surpassed boc, expansion of the bed
increased and reached a maximum value of �8–10% at
bo � 1 (Figure 2). The maximum degree of fluidization was
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obtained in the bubbling state, whereas complete fluidiza-
tion (bo = 1) was difficult to achieve.
[22] In our experiments, cfR PL could be neglected.

Furthermore, the air compressibility may be estimated as
cf = 1/Pabs, where Pabs is the absolute pressure. The absolute
pressure corresponds to Pabs = Patm + p, where Patm is the
atmospheric pressure (Patm � 105 Pa) and p is the pore
fluid pressure in excess to Patm. As p scales with PL, the
reference pore fluid compressibility may be estimated as
cfR = 1/(Patm + PL). If PL ≪ Patm, cfR � 1/Patm. On the
contrary, if PL ≫ Patm, cfR � 1/PL. In our experiments, PL

had maximum values of �5000 Pa, that is to say, p and PL

are at least two orders of magnitude smaller than Patm,
and thus cfR � 1/Patm. Similarly, Pabs � Patm whence
cf � 1/Patm � 10�5 Pa�1, which means that the dimen-
sionless pore fluid compressibility cf* = cf cfR

�1 � 1.
Therefore, in our experiments, the pore fluid could be
considered incompressible. In addition, for bo < boc pore
volume changes were negligible, making cf* = 0. Thus, in
the non-expanded state, (bo < boc) the simple linear diffu-
sion equation (equation (17)) could be used to describe pore
pressure diffusion. Although equation (17) seems not to be
adequate for solving the pore pressure diffusion in initially
expanded mixtures (bo > boc) as cf* > 0, and as we do not
know how much our experiments deviate from the linear
case, we assumed as a first approximation that the linear
diffusion equation also applied for this narrow range of bo
values. Note that Major [2000] found experimentally that
the simple linear diffusion model satisfactorily described
pore pressure diffusion in consolidating (with small initial
expansion <�10%) non-cohesive debris-flows deposits.
Our estimates of Do were obtained by fitting the linear
numerical solution of the pore fluid pressure to the experi-
mental measurements at the base of the tank, following the
procedure used by Major [2000]. The chosen Do value

was the one that minimized the root mean square (rms)
differences between the experimental data and the num-
erical results. Examples of this procedure for different
bo values are shown in Figure 3. Results show that the

Figure 2. Bed expansion as a function of the initial
fluidization rate, bo, for different initial bed heights (H).
DH* = (He � H)/H, where H is the initial (non-expanded)
height and He is the expanded bed height. Bed expansion
occurs when bo > boc, (with boc � 0.8 for H = 5 cm and
boc � 0.9 for H ≥ 10 cm).

Figure 3. Experimental data (circles) and theoretical model
(line) for the time variation of pore pressure at the base of the
granular column for (a) bo < boc, (b) bo values lower but
close to boc and (c) bo > boc. For column height of the order
of or greater than �10 cm, boc � 0.9. The solid line corre-
sponds to the best fit curve with experimental data, adjusting
the pore pressure diffusion coefficient, Do. In the figures,
rms stands for root mean square error of the fitted curve
respect to the experimental data.
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proposed linear model fits well the experimental data
when bo < boc. For higher values of bo, the model
deviates from the experimental results. In fact, Figure 3c
shows that the theoretical time for the basal pore pres-
sure diffusion is about twice that observed experimentally.
This suggests that nonlinearities in the pore pressure dif-
fusion coefficient, due to the initial expansion and con-
tinuous mixture consolidation, cannot be neglected in the
analysis. In other words, D* should not be considered
equal to 1 when bo > boc.
[23] The variation of Do as a function of bo is presented in

Figure 4. The data show that for a given height of material,
Do slightly decreases with bo and tends toward a nearly

constant value, Dm, in the range bo ≈ 0.7 to boc. For bo >
boc, when the bed is expanded, fitted values of Do drop
abruptly, suggesting that initially fluidized expanded beds
retain pore pressure for longer durations, behavior that is
shown in Figure 4a for a single bed height. However, this
result is not conclusive, as the linear model overestimates the
time of pore pressure diffusion. Figure 4b compiles the data
for different bed heights, showing that for a given bo value,
Do increases with bed height, which is probably related to
different degrees of initial bed compaction.
[24] The value of Dm, the mean Do value obtained in the

range bo ≈ 0.7 to boc, shows a linear dependence with the
bed height, having a constant slope Uc = 0.29 m/s
(Figure 5). Thus, Uc appears to be a characteristic velocity
for pore pressure diffusion in our experiments. In the fol-
lowing analysis, experiments at H = 5 cm are not considered
because strong heterogeneities and channeling in the fluid-
ized beds did not allow for a detailed analysis.

4.2. Pore Pressure-Diffusion Time Scales

[25] For high degrees of fluidization before bed expansion
(i.e., 0.7 < bo < boc, boc � 0.9), Do tends to an almost
constant value, Dm. The latter coefficient results to be a
characteristic value for pore pressure diffusion in the
expanded state. Thus, in the narrow range of fluidization
degrees between boc < bo < 1, the pore pressure diffusion
coefficient could be estimated as D = Dm D*, where Dm
accounts for linear diffusion while D* accounts for non-
linearities due to mixture compaction during the defluidiza-
tion process. In other words, the pore pressure diffusion
coefficient at high degrees of fluidization in expanded beds
scales with Dm. To account for the importance of nonlinear
effects due to the pressure diffusion process in expanded
beds, the time for pore pressure diffusion obtained from the
experiments is compared to that obtained by assuming a
linear diffusion model, using Dm as a characteristic value
when boc < bo < 1.Figure 4. Variation of the pore pressure diffusion coeffi-

cient, Do, as a function of the initial degree of fluidization,
bo, obtained by fitting the experimental measurements at
the base of the tank with the linear diffusion model (D* = 1).
(a) Decrease of Do with bo, tending to an almost constant
value of Do in the range 0.7 < bo < boc (boc � 0.9). When
bo > 0.9, an abrupt drop in Do is observed. (b) The same
results but for different column heights (boc � 0.8 for H =
5 cm and boc� 0.9 forH > 5 cm). Numbers on the right indi-
cate values of Dm.

Figure 5. Linear dependence of Dm, the mean linear diffu-
sion coefficient in the range 0.7 < bo < boc (boc � 0.8 for
H = 5 cm and boc � 0.9 for H > 5 cm) in terms of the initial
column height, H.
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[26] For a given initial fluidization degree, bo, a theo-
retical characteristic dimensionless diffusion time scale is
defined as:

Tchar ¼ 1

b0

Z
p*lindt* ð20Þ

where p*lin is the dimensionless pore pressure at the base of
the tank obtained from the linear pore pressure equation
(equation (17)). Similarly, an experimental dimensionless
diffusion time scale, Texp, based on the measured dimen-
sionless pressure at the base of the tank (p*measured) is
defined as:

T exp ¼ 1

b0

Z
pmeasured∗ dt*: ð21Þ

[27] For the purposes of estimating Texp, p*measured was
made dimensionless using the corresponding value of PL,
and the dimensionless time, t*, was obtained with the time
scale t = H2/Di, where Di = Do for bo < boc (boc � 0.9),
and Di = Dm for bo > boc.
[28] Figure 6 shows the dependence of Texp/Tchar on bo.

Texp/Tchar � 1 for bo < boc, as expected because D* = 1. In
contrast, the time ratio increases substantially as bo � 1,
demonstrating that bed expansion retards pore pressure dif-
fusion by a factor of about 4 compared to the linear diffusion
case. This result may seem contradictorily as the pore pres-
sure diffusion timescale would be expected to decrease in
the case of an initial bed expansion due to the increase in
permeability. However, as shown by equations (4) and (8),

although the pore pressure diffusion coefficient is propor-
tional to the mixture permeability, it is inversely propor-
tional to the mixture porosity that increases when the bed
expands [Iverson 1997; Major, 2000]. Therefore, if changes
in porosity outweigh changes in permeability, as porosity
increases, the pore pressure diffusion should decrease, and
the diffusion time scale should increase.

4.3. Pore Pressure Modeling of Initially Expanded
Columns

[29] Porosity changes appear to be a key factor influencing
pore pressure diffusion when mixtures are initially
expanded. Thus, equations (15) and (16) appear more suit-
able for computing pore pressure diffusion in our experi-
ments, assuming that cfR PL ≪ 1. Equations (15) and (16)
can be solved numerically for given values of a and c*f. In
our experiments c*f � 1. The values of a in equation (16)
were obtained by fitting numerical solutions of equations (15)
and (16) to the experimental pressure data at the base of the
tank, with a as a fitting parameter. For the fitting procedure,
it was assumed that D = Do D* in non-expanded mixtures,
and D = Dm D* in the case of expanded mixtures. Differ-
ences between the experimental data and numerical results
were quantified using their root mean squares (rms), and
minimized by choosing a as the value that minimizes the
rms.
[30] Our results show that values of a are near zero for

bo < boc, as linear diffusion applies for fluidization
degrees below those causing bed expansion (Figure 7). In
contrast, for bo > boc, a values increase up to �10 for near
complete fluidization, showing that the linear pore pressure
diffusion coefficient (Dm) could be reduced by about one
order of magnitude in expanded beds at maximum fluid-
ization (p* = 1). This corresponds to maximum values of
cf = cf* cfR �10�4 Pa�1, which are several orders of mag-
nitude larger than values commonly reported for pressure
diffusion in confined porous media (e.g., cf � 0.15 � 10�9–
15 � 10�9 Pa�1 [Yilmaz et al., 1994; Hummel, 2008]) and

Figure 6. Ratio of characteristic diffusion time scales,
Texp/Tchar, where Texp represents a characteristic dimension-
less diffusion time scale estimated by means of the measured
basal pore fluid pressure evolution and Tchar corresponds to
a characteristic dimensionless diffusion time scale based in
the linear solution for the pore fluid pressure equation. The
experimental pore pressure diffusion time scale becomes
larger than the theoretical linear diffusion time scale at
bo > �boc. Values greater than 1 for bo � 0.2 and bo � 0.4
and H = 10 cm are attributed to errors in the experimental
procedure.

Figure 7. Fitted values of a as a function of bo for differ-
ent initial heights. For bo < boc, when the bed is not
expanded and the linear diffusion model is applicable,
values of a are equal to zero.
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about 10 times greater than values reported for self-
consolidating debris-flows mixture [Major, 2000].
[31] Taking into account the fitted values of a, excellent

agreement is achieved between the experimental and
numerical results for the time needed to diffuse pore fluid
pressure (Figure 8). This agreement shows that the proposed
model adequately describes pore pressure evolution of ini-
tially expanded mixtures. Note that if a = 0 in equation (15)
(and because cf* �1), the linear diffusion equation is
recovered as D* = 1. Thus, the proposed model adequately
predicts pore pressure evolution in non-expanded mixtures.
Our results show that when the interstitial fluid is air,
assumptions that simplify the pore pressure equations, spe-
cifically cfR PL ≪ 1 and cf* = 1, are adequate for model-
ing the pore fluid pressure time evolution. Such assumptions
neglect pore fluid compressibility effects.
[32] An important increase in the time scale of pore pres-

sure diffusion is observed as a increases. Numerical results
obtained for the case of a fully fluidized mixture (bo = 1)
show that for the linear diffusion case (a = 0) pore pressure
diffuses almost entirely at t*�2 (Figure 9). However, excess
pore pressure persists until t* �3 when a = 5, and until
t* �5 when a = 10. Therefore, changes in the porosity

compressibility (cf), resulting from column consolidation,
control the diffusion of excess pore pressure in expanded
granular material. Additionally, the proposed numerical
model provides the time pore pressure evolution at any
height within the mixture for a given value of a.
[33] In initially expanded beds, the local pore pressure

diffusion coefficient at a given time is a function of the local
pore pressure, thus the pore pressure diffusion coefficient
varies with both time and height (Figure 10). For given
values of a > 0, the diffusion coefficient is maximum at the
top of the granular column, as D* = 1, and progressively
reduces toward the bottom of the column. The dimensionless
diffusion coefficient D*, decreases as a increases, reaching
minimum values of the order of 0.1 at the bottom of the
granular column for the maximum values of a � 10. For
linear diffusion (a = 1), D* is constant and equal to 1,
independently of time and height. In expanded beds, the
return to a linear diffusion behavior (D* = 1) is slowly and
asymptotically achieved. Figure 10 shows that the time
taken for D* at the bottom of the granular column to reach
values of D* � 1 is longer than that of pore pressure diffu-
sion. For example, it takes about t* = 4 and more than t* = 5
to reach D* � 1 for cases at a = 5 and a = 10, respectively,

Figure 8. Experimental data (circles) and numerical fit (line) at the base of the tank for initially expanded
mixtures (bo > boc) using equations (15) and (16). In the figures, rms stands for root mean square error of
the fitted curve respect to the experimental data.
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while pore pressure is almost entirely diffused at t* = 3 and
t* = 4 for the same conditions (Figures 9 and 10).

5. Discussion

5.1. Pore Pressure Diffusion in Initially Aerated
Granular Columns

[34] Pore pressure diffusion in aerated granular mixtures
shows remarkably variable behavior that depends on the
degree of initial bulk expansion. For non-expanded beds,
pore pressure diffusion follows a simple linear diffusion
model, with a constant value for the diffusion coefficient. In
contrast, the pore pressure diffusion coefficient in initially
expanded beds is pressure dependent, evolving as long as
pore pressure diffuses within the granular mixture. As shown
by equation (4), D is a function of permeability (k), porosity
(f), fluid viscosity (m), mixture compressibility (cf) and
fluid compressibility (cf). In our experiments (as well as

those using wet debris-flow material or shallow air-particles
mixtures), fluid can be treated as uncompressible, thus cf is
nearly constant. Furthermore, changes in fluid viscosity are
negligible, although fine particles (dust or colloids) can
increase the bulk viscosity in some geophysical mixtures
[Iverson, 1997; Major, 2000]. Though permeability appears
relevant for the reference pressure diffusion coefficients
(Do, Dm), our numerical model shows that changes in per-
meability can be neglected, even when permeability varies
significantly under small changes of porosity. Note that, the
dependence of D on k and f has been previously addressed
by Iverson [1997] and Major [2000].
[35] Major [2000] showed that for a wide range of debris

flow mixture permeabilities (10�9 m2 to 10�14 m2) low pore
pressure diffusivities are not solely influenced by low per-
meability. High mixture compressibility (or porosity com-
pressibility) in initially dilated mixtures under low effective
stress also influences pore pressure diffusion and contributes

Figure 9. Vertical profile of the dimensionless pore pressure time evolution (p*) for an initially fully
fluidized granular bed and different a values using equations (15) and (16). Values of a vary in the range
of 0 to 10 (Figure 7). The solutions shown for a = 0 correspond to those of linear diffusion. The term p*bed
at the right bottom corner represents the dimensionless pore fluid pressure at the base of the granular
column. The color bar represents values of p*.
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to low diffusivity coefficients. In some mixtures, changes in
compressibility can outweigh changes in permeability
[Major, 2000]. In our experiments, using initially expanded
beds, mixture compressibility strongly affected pore pres-
sure diffusion. As shown by equation (16), the dimension-
less pore pressure diffusion coefficient, D*, is a function
solely of the pore compressibility (cf* = a p*). In this study
cf �10�4 Pa�1, that is, one order of magnitude higher than
in Major [2000] (cf �10�5 Pa�1). This explains why the
linear model applies better to the debris-flow mixtures tested
byMajor [2000] than to our experiments. For non-expanded
mixtures, where cf ≈ 0, the linear model provides good
results. As shown by equations (13) and (14), permeability
changes, represented by the permeability compliance (g), are
multiplied by cfR PL. Therefore, permeability changes (g) do
not contribute to the pore pressure diffusion process when
fluid compressibility effects are negligible (cfR PL ≪ 1), As a
result, changes in porosity do not just outweigh changes in

permeability, but instead changes in permeability are typi-
cally negligible when cfR PL ≪ 1.
[36] The parameter cfR PL shows that pore fluid com-

pressibility effects are not solely a function of fluid com-
pressibility, but are also a function of effective stress, which
in our case scaled with the lithostatic pressure PL. Thus, even
for low compressible fluids, fluid compressibility could
affect pore pressure diffusion in highly confined systems,
such as deep groundwater or hydrocarbons reservoirs [Yilmaz
et al., 1994; Hummel, 2008], in which case permeability
compliance could become relevant. However, this might not
be applicable for most unconfined, self-consolidating mix-
tures such as natural granular mixtures.

5.2. Time Scales of the Pore Pressure Diffusion Process

[37] For estimating pore pressure diffusion time scales in
our experiments, we calculate T*D, the dimensionless time
required for basal pore pressure to reach 1% of the initial
degree of fluidization (i.e., po* = 0.01 bo), according to the

Figure 10. Vertical profile of the diffusion coefficient time evolution (D*) for an initially fully fluidized
granular bed and different a values using equations (15) and (16). Values of a vary in the range of 0.5 to
10 (Figure 7). The solution for a = 0 (i. e. linear diffusion) is not shown, as in this case D* is constant and
equal to 1. D*bed at the right bottom corner represents the dimensionless fluid diffusion coefficient at the
base of the granular column. The color bar represents values of D*.
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proposed numerical model. This cutoff value was chosen
arbitrarily for convenience since the diffusion model
decreases asymptotically to p* = 0. For calculations, a = 0
was considered when 0 ≤ bo ≤ boc. In the range boc ≤ bo ≤ 1,
it was supposed that a varied linearly from 0 to 10. The
obtained diffusion timescale has a constant value T*D = 1.84
for 0 ≤ bo ≤ boc. In contrast, once the bed is expanded
(boc ≤ bo ≤ 1), T*D increases linearly up to 4.74 (bo = 1, fully
fluidized mixture). Thus, a break in the tendency occurs
when bo > boc with a maximum about 2.6 times greater than
the constant value of T*D (in the range 0 < bo < boc) when
bo = 1. A similar break in tendency was previously reported
for the run-out distance of initially aerated granular flows of
almost the same particle mixtures [Montserrat et al., 2007;
Roche et al., 2008]. The run-out distance showed a little
increase between 0 < bo < boc, but importantly increased to
almost twice that observed for bo = boc, when bo = 1. This
result suggested that the initial degree of fluidization, and
related mixture expansion when bo > boc, controlled most
of the flow dynamics and run-out distance. It is worth
mentioning that for comparison with experiments of Roche
et al. [2008], it is assumed that boc was reached at �Umf
and complete fluidization (i.e., bo = 1) was obtained at
�Umb. In complementary experiments, Roche et al. [2010]
measured the pore pressure at the base of initially fluidized
and expanded flows (cf. bo = 1). They reported that the
duration of pore pressure diffusion was close to the duration
of the flows and also to the duration of pressure diffusion in
defluidizing static columns of similar heights. As a matter
of fact our method predicts, at bo = 1 (T*D � 5), that the
duration of pressure diffusion is close to the flow duration
reported by Roche et al. [2010]. This supports the idea that the
dynamics of initially fluidized flows are controlled by overall
mixture compaction and associated pore pressure diffusion, as
observed in our self-consolidating static experiments.
[38] The time scale for pressure diffusion cannot be

directly extrapolated to other conditions, as it is mixture
dependent. However, because a is related only to the pore
compressibility, it should be a function of the range of
dilation or compaction that can be attained for a given
mixture. In case of quasi-static consolidation, a scales with
the initial degree of expansion, so that more expanded
mixtures attain larger values of a. The nature of the inter-
stitial fluid does not appear to affect the value of a, but as
our experiments focused on just one type of air-particle
mixtures this needs further research. It is also known that the
amount of initial expansion of gas-fluidized mixtures
depends on the grain size distribution. In particular, the
mixture expansion increases with the amount of fine parti-
cles. For instance, ash-rich pyroclastic flow materials, with
particle diameters in the range �1 mm to 250 mm, can have
maximum expansions near 50% [Druitt et al., 2007;
Girolami et al., 2008], which would result in larger values of
a than those determined here. Furthermore, increasing the
amount of fines reduces the mixture permeability by clog-
ging connected pores and inhibiting the ease of fluid flows.
Thus, the reduction in permeability due to fine particles can
effectively reduce the reference pore pressure diffusion
coefficient, thus increasing the time needed to diffuse the
excess pore fluid pressure and even in non-expanded mix-
tures [Major, 2000; Lorences et al., 2003].

5.3. Insights into Geophysical Granular Flow Processes

[39] In initially expanded granular mixtures, our results
highlight the effects that mean mixture compaction has in
retarding pore fluid pressure. Pore fluid pressure measured at
the base of granular flows often reveals a complex behavior
[Iverson 1997; Iverson et al., 2010; Roche et al., 2010]. Our
study, however, suggests that initial material expansion (due
to a certain degree of fluidization) may explain much of the
bulk flow dynamics in small-scale, fine-grained, mono-
disperse granular flows with low pore pressure -diffusion
coefficients (D � 0.01–0.02 m2/s). Note that these values of
D are in the range inferred for thin ash-rich pyroclastic flows
on the basis of their material permeability [Druitt et al.,
2007]. For debris flows, pore pressure-diffusion coeffi-
cients range between D � 10�7–10�3 m2/s [Iverson, 1997;
Major et al., 1997; Major and Iverson, 1999; Major, 2000].
Thus, in wet flows, pore pressure diffusion takes longer than
in air-particle mixtures of similar size. Fine particles clearly
affect the value of D, effectively retarding pore pressure
diffusion, as shown experimentally for debris flows [Major
and Iverson, 1999; Major, 2000] and pyroclastic-flow
material [Druitt et al., 2007]. Although our mono-disperse
air-particle mixtures lack the range of grain size distribution
typical of most natural geophysical flows, fine group-A-type
air-particle mixtures may replicate most of the observed
characteristics of pore pressure diffusion in natural flows
containing large amounts of fines. Despite the reduced scale
of our experiments (H < � 0.5 m) compared to natural
geophysical flows, our results highlight the mechanisms
retarding pore fluid-pressure diffusion. Note, however, that
the size of some of the smaller flows in nature is of the same
order of that of our experiments. For instance, distal deposits
of pyroclastic flows are commonly a few decimeters thick
[Druitt, 1998; Freundt et al., 2000;Wilson and Head, 1981].
In this context, our findings should apply well to pyroclastic
flows with D values similar to those presented in this paper.
[40] In the present study, we assumed that pore fluid

compressibility effects are negligible even when the pore
fluid is air, which is a consequence of the shallow mixture
heights in our experiments. This assumption is appropriate
for wet debris flows (or any water-particle mixture), but may
not be valid for thick gas-particles mixtures such as large
pyroclastic flows and snow avalanches. Figure 11 shows
values of the product cfR PL for our experimental granular
mixtures and natural geophysical flows. As in air particle-
mixtures the fluid compressibility can be calculated as cfR =
1/(Patm + PL), in thick flows, where PL ≫ Patm, the product
cfR PL approaches 1. For natural flows shown in Figure 11,
we considered typical values of mixture densities to esti-
mate PL. Values of the product cfR PL in our experiments are
comparable to those of thin pyroclastic flows (H < 1 m). For
thick pyroclastic flows (H > 10 m) cfR PL � 1, implying that
pore fluid pressure compressibility is not negligible and that
the permeability compliance (g) has an important effect on
the pore pressure diffusion process. In particular, if cfR PL is
non-negligible, the quadratic term on the right hand side of
equation (13) may promote pore fluid-pressure generation.
Furthermore, the exponential term affecting the pore pres-
sure diffusion coefficient (equation (14)) can become non-
negligible, and thus can accelerate the diffusion process.
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Detailed effects of the permeability compliance on pore
pressure diffusion are beyond the scope of this work.

6. Conclusions

[41] Pore pressure diffusion in initially aerated, air-particle
mixtures was investigated through experiments and numer-
ical modeling. Experiments recorded the decay of the pore
fluid pressure at the base of an initially aerated granular
column. Pressure data were compared with a 1D numerical
model obtained by coupling the continuity equation with the
Darcy equation for estimating air velocity and assuming
negligible particle relative motion (quasi-static consolidation).
A dimensional analysis shows that fluid compressibility and
changes in permeability can be neglected for modeling our
experiments. Thus, the proposed pore pressure equation
reduces to a simpler diffusion equation with a variable diffu-
sion coefficient, D.When pore volume changes are negligible
(no expansion or contraction), D is constant and pore pressure
can be modeled using a simple linear diffusion equation. This
approach has been extensively used in previous works for the
analysis of quasi-static soil consolidation and it provided good
results for predicting pore fluid pressure evolution in our

experimental mixtures that were not initially expanded. On the
other hand, when our mixtures were initially expanded, non-
linear effects due to mixture consolidation became important
during the pore pressure diffusion process.
[42] Porosity compressibility (cf) appears to be a key

parameter for estimating the value of the nonlinear diffusion
coefficient. Large values of cf reduce the reference pore
pressure-diffusion coefficient (D � 1/cf) and retard pore
pressure diffusion in granular mixtures. Thus, highly dilative
(and then contractive) mixtures, with associated large values
of cf, can maintain excess pore fluid pressure for longer
durations compared to less compressible mixtures. Pore
pressure diffusion during mixture compaction in our exper-
imental static columns, occurred over time scales compara-
ble to durations of experimental initially fluidized granular
flows of similar heights [Roche et al., 2008, 2010], sug-
gesting that our model for static configurations can be
applied to flowing mixtures. This is being tested with new
experimental results. Although permeability is an important
variable that controls the reference pore pressure diffusion
coefficient, changes in permeability were negligible in our
experiments because they were outweigh by changes in
porosity and because pore fluid compressibility effects were
negligible. Our results highlight that porosity compress-
ibility can effectively retard pore pressure diffusion in ini-
tially expanded dry-granular mixtures and depends chiefly
on changes in pore volume size, so that particle-size distri-
bution is important in controlling pressure diffusion. How-
ever, because our experiments focused on mono-disperse
mixtures, this conclusion deserves further research.

Notation

a proportional coefficient for estimating cf*,
dimensionless.

bo initial degree of fluidization (po/PL),
dimensionless

boc initial degree of fluidization at the onset of bed
expansion, dimensionless.

d proportional coefficient for estimating g*,
dimensionless

DH* dimensionless initial bed expansion.
Dt* dimensionless time spacing for the numerical

solution.
f mixture porosity, dimensionless.

f* rescaled mixture porosity, dimensionless.
g permeability compliance, Pa�1.

g* dimensionless permeability compliance.
l dimensionless time scale associated to the closing

of the solenoid valve.
m interstitial fluid dynamic viscosity, Pa s.
r mixture density, Kg/m3.
ra interstitial fluid density, Kg/m3.
t pore pressure diffusion time scale, s.
cf porosity compressibility, Pa�1.
cf* dimensionless porosity compressibility.
cf fluid compressibility, Pa�1.
cf* dimensionless fluid compressibility.
cfR reference value for the fluid (air or water)

compressibility, Pa�1.
D pore pressure diffusion coefficient, m2/s.

D* dimensionless pore pressure diffusion coefficient.

Figure 11. Estimates of cfR PL for different types of geo-
physical granular flows and our laboratory experiments. Ref-
erence values of the pore fluid compressibility (cfR) are
assumed to be 5 � 10�10 Pa�1 and 10�5 Pa�1 in the case
of water-particle (debris flow) and air-particle (pyroclastic
flows and snow avalanches) mixtures, respectively. Mixture
densities are assumed within the range 1800–2300 kg/m3 for
debris flows [Iverson, 1997; Iverson and Vallance, 2001;
Hauser, 2002], 10–1000 kg/m3 for snow avalanches
[McClung and Schaerer, 1993; Turnbull and McElwaine,
2007], and 500–1500 kg/m3 for pyroclastic flows [Druitt,
1998; Freundt et al., 2000]. Flow heights, H, are in the range
0.1–100 m. Black dots represent the values of cfR PL in the
present experiments, while black triangles correspond to esti-
mations of cfR PL values computed out of the granular flow
data reported by Iverson and Denlinger [2001]: 1) experimen-
tal USGS debris flows, 2) Yake Dake, debris flow, 3) small-
volume pumice pyroclastic flow deposits of Mount St. Helens
and 4) Elm rock Avalanche.
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D*bed dimensionless pore pressure diffusion coefficient
at the base of the granular column.

Dm characteristic pore pressure diffusion for initially
expanded beds (bo > boc), m

2/s
Do characteristic pore pressure diffusion coefficient

(in the non-expanded, non-aerated state), m2/s.
g gravitational acceleration, m/s2.
H mixture height, m.
He expanded bed height, m.
k mixture permeability, m2.

k* dimensionless mixture permeability.
L characteristic length scale for pore pressure

diffusion, m.
p pore pressure, Pa.

p* dimensionless pore pressure.
pbed pore pressure at the base of the granular column,

Pa.
p*bed dimensionless pore pressure at the base of the

granular column.
p*lin dimensionless pore pressure at the base of the tank

obtained from the linear pore pressure equation
p*measured experimental dimensionless diffusion time scale,

based on the measured pressure.
Pabs absolute pressure, Pa.
Patm atmospheric pressure, Pa.
PL lithostatic pressure (particles weight divided by the

cross-sectional area of the container), Pa.
t time, s.

t* dimensionless time.
tc characteristic closing time of the solenoid valve, s.

Tchar characteristic dimensionless diffusion time scale
based in the linear solution for the pore fluid
pressure.

T*D dimensionless time elapsed for the basal pore
pressure to reach 1% of the initial degree of
fluidization.

Texp characteristic dimensionless diffusion time scale
estimated by means of the measured basal pore
fluid pressure evolution.

u interstitial air velocity, m/s.
Uc characteristic scale velocity for pore pressure, m/s

Umb minimum bubbling velocity, m/s.
Umf minimum fluidization velocity (or velocity at the

onset of bed expansion), m/s.
x vertical length coordinate, m.

x* dimensionless vertical length coordinate.
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