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ABSTRACT
This paper presents the modelling of an actuator based on

Magnetic Shape Memory Alloys (MSMA). The actuation princi-

ple relies on the ability of the material to change its shape under

the application of a magnetic field. Previous models proposed

by authors were based on canonical (symplectic) Hamiltonian

modeling and thermodynamics of irreversible processes. These

models, though physically cogent, are non-minimal differential

algebraic dynamical models and hence less adapted for control

purposes.This paper therefore proposes a modified and system-

oriented modeling procedure which lends itself naturally to a

port-Hamiltonian model. The latter is found to be a minimal re-

alization of the above whereby interconnection between subsys-

tems is clearly visible. Using Lagrange multipliers, constraints

which arise due to causality and interconnection are expressed.

In the last section, Differential Algebraic Equations (DAE) re-

sulting from previous models are reduced to Ordinary Differen-

tial Equations (ODE) and by using coordinate transformations,

constraints are decoupled from the system input/output. The re-

sulting model is well-suited for control.

INTRODUCTION

In the context of miniaturization and performance improve-

ment, actuators based on active materials are becoming very

∗Address all correspondence to this author.

competitive because of compactness, high integration capabil-

ity and precision. The range of applications and the area of

new possibilities opened by these new devices are increasing

rapidly [1, 2]. Among the variety of active materials, piezo-

electric materials are the most widely used as they have the de-

sired properties needed for miniaturization, dynamics and con-

trol [3–6]. Nevertheless, some other materials are appearing

based on electromagnetic actuation. Among them, the most

promising is the Magnetic Shape Memory Alloys (MSMA) espe-

cially the Ni2MnGa alloy. Its crystallographic structure changes

depending on the intensity of the magnetic field applied. These

changes produce a strain which alters the material dimension. A

model of such MSMA based mechatronic device can be found

in [7]. It was based on canonical (symplectic) Hamiltonian mod-

eling and thermodynamic of irreversible processes. These mod-

els though physically cogent and well-adapted for simulation

purposes are non-minimal differential algebraic dynamical mod-

els and hence less adapted for control purposes. Based on this

material, this paper will extend these works to suggest reduced

order models that are better adapted for control. The new ap-

proach adopts a system-oriented point of view to manage multi-

physic and mechatronic devices. This approach highlights the

derivation of a port-Hamiltonian model of a MSMA based ac-

tuator from causal graph as it has been done in [8, 9] and [10].

The final objective is to obtain a minimum size model usable for

control design using passivity techniques [11, 12]. In the first



part of the paper, the main characteristics of the MSMA are pre-

sented followed by some explanation about previous modeling

works using ”canonical” Hamiltonian method. Afterwards the

advantages of an interconnection structure for multi-components

system are presented. The interconnection and the associated

port Hamiltonian model are obtained using linear graph theory

and causality considerations. The system is divided into 2 sub-

systems, namely the ”magnetic field generator” and the ”energy

converter (MSMA) + load”. The two subsystems are then con-

nected and the complete port-Hamiltonian model derived. A final

step is devoted to model reduction. The objective is to transform

the initial DAE system into a set of ODEs which could be used to

implement new control strategies such as IDA-PBC for example.

MSMA PROPERTIES AND CHARACTERISTICS

Magnetic shape memory effect

MSMA can be seen as a mixture of a classical shape mem-

ory alloy (SMA) and a magnetostrictive material. In short, the

microscopic behaviour of MSMA is similar to the one of SMA

[13, 14] but strain can not only be due to a martensite/austenite

phase transformation but also due to a martensite reorientation

under magnetic fields. In this second mode of working – marten-

site rearrangement –, MSMA can be assimilated to magnetostric-

tive materials (Terfenol-D) [15] except that it presents a much

larger magneto-mechanical coupling (6 % of maximal strain for

Ni2MnGa instead of 0.16 % for Terfenol-D). The magnetic ac-

tuation significantly increases the dynamical bandwidth of the

crystallographic changes because it uses a magneto-mechanical

energy conversion process instead of a thermo-mechanical pro-

cess for classical SMA actuation. Since the first results fifteen

years ago, MSMA materials have known some important im-

provements, namely the working temperature range and the max-

imum available strain. When actuated by magnetic fields, these

materials now allow a large strain (up to 6 %) with a response-

time in the range of milliseconds as compared to tenth of sec-

onds or even seconds for SMA (see [16, 17] for reviews). Cur-

rently, the most used MSMA are non-stoichiometric Ni2MnGa

monocrystals but a lot of studies are also being conducted on

thin films deposition and polycrystal samples [18,19]. Neverthe-

less, these latter types are less adequate for actuation applications

because of a lower magneto-mechanical coupling. In this paper,

only Ni2MnGa monocrystal is considered.

In this alloy, the martensite phase can appear in three dif-

ferent martensitic variants corresponding to the three possible

crystallographic directions in the sample (see Fig. 1 (a)).

At high temperature, the MSMA sample is in austenitic

phase (A) but after a cooling process, the austenite phase is trans-

formed into a martensite phase without any favoured variants

(M1, M2 and M3). If a mechanical stress is applied in a spe-

cific direction, then the fraction of variant with its short axis in

this direction grows. If this stress is high enough then the sample

will only contain this variant (for example M2 in Fig. 1 (b)). If
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Figure 1. MSMA BEHAVIOR: (a) AUSTENITE PHASE AND THE

THREE MARTENSITE VARIANTS, (b) MARTENSITIC REORIENTA-

TION: EFFECTS OF MECHANICAL STRESS, MAGNETIC FIELD AND

TEMPERATURE.

the stress decreases, the volume fraction of the M2 variant will

also decrease but with a large thermo-magneto-mechanical hys-

teresis. In a similar way, if a magnetic field is applied, the vari-

ant with its easy magnetization direction in the field direction, is

favoured. For Ni2MnGa MSMA, the easy magnetization direc-

tion is the same as the short axis of the martensite variant. In

Fig. 1 (b), if magnetic and stress fields are orthogonal, they both

favour a different variant of martensite (M1 or M2). The dis-

tribution between the magnetic field and the mechanical stress

allows then to control the macroscopic strain. With a mechani-

cal pre-stress, it is also possible to design an actuator driven by

the magnetic field only. It should be stressed that by heating,

austenite phase is recovered. More details about the structural

properties of MSMA can be found in [16].

Hamiltonian modeling of MSMA based actuators
The MSMA based actuator considered in this paper is a sim-

ple device described in [7]. As depicted in Fig. 2, it is constituted

by four components: (i) a control/supply electronic device (con-

trol board + PWM power supply, not depicted on the Fig. 2), (ii)

a magnetic field generation device (coil + core), (iii) a MSMA

sample and (iv) a mechanical load.

This mechatronic device was modeled in previous works us-

ing “canonical” Hamiltonian modeling and thermodynamics of

irreversible processes [7, 20]. This system is thermodynamically

open because it posses a time-dependent external generalized



Figure 2. DESCRIPTION OF THE SIMPLE ACTUATOR USING MSMA.
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Figure 3. ELECTRICAL LUMPED PARAMETERS MODEL OF THE

COMPONENTS i, ii AND iii OF THE MSMA ACTUATOR. R IS THE ELEC-

TRICAL RESISTANCE OF THE COIL. COIL INDUCTANCE AND MAG-

NETIC PATH ARE SEPARATED INTO EXTERNAL (L2), CORE (LFe),

LEAKAGE (Ll ), AIR-GAP (La−g) AND MSMA CONTRIBUTIONS.

force fext(t) = uext(t): the component i is considered as an exter-

nal voltage source uext(t). The component ii, coil + core, is mod-

eled using an electrical lumped parameters model (see Fig. 3).

This component contains conservative (inductance) and dissi-

pative (resistance) parts. The component iii, MSMA, is mod-

eled using thermodynamics of irreversible processes (Helmholtz

free energy and dissipativity function) and contains conservative

(elastic and magnetic), energy conversion (magneto-mechanic)

and dissipative (thermodynamic irreversibility) parts. The com-

ponent iv contains finally conservative (kinetic) and dissipative

(viscous friction) parts.

The interconnection between these components was taken

into account using Lagrange multipliers technique applied to the

3 interconnection constraints (the supply current iext must flow

into the coil, the magnetic field into MSMA is generated by the

coil and the MSMA strain ε drives the load displacement). A

conservative Hamiltonian function H and an extented Hamilto-

nian function H ′ depending on the time t, n generalized coordi-

nates q and n generalized momenta p was used in the modeling

procedure:

The external generalized forces fext(q, t) was taken into ac-

count in the variation of H ′ by adding the influence of their

virtual works δWext = fext(q, t) ·δq.

Dissipations by static and viscous frictions was taken

into account by adding their dissipated energies variations

δQs(q) and δQv(q̇). The dissipation by viscous friction

Qv(q̇) was computed with a Rayleigh dissipation function

R (q̇) as Qv(q̇) =
∫ t2

t1
R (q̇)dt.

The holonomic interconnection constraints c(q) = 0 was

taken into account with a Lagrange multipliers technique by

adding the term λ ·δc(q) to the variation δH ′.

δH ′ = δH − fext ·δq−δQs −δQv +λ ·δc (1)

As explained in [21], the dynamical equations can be computed

using the Hamilton principle applied to the extented Hamiltonian

function:

δ

∫ t2

t1

pq̇−H ′ dt = 0 (2)

Using variational calculus on this expression, it results in the fol-

lowing 2n Hamilton equations (1 ≤ k ≤ n):







q̇k =
∂H

∂pk

ṗk =−
∂H

∂qk

−
∂R

∂q̇k

+
∂Qs

∂qk

+ fext,k −λk ·
∂ck

∂qk

(3)

As the device comprises 8 generalized coordinates, the Hamilton

equations are a set of 16 equations, 8 associated with q̇ and 8

associated with ṗ. Details about these equations and correspond-

ing physical parameters can be found in [7]. These 2n differen-

tial equations must be completed by nc = 3 algebraic constraint

equations :

c j(q) = 0 1 ≤ j ≤ nc (4)

The model of this actuator using “canonical” Hamiltonian mod-

eling is then a set of 2n + nc Differential Algebraic Equa-

tions. Simulations had been performed using the aforementioned

model with load mass m = 1.44 kg, length of MSMA sample

l0 = 20 mm, number of turns of coil N = 1500, and resistance

R = 61.8 Ω. A maximum strain of γ = 0.055 due to marten-

site rearrangement can be obtained and this corresponds to an

increase in length of the material of x = 1.1 mm. Magnetic sat-

uration of the material (easy magnetization axis) and core, ob-

tained from experiments, were 0.65 T and 2.03 T respectively.

Figure 4 shows the current and displacement for a step input of

60V obtained by simulation and also the experimental measure-

ments performed on the device at the Femto-ST Institute [7].

In the following section, it will be shown that if we adopt

a system-oriented formalism as the port-Hamiltonian formalism,

it will allow to drastically reduce the number of these model-

ing equations which are better suited for analysis, simulation and

control.
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Figure 4. DYNAMIC BEHAVIOUR OF THE SYSTEM: VOLTAGE, CUR-

RENT AND DISPLACEMENT VERSUS TIME (SIMULATION: DOTTED

LINE, EXPERIMENTAL RESULTS: SOLID LINE).

PORT-HAMILTONIAN MODELING

The previous modelling procedure – “canonical” Hamilto-

nian modeling – gives 2n + nc DAE in the case of n general-

ized coordinates constraint by nc interconnections. This model

is physically cogent because it was experimentaly validated. It

can adequately be used for simulation purposes using numeri-

cal tools. But, as noticed previously, as a non-minimal differen-

tial algebraic dynamical model, it is usually inadequate for con-

trol purpose. In the latter case, it is necessary to reduce them

to gain insight into the design and control issues. This sec-

tion will present how graph-oriented Port-Hamiltonian modeling

allow to extend the “canonical” Hamiltonian formalism into a

system-oriented modeling procedure well-suited for control is-

sues [8–10].

The Port-Hamiltonian modeling [22–24] requires the sys-

tematic description of interconnections between each elemen-

tary component. For the lumped elements of the electrical net-

work (see Fig. 3), this can be done using the linear graph the-

ory [8, 25, 26]. For dipole/one port components, the linear graph

theory proposes a systematic way to build the interconnection

matrix Jio linking external power-conjugated variables of each

components according to their appearance in the tree T or the co-

tree T̄ of the graph. Depending on their causality, these external

power-conjugated variables can be considered as output (o) or

input (i) of this component. In this section, the complete actuator

will be divided into two main subsystems: subsystem I corre-

sponds to the grouping of previous component i and ii (electric

and magnetic parts) ; subsystem II corresponds to the grouping of

previous components iii and iv (thermodynamics and mechanics

parts). The corresponding graph of subsystem I is depicted in the

Fig. 5. In standard (sympletic) models of circuits (or Lagrangian

models), states are written by first considering the (co-)energy

variables of the (inductors) capacitors as independent. Then, the

constraints between them induced by loops or cutsets are relaxed

by introducing leakage currents or voltages (Lagrangian multi-
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Figure 5. LINEAR GRAPH CORRESPONDING TO THE ELECTRICAL

LUMPED-PARAMETERS MODEL OF THE COMPONENTS i AND ii

(SEE FIG. 3: EXTERNAL VOLTAGE SUPPLY, COIL + CORE, EXTERNAL

VOLTAGE 2: APPLIED TO MSMA). THE Ek EDGE CORRESPONDS TO

THE LUMPED PARAMETER k.

pliers). In our model, there is such kind of dependence because

during the choice of a tree for the graph in the Fig. 5, the close

inspection of prefered causality associated with each lumped el-

ements shows that one state variable was not independent of oth-

ers (L2, Ll , LFe forms a cutset). To formulate this dependence, a

Lagrange multipliers technique associated with a leakage current

iλ1 into a virtual additional branch/edge Eλ1 was then adopted as

depicted in Fig. 6. The constraint associated with this additional

component/edge is:

iλ1 = iL2
− iLFe

− iLl
= 0 (5)

Using the graph of Fig. 6, Eq. (6) gives the interconnection

structure of subsystems I:

(
iT
uT̄

)

︸ ︷︷ ︸

i

=

(
0 −QT̄

−BT̄ 0

)

︸ ︷︷ ︸

Jio

·

(
uT

iT̄

)

︸ ︷︷ ︸

o

(6)

where

BT =−QT
T̄
=







1 1 0 1

0 0 0 −1

0 0 1 −1

0 0 −1 0






,

uT =
(
uR uext uext2 uλ1

)T
,

uT̄ =
(
uL2

uLFe
uLl

uLa−g

)T
,

iT =
(
iR iext iext2 iλ1

)T
,

iT̄ =
(
iL2

iLFe
iLl

iLa−g

)T
.

In the Port-Hamiltonian formalism, a distinction between

conservative (H ), dissipative (Qs +Qd), external/source (Wext )

and Lagrange multipliers (λ · c) terms is preserved: i 7→
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AGE CURRENT iλ1 INTO A VIRTUAL ADDITIONAL BRANCH/EDGE

Eλ1 (TREE T : BOLD LINE; CO-TREE T̄ : DOTTED LINE) TO RE-

SPECT THE PREFERED CAUSALITY FOR INDUCTANCES IN PARAL-
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(
ic id iext iλ

)T
, o 7→

(
oc od oext oλ

)T
. For conservative parts, ic

is the time rate of state variables ic =
d x(t)

dt
and oc is the gradi-

ent of the conservative Hamiltonian function oc =
∂H
∂x

. In our

example, it comes to the following equations:

Subsystem I
The conservative elements (inductances) are all grouped into the

co-tree T̄ :

icI = uT̄ =
(
uL2

uLFe
uLl

uLa−g

)T
=

dxI

dt
,

ocI = iT̄ =
(
iL2

iLFe
iLl

iLa−g

)T
=

∂HI

∂xI

.

The state variables xI are then defined as magnetic flux linkages

in each inductance of the Fig. 3: xI =
(
φL2

φLFe
φLl

φLa−g

)T
.The

tree T contains only dissipative, external or Lagrange multipliers

terms:

odI = uR,

oextI =
(
uext uext2

)T
,

oλI = uλ1.

As described in [24], when we consider a quadratic dissipative

function, the corresponding Port-Hamiltonian equation of sub-

system I for this device is:

dxI

dt
= (JI −RI) ·

∂HI

∂xI

+GI ·

(
uext

umsma

)

+AI ·uλ1 (7)

where in our case JI = 0 and,

RI =







R 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0






, GI =







−1 0

0 0

0 −1

0 1






, AI =







−1

1

1

0







Subsystem II

The subsystem II of this MSMA based actuator contains the parts

iii and iv of the complete device (msma and load). The energetic

behavior of MSMA will not be described in this paper and can

be found in [20, 27], its state is determined by 4 variables: the

magnetic flux linkage φmsma into MSMA, two thermodynamic

internal variables z and pz and its mechanical strain ε. The load

is considered as a rigid body and contains only kinetic energy,

function of the momentum pload . In a similar way as subsystem

I, we find for subsystem II:

xII =
(
φmsma z pz ε pload

)T
,

ocII =
∂HII

∂xII

=
(

imsma
∂HII

∂z
∂HII

∂pz

∂HII

∂ε
∂HII

∂pload

)T

,

oextII = uext3 (voltage applied to msma, see Fig. 3).

The resulting Port-Hamiltonian equation is

dxII

dt
=









0 0 0 0 0

0 0 1 0 0

0 −1 ⋆ 0 0

0 0 0 0 1

0 0 0 −1 0









︸ ︷︷ ︸

JII−RII

·
∂HII

∂xII

+









1

0

0

0

0









︸ ︷︷ ︸

GII

·uext3 (8)

with ⋆ =
(∂Physt/∂ż)

ż
where Physt is the dissipated power due to

the irreversibility of msma (see [7]). It can be shown, from the

2nd law of thermodynamics (Clausius-Duhem Inequality), that
∂HII

∂xII

T
·RII ·

∂HII

∂xII
≥ 0 and hence subsystem II is passive.

Interconnection between subsystems I and II

These two subsystems are interconnected where subsystem II

corresponds to uext2 source for subsystem I and/or subsystem I

correspond to uext3 source for subsystem II. We therefore have:

uLa−g = uext2 = uext3 = umsma

This interconnection produces a second causality problem, be-

cause MSMA and air-gap modeling present both an inductive be-

haviour and they have to be connected in parallel: one of the two

corresponding states is dependent on the other. In a similar way

as previously for subsystem I, this explicit dependence between

state variables can be formulated using a Lagrange multiplier

technique associated with a constraint defined by a second leak-

age current iλ2 parallel to the airgap and MSMA branch/edge:

iλ2 =−iLl
+ iLa−g + imsma = 0 (9)



Finally the Port-Hamiltonian equation for interconnection of

subsystems I and II is:

d

dt

(
xI

xII

)

︸ ︷︷ ︸

x

=

(
JI −RI 0

0 JII −RII

)

︸ ︷︷ ︸

J−R

·

(
∂HI

∂xI
∂HII

∂xII

)

︸ ︷︷ ︸

∂H
∂x

+

















−1

0

0

0

0

0

0

0

0

















︸ ︷︷ ︸

G

· uext
︸︷︷︸

u

+

















−1 0

1 0

1 −1

0 1

0 1

0 0

0 0

0 0

0 0

















︸ ︷︷ ︸

A

·

(
uλ1

uλ2

)

︸ ︷︷ ︸

uλ

(10)

With two constraint equations:

{

iλ1 = iL2
− iLFe

− iLl
= 0

iλ2 =−iLl
+ iLa−g + imsma = 0

These two constraint equations can be assigned in the Port-

Hamiltonian formalism:

(
iλ1

iλ2

)

︸ ︷︷ ︸

yλ=iλ

=

(
−1 1 1 0 0 0 0 0 0

0 0 −1 1 1 0 0 0 0

)

︸ ︷︷ ︸

AT

·

(
∂HI

∂xI
∂HII

∂xII

)

︸ ︷︷ ︸

∂H
∂x

= 0 (11)

For quadratic dissipative systems, a Port-Hamiltonian output y

power-conjugated with the external input u may be defined such

as [28]:

d H

dt
=−

∂H

∂x

T

·R ·
∂H

∂x
+yT

·u ≤ yT
·u (12)

For the device considered in this paper, the computation gives:

d H

dt
=

∂H

∂x

T

·
dx

dt

=
∂H

∂x

T

·

[

(J −R) ·
∂H

∂x
+G ·u+A ·uλ

]

=
∂H

∂x

T

· J ·
∂H

∂x
−

∂H

∂x

T

·R ·
∂H

∂x

+

(

GT
·

∂H

∂x

)T

·u+

(

AT
·

∂H

∂x

)T

·uλ

Because J = −J T (antisymmetric in accordance with Tellegen

principle [29]) and AT ·
∂H
∂x

= 0 (constraints), the first and the

last parts of the second hands are nul and we obtain:

d H

dt
=−

∂H

∂x

T

·R ·
∂H

∂x
+

(

GT
·

∂H

∂x

)T

·u (13)

The output y of this Port-Hamiltonian system is then defined as:

y = GT
·

∂H

∂x
= iL2

(14)

The number of state variables is 9 in this Port-Hamiltonian

modeling whereas it was 16 in the “canonical” Hamiltonian mod-

eling. This system-oriented modeling procedure already allows

to reduce the size of the dynamical problem by keeping only state

variables instead of generalized coordinates and momenta. We

also obtain a minimal realization of the system.

MODEL REDUCTION

The “canonical” Hamiltonian modeling procedure gives

2n+ nc DAE in the case of n generalized coordinates constraint

by nc interconnections. The Port-Hamiltonian modeling proce-

dure gives nx + ncx DAE in the case of nx conservative compo-

nents constraint by ncx equations. As previously noticed, it is

still necessary to reduce them to gain insight into the design and

control issues and especially to transform the DAE system into

an ODE system. This section will present the reduction of DAE

Port-Hamiltonian equations into a set of ODE Port-Hamiltonian

equations by using changes of variables and state space projec-

tion according to [30]. The first step consists in decoupling the

ncx Lagrange multipliers to nx − ncx states of the system. It is

done by the following change of coordinates: x̃ = TA · x with

TA =
(
S A
)T

s.t. AT · S = 0. S being a real matrix of size

(nx,nx − ncx). In our case the following matrix presents the re-

quired characteristics:

ST =













1 1 0 0 0 0 0 0 0

0 −1 1 1 0 0 0 0 0

0 0 0 1 −1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1













(15)

Because of the dissipative term R this first coordinate trans-

formation is not sufficient. Indeed after this change of vari-

ables the Lagrange multipliers only act on the two last states of

the system but these states remain connected to the other ones



through TA (J −R)TT
A due to the dissipative term R. Further-

more the input is still coupled to the constraints as: TA ·G =
(
−1 0 0 0 0 0 0 1 0

)T
. Hence, after the first coordinate trans-

formation TA a second transformation TG is applied to remove

this residual coupling coming from the dissipation term:

˜̃x = TG · x̃ = TG ·TA
︸ ︷︷ ︸

T

·x (16)

with the following matrix transformations:

TG =

















1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

















, T =

















1 1 0 0 0 0 0 0 0

0 −1 1 1 0 0 0 0 0

0 0 0 1 −1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 2 1 0 0 0 0 0 0

0 0 −1 1 1 0 0 0 0

















The change of states x 7→ ˜̃x gives the following Port-Hamiltonian

equations:







d ˜̃x

dt
= T · (J −R) ·TT

·
∂

˜̃
H

∂ ˜̃x
+T ·G ·u+T ·A ·uλ

y = (T ·G)T
·

∂
˜̃

H

∂ ˜̃x

yλ = (T ·A)T
·

∂
˜̃

H

∂ ˜̃x
= 0

(17)

With the following state vectors and matrix:

˜̃x =

















φL2
+φLFe

−φLFe
+φLl

+φLa−g

φLa−g −φmsma

z

pz

ε
pload

2φLFe
+φLl

−φLl
+φLa−g +φmsma

















, T ·A =

















0 0

0 0

0 0

0 0

0 0

0 0

0 0

3 −1

−1 3

















T · (J −R) ·TT =

















−R 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 −1 ∗ 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

















, T ·G =

















−1

0

0

0

0

0

0

0

0

















This model reduction procedure allows finally to isolate the two

constraint equations (algebraic) from the rest of the other equa-

tions (ordinary differential) as it can be seen in the last two rows

of T · (J −R) ·TT , T ·G and T ·A: the corresponding 7 ODE can

be solved independently of the 2 AE. The final 7 order model

usable for control can be derived by using projection.

This reduced model can now be used in further steps to de-

sign an efficient control law for this smart material based actu-

ator. These further steps will be detailed in subsequent publica-

tions.

CONCLUSIONS

This paper presents the modeling of a smart material based

actuator. This device uses the strain of a Magnetic Shape Mem-

ory Alloys sample activated by magnetic fields to generate con-

trolable motions. In the first section, the working principle of

this device is explained and, based on previous works of authors,

a “canonical” Hamiltonian model is summarized. In the sec-

ond section, limits of this modeling are explained and advantages

of system-oriented modeling are stressed for design and control

purposes. A Port-Hamiltonian modeling is then proposed for the

device. This one is a minimal realization of the previous model

and allows to express explicitly the interconnections between

subsystems with a Lagrange multipliers technique. Finally, in

the last section, the paper explains how DAE resulting from pre-

vious models can be reduced to an ODE Port-Hamiltonian mod-

els. This model reduction leads to a well-adapted model for con-

trol. They could be used to design efficient control law based on

recent works on the control of Port-Hamiltonian systems such as

IDA-PBC and similar strategies [11, 12].
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