
HAL Id: hal-00720243
https://hal.science/hal-00720243

Submitted on 24 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a 2D Modular and Self-Reconfigurable Robot
for Conveying Microparts.

Sebastian Möbes, Benoît Piranda, Guillaume J. Laurent, Julien Bourgeois,
Cédric Clévy, Nadine Piat

To cite this version:
Sebastian Möbes, Benoît Piranda, Guillaume J. Laurent, Julien Bourgeois, Cédric Clévy, et al.. To-
ward a 2D Modular and Self-Reconfigurable Robot for Conveying Microparts.. 2nd Workshop on
Design, Control and Software implementation for distributed MEMS; dMEMS’12., Apr 2012, Be-
sançon, France. pp.1-7. �hal-00720243�

https://hal.science/hal-00720243
https://hal.archives-ouvertes.fr


Toward a 2D Modular and Self-Reconfigurable Robot for Conveying

Microparts

Sebastian Möbes, Benoı̂t Piranda, Guillaume J. Laurent, Julien Bourgeois, Cédric Clévy, Nadine Le Fort-Piat

Abstract— This paper describes the design, prototyping and
control of a 2D modular and self-reconfigurable robot for
conveying microparts. The elementary block is designed to
have a package dimension under 1cm3 and will include the
actuators, the electronics and the micro-controller. Electro-
permanent (EP) magnets are used for both the linkage and
the traveling system to avoid any power consumption during
the linkage. Some prototype blocks have been realized and show
a well working of the motion and a sufficient holding force. The
paper presents also an algorithm, common to all blocks units,
allowing to reconfigure a set blocks from a spatial configuration
to another one. This algorithm is implemented in a simulator
software showing in real-time the reconfiguration of the robot.

I. INTRODUCTION

Conveyors are usually designed as monolithic entities

solving one problem at a time. Furthermore, if monolithic

design fits the need of fixed types of environments and/or ob-

jects, it lacks reactivity to environment changes and failures

that occurs at small scales [1]. Our idea is to build a modular

conveyor composed of hundreds of similar blocks that can

detect objects, move and communicate with each other to

form a flexible conveying path. This modular conveyor can

be used to transport small objects but also to recognize and

to sort the objects. A further possibility is that the conveyor

will be able to automatically replace blocks that have failed

with working ones which adds a self-healing characteristic.

Building this conveyor is the focus of the Smart Blocks

project.

In order to move very small objects as the green cylinder

shown in figure 1, each block will embed arrayed-MEMS

actuators on its upper face. Miniaturization of the block is

therefore one of the key aspects of the project. The final

system edge length is foreseen to be of 10 mm, including

everything from supplying the MEMS array and connecting

the blocks but also to move them. The focus of this article is

the design of the linkage and motion system, which should be

fast, precise and energy-saving while requiring the smallest

This work was partially supported by the Smart Blocks ANR (French
National Research Agency) project (ANR-2011-BS03-005).

S. Möbes, G. J. Laurent, C. Clévy and N. Le Fort-Piat are with the
Automatic Control and Micro-Mechatronic Systems Department, FEMTO-
ST Institute, Université de Franche-Comté, ENSMM, CNRS, Besançon,
France, S. Möbes is also student at the Ilmenau University of Technology,
Ilmenau, Germany. guillaume.laurent@ens2m.fr

B. Piranda is with Université de Franche-Comté, Laboratoire LASELDI,
équipe Outils et Usage Numériques (OUN), Montbéliard, France,
benoit.piranda@univ-fcomte.fr

J. Bourgeois is with Computer Science Departement , FEMTO-ST
Institute, Université de Franche-Comté, CNRS, Montbéliard, France,
julien.bourgeois@univ-fcomte.fr

Fig. 1. Example of using reconfigurable blocks for conveying objects.

possible space. Another goal is to achieve a high level control

of the spatial configuration of the conveyor to be able to form

any shapes. This article describes an original solution which

consists of a linear electromagnetic motor that enables blocks

to glide on each other and presents a shape transformation

algorithm of the conveying path.

II. RELATED WORKS

Several projects have influenced our work, but the first

thing to mention is the Smart Surface Project1 which is our

direct predecessor. It has been developed different hardware

and software systems to produce an air cushion in order

to move small, flat objects. One of these, a tilted-air-jet

surface, reached a size of 9mm×9mm and gave therefore the

target system dimensions for the Smart Blocks Project [2].

Additionally, there were algorithms developed in order to

control multiple sensor-actuator units with their own pro-

cessor in a decentralized way [3]. Other interesting ideas

comes from the modular robot field. The projects like M-

TRAN [4], Superbot [5], Roombots [6] and Molecube [7]

have already shown motions of autonomous parts and self-

assembly albeit in bigger dimensions. The miniaturization of

their mechanical connection systems is complex and does not

seem to be the right solution for a smaller system. Another

connection system has been realized by Neubert et al. [8]

using a Fields Metal solder, melting at 60◦C. This principle

uses electrical heating of the contact area where the solder

is deposited, to melt it and to let it solidify again. The

reached connection is very strong and can also be used for

power or data connections. The problem is that there is no

1http://www.smartsurface.cnrs.fr



attraction force to move the modules. In terms of connection

and attraction, the most inspiring work comes form Robot

Pebbles [9] using small cubes (12mm×12mm), capable of

forming two dimensional shapes using electro-permanent

(EP) magnets. The advantages of EP magnets is that they

are able to keep their polarity after a short energizing. But

because it is planed as a kind of stochastic self-reconfigurable

matter with motion from outside self-motion has not been

studied.

In this paper, we propose to use EP magnets to design

a linear motor able to move 1cm3 cubes. Using this motor,

the blocks can glide one each others and can be stopped in

every state keeping a strong connection without any power

consumption. This means that after the system has formed

its optimal configuration by linear motion of the blocks in

respect of each other, it can perform its conveyor function

using no other resources for the linkage.

III. HARDWARE

A. Electro-permanent (EP) magnets

The basic part of the motor unit is the EP magnet. It

consists of a coil with an permanent magnet core, like

AlNiCo. This material, made from aluminum, nickel and

cobalt, is an alloy with a specific material characteristics.

It has a remanence like neodymium magnets around 1.2T,

but a relatively weak coercive field strength around 50 to

100kA m−1 in contrast to neodymium magnets with over

1000kA m−1. A qualitative diagram of this characteristics

can be seen in [9]. The result is a big magnetic force

(depending on the remanence), but also the ability of a very

easy magnetization and demagnetization (depending on the

coercive field strength). Wrapping a coil around the AlNiCo,

a magnetic field can be generated to switch the magnet

polarity in a very short time. The result is a bistable system,

able to have an attraction or a repulsion mode to a permanent

magnet pole.

B. Linear Motor Unit

To achieve the highest possible force, the air gap in the

magnetic circuit has to be as small as possible. Therefore U-

formed core designs produce a much higher attraction force

but the installation space is bigger. We decided to save space

and use three parallel EP magnets in front of two permanents

magnets (cf. Fig. 2).

To build the EP magnets, the AlNiCo core which is 1mm

in diameter and 3mm in length has been wrapped by 60 turns

of 0.1mm enameled copper wire.

The resulting coils have a size of nearly 2mm in diam-

eter. The counterpart are two cylindrical, 1mm by 1mm

neodymium magnets. Every block has two active layers, on

for each direction of the plan. Each layer contains three EP

magnets and two permanent magnets. To be able to move the

magnets in a chosen direction, the distance between the two

neodymium magnets has to be 50% bigger than the distance

between two EP magnets on the opposite side.

In regards to a standard linear motor, we are using just two

states in every EP magnet, so we do not use an off-state as

(a) 3D view

(b) Sectional view
of the lower
magnet layer

(c) Sectional view
of the upper
magnet layer

Fig. 2. Design of the block with the configuration of the EP and the
neodymium magnets. The block is a 10mm cube and consists of two parts,
an upper and a lower part, to make the final assembly easier.

Fig. 3. State diagram of the linear motor showing the 6 different states
of the EP magnets and their caused position in respect to the passive sides
of two blocks. The magnetic poles are marked with S and N for South and
North.

well as some intermediate states with another remanence in

the AlNiCo as the chosen maximum. Most electric motors

are using a sinusoidal control to reach a smooth motion,

while we are using a kind of block commutation to get

a bistable effect. The state transition and its effect on the

movement can be seen in Fig. 3. Because every block has

two permanent magnets on each of its passive sides, six state

changes enable to move the three EP magnets of an active

block side 10mm far.

C. Electronics and Power supply

To change the polarity of the EP magnets, high current

pulses have to be done in both directions. Because the



Fig. 4. Schematics of the electronic for driving one coil.

resistance of the coil is very low, a 15V difference causes

more than 15A current in the coils with is sufficient to

magnetize the AlNiCo core. Therefore a 100µF capacitor

is used to buffer and a resistor to uncouple the system from

the power supply.

To supply the EP magnets with current in both directions

and to reduce the components to a minimum in order to save

space, a shared H bridge structure using MOSFETs has been

designed. As it can be seen in Fig. 4, every EP magnet has

its own half bridge, allowing the choice of the direction of

the current. Additionally there is a fourth half bridge, able

to decide which chosen current direction should be powered.

Every half bridge consists of two MOSFETs, a P-channel for

the upper side and a N-channel for the lower side. If both

transistors have their Gate on the supply voltage level, the

lower side is opened and the upper side closed, connecting

this end of the EP magnet to the ground. By giving a 5V

signal to the 2N2222A bipolar transistor it opens and pulls

down the MOSFET gates to ground, which causes an opening

of the upper side and a closing of the lower side transistor,

connecting this end of the EP magnet to the supply voltage.

The blocks will be powered externally via the ground

surface. The housing of the other electronic parts in the block

is possible. Tantalum capacitors with 100µF and 20V can

be found with the dimensions 7.3mm×4.3mm×2.9mm. The

eight half bridges for two motor units in each block will

consist of eight Fairchild Semiconductor FDME1043CZT

with a size of 1.6mm×1.6mm×0.55mm including each the

necessary N- and P-channel MOSFET. Bipolar transistor and

resistor can also be reduced to very small size. However, we

build the first test electronic on a breadboard with standard

components.

D. Processor

To drive the bridges, we used a Microchip dsPIC30F4011.

We needed four output pins to give the signal to the half

bridges and one analog-to-digital converter (ADC) input to

measure the capacitor voltage. In the final solution, we will

need 8 I/O pins for running two motor units. The data

connection between the blocks is planned but not imple-

mented yet. Furthermore, an algorithm for sensing the block

position with the EP magnets is possible, using the different

inductance in different positions. Seven additional ADC ports

will be necessary for this future self-sensing purpose. A

corresponding IC from Microchip would be the 28 pin

PIC16F723A in QFN design with a size of 4mm×4mm. The

magnets and the capacitor will use most of the space of the

block but the microcontroller could also be integrated in the

available space.

E. Motion control

To produce the motion described in Fig. 3, we develop

a program to generate the appropriate sequence of pulses.

Fig. 5 shows the timing diagram of I/O pins of the micro-

controller.

For example, if the polarization of the motor unit is NSN

(S stands for south and N for north). The next state must

be SSN. So, the first two half bridge bipolar transistors

will get a 5V signal, opening the upper side transistor. The

third one will stay with no signal and an opened low side

transistor. Because the fourth half bridge has got no signal

and connects therefore all EP magnets on one end to ground,

the current will flow from the two first upper sides over the

corresponding magnets mainly to the fourth low side and to

ground. Hence the first two magnets have been powered but

not the last one. For this, the fourth half bridge needs to be

switched, whereby only the third EP magnet will be powered.

The result is that two shots has to been done successively if

the switching of all magnets is necessary.

As we can see on Fig. 5, the capacitor needs some time

to recharge after a shot. This time depends on the voltage

supply, the resistor in front of the capacitor and the duration

of the last shot. The capacitor voltage will therefore be read

over a one to ten voltage divider with an ADC channel, so

that the next shot can be started as soon as the sufficient

voltage is reached (i.e. 15V).

IV. EXPERIMENTAL RESULTS

A. Construction

All the manufacturing has been done in our lab, from

the fabrication of the block housing over the EP magnets

assembly to the soldering of the components.

The block housing, seen in Fig. 2a, has been made by

rapid prototyping with a fused deposition modeling machine.

The final assembly has been done by placing and gluing all

magnets in the lower part of the block, before gluing the

upper part on it. The separate parts and the final assembly

can be seen in Fig. 6.

B. Measurement of the attraction force

Before we build the first motor unit, we measured the

attraction force for different magnetizing voltages between

one EP magnet and one permanent magnet. After a proper

demagnetizing, we changed the polarity of all magnets using

two shots. To measure the force, we used weights, hanging

them carefully on a special build anchor with a hook, until

the connection broke. We made each experiment five times

to guaranty a good result.



Fig. 5. Timing diagram showing the signals coming from the IC. The I/O PIN are labeled from 0 to 3. Additionally, the voltage of the capacitor and the
displacement of the block are shown.

Fig. 6. Rapid-prototyped parts of the block (on the left), one assembled
with EP magnets (on the middle) and two with permanent magnets (on the
right).

The result can be seen in Fig. 7, showing until a voltage

of 6V that there is not enough field strength to start a proper

magnetization. From 7V up to 16V is a linear region of

the AlNiCo and over 17V the maximal force seems to be

reached. This result shows that a voltage over 15V is not

really able to increase the strength but to reduce the speed

of the system. Therefore to charge to 18V instead of 15V

takes 66% longer but increasing the attraction force just by

10%.

The next test was to check how a shorter or longer pulse

influences the attraction force. Therefore the magnets were

demagnetized as before and then magnetized with a shorter

or longer 15V shot.

We found out that it makes no sense to increase the

shot time over 25µs, because while the coil is powered, the

 

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35

F
o

rc
e

 i
n

 m
N

Voltage in V

Fig. 7. Magnetic force between the three EP magnets of the active side
and the two neodymium magnets of the passive side according to the
magnetizing voltage (using two shots).

voltage of the capacitor is shrinking, causing a gradually

lower current in the coil. Actually after 25µs the current

seems to be too low to polarize the magnet any further.

C. Motion and energy consumption

Fig. 8 shows a image sequence of the motion of the blocks.

The block is jumping from one state to another. The motion

can be further appreciated in the video clip accompanying

this paper. The mean speed is 14mm/s.

After a shot, the drop of voltage of the capacitor does not

exceed 8V. Knowing the capacitance value (100µF), we can

deduce that the magnets consume less than 10mJ for one

shot. As we need twelve shots to move the block for one to

another, a 10mm move consumes about 120mJ.



State 1, t = 0s State 4, t = 0.32s

State 2, t = 0.08s State 5, t = 0.48s

State 3, t = 0.24s State 6, t = 0.56s

Fig. 8. Snapshots of the blocks during the motion.

Fig. 9. Captured Image from the simulator software showing blocks with
conveyor on the top. The floor is cover by tracks that guide the blocks
during their displacement.

V. BLOCKS RECONFIGURATION ALGORITHM

A. Operating principle of the blocks

In this paper we present an algorithm common to all

blocks units allowing to reconfigure a set of blocks from

a 4-connected organization to another one. This algorithm

is implemented in a simulator software showing in real-time

the displacements of blocks (see Fig. 9).

The algorithm is based on exchanges of messages be-

tween neighboring blocks, where each message may contain

transmitted data. In order to write this algorithm for blocks

reconfiguration, blocks are considered as entities with their

own memory, able to execute a set of instructions to manage

this memory. Each block is connected with 1 to 4 neighbors

and communicates using messages. The algorithm presented

requires only data stored within each block, which can run

independently in autonomous units of computation.

One of the blocks is chosen to propagate the actions of

the reconfiguration algorithm to the other blocks. We call

this block Master, it is connected to an external module that

manages the reconfiguration.

The desired configuration is stored in a 4-connected map,

Fig. 10. Some steps of the reconfiguration algorithm : a) a goal map; b)
an initial configuration of blocks; c) the distance from each block to the
closest empty space; d) the path from one block to a free cell.

where the number of cells to fill corresponds exactly to the

number of blocks that receive the card. Fig. 10.a shows an

example of a map where the cells to fill are drawn in green.

B. Steps of the algorithm

The algorithm for blocks reconfiguration is divided into

four major stages:

A preliminary step, executed only once for the whole of

the reconfiguration consists in transmitting the map describ-

ing the desired configuration to each block. In order to save

memory, it is possible not to transmit the entire map to every

block. A solution is to decompose the map into several parts

and distribute these sub-maps over the sets of blocks. In this

first paper, we will transmit the entire map to each block, this

optimization will be the subject for future enhancements. The

propagation algorithm of the map to all blocks is detailed in

paragraph V-C. Fig. 10.b shows the result of transmission of

a map to a set of blocks, blocks can obtain boolean value

from the map for the cell they cover (green for true and

orange otherwise).

After this preliminary step, we will repeat three successive

stages for evolving the current configuration to the desired

solution: calculating the distance between blocks and empty

areas, defining the direction of movement, and the motion of

the blocks.

1) Calculating distance between blocks and empty areas:

The first phase is to search for each block the shortest

distance (in following 4-connected blocks) which separates

it from a free position in the card as shown. For example,

the value placed over each block in Fig. 10.c is the distance

from the block to the closest empty cell.

First we initialize all distances stored in the blocks to the

infinity value, then we search which blocks are in contact

with empty places. Since each block has a copy of the map

in its own memory, it can check if in one of its sides : there

is no neighbor block and the corresponding position in the

map shows an empty place. In this case it receives a distance

value equal to 1.

Every block must have a distance corresponding to the

minimum distance from their neighbors plus 1. Then, to

determine the distance value for each block, when a neighbor

updates its distance, it will propagate this information to its

neighbors as a message containing its distance. When a block



Fig. 11. Algorithm for determining the direction of simultaneous displace-
ments of many blocks.

receives a message from a neighbor, it compares its value to

the one received in the message, and corrects its value if it

is greater than that received plus 1.

2) Defining the direction of movement: When all the

distances are memorized in the blocks, we search the block

Bmax that admits the greatest distance and placed on a cell of

the map that must be emptied. This block is easy to identify

because it is surrounded by neighbors whose distance is less

than its.

From this block Bmax, we have to find a path to a block

close to an empty cell by following the decreasing values of

distance as shown in Fig. 10.d.

To do this, we seek the neighbor of Bmax that admits the

smallest distance. To choose the direction where distances

are equal values we follow the order: West, North, East, and

South (WNES is here a convention). The relative position

of this neighbor defines the direction of movement for the

block, this direction is stored in the ’direction’ variable.

The two previous steps can be repeated as there is blocks

that have not been used for a movement (they are marked

with ∞ on Fig. 11). In order to avoid deadlocks, we set the

distance stored in these moving blocks to the infinity value.

Thus, each block can only participate to one reconfiguration

at a time but many movements of blocks are possible

simultaneously.

3) The motion of the blocks: This step of the algorithm

consists in starting the physical displacement of the blocks

and waiting for them to reach their destination before

performing the next sequence. This movement is made

by successive small motion taking into account that when

two successive neighbors don’t have the same direction of

displacement, the first block must wait for the end of the

displacement of the second one before beginning to move.

C. Details on the use of messages.

We recall that the same program is charged on each block.

The program behaves like a finite state machine where the

evolutions of states are triggered by receiving messages.

The first step of the program is to send the map to each

block. The block ’Master’ receives the first message from

an external module.

The algorithm detailed below allows to start a treatment

on all blocks by diffusing the order of starting, step by step

with the guarantee that it will be applied only once per

block. At the end of treatment, the initial block receives

an acknowledgment stating that the treatment has been

performed on all blocks.

For each type of information conveyed to the blocks

we define a dedicated message. For example, the message

MAP MESSAGE used to send data on the card contains the

following parameters:

• the pointer to the transmitter (which is necessarily a

neighbor of the receiver),

• the size of the card,

• and the bit array indicating whether each cell must be

filled or not.

• The transmission time is added to the message in order

to simulate the transfer delay.

When a block receives a message type MAP MESSAGE,

two actions are possible:

1) if there is already a map stored in the block, then

it returns an ACQ MAP MESSAGE message to the

sender;

2) else, it copies the card into its local memory and

sends a new message MAP MESSAGE containing the

card data to each of its neighbors except to the one

who sent him. Moreover it memorizes the sender of

the message (in a variable sender) and the number

of neighbors to whom he sent this message (in the

variable waitedAnswers).

When a block receives a message ACQ MAP MESSAGE,

it decrements the variable waitedAnswers of 1. If waitedAn-

swers is null, which indicates that all his neighbors have

responded, then the block sends an acknowledgment to the

’sender’ block in sending a message ACQ MAP MESSAGE.

Similar kinds of messages are defined to manage the other

steps of the algorithm (calculation of distances and start of

motion), each of these treatments being based on traversals

of all blocks.

D. The real-time simulator

We developed a simulator to visualize in real-time states

of blocks during the course of the reconfiguration algorithm.

This software, developed in C++, allows to observe the

asynchronous executions of the code on the different blocks

by managing its own global clock. It calculates the simul-

taneous evolution of the state of each of the blocks, taking

into account the delay of transfer of messages. Thus, the

emission of a message and its reception can not be achieved

simultaneously.



Fig. 12. Two screen captures of the final configuration of blocks for two
examples : a conveyor and the text dMEMS 12. The yellow blocks are those
that have just reached their final position.

Shape Goal Conveyor dMEMS 12

Horizontal line 121 66
2 horizontal lines 136 64

Diagonal line 108 65
Sinusoidal line 71 71

2 boxes 132 177

TABLE I

NUMBER OF STEPS TO REACH THE GOAL FROM DIFFERENT INITIAL

SHAPES.

After each displacement, the positions of the blocks is

displayed in real time with OpenGL, many textures are

used to show the states of blocks. Some screen captures are

presented in Fig. 12 and some animations of reconfiguration

can be visualized in a short video accompanying this paper.

E. Comparison of speeds of reconfigurations

The speed of reconfiguration of the blocks strongly de-

pends on the initial configuration of blocks relatively to

the desired final map. Even more than the average distance

traveled by each block, the complexity of the 4-connected

path separating blocks is an important parameter of the

reconfiguration complexity.

We performed two types of reconfigurations, a first one

defining a card with a fairly simple pattern representing a

conveyor (composed by 546 blocks), and a more complex

one formed by the text : ’dMEMS 12’ (706 blocks) as shown

in Fig. 12).

For each of these situations, several initial configurations

were tested :

• horizontal line : blocks are initially placed on a set of

horizontal lines crossing the map in the direction of its

length passing through its center,

• two horizontal lines : blocks are placed along two

horizontal boxes crossing the map in the direction of

its length, one on the top and one in the bottom,

• diagonal line: large line that crosses the map from the

upper left to lower right corner,

• sinusoidal line : a curve line crosses the map,

• two boxes : one box on the left and one on the right of

the map.

For each configuration, the numbers of steps to achieve

the goal are shown in Table I. This value represents only

the number of repetitions of the algorithm required for

reconfiguration without taking into account the duration of

displacement of the blocks.

One can notice that the speed of convergence of the

algorithm varies significantly depending on the initial config-

uration. The algorithm seems to be more effective with the

horizontal lines for the second case because it places blocks

in a configuration close to their final distribution.

VI. CONCLUSION

In this paper, we have first presented an efficient 2D

motion and an holding system integrated in 1cm3. Several

blocks have been realized integrating electro-permanent mag-

nets in order to save energy. The experiments show that a

block is able to hold another one with a force of 45mN and

move two blocks at the speed of 14mm/s. The blocks will be

powered externally via the ground surface but the housing

of the other electronic parts in the block is possible.

In the last part, we proposed an algorithm allowing to

reconfigure a set of blocks according to a target map. The

blocks use the same program and are able to organize

themselves by exchanging asynchronous messages. This first

reconfiguration algorithm could be optimized to allow more

simultaneous movements of blocks.

In the future, this work will be used as a basis to realize the

above-mentioned Smart Blocks project. We have therefore

given suggestions, hints and solutions to problems that will

be faced in later work, when the actuators will be integrated

to form a modular and reconfigurable contactless conveyor.

REFERENCES

[1] N. Chaillet and S. Régnier, Eds., Microrobotics for Micromanipulation.
John Wiley and Sons, 2010.

[2] R. Zeggari, R. Yahiaoui, J. Malapert, and J.-F. Manceau, “Design
and fabrication of a new two-dimensional pneumatic micro-conveyor,”
Sensors & Actuators: A.Physical, vol. 164, pp. 125–130, 2010.

[3] K. Boutoustous, G. J. Laurent, E. Dedu, L. Matignon, J. Bourgeois, and
N. L. Fort-Piat, “Distributed control architecture for smart surfaces,” in
Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, 2010,
pp. 2018–2024.

[4] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and
S. Murata, “Distributed self-reconfiguration of M-TRAN III modular
robotic system,” Int. Journal of Robotics Research, vol. 27, no. 3-4, pp.
373–?386, 2008.

[5] B. Salemi, M. Moll, and W.-M. Shen, “Superbot: A deployable, multi-
functional, and modular self-reconfigurable robotic system,” in Proc.

of the IEEE Int. Conf. on Intelligent Robots and Systems, 2006, pp.
3636–3641.

[6] A. Spröwitz, S. Pouya, S. Bonardi, J. van den Kieboom, R. Möckel,
A. Billard, P. Dillenbourg, and A. Ijspeert, “Roombots: Reconfigurable
robots for adaptive furniture,” IEEE Computational Intelligence Maga-

zine, special issue on ”Evolutionary and developmental approaches to

robotics”, vol. 5, no. 3, pp. 20–32, 2010.
[7] V. Zykov, E. Mytilinaios, M. Desnoyer, and H. Lipson, “Evolved and

designed self-reproducing modular robotics,” IEEE Transactions on

robotics, vol. 23, no. 2, pp. 308–319, 2007.
[8] J. Neubert, A. P. Cantwell, S. Constantin, M. Kalontarov, D. Erickson,

and H. Lipson, “A robotic module for stochastic fluidic assembly of
3d self-reconfiguring structures,” in Proc. of the IEEE Int. Conf. on

Robotics and Automation, 2010, pp. 2479–2484.
[9] K. Gilpin, A. Knaian, and D. Rus, “Robot pebbles: One centimeter

modules for programmable matter through self-disassembly,” in Proc.

of the IEEE Int. Conf. on Robotics and Automation, 2010, pp. 2485–
2492.


