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Introduction

1.1 Motivation : un problème de pincement D'un théorème de M. Berger et W. Klingenberg, [Be], il résulte que si V est un espace symétrique de rang un de type compact à courbure non constante (i.e. un espace projectif complexe CP m , m ≥ 2, un espace projectif quaternionien HP m , m ≥ 2, ou le plan projectif des octaves de Cayley CaP 2 ), V n'admet pas de métrique à courbure comprise entre δ et 1 si δ > 1 4 .

On se pose un problème analogue en courbure négative. Si -1 ≤ δ < 0, on dit qu'une variété riemannienne est δ-pincée s'il existe a > 0 tel que sa courbure soit comprise entre -a et δa.

Par exemple, l'espace hyperbolique réel est -1-pincé. Les espaces symétriques de rang un de type non compact à courbure non constante sont -1 4 -pincés. Il s'agit des espaces hyperboliques complexes CH m , m ≥ 2, des espaces hyperboliques quaternioniens HH m , m ≥ 2, et du plan hyperbolique des octaves de Cayley CaH 2 . Le problème du pincement optimal consiste à déterminer quel est le meilleur pincement possible pour une métrique sur une variété donnée. Pour les variétés simplement connexes (et donc difféomorphes à l'espace hyperbolique réel), il convient de se restreindre à des métriques comparables à une métrique de référence, par exemple, qui lui sont quasiisométriques. On rappelle que deux variétés riemanniennes M et N sont dites quasiisométriques s'il existe une application f : M → N et des constantes C et L telles que l'image de f soit C-dense dans N et pour tous points x, y ∈ M ,

-C + 1 L ≤ d(f (x), f (y)) ≤ Ld(x, y) + C.
Question. Soit M une variété riemannienne δ-pincée. Existe-t'il une variété riemannienne N quasiisométrique à M et δ -pincée avec δ < δ ? Dans cet article, on détermine le pincement optimal pour des familles d'espaces homogènes riemanniens. Voici un exemple. Soit G 2,4,-1 4 le produit semi-direct de R 3 par R défini par le groupe à un paramètre d'automorphismes de R 3 engendré par la matrice   1 0 0 0 1 0 0 0 2   .

La métrique riemannienne qui en coordonnées exponentielles t (sur le facteur R), x, y et z (sur le facteur R 3 ) s'écrit ds 2 = dt 2 + e 2t (dx 2 + dy 2 ) + e 4t dz 2 est invariante à gauche. On vérifie aisément (voir par exemple [He]) que cette métrique est -1 4pincée.

Théorème 1 Soit δ < -1 4 . Aucune variété riemannienne δ-pincée n'est quasiisométrique à G 2,4,-1 4 .

La preuve utilise la torsion en cohomologie L p . C'est un espace vectoriel, noté T 2,p (M ), défini pour p ≥ 1. Pour une variété simplement connexe à courbure négative, le nombre

T (M ) = inf{p > 1 ; T 2,p (M ) = 0}
est un invariant de quasiisométrie. Un théorème de comparaison (théorème A) entraîne que si dim M = 4 et si M est δ-pincée, alors T (M ) ≥ 1 + 2 √ -δ. Un calcul direct (théorème B) montre que pour le produit semi-direct G 2,4,-1 4 , la torsion T 2,p est non nulle pour 2 < p < 4, d'où T (G 2,4,-1 4 ) = 2. La minoration du pincement s'en déduit immédiatement.

Un problème ouvert

A ma connaissance, le problème du pincement optimal pour les espaces symétriques -1 4 -pincés est toujours ouvert. Pourtant, le plan hyperbolique complexe CH 2 est infiniment voisin de G 2,4,-1 4 . Il peut-être vu comme un groupe de Lie résoluble muni d'une métrique invariante à gauche. Ce groupe est le produit semi-direct du groupe de Heisenberg Heis par R engendré par la dérivation de matrice   1 0 0 0 1 0 0 0 2   . Toutefois T (CH 2 ) = 4, si bien que le théorème de comparaison ne donne pas de borne optimale pour le pincement des variétés riemanniennes N quasiisométriques au plan hyperbolique complexe. Il y a donc une limitation essentielle dans la méthode.

Le problème restreint où l'on suppose que la variété inconnue N revêt une variété riemannienne compacte a été résolu par M. Ville [V] en dimension 4, par L. Hernández [Hz], S.T. Yau et F. Zheng, [YZ] pour les espaces hyperboliques complexes, par N. Mok, Y.T. Siu et S.K. Yeung [MSY], J. Jost et S.T. Yau [JY] pour les autres espaces symétriques de rang 1.

Cohomologie L p

Soit M une variété riemannienne. Soit p > 1 un réel. On note L p Ω * (M ) l'espace de Banach des formes différentielles L p et Ω * ,p (M ) = L p ∩ d -1 L p l'espace des formes différentielles L p dont la différentielle extérieure est aussi L p . La cohomologie du complexe (Ω * ,p (M ), d) s'appelle la cohomologie L p de M . Elle est intéressante surtout si M est non compacte.

Par définition, la cohomologie L p est invariante par difféomorphisme bilipschitzien. Dans la classe des variétés simplement connexes à courbure négative ou nulle, c'est un invariant de quasiisométrie (cf. [G2]).

En toute généralité, la cohomologie L p se décompose en cohomologie réduite et torsion 0 → T * ,p → H * ,p → R * ,p → 0, où la cohomologie réduite est R * ,p = ker d/im d et la torsion est T * ,p = im d/im d. La cohomologie réduite (parfois notée H k (p) ) est un espace de Banach sur lequel les isométries de M agissent isométriquement. La torsion est non séparée.

Par exemple, la cohomologie L p de la droite réelle est entièrement de torsion. La cohomologie L p du plan hyperbolique est entièrement réduite. Néanmoins, cohomologie réduite et torsion coexistent souvent.

Pincement de la courbure

En degrés k > 1, la cohomologie L p est liée de façon optimale au pincement de la courbure.

Théorème A. Soient δ ∈] -1, 0[ un réel, n et k = 2, . . . , n des entiers. Notons q(n, δ, k) = 1 + n -k -1 k √ -δ. Soit M une variété riemannienne complète de dimension n, simplement connexe, dont la cour- bure sectionnelle K satisfait -1 ≤ K ≤ δ. Alors T k,p (M ) = 0, i.e. H k,p (M ) est séparé pour 1 < p < q(n, δ, k -1). H k,p (M ) = 0 pour 1 < p ≤ q(n, δ, k).
Ce résultat, annoncé dans [P1], est un raffinement de celui de H. Donnelly et F. Xavier, [DX], concernant l'annulation de la cohomologie L 2 réduite. La condition d'annulation de la torsion est optimale. D'abord, pour l'espace hyperbolique (δ = -1) en tout degré, voir en 29. Mais il y a d'autres exemples. Soient n et µ des entiers tels que 2

≤ µ ≤ n -1 et δ ∈] -1, 0[. Soit G µ,n,δ le produit semi-direct G = R × α R n-1 où α est une matrice diagonale avec seulement deux valeurs propres distinctes 1 et √ -δ < 1 de multiplicités µ -1 et n -µ.
Alors le groupe de Lie G µ,n,δ possède une métrique riemannienne invariante à gauche δ-pincée.

Théorème B. Soient n et k = 2, . . . , n -1 des entiers. 1. Pour l'espace hyperbolique réel, T k,p (RH n ) = 0 si et seulement si p = n -1 k -1 . 2. Soient δ ∈] -1, 0[ un réel. Si k = µ et q(n, δ, k -1) < p < 1 + 1 + (n -1 -k) √ -δ k -2 + √ -δ , alors T k,p (G µ,n,δ ) = 0, i.e. H k,p (G µ,n,δ ) n'est pas séparé. Par conséquent, pour tout µ = 2, • • • , n -1, G µ,n,δ n'est pas quasiisométrique à une variété δ -pincée avec δ < δ.
Ce résultat, qui élabore sur [KS], a été annoncé dans [P3].

Cas des espaces symétriques de rang un

Les espaces symétriques de rang 1 de type non compact à courbure non constante sont -1/4pincés. Alors que ce sont de bons candidats pour tester l'optimalité du théorème A, (la preuve ne comporte aucune perte quand on l'applique à ces espaces pour les valeurs adéquates de k), le calcul révèle que leur cohomologie L p reste séparée au-delà des intervalles donnés par le théorème A. Cela résulte de la non commutativité de leur unipotent maximal, voir [P2].

Méthode

Une variété riemannienne M à courbure sectionnelle négative ressemble à un produit. En effet, le flot φ t de l'opposé du gradient d'une fonction de Busemann b réalise un difféomorphisme de M sur H × R, où H = b -1 (0) est une horosphère. Par exemple, pour l'espace homogène G 2,4,-1 4 (resp. le plan hyperbolique complexe CH 2 ), b(t) = -t, H = R 3 (resp. H = groupe d'Heisenberg). Les orbites du flot φ t sont des géodésiques asymptotes en +∞, i.e. aboutissant en un même point à l'infini, en provenance de tous les autres points à l'infini (voir figure).

horospheres geodesiques

On montre que si la courbure est suffisamment pincée (i.e., sous les hypothèses du théorème A), toute k-forme fermée L p ω possède une valeur au bord

ω ∞ = lim t→+∞ φ * t ω.
De plus, ω est la différentielle d'une forme L p si et seulement si ω ∞ = 0. Par conséquent, l'application valeur au bord induit une injection de H k,p dans un espace séparé, donc H k,p est séparé. Inversement, pour les espaces homogènes G k,n,δ , on construit explicitement des classes de cohomologie non nulles, en utilisant la structure de produit semi-direct. Il faut se méfier de la formule de Künneth, qui n'est pas vraie en présence de torsion, même pour les produits directs. Après des préliminaires (dualité de Poincaré, annulation de la cohomologie L p réduite des groupes abéliens), on introduit et on construit des classes de torsion non nulles particulières, dites robustes, qui restent non nulles après produit cartésien. La nature semi-directe du produit G k,n,δ = R n-1 × α R exige la construction de classes robustes adaptées à la graduation de l'algèbre extérieure de R n-1 par les espaces propres de la dérivation α. Puis on effectue le produit cartésien de ces classes avec des classes de cohomologie à support compact de R. On obtient ainsi un intervalle ouvert de valeurs de p pour lesquelles T k,p (G k,n,δ ) = 0. Pour l'espace hyperbolique réel, il y a exactement une valeur de p en chaque degré > 1 pour laquelle T k,p (RH n ) = 0. On le montre en effectuant le produit cartésien d'une classe de torsion robuste de R avec une classe de cohomologie à support compact de R n-1 .
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2 Annulation de la torsion

Fonctions de Busemann

Soit M une variété riemannienne simplement connexe à courbure sectionnelle négative pincée. On se donne une fonction de Busemann b. C'est une fonction, obtenue comme limite de distances à des points, qui possède les propriétés suivantes.

1. b est lisse, son gradient est partout de norme 1. 2. Les lignes de gradient de b sont des géodésiques convergeant en +∞ vers un même point du bord à l'infini de M . 3. Les propriétés de contraction du flot φ t de -∇b sont contrôlées par la courbure sectionnelle.

Exemple 1 Cas de l'espace hyperbolique réel.

Dans ce cas, tout plan totalement géodésique contenant une ligne de gradient de b est stable par φ t . Orthogonalement à ses orbites, φ t est une homothétie de rapport e -t : (φ t ) * (g -b 2 ) = e -2t (g -b 2 ). Autrement dit, φ t contracte de la même façon dans toutes les directions autour d'une orbite. φ t multiplie les volumes par le facteur e -(n-1)t , où n = dim M . Si ω est une k-forme différentielle sur M , elle se décompose uniquement en ω = β + γ ∧ db de sorte que ι ξ β = 0, ι ξ γ = 0. Alors Dans ce cas, toute ligne de gradient est contenue dans une droite complexe, totalement géodésique, de courbure sectionnelle -1, stable par φ t . Tangentiellement à cette droite, et orthogonalement à l'orbite, φ t est une homothétie de rapport e -t . Tout plan contenant ξ mais orthogonal à la droite complexe, s'exponentie en une surface totalement géodésique à courbure sectionnelle -1, stable par φ t , donc, dans ces directions, φ t est une homothétie de rapport e -t/2 . Par conséquent, φ t multiplie les volumes par e -mt , où m = dim C M = 1 2 dim M . Si ω est une k-forme différentielle sur M , elle se décompose uniquement en ω = β + γ ∧ db de sorte que ι ξ β = 0, ι ξ γ = 0, puis β se décompose à son tour en β = + η ∧ Jdb, où J désigne la structure complexe, et ι Jξ = 0, ι Jξ η = 0. Alors 

|φ * t β|(x) = e kt |β|(φ t (x)), |φ * t γ|(x) = e (k-
|φ * t |(x) = e kt/2 | |(φ t (x)), |φ * t η|(x) = e (k-

Champs de vecteurs (k, p)-contractants

Les exemples ci-dessus suggèrent la définition suivante.

Définition 3 Soit M une variété riemannienne. Soit ξ un champ de vecteurs complet sur M , soit φ t son flot. Soit p > 1 un réel, soit k un entier inférieur à la dimension de M . On dit que ξ est (k, p)-contractant si φ t diminue exponentiellement la norme L p des k-formes transversalement à ξ. Plus précisément, on note Jac(φ t ) le jacobien de φ t , et on demande qu'il existe des constantes

C et η > 0 telles que, pour tout x ∈ M et toute k-forme β ∈ Λ k T * M telle que ι ξ β = 0, |φ * t β|(x) Jac x (φ t ) 1/p ≤ C e -ηt |β|(φ t (x)) pour tout t ≥ 0. On dit que ξ est (k, p)-dilatant si -ξ est (k, p)-contractant.
Exemple 4 Cas des produits semi-directs G = H × α R.

Ici, H est un groupe de Lie, α une dérivation de l'algèbre de Lie de H qui engendre un groupe à un paramètre e tα d'automorphismes de

H, et G = H × R muni de la multiplication (h, t)(h , t ) = (h e tα (h ), t + t ).
On utilise le champ de vecteurs invariant à gauche ξ = ∂ ∂t qui engendre l'action à droite du facteur R. Alors les formes différentielles annulées par ι ξ s'identifient aux formes différentielles sur H dépendant de t. Notons sp(α) l'ensemble des valeurs propres de α répétées autant de fois que leurs multiplicités. Le flot φ t agit sur les k-formes transverses avec pour valeurs propres les nombres e -tλ , où λ décrit les sommes de k éléments de sp(α). Par conséquent, ξ est (k, p)-contractant si et seulement si les parties réelles de toutes ces sommes sont strictement supérieures à tr (α) p .

Proposition 5 Soit M une variété riemannienne complète de dimension n, simplement connexe, dont la courbure sectionnelle

K satisfait -1 ≤ K ≤ δ < 0. Soit ξ un champ de vecteurs de Busemann. Si k = 0, • • • , n -1 et si p > 1 satisfait p < q(n, δ, k) = 1 + n -k -1 k √ -δ, (resp. p > 1 + n -k -1 k √ -δ ), alors le champ ξ est (k, p)-contractant (resp. (k, p)-dilatant).
Preuve. Notons φ t le flot de ξ. Ses trajectoires sont des géodésiques parcourues à vitesse 1. Soit x ∈ M . La quantité à majorer est

n(t, x) = p log (Λ k dφ t ) |Λ k ξ ⊥ -log det(dφ t ).
Elle satisfait, pour tous s et t, n(t + s, x) = n(s, φ t (x)) + n(t, x). Notons τ t le transport parallèle de φ t (x) à x le long de la géodésique s → φ s (x). Alors τ t dφ t préserve l'hyperplan orthogonal à ξ(x). Notons J(t) sa matrice dans une base orthonormée de ξ(x) ⊥ , de sorte que n(t, x) = p log Λ k J(t) -log det(J(t)).

Comme ξ est un gradient, la matrice U (t) = J(t) -1 J (t), seconde forme fondamentale des hypersurfaces de niveau, est symétrique. Comme les colonnes de J sont des champs de Jacobi, la matrice U (t) satisfait l'équation de Riccati

U + U 2 + R = 0 où R est la matrice de l'opérateur de courbure v → R(v, ξ)ξ.
Classiquement (voir par exemple [BK], [CE]), on en tire une estimation des valeurs propres λ

1 , . . . , λ n-1 de U , √ -δ ≤ λ 1 ≤ • • • ≤ λ n-1 ≤ 1. Comme J(0) = I est l'identité, J(t) = I + tU (0) + o(t) donc Λ k J(t) ≤ 1 + |t| D k U (0) + o(t)
où D k U désigne l'extension de U comme dérivation de l'algèbre extérieure. On peut donc majorer la dérivée à droite

n (0+) = ∂n ∂t (0, x) ≤ p D k U (0) -trU(0) ≤ p( n-1 i=n-k λ i ) - n-1 i=1 λ i = (p -1)( n-1 i=n-k λ i ) - n-k-1 i=1 λ i ≤ k(p -1) -(n -k -1) √ -δ. En dérivant l'équation n(t + s, x) = n(s, φ t (x)) + n(t, x), on trouve que n (t+, x) = n (0+, φ t (x)) ≤ k(p -1) -(n -k -1) √ -δ pour tout t. En intégrant, il vient pour tout t ∈ R, (Λ k dφ t ) |Λ k ξ ⊥ p ≤ e -ηt Jac(φ t ), avec η = (n -k -1) √ -δ -k(p -1)
. Si η > 0, i.e. si la courbure est suffisamment pincée, on conclut que ξ est (k, p)-contractant.

Si on remplace ξ par -ξ, les valeurs propres λ i de la seconde forme fondamentale sont remplacées par

µ i = -λ n-i qui satisfont -1 ≤ µ 1 ≤ • • • ≤ µ n-1 ≤ - √ -δ. La nouvelle fonction ñ(t, x) = n(-t, x) satisfait ñ (0+) ≤ p( n-1 i=n-k µ i ) - n-1 i=1 µ i = (p -1)( n-1 i=n-k µ i ) - n-k-1 i=1 µ i ≤ k(p -1)(- √ -δ) + (n -k -1). Il vient (Λ k dφ t ) |Λ k ξ ⊥ p ≤ e η t Jac(φ t ) avec η = k(p -1) √ -δ -n + k + 1. Si η > 0, on conclut que ξ est (k, p)-dilatant. q.e.d.
Remarque 6 Cas limite.

Si p = q(n, δ, k), le flot φ t diminue au sens large la norme L p des k-formes transverses, au sens où

(Λ k dφ t ) |Λ k ξ ⊥ p ≤ Jac(φ t ).
Remarque 7 Cas d'égalité.

Dans l'argument ci-dessus, les inégalités sont optimales dans le cas où les valeurs propres ne prennent que deux valeurs. Il est facile, à l'aide de [He], de faire la liste des espaces homogènes à courbure sectionnelle strictement négative pour lesquels les valeurs propres prennent exactement deux valeurs égales aux bornes de la courbure sectionnelle. En voici deux familles particulières.

Exemple 8 Les espaces symétriques de rang un.

La courbure sectionnelle varie entre -1 et -1/4. Les valeurs propres sont 1/2 (avec multiplicité 2m -2 pour l'espace hyperbolique complexe CH m , m ≥ 2, 4m -4 pour l'espace hyperbolique quaternionien HH m , m ≥ 2, 8 pour le plan hyperbolique des octaves de Cayley CaH 2 ), et 1 avec multiplicité complémentaire, soit respectivement 1, 3 et 7.

Exemple 9 Une famille d'espaces homogènes.

Soient 1 ≤ µ < n des entiers et δ ∈] -1, 0[. Soit G µ,n,δ le produit semi-direct G = R n-1 × α R où α est une matrice diagonale avec seulement deux valeurs propres distinctes 1 et √ -δ < 1 de multiplicités µ -1 et n -µ. La métrique invariante dt 2 + e 2t dx 2 + e 2t
√ -δ dy 2 (où x regroupe les µ -1 premières coordonnées de R n-1 et y les n -µ suivantes) a une courbure sectionnelle comprise entre -1 et -δ.

Valeur au bord

Proposition 10 Soit M une variété riemannienne, soit ξ un champ de vecteurs complet sur M , de flot φ t .

1. On suppose que ξ est (k -1, p)-contractant et que sa norme est bornée. Alors toute k-forme fermée L p ω possède une valeur au bord

ω ∞ = lim t→+∞ φ * t ω, et ω -ω ∞ est la différentielle d'une forme L p . 2. Si ξ est (k -1, p)-et (k -2, p)-contractant, et si ω = dβ où β ∈ L p , alors ω ∞ = 0. 3. Si ξ est (k -1, p)-et (k, p)-contractant, alors ω ∞ = 0. Par conséquent, 1. Si ξ est (k -1, p)-et (k -2, p)-contractant, T k,p (M ) = 0. 2. Si ξ est (k -1, p)-et (k, p)-contractant, H k,p (M ) = 0.
Preuve. D'après la formule de Cartan, la dérivée de Lie

L ξ ω = ∂ ∂t φ * t ω |t=0 est égale à L ξ ω = d(ι ξ ω) + ι ξ (dω). Supposons que dω = 0. En intégrant l'identité ∂ ∂t φ * t ω = φ * t L ξ ω, il vient φ * t ω -ω = t 0 φ * s L ξ ω ds = d( t 0 φ * s ι ξ ω ds). Si ξ est borné, ι ξ ω L p ≤ ξ L ∞ ω L p . Si de plus ξ est (k -1, p)-contractant, il existe C et η > 0 tels que φ * s ι ξ ω L p ≤ C e ηs ω L p . Par conséquent, l'intégrale Bω = +∞ 0 φ * s ι ξ ω ds converge dans L p . On note ω ∞ = ω + dBω = lim t→+∞ φ * t ω.
Il s'agit d'une limite au sens des distributions. Si la limite est nulle, alors ω = d(-Bω) au sens des distributions. Cela entraîne que -Bω ∈ Ω k-1,p (M ), et que sa différentielle est ω, donc que la classe de cohomologie L p de ω est nulle. Si ξ est de plus (k -2, p)-contractant, on peut aussi définir un opérateur B borné sur les formes

L p de degré k -1. Soit α une k -1-forme L p telle que dβ = ω. Il vient φ * t β -β = t 0 φ * s L ξ ω ds = d( t 0 φ * s ι ξ β ds) + t 0 φ * s ι ξ (dβ) ds,
qui tend vers dBβ + Bω quand t tend vers +∞. Mais comme ξ est (k, p)-contractant, φ * t β tend vers 0. On trouve que β = -dBβ -Bω, d'où

ω = dβ = -dBω = ω -ω ∞ , d'où ω ∞ = 0.
Cela prouve que dL p est exactement le noyau de l'application valeur au bord, de Ω k,p (M )∩ker d dans l'espace vectoriel topologique des formes différentielles sur M à coefficients distributions. Par conséquent, il est fermé, donc T k,p (M ) = 0.

Supposons que

ξ est (k -1, p)-et (k, p)-contractant. Soit ω une k-forme fermée L p . On écrit ω = β + db ∧ γ où ι ξ β = 0, ι ξ γ = 0. Alors φ * t β et φ * t γ tendent vers 0 dans L p , donc φ * t ω tend vers 0 dans L p , donc ω ∞ = 0, d'où ω ∈ dL p . Cela prouve que H k,p (M ) = 0. q.e.d.
Remarque 11 Plus généralement, sous des hypothèses adéquates, l'opérateur B définit une homotopie du complexe Ω * ,p (M ) sur un complexe de formes différentielles invariantes par le flot φ t . Ce point de vue est développé dans [GKS], [P2].

Preuve du théorème A

Soit M une variété riemannienne complète, simplement connexe, à courbure négative δ-pincée.

Soit k < n = dim M . Notons q(n, δ, k) = 1 + n -k -1 k √ -δ.
Remarquer que q(n, δ, k) est une fonction décroissante de k.

D'après la proposition 5, si p < q(n, δ, k -1), les champs de vecteurs de Busemann ξ sont

(k -1, p) et (k -2, p)-contractants. La proposition 10 s'applique, et T k,p (M ) = 0. De même, si p < q(n, δ, k), ξ est (k -1, p) et (k, p)-contractant, donc H k,p (M ) = 0.
Il reste à traiter le cas limite p = q(n, δ, k). Dans ce cas, d'après la remarque 6,

(Λ k dφ t ) |Λ k ξ ⊥ p ≤ Jac(φ t ).
Soit K un compact de M . Il existe une constante c = c(K) telle que les images φ cj (K) pour j ∈ Z soient deux à deux disjointes. Alors la suite ω L p (φcj (K)) est dans p (Z), donc tend vers 0. L'inégalité 2.4 entraîne que si ω est une k-forme sur M annulée par ι ξ ,

φ * cj ω L p (K) ≤ ω L p (φcj (K))
qui tend vers 0. Cela montre que la limite au sens des distributions ω ∞ est nulle sur tout compact, donc est nulle. On conclut que H k,p (M ) = 0 aussi dans ce cas. q.e.d.

Remarque 12 Cas des produits semi-directs G = H × α R.

Dans le cas des groupes G µ,n,δ , le théorème A s'applique, et la torsion L p s'annule en degré µ pour tout p < 1 + q(n, δ, µ -1). Soit G = H × α R un produit semi direct plus général. Notons λ 1 ≤ • • • ≤ λ n-1 les parties réelles des valeurs propres de α répétées autant de fois que leur multiplicité. On suppose que λ 1 > 0. On utilise le champ de vecteurs invariant à gauche ξ qui engendre l'action à droite du facteur R. Le

champ -ξ est (k -1, p)-contractant et (k -2, p)-contractant tant que p reste strictement inférieur à tr α λ 1 + • • • + λ k-1
. La proposition 10 s'applique, et on conclut que la torsion L p s'annule.

Exemples où la torsion est non nulle

Ce seront des groupes de Lie, produits semi-directs de groupes abéliens par R. On construit des formes différentielles fermées explicites en utilisant la structure produit. Elles sont nulles en cohomologie réduite, parce que la cohomologie réduite d'un groupe nilpotent est nulle. Pour montrer qu'elles sont non nulles en torsion L p , on utilise la dualité de Poincaré.

Dualité de Poincaré

Le lemme suivant est essentiellement dû à V. Goldshtein et M. Troyanov, [GT]. Preuve. Comme M est complète, pour toute n -1-forme L 1 dont la différentielle est L 1 , on a

M dω = 0. Par conséquent, si ω ∈ Ω k,p (M ) et ψ ∈ Ω n-1-k,p (M ), M ω ∧ dψ = (-1) k+1 M dω ∧ ψ.
Si ω ∈ Ω k,p (M ) est nulle en cohomologie L p réduite, alors il existe une suite

β j ∈ Ω k-1,p (M ) telle que dβ j converge vers ω dans L p . Si ψ ∈ Ω n-1-k,p (M ), il vient M ω ∧ ψ = lim j M dβ j ∧ ψ = lim j M β j ∧ dψ.
Par conséquent, pour toute forme fermée ψ ∈ Ω n-k,p (M ), M ω ∧ ψ = 0. Inversement, si ω ∈ Ω k,p (M ) n'est pas nulle en cohomologie réduite, alors, d'après Hahn-Banach, il existe une forme linéaire continue L sur L p Ω k (M ) qui s'annule sur l'adhérence de l'image dΩ k-1,p (M ) mais pas sur ω. Par dualité de L p et L p , il existe une forme

ψ ∈ L p Ω n-k (M ) telle que pour tout γ ∈ L p Ω k (M ), L(γ) = M γ ∧ ψ. Si β est lisse et à support compact, on a 0 = L(dβ) = M dβ ∧ ψ, i.e. dψ = 0 au sens des distributions. On conclut que ψ ∈ Ω n-1-k,p (M ) est fermée et satisfait M ω ∧ ψ = 0. Si ω ∈ Ω k,p (M ) est nulle en cohomologie L p , i.e. ω = dβ où β ∈ Ω k-1,p (M ), alors pour tout ψ ∈ Ω n-1-k,p (M ), M ω ∧ ψ = M β ∧ dψ ≤ β L p dψ L p ,
donc si dψ j L p tend vers 0, il en est de même de

M ω ∧ ψ j .
Inversement, soit ω ∈ Ω k,p (M ) une forme fermée. Si ω n'est pas nulle en cohomologie réduite, il existe une n -k-forme fermée ψ ∈ L p telle que M ω ∧ ψ = 0. La suite stationnaire ψ j = ψ pour tout j convient. Supposons désormais que ω est nulle en cohomologie réduite. On définit une forme linéaire L sur dΩ n-k,p (M ) comme suit. Etant donné γ ∈ dΩ n-k,p (M ), on choisit ψ ∈ Ω n-k,p (M ) tel que dψ = γ et on pose L(γ) = M ω ∧ ψ. Comme l'intégrale de ω contre une forme fermée est toujours nulle, le résultat ne dépend pas du choix de ψ. Supposons qu'il n'existe pas de suite ψ j ∈ Ω n-1-k,p (M ) telle que M ω ∧ ψ j ≥ 1 et ψ j L p tend vers 0. Alors la forme linéaire L est continue pour la norme L p . Par Hahn-Banach, L se prolonge en une forme linéaire continue sur

L p Ω n-k+1 (M ). Par dualité entre L p et L p , il existe une k -1-forme β ∈ L p telle que pour tout γ ∈ L p Ω n-k+1 (M ), L(γ) = (-1) k M β ∧ γ. Si ψ est lisse à support compact, M β ∧ dψ = (-1) k M ω ∧ ψ donc dβ = ω au sens des distributions. Par conséquent, β ∈ Ω k-1,p (M ) et ω est nulle en cohomologie L p . q.e.d.
Corollaire 14 Soit M une variété riemannienne complète de dimension n. Soit p > 1 et p = p/(p -1). Alors

R k,p (M ) ⇔ R n-k,p (M ) = 0, T k,p (M ) = 0 ⇔ T n-k+1,p (M ) = 0.
Preuve. L'énoncé sur la cohomologie réduite résulte immédiatement du lemme 13. Supposons que T n-k+1,p (M ) = 0. Montrons qu'il existe une constante C telle que pour tout ψ ∈ Ω n-k,p (M ), il existe γ ∈ Ω n-k,p (M ) telle que dγ = dψ et γ L p ≤ C dψ L p . Par hypothèse, dΩ n-k,p (M ) est fermé dans Ω n-k+1,p (M ). L'opérateur d induit d : Ω n-k,p (M )/ker d → dΩ n-k,p (M ). C'est une bijection continue entre espaces de Banach, donc un isomorphisme. Notons

d -1 son inverse, notons C la norme de cet opérateur. Etant donnée une n-k-forme ω ∈ Ω n-k,p (M ), soit φ ∈ Ω n-k,p (M ) un représentant de la classe d -1 dω ∈ Ω n-k,p (M )/ker d de norme presque mi- nimum. Elle satisfait (presque) dω = dφ et φ L p ≤ C dφ L p .
Soit ω ∈ Ω k,p (M ) une forme fermée, nulle en cohomologie réduite. Alors

M ω ∧ ψ = M ω ∧ γ
est contrôlée par dψ L p . Par conséquent, il n'existe pas de suite ψ j de n-k-formes différentielles L p telles que M ω ∧ ψ j ≥ 1 et dψ j L p tende vers 0. On conclut que ω est nulle en cohomologie L p . q.e.d.

Remarque. Plus généralement, R k,p (M ) est isomorphe au dual de R n-k,p (M ). On aimerait dire que T k,p (M ) = Ext(T n-k+1,p (M ), R) dans une catégorie adéquate.

Cohomologie réduite des groupes abéliens

On va construire des classes de cohomologie L p non nulles. Pour montrer qu'elles appartiennent à la torsion, nous auront besoin, au cours d'un raisonnement, de savoir que la cohomologie réduite de R n-1 est nulle.

La remarque suivante apparaît entre autres dans [G2]. Elle s'applique notamment aux groupes de Lie nilpotents simplement connexes.

Proposition 15 Soit G un groupe de Lie simplement connexe dont l'algèbre de Lie a un centre non trivial. Alors la cohomologie L p réduite de G est nulle en tous degrés.

Preuve. Un vecteur non nul du centre donne un champ de vecteurs de Killing ξ de longueur constante. La formule 

(φ t ) * ω -ω = d t 0 (φ s ) * ι ξ ω ds + t 0 (φ s ) * ι ξ dω
G (φ t ) * ω ∧ ψ = G ω ∧ ψ pour tout t.
On utilise maintenant le fait que l'action de R sur G par le flot de ξ est propre. Soit K un compact tel que la norme L p (resp. L p ) de ω (resp. ψ) dans G \ K soit petite. Soit t tel que φ t (K) soit disjoint de K. Alors

G (φ t ) * ω ∧ ψ ≤ ω L p (G\K) ψ L p (G) + ψ L p (G\K) ω L p (G)
est petit, contradiction. q.e.d.

Torsion des produits directs

L'objectif est d'étudier la torsion L p des groupes de Lie G µ,n,δ . Il s'agit de produits semi-directs. Une première étape consiste à comprendre les produits directs, ou plus généralement, les produits riemanniens.

Soient M 1 et M 2 deux variétés riemanniennes complètes. On note π i : M 1 × M 2 → M i les projections. Lorsqu'elle est vraie, la formule de Künneth énonce que le produit cartésien des formes différentielles,

(α 1 , α 2 ) → α 1 × α 2 = π * 1 α 1 ∧ π * 2 α 2 , Ω * ,p (M 1 ) ⊗ Ω * ,p (M 2 ) → Ω * ,p (M 1 × M 2 ),
induit un isomorphisme en cohomologie L p . Si la torsion T * ,p (M 1 ) est identiquement nulle, c'est vrai, voir [GKS]. Mais si T * ,p (M 1 ) et T * ,p (M 2 ) ne sont pas nulles, il en va autrement.

Exemple 16 Pour p = 2, il existe des classes non nulles α, β ∈ T 1,2 (R) telles que α × β = 0 dans H 2,2 (R 2 ).

Preuve.

Soient α = a(x) dx une 1-forme L 2 et f une fonction L 2 sur R. L'équation df = α, en Fourier, s'écrit iξ f (ξ) = â(ξ). Par conséquent, la classe de cohomologie L 2 de α est nulle si et seulement si ξ → â(ξ) iξ est L 2 . Etant données des 1-formes L 2 α = a(x) dx, β = b(y) dy sur R et 1-forme L 2 γ = γ x dx + γ y dy sur R 2 , l'équation dγ = α × β se traduit par iξγ x (ξ, η) -iηγ y (ξ, η) = â(ξ) b(η). On la résoud en prenant γx (ξ, η) = - iξ ξ 2 + η 2 â(ξ) b(η), γy (ξ, η) = iη ξ 2 + η 2 â(ξ) b(η).
On choisit pour â = b une fonction paire, lisse, à support compact qui, au voisinage de 0, coïncide avec | log(1/|ξ|)| -1/2 . Alors â(ξ)/ξ n'est pas dans L 2 (R), donc les classes de cohomologie L 2 de α et β sont non nulles. En revanche, si on utilise les coordonnées polaires ξ = ρ cos θ et η = ρ sin θ, alors

log( 1 |ξ| ) = log( 1 ρ ) + log( 1 | cos θ| ) ≥ log( 1 ρ ), d'où |γ x | 2 ≤ |ξâ(ξ) b(η)| 2 (ξ 2 + η 2 ) 2 ≤ | log( 1 ρ cos θ )| -1 | log( 1 ρ sin θ )| -1 ρ -2 ≤ | log( 1 ρ )| -2 ρ -2 ,
donc γx est dans L 2 (R 2 , dξ dη), et il en est de même de γy . On conclut que γ ∈ L 2 et dγ = α × β, donc γ ∈ Ω 2,2 (R 2 ), et la classe de α × β est nulle. q.e.d.

Pour remédier à cette difficulté, on introduit une condition sur une classe de torsion L p , appelée robustesse, qui garantit qu'elle reste non nulle après produit cartésien.

Soient M 1 et M 2 deux variétés riemanniennes complètes. Supposons que T k1,p (M 1 ) = 0 et T k2,p (M 2 ) = 0. D'après le lemme 13, il existe des formes fermées L p e i sur M i et des formes L p e i,j telles que Mi e i ∧ e i = 1 et de i,j L p tende vers 0.

La forme fermée L p ω = e 1 ∧ e 2 sur M 1 × M 2 est elle non nulle en cohomologie ? Pour l'affirmer, il faudrait contrôler la norme de d(e 1,j ∧ e 2,j ), c'est-à-dire non seulement celles de de 1,j et de 2,j , mais aussi celles de e 1,j et de e 2,j . On doit autoriser que e 1,j tende vers l'infini, mais moins vite que de 2,j ne tend vers 0. Ceci motive la définition suivante.

Définition 17 Soit M une variété riemannienne complète de dimension n. On note H k,p o (M ) le sous-ensemble de H k,p (M ) formé des classes robustes, i.e. qui contiennent une forme ω ayant la propriété suivante. Il existe une suite ω j ∈ Ω n-k,p (M ) telle que 1. les intégrales M ω ∧ ω j ne tendent pas vers 0 ; 2. les normes ω j L p tendent vers +∞ polynomialement en j ; 3. les normes dω j L p tendent vers 0 exponentiellement en j.

Enfin, on note T k,p o (M ) = H k,p o (M ) ∩ T k,p (M ).
Remarque 18 Cas où p = 2.

Dès que la torsion L 2 est non nulle, il y a des classes robustes. Il est possible que cela persiste pour tout p, mais je ne sais pas le montrer. J'en suis donc réduit à construire à la main ces classes robustes.

Proposition 19 Soient M 1 et M 2 des variétés riemanniennes complètes. Le produit cartésien de classes de torsion L p robustes de M 1 et M 2 respectivement est une classe robuste (et en particulier, non nulle) du produit riemannien M 1 × M 2 . Si l'une des deux classes est de degré maximum, le résultat est plus précis : le produit cartésien est à nouveau une classe de torsion robuste.

Preuve. Soient ω 1 ∈ Ω k1,p (M 1 ) (resp. ω 2 ∈ Ω k2,p (M 2 )) des formes fermées. Supposons qu'il existe des formes ω 1,j ∈ Ω n1-k1,p (M 1 ) (resp. ω 2,j ∈ Ω n2-k2,p (M 2 )) comme dans la définition 17.

Posons

ω = π * 1 ω 1 ∧ π * 2 ω 2 et ω j = π * 1 ω 1,j ∧ π * 2 ω 2,j .
Alors ω est fermée et L p et les formes ω j satisfont aux hypothèses de la définition 17, donc la classe de cohomologie de ω est dans

H k1+k2,p o (M 1 ×M 2 ). Supposons maintenant que k 1 = n 1 et que ω 2 est de torsion. Soit φ une (n 2 -k 2 )-forme fermée L p sur M 1 × M 2 . La restriction de φ à presque tout facteur { * } × M 2 est fermée et L p , donc pour presque tout x 1 ∈ M 1 , M2 ω 2 ∧ φ |{x1}×M2 = 0. Il vient M1×M2 ω ∧ φ = M1 ω 1 ∧ M2 ω 2 ∧ φ = 0,
autrement dit, ω est de torsion. q.e.d.

Torsion des groupes abéliens

A titre d'application de la notion de classe robuste introduite au paragraphe précédent, montrons que la torsion L p de l'espace euclidien est non nulle en tout degré.

Commençons par le cas de la droite réelle.

Lemme 20 L'ensemble T 1,p o (R) est non vide. Plus précisément, il existe une 1-forme L p a dt et une suite u j de fonctions lisses à support compact sur R telles que 1. R u j a dt ne tend pas vers 0 ; 2. u j L p tend vers +∞ polynomialement en j ; 3. u j L p tend vers 0 exponentiellement en j.

On a de plus les propriétés suivantes : 7. u j L ∞ tend vers 0 exponentiellement en j ;

8. pour tout > 0, s 1-u j L p et s -u j L p tendent vers 0 exponentiellement.

Preuve. Soit χ une fonction lisse et paire sur R, à support dans [-1, 1], qui vaut 1 au voisinage de 0. On pose

a(x) = (1 -χ(x))|x| -1 p (log |x|) -1 si |x| ≥ e, a(x) = (1 -χ(x))e -1 p sinon.
On définit une suite de fonctions v j paires, décroissantes sur [0, +∞[ par

v j (x) = 2(1 -χ(x))2e -j p si |x| ≤ e j , v j (x) = 2j |x| -1 p (log |x|) -1 si e j ≤ |x| ≤ e 2j , v j (x) = e -2j
p (e j + 1 -e -j |x|) si e 2j ≤ |x| ≤ e 2j (1 + j -1 ), v j (x) = 0 sinon. Comme p > 1, a et sa dérivée sont L p . De plus sa (s) ∼ -1 p a(s) donc |sa (s)| p ds < +∞. Par construction, v j est nulle sur [0, e j ], constante sur [e j , e 2j (1+j -1 )]. Sur l'intervalle [e j , e 2j (1+j -1 )], |v j | est majorée par const.j s -1-1/p (log s) -1 . On calcule 

e 2j (1+j -1 ) e 2j |v j | p = O(j p -1 e -2p j ), e j 1 |s -v j | p = O(je -p j ), e 2j e j |s -v j | p = O(j p e -p j ), e 2j (1+j -1 ) e 2j |s -v j | p = O(j -1 e -2 p j ), e j 0 |s 1-v j | p = 0, e 2j e j |s 1-v j | p = O(j p e -p j ), e 2j (1+j -1 ) e 2j |s 1-v j | p = O(j p -1 e -2 p j ).
Une approximation u j lisse et à support compact de v j convient. q.e.d.

Corollaire 21 T k,p (R n ) = 0 pour k = 1, . . . , n.
Preuve. Montrons d'abord que T 1,p o (R n ) est non vide. Dans R n , on note r la distance euclidienne à l'origine. Soit θ = dx 2 ∧• • •∧dx n une (n-1)-forme parallèle. La forme dr ∧ θ étant homogène de degré 0, elle s'écrit

dr ∧ θ = h dx 1 ∧ • • • ∧ dx n
où la fonction h est lisse en dehors de l'origine et homogène de degré 0. Elle n'est pas identiquement nulle. Par homogénéïté, |h| et r|dh| sont bornées.

Soient a et u j les fonctions fournies par le lemme 20. On considère les formes différentielles ω = a(r n ) dr et ω j = u j (r n )hθ sur R n . On vérifie que

ω L p = const.( +∞ 0 |a(r n )| p r n-1 dr) 1/p = const. a L p est finie, que R n ω ∧ ω j = S n-1 h 2 +∞ 0 a(r n )u j (r n )r n-1 dr = C R au j
ne tend pas vers 0, et que

ω j L p = const.( +∞ 0 |u j (r n )| p r n-1 dr) 1/p = const. u j L p tend vers +∞ polynomialement.
On calcule

dω j = nr n-1 u j (r n )h dr ∧ θ + u j (r n ) dh ∧ θ ,
et on majore

r n-1 u j (r n )h L p ≤ const.( +∞ 0 |r n-1 u j (r n )| p r n-1 dr) 1/p = const. s n-1/n u j (s) L p , puis u j (r n ) dh L p ≤ const.( +∞ 0 |r -1 u j (r n )| p r n-1 dr) 1/p = const. s -1/n u j (s) L p ,
qui tendent vers 0 exponentiellement, d'après le lemme 20. On conclut que ω est dans

H 1,p o (R n ), donc dans T 1,p
o (R n ) puisque la cohomologie réduite est nulle. Pour avoir le cas général, il suffit d'appliquer suffisamment de fois la proposition 19. q.e.d.

Graduation des formes différentielles sur les produits semi-directs

A la différence du cas des produits directs, une métrique riemannienne invariante à gauche sur un produit semi-direct G = H × α R croît exponentiellement, avec des exposants différents suivant les directions, déterminés par les valeurs propres de la dérivation α. Ceci affecte les propriétés de contraction du champ de vecteurs invariant à droite ξ qui engendre l'action à gauche du facteur R sur G. On a vu en section 2 comment utiliser le flot de ce champ de vecteurs -et ses propriétés de contraction de la norme L p de formes différentielles -pour montrer que la torsion L p est nulle. Les mêmes propriétés vont évidemment jouer un rôle dans la construction de classes de torsion non nulles.

Définition 22 Soit G = H × α R un produit semi-direct de groupes de Lie, soit H l'algèbre de Lie de H. Soit p > 1 un réel, soit k < dim G un entier.

On décompose

Λ k H * = Λ k + ⊕ Λ k 0 ⊕ Λ k -, où Λ k + (resp. Λ k 0 , resp. Λ k -)
est la somme des espaces caractéristiques de Λ k α relatifs aux valeurs propres de parties réelles supérieures (resp. égales, resp. inférieures) à tr α p . 2. On dit que p est critique en degré k pour G si tr α p est la partie réelle d'une valeur propre de l'endomorphisme

Λ k α de Λ k H * , autrement dit, si Λ k 0 = 0. 3. On note d 0 , d ± la différentielle extérieure composée avec le projecteur sur Λ k 0 , Λ k ± .
La décomposition dépendant de p, on notera Λ k +(p) , d +(p) s'il est nécessaire de spécifier l'exposant.

Remarque 23 Comparaison avec la définition 3. 

Le champ ξ est (k, p)-contractant si et seulement si Λ k +(p) = Λ k 0(p) = 0, (k, p)-dilatant si et seulement si Λ k -(p) = Λ k 0(p) = 0.

Critère de non-nullité de la torsion

On s'inspire de la discussion des produits directs (paragraphe 3.3). Lorsqu'on passe aux produits semi-directs G = H × α R et qu'on s'intéresse à un exposant p non critique, on utilise seulement le fait que la cohomologie à support compact de la droite réelle est non nulle. D'une certaine façon, l'opérateur d + remplace l'opérateur d sur l'autre facteur.

Proposition 24 Soit G = H × α R un produit semi-direct. Soit p > 1. Soit e une k -1-forme fermée L p sur H. On suppose qu'il existe une suite de formes e j ∈ Ω n-k-1,p (H) telle que 1. les intégrales H e ∧ d +(p ) e j ne tendent pas vers 0 ; 2. la suite m j = de j L p tend vers +∞ polynomialement ; 3. la suite n j = dd +(p ) e j L p tend vers 0 exponentiellement.

Alors H k,p o (G) = 0. Si de plus H est nilpotent, alors T k,p o (G) = 0.
Preuve. Notons π : G → H la projection dont les fibres sont les orbites de l'action à droite du facteur R. Soit χ une fonction lisse sur R telle que χ = 0 au voisinage de -∞ et χ = 1 au voisinage de +∞. On note χ s : t → χ(t + s).

Posons

ω = dχ ∧ π * e,
La forme fermée ω représente le produit cartésien du générateur de la cohomologie à support compact H 1 c (R) et de la classe [e] ∈ T k-1,p (H) (qui est non nulle, en vertu des hypothèses 1 et 3). Pour montrer que sa classe de cohomologie L p est non nulle, on utilise la dualité 13 avec les formes-test ω j définies comme suit.

ψ j = χ 1 π * d + e j + (1 -χ 1 )π * d -e j + dχ 1 ∧ e j et ω j = χ sj (1 -χ -sj )ψ j ,
où s j est un réel positif. Autrement dit, ω j est une troncature (destinée à rendre sa différentielle L p ) d'une forme ψ j qui est L p , mais dont la différentielle ne l'est pas. ≤ e µsj n j .

D'autre part,

d(χ sj (1 -χ -sj )) ∧ ψ j p L p (G) = d(χ sj ) ∧ ψ j p L p (G) + d(1 -χ -sj ) ∧ ψ j p L p (G) ≤ const.( (φ sj ) * d + e j p L p (H) + (φ -sj ) * d -e j p L p (H) ) ≤ const.e -ηp sj ( d + e j p L p (H) + d -e j p L p (H) )
≤ const.e -ηp sj de j p L p (H) .

Il vient ω j L p (G) ≤ C (e µsj n j + e -ηsj m j ).

Posons s j = 1 µ + η log(ηm j /µn j ). Avec ce choix, 

dω j L p ≤ C m µ/
G dχ ∧ π * e ∧ ω = R χ (t) dt H e ∧ β t = 0.
Ceci prouve que ω = dχ ∧ π * e est dans T k,p (G), et donc que T k,p (G) = 0. q.e.d.

Remarque 25 Double valeur au bord.

Notons ξ le champ de vecteurs invariant à gauche qui engendre l'action à droite du facteur R. Si on transporte ψ j par son flot, on trouve des limites distinctes, respectivement d + e j quand t tend vers +∞ et d -e j quand t tend vers -∞. Cela illustre le fait que, bien que ξ ne soit ni (k, p)-contractant, ni (k, p)-dilatant, on peut définir deux valeurs au bord. Ce point de vue est développé dans [P2].

Construction explicite de classes de cohomologie L p

Avant de se lancer dans le cas général, traitons un exemple.

Exemple 26 T 3,p (G 2,4,-1 4 ) = 0 si 4 3 < p < 2.

Preuve. Ici, H = R 3 avec les coordonnées x, y, z, et une matrice α diagonale, de valeurs propres 1, 1 et 2. Lorsque 4 3 < p < 2, l'exposant conjugué p satisfait 2 < p < 4, d'où 2 < tr α p < 3. Sur les 1-formes, Λ 1 +(p ) est engendré par dz, Λ 1 -(p ) par dx et dy. On va appliquer le lemme 24 avec des fonctions à support compact e j qui ne dépendent que de la distance r à l'origine, et une 2-forme fermée e ∈ dΛ -, de la forme e = d(f β) où f est une fonction de r et β une 1-forme homogène de degré 1.

Comme e = f (r)β + f (r)dβ, et comme dβ est homogène de degré 0, |dβ| est homogène de degré -1, d'où

de L p ≤ const.( f (r) L p (R 3 ) + r -1 f (r) L p (R 3 ) ) ≤ const.(( +∞ 0 |f (r)| p r 2 dr) 1/p + ( +∞ 0 |r -1 f (r)| p r 2 dr) 1/p )).
Notons e j = w j (r 2 ). Alors de j = w j (r 2 )d(r 2 ) = 2w j (r 2 )(x dx + y dy + z dz), d + e j = 2w j (r 2 )z dz, dd + e j = 4w j (r 2 )(x dx + y dy + z dz) ∧ z dz, 

I j = R 3 f β ∧ dd + e j .
Choisir β invariante par rotations (autour de l'origine, ou même seulement autour de l'axe Oz) est impossible, car dr ∧ dd + e j = (xdx + ydy) ∧ dd + e j = 0. Il faut donc casser la symétrie, c'est pourquoi on choisit β proportionnelle à dy. On calcule

dy ∧ dd + e j = -4w j (r 2 )xz dx ∧ dy ∧ dz = r 2 w (r 2 )h(x, y, z) dx ∧ dy ∧ dz, où h(x, y, z) = -4xz r 2
est une fonction homogène de degré 0. C'est cette fonction qui entre comme ingrédient dans e : on prend β = h dy, d'où e = d(f (r)h dy).

Avec ce choix, il vient

±I j = R 3 e ∧ d + e j = R 3 f (r)h dy ∧ dd + e j = -4 R 3 f h 2 r 2 w j (r 2 ) dx ∧ dy ∧ dz = -4( S 2 h 2 ) +∞ 0 f (r)w j (r 2 )r 4 dr.
Reste à trouver f et w j . Plutôt que de construire des fonctions adhoc, il suffit de prendre f (r) = ra(r 3 ), w j (s) = -+∞ |s| t -1/2 u j (t 3/2 ) dt où a et u j sont les fonctions obtenues au lemme 20. Les propriétés 4 à 8 de ce lemme sont là pour garantir que n j tend vers 0 exponentiellement, que m j tend vers l'infini au plus polynômialement et queI j ne tend pas vers 0 (voir ci-dessous). q.e.d.

Passons au cas général (un peu plus général que le théorème B).

Proposition 27 On considère un produit semi-direct G = H × α R où H = R n-1 est abélien. On note λ 1 ≤ . . . ≤ λ n-1 les parties réelles des valeurs propres de α. On note 

w k = λ 1 + • • • + λ k et W k = λ n-1-k + • • • + λ n-1 . Si w k-1 < w n-1 p < W k-1 et si p est non critique en degré k -1, alors T k,p (G) = 0. Preuve. Les inégalités w k-1 < w n-1 /p < W k-1 entraînent que w n-k < w n-1 /p < W n-k . Etant donné I ⊂ {1, . . . ,
. Comme λ I0 > w n-1 /p > w n-k , i m ≤ n -k et λ im < λ i M . Posons I 1 = (I 0 ∪ {i m }) \ {i M }. Alors λ I1 < λ I0 donc par définition de I 0 , λ I1 ≤ w n-1 /p . Comme p est non critique en degré k -1, p est non critique en degré n-k, donc w n-1 -p λ I = 0 pour tout ensemble I à n-k éléments. Par conséquent, λ I1 < w n-1 /p . Soit θ ∈ Λ n-k-1
H * un vecteur propre de Λ n-k-1 α relatif à une valeur propre de partie réelle µ = λ I0 -λ i M , et soient η et η ∈ H * des vecteurs propres relatifs à des valeurs propres de parties réelles λ im et λ

i M respectivement. Alors (η ∧ θ ) +(p ) = η ∧ θ mais (η ∧ θ ) +(p ) = 0 donc (η + η ) ∧ ((η + η ) ∧ θ ) +(p ) = η ∧ η ∧ θ est non nul. Il existe donc θ ∈ Λ k-2 H * tel que θ ∧ (η + η ) ∧ ((η + η ) ∧ θ ) +(p ) = 0.
Soient a et u j les fonctions fournies par le lemme 20. Posons, pour s > 0, ṽj (s) = s -1/2 u j (s (n-1)/2 ).

Notons w j la fonction à support compact sur [0, +∞[ dont la dérivée est ṽj . Dans H = R n-1 , on note r la distance euclidienne à l'origine. On définit des fonctions f = ra(r n-1 ) et g j = w j (r 2 ) sur H. Par construction, dg j = 2u j (r n-1 ) dr.

On considère les formes différentielles e j = g j θ sur H. On a de j = w j (r 2 )d(r 2 ) ∧ θ donc d + e j = w j (r 2 )dr 2 + ∧ θ où on a noté

r 2 + = λi+µ >tr α/p x 2 i .
Comme la forme d(r 2 + ) est fermée,

dd + e j = w j (r 2 )d(r 2 ) ∧ d(r 2 + ) ∧ θ . Comme la n -1-forme d(r 2 ) ∧ d + r 2 ∧ θ ∧ θ est homogène, on peut l'écrire d(r 2 ) ∧ d + r 2 ∧ θ ∧ θ = r 2 h(x)dx 1 ∧ • • • ∧ dx n-1
où la fonction h est lisse en dehors de l'origine et homogène de degré 0. Par homogénéïté, |h| et r|dh| sont bornées.

Il existe un point de H où d(r 2 ) = η + η . En ce point, la n -1-forme θ ∧ d(r 2 ) ∧ (d(r 2 ) ∧ θ ) +(p ) est non nulle, donc h n'est pas identiquement nulle. On pose e = d(f hθ).

Comme e j est à support compact,

± H e ∧ d + e j = H f hθ ∧ dd + e j = H f w j (r 2 )h d(r 2 ) ∧ d + r 2 ∧ θ ∧ θ = S n-2 h 2 +∞ 0 f (r)w j (r 2 )r 2 r n-2 dr = C +∞ 0 f (r)w j (r 2 )r n dr où C > 0. On calcule, pour r > 0, w j (r) = - 1 2 r -3/2 u j (r n-1/2 ) + n -1 2 r n-4/2 u j (r n-1/2 ).
Comme u j est décroissante sur [1, ∞[, les deux termes de la somme sont de même signe, donc 

| +∞ 1 f (r)w j (r 2 )r n dr| ≥ 1 2 +∞ 1 ra(r n-1 )r -3 u j (r n-1 )r n dr = 1 2 +∞ 1 a(s)u j (s) ds = 1 4 R a ( 
θ + f dh ∧ θ, e L p ≤ const. f (r) L p (H) + r -1 f (r) L p (H) = const.( +∞ 0 |f (r)| p r n-2 dr) 1/p + +∞ 0 |r -1 f (r)| p r n-2 dr) 1/p ≤ const.( +∞ 0 |r n-1 a (r n-1 )| p r n-2 dr) 1/p + +∞ 0 |a(r n-1 )| p r n-2 dr) 1/p = const.( +∞ 
+ e j = w j (r 2 )d(r 2 ) ∧ d + r 2 ∧ θ , dd + e j L p ≤ const.(( +∞ 0 |r -1 u j (r n-1 )| p r n-1 dr) 1/p +( +∞ 0 |r n-2 u j (r n-1 )| p r n-1 dr) 1/p ) = const.(( +∞ 0 |s -1/n-1 u j (s)| p ds) 1/p +( +∞ 0
|s n-2/n-1 u j (s)| p ds) 1/p ), tend vers 0 exponentiellement, d'après le lemme 20. De la proposition 24, il résulte que T k,p (G) = 0. q.e.d.

Torsion de l'espace hyperbolique réel

Lorsqu'on s'intéresse à un exposant p critique, on utilise le fait que la cohomologie L p de la droite réelle est non nulle, ainsi qu'une information plus fine sur la cohomologie L p de H, faisant jouer un rôle important à l'opérateur d 0 .

Proposition 28 Soit G = H × α R un produit semi-direct. Soit p un exposant critique en degré k -1, i.e. tel que Λ k-1 0 = 0. On suppose qu'il existe une k -1-forme e fermée et L p sur H et une suite e j ∈ Ω n-k,p (H) telles que -e -= 0, e j,-= 0, d -e j = 0 ; -H e ∧ e j ne tend pas vers 0 ; -e j,0 L p , e j,+ L p et d + e j L p tendent vers l'infini polynômialement en j ; -d 0 e j L p tend vers 0 exponentiellement en j. Alors H k,p (G) = 0.

Preuve. Soient a et u j des fonctions sur R qui sont nulles sur [0, +∞[ et coïncident sur ] -∞, 0] avec celles construites en 20.

On pose ω = a(t) dt ∧ π * e et ω j = u j (t)π * e j . Alors ω est fermée. Comme e -= 0, il existe une constante strictement positive ν telle que 

Preuve du théorème B

Le cas de l'espace hyperbolique réel a fait l'obet du paragraphe 3.8. Le groupe G µ,n,δ s'obtient en faisant

λ 1 = • • • = λ n-µ = √ -δ, λ n-µ+1 = • • • = λ n-1 = 1. On pose k = µ, il vient W k-1 = k-1, w n-1 = k-1+(n-k) √ -δ.
Les exposants critiques en degré k-1 sont les nombres de la forme w n-1 /λ où λ est une somme de k -1 nombres parmi λ 1 , . . . , λ n-1 . Le plus petit est

w n-1 W k-1 . Le suivant est w n-1 W k-2 + λ n-k > w n-1 w k-1
. On peut donc appliquer la proposition 27 et conclure que T k,p (G) = 0 pour tout p dans l'intervalle

] w n-1 W k-1 , w n-1 W k-2 + λ n-k [ = ]q(n, δ, k -1), 1 + 1 + (n -k -1) √ -δ k -2 + √ -δ [.
Si G µ,n,δ était quasiisométrique à une variété riemannienne M simplement connexe, complète, à courbure sectionnelle négative δ -pincée pour un δ < δ proche de δ, alors, pour q(n, δ, µ -1) < p < q(n, δ , µ-1), T µ,p (G µ,n,δ ) = 0 mais le théorème A donne que T µ,p (M ) = 0, c'est incompatible avec l'invariance sous quasiisométrie de la cohomologie L p pour les espaces uniformément contractiles, voir [G2], section 8. q.e.d.

Exemple 30 Cas des espaces symétriques de rang un.

La construction qui précède ne s'étend pas aux produits semi-directs G = H × α R où H est nilpotent non abélien. On l'explique sur l'exemple où G est isométrique au plan H 2 C . Dans ce cas, H est le groupe d'Heisenberg de dimension 3. Son algèbre de Lie H admet une base (X, Y, Z) où

Lemme 13

 13 Soit M une variété riemannienne orientée complète de dimension n. Etant donné p > 1, on note p l'exposant conjugué, i.e. tel que 1 Soit ω une k-forme différentielle fermée et L p sur M . Alors -ω est non nulle en cohomologie L p réduite si et seulement si il existe une n -k-forme fermée ψ ∈ L p telle que M ω ∧ ψ = 0. -ω est non nulle en cohomologie L p si et seulement si il existe une suite ψ j de n -k-formes différentielles L p telles que M ω ∧ ψ j ≥ 1 et dψ j L p tend vers 0.

  ds montre que le flot de ξ agit trivialement sur la cohomologie L p . Soit ω une forme fermée L p non nulle en cohomologie réduite. Il existe donc une forme fermée L p ψ telle que G ω ∧ ψ = 0. Comme le flot φ t est l'identité en cohomologie,

  | p ds < +∞ ; 5. les fonctions a et -u j sont décroissantes sur [1, +∞[ ; 6. les fonctions a et u j sont paires et s'annulent au voisinage de 0 ;

  j | p = O(j), e 2j (1+j -1 ) e 2j |v j | p = O(j -1 ), j | p = O(j p e -p j ),

e

  ∧ d + e j ne tend pas vers 0. Comme dψ j = π * dd + e j , χ sj (1 -χ -sj )dψ j L p (G) ≤ e µsj dd + e j L p (H)

  d'où m j = de j L p = const.( +∞ 0 |rw j (r 2 )| p r 2 dr) 1/p , n j = dd + e j L p = const.( +∞ 0 |r 2 w j (r 2 )| p r 2 dr) 1/p , Le plus délicat à contrôler est l'intégrale I j = R 3 e ∧ d + e j . Comme e j est à support compact, la formule de Stokes s'applique, et

0 f

 0 s)u j (s) ds qui ne tend pas vers 0. L'intégrale 1 (r)w j (r 2 )r n dr tend vers 0, donc H e ∧ d + e j ne tend pas vers 0.Comme e = hf (r)dr ∧

  | p ds) 1/p est finie.Comme de j = 2u j (r n-1 )dr ∧ θ , j (r n-1 )| p r n-1 dr = const. +∞ 0 |u j (s)| p ds croît polynomialement en j, d'après le lemme 20. Comme dd

  )| p (e νt e + p L p (H) + e 0 p L p (H) ) dt, donc ω ∈ L p (G). De même, j (t)| p (e νt e j,+ p L p (H) + e j,0 p L p (H) ) dt tend vers +∞ polynômialement. On calculedω j = u j (t) dt ∧ π * e j + u j (t)π * de j , et u j (t) dt ∧ π * e j p L p (G) j (t)| p (e νt e j,+ p L p (H) + e j,0 p L p (H) ) dt tend vers 0 exponentiellement car u j L p et u j L ∞ tendent vers 0 exponentiellement. De même u j (t)π * de j j (t)| p (e νt d + e j p L p (H) + d 0 e j p L p (H) ) dttend vers 0 exponentiellement car d 0 e j L p et u j L ∞ tendent vers 0 vers 0. On conclut avec le lemme 13 que ω est non nulle dans H k,p (G). q.e.d.Corollaire 29 Soit M = RH n l'espace hyperbolique réel de dimension n. Pour chaque 2 ≤ k ≤ n -1, T k,p (M ) = 0 ⇔ p = n -1 k -1 .Preuve. Le théorème A s'applique et entraîne que, pour toutp = n-1 k-1 , T k,p (M ) = 0. De plus, H k,p (M ) = 0 dès que p ≤ n-1 k-1 . Réciproquement, soit e une k -1-forme fermée à support compact sur R n-1 , non nulle. Cela existe dès que k ≥ 2. Soit e j = e une n -k-forme sur R n-1 telle que e ∧ e = 0. Comme Λ k-1 = Λ k-1 0 , Λ n-k = Λ n-k 0 et Λ n-k+1 = Λ n-k+1+ , les conditions e -= 0, e -= 0 et d -e = 0 sont automatiquement satisfaites. De plus, d + e = 0, donc la proposition 28 s'applique, et H k,p (M ) = 0. Pour montrer que R k,p (M ) = 0, on utilise la dualité de Poincaré, corollaire 14. En degré k = n-k, l'exposant conjugué p = n -1 n -k = qn, -1, k , est justement le cas limite d'application du théorème A, donc H n-k,p (M ) = 0. En particulier, R n-k,p (M ) = 0, d'où, par dualité, R k,p (M ) = 0. On conclut que T k,p (M ) = 0. q.e.d.

  Dans ce cas, d'après la section 2, la torsion a des chances d'être nulle. Pour construire des classes de torsion, on va donc exploiter le fait que Λ k

	+(p) et Λ k -(p) sont simultanément
	non nuls.

  tend vers +∞. Le lemme 13 entraîne alors que ω est non nulle dans H k,p (G).Soit ω une n -k-forme fermée L p sur G. Ecrivons ω = β t + dt ∧ γ t . Alors β t est une forme fermée sur H qui est dans L p pour presque tout t ∈ R. Supposons H unimodulaire. D'après le théorème 15, la cohomologie réduite R k-1,p (H) est nulle. Par conséquent, pour toute k -1-forme fermée L p e sur H, H e ∧ β t = 0. Il vient

	j	µ+η	n	η/µ+η j	,
	qui tend vers 0 lorsque j				

  n -1}, on note λ I = i∈I λ i . Considérons, parmi les parties I à n -k éléments de {1, . . . , n -1} telles que λ I > w n-1 /p , celle, notée I 0 , pour laquelle λ I est minimum. Notons i m le plus petit indice qui n'est pas dans I 0 et i M le plus grand élément de I 0