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Abstract

Hsp27 belongs to the heat shock protein family and displays chaperone properties in stress conditions by holding unfolded
polypeptides, hence avoiding their inclination to aggregate. Hsp27 is often referenced as an anti-cancer therapeutic target,
but apart from its well-described ability to interfere with different stresses and apoptotic processes, its role in non-stressed
conditions is still not well defined. In the present study we report that three polypeptides (histone deacetylase HDAC6,
transcription factor STAT2 and procaspase-3) were degraded in human cancerous cells displaying genetically decreased
levels of Hsp27. In addition, these proteins interacted with Hsp27 complexes of different native size. Altogether, these
findings suggest that HDAC6, STAT2 and procaspase-3 are client proteins of Hsp27. Hence, in non stressed cancerous cells,
the structural organization of Hsp27 appears to be a key parameter in the regulation by this chaperone of the level of
specific polypeptides through client-chaperone type of interactions.
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Introduction

Hsp27, also called HspB1, is a member of the small heat shock

family of proteins that are characterized by their conserved C-

terminal a-crystallin domain [1]. This oligomeric phosphoprotein

bears an ATP-independent chaperone activity [2]. Hsp27 is also

known for its anti-apoptotic activities [3] that appear of complex

nature because of the dynamic and specific changes in the

structural organization of this protein in response to various

stimuli. Hence, multiple strategies appear to be set up by Hsp27 to

interfere with apoptotic processes [4]. Indeed, Hsp27 can interact

with several components of the apoptotic machinery. It interferes

with apoptotic receptor like CD95-Fas/Apo1 by sequestering

Daxx, a polypeptide crucial for death signal transduction [5].

Hsp27 also interacts with cytochrome c, once it is released from

mitochondria, hence preventing apoptosome formation [6]. A

binding to procaspase-3 has been observed that prevents the

cleavage into active caspase-3 [7]. Hsp27 also interferes with

targets upstream of mitochondria, as for example F-actin, hence

preventing its disruption and aggregation. This delays the

accumulation of cytochrome c in the cytosol and subsequently

reduces caspases activation [8]. Hsp27 is phosphorylated by the

p38MAPK/MAPKAPK2 pathway and promotes the activation of

the pro-survival serine/threonine kinase Akt [9,10].

Hsp27 is well referenced as a therapeutic target in cancer [11]

since its increased expression in several types of tumor cells

correlates with increased aggressiveness, lack of response to

therapies and bad prognostic for patients [12,13]. For example,

Hsp27 expression enhances the resistance to chemotherapeutic

drugs like cisplatin, adriamycin and bortezomib [14,15] and

protects against radio-therapeutic radiations, probably as a

consequence of its ability to act as an anti-oxidant polypeptide

[16]. Thus, targeting Hsp27 level by antisense strategies sensitizes

cells to c-rays [17].

The molecular chaperone distinctiveness of Hsp27 implicates

that this constitutively expressed protein could directly interfere

with several target proteins and regulates numerous cellular

processes. In this regard, one member of the heat shock protein

family, Hsp90, is well characterized to interact with an important

number of client proteins implicated in cell cycle regulation, signal

transduction or gene transcription [18,19]. By doing so, Hsp90

promotes the stability and activity of polypeptides by controlling,

through its chaperone activity, their folding. These studies have

been facilitated by the existence of specific chemical inhibitors, i.e

benzoquinone ansamycin geldanamycin and its less toxic deriva-

tive 17-allylamino-17-demethoxygeldanamycin (17-AAG), which

bind Hsp90 ATPase box and knock out the chaperone activity.

This disrupts Hsp90 interaction with client proteins that are

subsequently degraded through the ubiquitin-dependent protea-

somal pathway [20]. Such a mechanism is well referenced for

Hsp90 but less documented for other chaperones. However,

reports have already mentioned decreased levels of procaspase-3,
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STAT3 and eIF4E [7,21,22] in cells devoid of Hsp27. Hence,

despite Hsp27 has no ATPase box and no chemical inhibitors are

yet available, we tested whether this chaperone could also regulate

a set of client proteins.

Using shRNA-mediated depletion, co-immunoprecipitation and

protein activity assays, we show here that, in unstressed HeLa cells,

Hsp27 is associated with three putative client proteins: histone

deacetylase 6 (HDAC6), signal transducer and activator of

transcription 2 (STAT2) and procaspase-3; three polypeptides

that play major roles in cytoskeleton deacetylation, signal

transduction and apoptosis.

Experimental Procedures

Cell culture and transfections
All cells were purchased from the ATCC Cell Biology

Collection and were grown at 37uC in a humidified atmosphere

containing 5% CO2. HeLa or MCF-7 cells were grown in

Dubelcco’s modified Eagle’s medium (DMEM) supplemented with

10% heat inactivated fetal calf serum. For transient expression,

one day before transfection with the appropriate DNA vector,

exponentially growing cells were seeded at a density of 1.56106

cells/78 cm2. According to the LipofectamineTM reagent proce-

dure (Invitrogen, Cergy Pontoise, France) DNA vector was left on

cells for 3 h. Thereafter, cells were washed once with PBS before

being further incubated in fresh culture medium. Forty-eight hours

after transfection, cells were submitted to the different treatments.

Gel electrophoresis and immunoblotting
After treatment, cells were immediately rinsed twice in ice-cold

PBS and scraped off the dish. At this point, aliquots were

withdrawn for determination of protein concentration. Thereafter,

cells were lysed in boiling SDS buffer (62.5 mM Tris-HCl, pH 6.8;

1% SDS; 0.1 M dithioerythritol; 0.001% bromophenol blue and

10% glycerol). Cell lysates were subjected to SDS-Polyacrylamide

Gel Electrophoresis (SDS-PAGE) performed as previously de-

scribed [23]. The detection of immunoblots was performed with

the ECLTM system (Amersham Life Science, Pantin, France).

Autoradiographs were recorded on X-Omat LS films (Eastman

Kodak Co, Rochester, NY).

Sizing Chromatography
HeLa or MCF-7 cells used to prepare cytosolic supernatants for

sizing chromatography experiments were grown as detailed above.

Cells from five 100-mm culture plates were harvested on ice by

scraping and spun (10006g, 5 min, 4uC). They were then washed

and lysed in the column equilibration buffer (20 mM Tris, pH 7.4;

5 mM MgCl2; 20 mM NaCl; 0.1 mM EDTA) supplemented with

0.1% Triton X-100. Cell lysates were spun (10,0006g, 10 min)

and supernatants were loaded on a sepharose CL-6B column

(Sigma, St Louis, MO). Columns fractions were analyzed by

immunoblotting as previously described [6]. Molecular-mass

markers used to calibrate the gel-filtration column included

carbonic anhydrase (29 kDa), albumin (66 kDa), alcohol dehy-

drogenase (150 kDa), b-amylase (200 kDa), apoferritin (440 kDa),

thyroglobulin (669 kDa) and Dextran Blue (.2000 kDa) (Sigma,

St Louis, MO).

Co-Immunoprecipitation experiments (Co-IP)
Co-IP experiments were performed with samples from the

sizing columns (see above) known to contain the targeted

polypeptides. 2 ml samples of the pooled column fractions were

incubated (1 h, 4uC) with Hsp27 antibody (goat polyclonal anti-

Hsp27 antibody, Santa Cruz Biotechnologies-Clinisciences, Mon-

trouge, France) followed by incubation (1 h, 4uC) with protein G

sepharose (50 ml of a 50% bead slurry per sample, GE Healthcare,

Vélizy, France). Samples were briefly centrifuged (5,0006g, 30 s),

supernatants were discarded and bound proteins were eluted from

beads. Detection of co-immunoprecipitated proteins was per-

formed in immunoblots probed with the corresponding antibodies.

ShRNA construction
The pSuperNeo plasmid (Oligoengine, Madison, WI) was used

for DNA vector-based shRNA construction. Based on the cDNA

of Hsp27 (HUGO gene nomenclature committee accession

No. HGNC:5246) and the shRNA designing tool provided freely

by Ambion at its website (http://www.ambion.com), we synthe-

sized DNA templates encoding Hsp27-specific and control

shRNAs. The targeted oligonucleotide sequence was: 59-

GCTGCAAAATCCGATGAG-39. After annealing, ligation and

transformation into competent DH5a bacteria (Invitrogen, Ill-

Kirch, France), positive colonies were selected through their

antibiotic resistance. The correct sequences of the final DNA

preparations were confirmed by sequencing (GenomExpress,

Meylan, France). pSuperNeo-MsRNA27 and pSuperNeo-

ScRNA27 (scramble, Sc27) were designed respectively as degen-

erated (Ms) and scramble (Sc) controls from the above mentioned

sequence of Sh27. pCI-Neo vector was used as a positive control of

cell transfection. ShRNA-HDAC6 and its random controls will be

described elsewhere.

Generation of stable HeLa and MCF-7 cells depleted in
Hsp27

Five cell culture dishes were seeded at 16105 cells/78 cm2.

Transfection of HeLa and MCF-7 cells was performed as

described above. One day later, positively transfected cells were

selected by neomycin at a concentration of 0.5 (HeLa) or 1 (MCF-

7) mg/ml. The level of Hsp27 in neomycin resistant clones was

then tested by immunobloting. Five independent clones of each

cell line expressing reduced levels of Hsp27, named: HSh27

(HeLa) and MSh27 (MCF-7) and four independent mismatch

control clones expressing normal levels of Hsp27 (named: HMs27

and MMs27) were selected, propagated and analyzed.

Determination of STAT2 transcriptional activity
The different cell lines were transiently transfected with a

STAT1/STAT2-responsive luciferase construct encoding the

firefly luciferase reporter gene under the control of a minimal

(m)CMV promoter and tandem repeats of the interferon

stimulated response element (ISRE) (SABiosciences, Frederick,

MD, USA). Cells were treated 6 h with 50 U/mL interferon-a to

activate the STAT2 interferon response. In this experiment,

Hsp27 phosphorylation was inhibited by SB203580 and

SB202190 (p38MAPkinase and MK2 inhibitors, respectively)

(Sigma, St Louis, MO).

Quantitative PCR
To assay Caspase3, HDAC6, STAT2 and 3 expression, 1 mg of

TRIzol extracted total RNA was reverse-transcribed using the

SuperScriptIII kit (Invitrogen, Cergy Pontoise, France). Real-time

quantitative PCR was performed on the MX-3000P cycler

(Agilent, Massy, France) using QuantiTect SYBR Green kit and

QuantiTect Primer Assays (Qiagen, Courtaboeuf, France). All

reactions were run in triplicate and gene expression levels were

normalized to the ribosomal gene RPS17 using the DDCt method.

The sequences of the primers are available upon request.

STAT2, Caspase3 and HDAC6 as Hsp27 Client Proteins
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Cell death and/or cell survival determination
Twenty-four hours after transfection, cells were seeded in 96-

wells plates (7.56103/well). Twelve hours later, cells were treated

for 18 h with staurosporine (Sigma, St Louis, MO). After

treatment, the culture medium was discarded and the remaining

viable cells were rinsed twice with PBS buffer and stained for

15 min with 0.5% crystal violet in 50% methanol. Afterward,

plates were rinsed and dried. Thereafter, the stained cells were

solubilized using 0.1 M sodium citrate (pH 5.4) in 20% methanol.

The absorbance of each well was read at 570 nm with a Wallac

1420 Multilabel Counter (PerkinElmer, Courtabœuf, France). The

percentage of cell survival was based on the ratio of the relative

absorbance of the different samples to that of untreated cells

[24,25].

Cell proliferation was determined using the WST-1 assay, which

requires a 4 h incubation of cells with the tetrazolium WST-1

salt (4-[3-(4-Iodophenyl)-2-(4-Bonitrophenyl)-2H-5-tetrazolio]-1,3-

benzene disulfonate) (Roche, Basel, Switzerland) (10 ml/well)

followed by absorbance measurement at 450 nm. The percentage

of cellular proliferation was calculated based on a control

absorbance.

Cell cycle analysis was realized as previously described [26].

Briefly, cells were fixed in 70% ethanol, then treated with RNAse

A, stained with propidium iodide and analyzed by flow cytometry.

Immunofluorescence analysis
Cells growing on glass cover slips were fixed for 5 min with

freshly prepared 4% para-formaldehyde, pH 7.0. Cells were then

permeabilized for 5 min in PBS containing 0.1% Triton 6100.

The cover slips were incubated for one hour with monoclonal anti-

Hsp27 antibody (Stressgen, San Diego, Ca). After washing, cover

slips were further incubated for one hour with FITC-conjugated

goat anti mouse immunoglobulin. Actin detection was performed

using Alexa FluorTM 488 Phalloidin (Alexa Fluor, Raleigh, NC).

Hoechst staining was used to enumerate nuclei and analyze their

morphology. Microphotographs were realized using appropriate

filters with Zeiss Axioskop microscope equipped with a 636 lens

and a digital camera device.

Results

shRNA targeting of Hsp27 stimulates staurosporine-
mediated apoptosis of two cancer cell lines

HeLa cells were transiently transfected with pCI-Neo vector

(pCI-Neo), pSuperNeo-ScRNA27 (scramble, Sc27), pSuperNeo-

MsRNA27 (mismatch, Ms27) and pSuper-ShRNA27 (Sh27). 48 h

after transfection, the level of Hsp27 was determined by western

blot analysis. As shown in figure 1.A, Sh27 strongly reduced

Hsp27 expression whereas the control RNAs did not. Hsp27 is

characterized by its strong anti-apoptotic activity, we therefore

analyzed whether a decreased level of Hsp27 could sensitize cells

to apoptosis. For this, Sh27 depleted cells were treated 18 h with

different concentrations of the kinase inhibitor staurosporine. A

cell death was increased in Sh27 cells after a 0.075 mmol/L

treatment in comparison to control cells (Fig. 1.B). A similar

observation was made in transiently transfected MCF-7 cells (data

not shown). We also analyzed the activation of caspase-3,

characterized by the generation of p12 and p17 fragments from

inactive pro-caspase-3 precursor. Immunoblot analysis was

performed after 3 h of treatment at different concentrations of

staurosporine. A higher level of processed p17 fragment was

noticed in Sh27 cells compared to control Ms27 cells. This

confirms our preceding observations, using an anti-sense strategy

[4,8], that depletion of Hsp27 stimulates caspase-3 activity and

apoptosis of HeLa cells (Figure 1.C).

Hsp27 constitutive depletion increases the percentage of
cells in G2M and modulates the expression of pro- and
anti-apoptotic polypeptides

To analyze the consequences of a constitutive depletion of

Hsp27, we next produced HeLa and MCF-7 cells stably

transfected with the Sh27 vector. Independent clones were

isolated and the level of Hsp27 was analyzed (Figure 2.A). HeLa

clones HSh27-1.10 and HSh27-2.2 were depleted up to 70% and

95%, respectively; whereas, the level of Hsp27 in MCF-7 clones

MSh27-1.3 and MSh27-2.1 was similarly decreased of only about

60%. The lower efficiency observed in MCF-7 cells may result of

the ten fold higher level of Hsp27 in these cells compared to HeLa

cells (Fig. 2.A) [27]. As it is well referenced that targeting one

member of the Hsps family could modify the expression of other

Hsps [20], their levels were investigated. As seen in Fig. 2.A, the

constitutive depletion of Hsp27 did not induce significant

modifications of Hsp70 and Hsp90 levels in either HeLa or

MCF-7 cells. Since Hsp27 has been referred as a survival protein

[28], the levels of other proteins in this family as well as some

members of the apoptotic machinery were also analyzed. As

shown in Fig. 1.B, the depletion of Hsp27 induced important

changes in the level of several pro- and anti-apoptotic members of

the BH3 family. Survivin, an anti-apoptotic BH3 mimetic protein

was over-expressed in Hsp27 depleted HeLa cells; its increased

level was inversely correlated to the decrease in Hsp27 level. In

contrast, the level of survivin was not altered in MCF-7 clones.

The reverse phenomenon was detected for Bcl2. This protein had

an increased level in Hsp27 partially depleted MCF-7 cells but not

in HeLa cells. In both types of cells, the level of BclXS/L was not

modified. In contrast, the pro-apoptotic proteins Bax and Bid were

up regulated in both cell lines (Figure 2.B). Hence, cell adaption to

Hsp27 depletion correlates with drastic changes in several anti-

and pro- apoptotic polypeptides.

To further characterize the consequences of Hsp27 depletion, a

WST-1 test was performed to determine the efficiency of cell

proliferation. Intriguingly, the proliferation index was decreased in

HeLa and MCF-7 cells lines under-expressing Hsp27. A 10%

(HSh27-1.10) and 20% (HSh27-2.2) decrease in the proliferation

index of HeLa clones was detected. The two clones of MCF-7 cells

showed a 10% decrease (Fig. 2.C).

In order to determine whether the reduced proliferation was

linked to cell cycle modifications, exponentially growing cells were

propidium iodide stained and analyzed by flow cytometry. In both

types of Hsp27 depleted cell lines, the percentage of cells in G2/M

phase was increased (Fig. 2.D). 26.8% of HSh27-2.2 cells were in

G2/M in contrast to only 16.9% in the control cell line. In

depleted MCF-7 clones a similar 5.3% increase in G2/M phase

was observed. Furthermore, in Hsp27 depleted cells, we detected

an increase in the level of sub-G1 cells. 7.4% were detected in

Sh27 cells versus 1.9% in control HeLa cells. A similar

phenomenon was observed in MCF-7 cells with an increase from

1.7% to 3.5%. A phenomenon which suggests a slight increase in

the ability of cells to commit spontaneous apoptosis.

Hsp27 is essential to maintain cytoskeleton integrity
through an HDAC6 dependent mechanism

To better characterize the reduced proliferation efficiency

observed in Hsp27 depleted cells, we analyzed the morphology of

the different cells lines. HeLa cells were first stained with Hoechst

to analyze nucleus morphology. As shown in Fig. 3.A, Hsp27

STAT2, Caspase3 and HDAC6 as Hsp27 Client Proteins
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depleted HeLa cells showed strong nucleus abnormalities. Nuclei

were no more spherical and well shaped but morphologically

affected. All cells of the highly depleted clone HSh27-2.2

presented nucleus abnormalities and giant cells bearing up to 20

nuclei were frequently observed (Fig. 3.B). This polyploidy

confirmed the observation described in Fig. 2.D highlighting the

drastic increase in G2 cells. Interestingly, an increase in

plurinucleated cells was also detected by flow cytometry analysis

in MCF-7 clones, but this increase was not associated with any

alterations of nucleus phenotype (data not shown); this is probably

due to the high level of Hsp27 which remains in these cells.

Hsp27 is well referenced to support cytoskeletal integrity,

particularly by protecting F-actin disruption in stress condition

[29,30]. Consequently, we next performed immunofluorescence

analysis of actin cytoskeleton of the different HeLa cell clones. No

modification of cytoskeletal integrity was observed (Fig. 3.C).

Structure of other filaments like tubulin and vimentin was also not

modified (data not shown). Biochemical post-translational modi-

fications of cytoskeleton components were also analyzed. We first

analyzed the acetylated form of a-tubulin. This modified tubulin is

present in various microtubule structures where it acts as a

stabilizer essential in many pathways like cell growth, cell

migration and morphogenesis [31]. As revealed by immunoblot-

ing, a-tubulin was hyperacetylated in Hsp27 depleted HeLa cells

(Fig. 3.D). This observation prompted us to analyze histone

deacetylase 6 (HDAC6), the mammalian enzyme responsible of a-

tubulin deacetylation [31]. As seen in Fig. 3.D, in Hsp27 depleted

HeLa cells, the level of HDAC6 polypeptide was dramatically

decreased in a negative correlation with a-tubulin hyperacetyla-

tion (Fig. 3.D). Similar increase in a-tubulin hyperacetylation was

observed when HDAC-6 level was artificially down regulated with

a specific shRNA-HDAC6 (Fig. 3.D). This last phenomenon

occurred without altering the level of Hsp27. The same

experiments were performed in MCF-7 cells that contain a high

level of HDAC6. Only a slight decrease of this protein was

observed in MSh27-1.3 cells (Fig. 3.D); a phenomenon that

corresponded to the small decrease in Hsp27 level and to no

significant increase in a-tubulin acetylation and nucleus aberration

phenotype.

To better characterize the mechanism that generates, in HeLa

cells, HDAC6 protein depletion in absence of Hsp27, we

performed a quantification of hdac6 gene product by quantitative

PCR (qPCR). As shown in Fig. 3.E, the level of HDAC6 mRNA

was not significantly altered in HSh27-2.2 cells compared to

HMs27 cells. In order to determine if the level of HDAC6 protein

was post-translationaly regulated, HeLa cells where treated with

Figure 1. Transient down regulation of Hsp27 protein by shRNA sensitizes HeLa cells to cell death and promotes apoptosis. A, pCI-
Neo, pSuperNeo-ScRNA27 (Sc27), pSuperNeo-MsRNA27 (Ms27) and pSuper-ShRNA27 (Sh27) vectors were transiently expressed in HeLa cells. Samples
were collected 48 h after transfection and Hsp27 level was analyzed by western blot. Level of actin was used as control. B, Sensitivity to cell death was
determined by crystal violet analysis, as described in Materials and methods. Staurosporine, a pro-apoptotic kinase inhibitor, was used to induce
apoptosis (p,0.01). C, HeLa cells, treated for 4 h with different concentrations of staurosporine, were analyzed by western blot using an anti-
caspase3 antibody.
doi:10.1371/journal.pone.0029719.g001

STAT2, Caspase3 and HDAC6 as Hsp27 Client Proteins
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proteolysis inhibitors, such as the proteasome inhibitor MG132 or

the calpain inhibitor ALLN. In our cells, MG132 was able to block

the proteasomal pathway since the phenomenon correlated with

poly-ubiquitin accumulation (Fig. 3.F). Both ALLN and MG132

up-regulated the level of HDAC6 in HSh27cells (Fig. 3G).

Consequently, similar levels of HDAC6 were observed in every

HeLa cells lines. This suggests that an increased degradation of

HDAC6 occurs in the absence of Hsp27.

Endogenous level of pro-caspase-3 is decreased in Hsp27
depleted cells

Hsp27 has been described to interact with the pro-domain of

procaspase-3, a key protease involved in the executive pathway of

apoptosis [32]. Physical interaction with Hsp27 inhibits procas-

pase-3 processing leading to the activation of apoptotic caspases

and participates to the mechanism of cell survival mediated by

Hsp27 [7]. As shown in the immunoblots presented in Fig. 4 panel

A, the level of endogenous procaspase-3 was down regulated in

Hsp27 depleted HeLa clones. Quantification analysis revealed a

79.6% decrease in pro-caspase-3 level in the most Hsp27 depleted

clone HSh27-2.2. As observed in transitory experiments, process-

ing of procaspase-3 in p12 and p17 fragments after a 0.2 mmol/L

staurosporine treatment was increased in all Hsp27 depleted HeLa

clones (Figure 4B). In contrast, p12 and p17 cleaved fragments

were not observed in the absence of apoptotic stimulation (data

not shown) allowing us to conclude that the decrease in

procaspase-3 level was not due to an increased procaspase-3

processing.

To investigate if the reduced level of procaspase-3 protein

originated from an inhibition at the gene transcription level,

procaspase-3 gene product was quantified by qPCR (Fig. 4.C).

Procaspase-3 mRNA was up regulated by 50% in HSh27-2.2

clone, indicating an increased in transcriptional activity when

compared to control cells. As a consequence, these data strongly

suggest a high rate of degradation of the protein. Thus, we tested

procaspase-3 protein level when proteasomal and calpain

pathways were inhibited by MG132 and ALLN, respectively

(Fig. 4.D). Procaspase-3 level was drastically increased during

MG132 treatment but was not restored by ALLN, suggesting an

ubiquitin/proteasomal degradation in cells depleted of Hsp27.

The analysis was not performed in MCF-7 cells because of the lack

of expression of procaspase-3 in these cells.

Figure 2. Hsp27 knock down clones, enriched in G2/M cells, show decreased cell proliferation. Constitutive Hsp27 depleted clones of
HeLa or MCF-7 were isolated as described in Materials and methods. A, HeLa or MCF-7 samples from independent Hsp27 depleted clones were
collected and levels of Hsp27, 70 and 90 were analyzed by western blot. B, Immunoblot analysis of Hsp27, survivin, Bcl-2, BclXs/l, Bax, Bid and actin
present in both HeLa and MCF-7 depleted clones. C, WST-1 test was performed each 12 h during five days. Proliferation index was determined and
reported for each cell line (p,0.01). D, Cell cycle study was performed by flow cytometry analysis after PI staining as previously described [26].
Quantifications experiments were realized and reported in tables presented on the left of the flow cytometry analysis.
doi:10.1371/journal.pone.0029719.g002

STAT2, Caspase3 and HDAC6 as Hsp27 Client Proteins
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Hsp27 constitutive depletion induces STAT2 degradation
and modulates STAT3 phosphorylation

Hsp27 has been reported to interact with STAT3, a crucial

transcription factor implicated in the maintenance and anti-

apoptotic status of cancerous cells by activating the expression of

genes like Bcl-XL and survivin [33,34]. We then tested whether

Hsp27 could interact with other member of the STAT family

protein. As revealed by western blot analysis, the level of STAT2

was dramatically decreased in Hsp27 depleted HeLa clones

(Figure 5.A). In contrast, other proteins of the STAT transcription

factor family were not or only weakly (STAT4) modulated

(Fig. 5.A). STAT2 transcription factor is implicated in processes

such as viral or interferon responses and was not previously

described to interact with Hsp27 [35]. Quantification of

immunoblots performed with protein extracts from MCF-7 cell

lines confirmed the results observed in HeLa cells, since STAT2

endogenous level decreased of 18.2% and 9,8% in the two MCF-7

partially depleted clones, respectively (Figure 5.B).

A preceding study has reported the depletion of STAT3 in

prostate cells when Hsp27 was transitory decreased by antisense

strategy [21]. In our conditions of constitutive depletion of Hsp27,

endogenous level of STAT3 remained constant. STAT3 mRNA

level was also not altered in Hsp27 depleted clones (Data S1.A). In

contrast, STAT3 phosphorylation, induced by interleukin-6 (IL-6)

or heat-shock at 43uC, was decreased in correlation to Hsp27

level. A confirmation of Rocchi et al. results was nevertheless

obtained in transient transfection experiments of Sh27, suggesting

a possible adaptation mechanism to the lack of Hsp27 in our

constitutive clones (Data S1.B).

As proven by qPCR experiments, STAT2 messenger level was

slightly increased in the characterized clones although the level of

STAT2 polypeptide was reduced (Fig. 5.D). Furthermore,

degradation of STAT2 was blocked when proteolytic degradation

was inhibited by MG132 and ALLN treatments, implicating the

crucial role of Hsp27 in the stability of this protein (Fig. 5.E).

STAT2 is a major transcription factor implicated in the interferon

response [35]. To analyze its transcriptional activation in Hsp27

Figure 3. HDAC6 is degraded in Hsp27 deficient cell lines. A, photographs of nuclei of Hsp27 depleted HeLa cells stained by Hoechst. B, phase
contrast pictures of a depleted HeLa clone showing a giant cell containing more than twenty nuclei. Bar = 10 mm. C, Fluorescence photomicrographs
analysis of Hsp27 and F-actin. HeLa cells were plated on glass cover slips and allowed to enter exponential growing phase for one day. Thereafter,
cells were fixed and exposed to Hsp27 mouse monoclonal antibody followed by a goat anti-mouse FITC-conjugated antibody. Cells were also treated
with TRITC-labeled phalloidin to visualize F-actin and with Hoechst to detect nuclei. Cells were then examined under a fluorescent microscope and
photomicrographs including overlay analysis were recorded. Note the drastic modification of cells morphology induced by Hsp27 withdrawal.
Bar = 10 mm. D, Transient transfection with ShRNA-HDAC6 and MsRNA-HDAC6 encoding vectors as a control of tubulin induced hyperacetylation. Cell
samples were collected and analyzed by immunobloting probed with the indicated antibodies. Quantification of western blot was reported on a
table. E, quantification of hdac6 gene relative expression by qPCR analysis. F, proteasome activity, blocked by a low dose of MG132 (0.5 mmol/l-
20 hours), inversely correlates with poly-ubiquitin accumulation, as revealed by immunoblot analysis. Cells were submitted to 20 h treatments with
either 10 mmol/L ALLN or 0.5 mmol/L MG132, calpain and proteasome inhibitors, respectively. Levels of HDAC6 were revealed by immunobloting.
doi:10.1371/journal.pone.0029719.g003

STAT2, Caspase3 and HDAC6 as Hsp27 Client Proteins

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e29719



depleted cells, a DNA vector containing an ISRE element fused to

luciferase reporter gene [36] was transfected in control and Hsp27

depleted HeLa cells. Cells were treated with interferon-a (50 U/ml)

to activate the STAT2 interferon response. As seen in Fig. 5.F,

luciferase expression was down regulated in HSh2.2 cells as

compared to control cells, suggesting a decrease in STAT2

transcriptional activity. Moreover, we used two phosphorylation

inhibitors, SB203580 and SB202190 (p38MAPkinase and MK2

inhibitors, respectively) to analyze the role of Hsp27 phosphorylation.

Treatment with these inhibitors decreased STAT2 transcriptional

activity (Fig. 5.F), hence suggesting a crucial role for Hsp27 and its

phosphorylation in the regulation of STAT2 response to interferon-a.

STAT2, HDAC6 and procaspase3 directly interact with Hsp27
In accordance with the ‘‘holdases’’ and ‘‘molecular sponges’’

theories [4,37], we hypothesized that the chaperone activity of

Hsp27 can stabilize polypeptides and modulates their half-life. The

chaperone activity of Hsp27 is highly correlated with its structural

organization. Indeed, this protein can form dynamic oligomeric

structures up to 800 kDa [4,38]. Hsp27 oligomerization profiles

were then analyzed by the use of size exclusion columns (Fig. 6.A).

In non-stressed cells, Hsp27 protein was currently present in two

oligomeric populations with distinct native sizes, the small

oligomers (#200 kDa) and the large oligomeric structures over

200 kDa. Immunoblot analysis of the different eluted fractions

revealed that procaspase-3 was only present in the fractions

corresponding to Hsp27 population of small native sizes whereas

STAT2 and HDAC6 proteins were only identified in higher, but

distinct, molecular weights fractions (Fig. 6.A). Physical interac-

tions between Hsp27 and procaspase3, HDAC6 and STAT2 were

tested by Co-IP experiments on column fractions. Goat polyclonal

antibody raised against Hsp27 was added to pooled column

Figure 4. Knock out of Hsp27 induces procaspase-3 proteasomal degradation without modulating the expression of its gene. A,
Total extracts of HeLa cell clones were analyzed in immunoblots incubated and revealed with caspase-3 antibody. Quantification of blots intensity
was reported in a table. B, Each cell line was treated for 4 h with 0.25 mmol/L of staurosporine. Samples were analyzed in blot using anti caspase-3
antibody. C, Quantification of procaspase-3 gene relative expression by qPCR experiments. D, Effect of proteolytic inhibitors. Samples were collected
after being treated with MG132 or ALLN, as described in Fig. 3. Levels of procaspase-3 were revealed by western blot analysis.
doi:10.1371/journal.pone.0029719.g004
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fractions that were positive for the targetted proteins (native sizes

of about 100–200 kDa in the case of procaspase-3, 250–500 kDa

in the case of STAT2 and 550–650 kDa in the case of HDAC6).

Immunoblots were revealed with the corresponding antibody

(Fig. 6.B). These results demonstrate a strong interaction between

the three tested polypeptides and Hsp27. Interactions were

restrained to sub-fractions of total Hsp27 that are characterized

by a specific level of oligomerization. Hence, these interactions

should highly correlate with specific structural organizations of the

different partners. However, we cannot exclude that the medium

and large populations could also include interacting complex

formed by HspB1 small oligomers with several protein partners.

Discussion

In the present study, we characterized cancerous HeLa and

MCF-7 human cells lines that show reduced level of Hsp27

expression consequently of the transient or constitutive expression

of shRNA targeting Hsp27 mRNA. Isolation of Hsp27 depleted

stable clones was a rather difficult task since few cells survived the

selection, a phenomenon that could be linked to the lack of Hsp27

mediated protective activity. We noticed in the survival clones that

the constitutive knock down or reduced levels of Hsp27 did not

modulate the levels of major Hsps, as Hsp70 and 90. In contrast,

pro-apoptotic proteins like Bax and Bid were over-expressed in

both HeLa and MCF-7 cells, a possible response towards the

increased tendency of cancer cells under-expressing Hsp27 to

undergo spontaneous apoptosis [4,8,17,21]. On the other hand,

over-expression of survival proteins like survivin (HeLa cells) or

Bcl-2 (MCF-7 cells) could result of adaptation mechanisms to

survive in the presence of low levels or absence of Hsp27.

Of interest, the constitutive knock down of Hsp27 induced the

degradation of HDAC6, STAT2 and procaspase-3 proteins

without down regulating their mRNA transcripts levels. Further-

more, we demonstrated a biochemical interaction between

different oligomeric forms of Hsp27 and these specific polypep-

tides. This highly suggests a new molecular chaperoning function

of Hsp27 towards native polypeptides.

Additionally, the slow growing HeLa clones, able to adapt to

Hsp27 knock-down, displayed nucleus abnormalities and polyploidy.

Figure 5. Endogenous level of STAT2 is decreased in Hsp27 depleted cell line. A, Hsp27 depleted and control HeLa cells were collected,
and samples were analyzed by immunoblotting using antibodies that recognize the different STAT polypeptides. Quantification of STA2 level was
reported in a table. B, as in A) but analysis of STAT2 level in MCF-7 depleted cells. C, Analysis of STAT3 phosphorylation. HeLa clones were treated with
interleukin-6 (4 h; 125 ng/mL) or heat shock (60 min; 42uC and 44uC). Samples were collected and analyzed by immunobloting with STAT3, Phospho-
STAT3, Hsp27 and actin antibodies. D, quantification of stat2 gene relative expression by qPCR. E, Effect of proteolytic inhibitors. HeLa cells were
analyzed after being treated with MG132 or ALLN, as described in Fig. 3. Level of STAT2 was revealed by immunobloting. F, HeLa cells were
transiently transfected with an ISRE reporter gene construct [36] and treated for 6 h with 50 U/mL of interferon-a. They were also treated or not for
30 min with 10 mM of either SB203580 or SB202190 (p38MAPkinase and MK2 inhibitors, respectively) before exposure to interferon-a. Luciferase
expression correlated with STAT2 transcriptional activity was quantified in both cell lines.
doi:10.1371/journal.pone.0029719.g005
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The alteration in cytokinesis efficiency was probably the origin of the

increased number of cells in G2/M phase. This may be related to the

activation of cell senescence, as observed by others [27]. In HeLa

cells, part of the nuclear phenotype associated with Hsp27 depletion

could have resulted of a-tubulin hyper-acetylation consequently to

HDAC6 degradation. In that regard it is interesting to note that

HDAC6 is a major component of the cellular stress response,

together with the major heat shock proteins [39], which participates

in the addressing of denatured proteins to degradation [40].

In response to heat shock, large oligomers of Hsp27 store

unfolded and denatured proteins, particularly when the molecular

chaperone pathway is saturated [41]. In the altered protein

response of cells, the first link between Hsp27 and HDAC6 is their

direct interaction. Secondly, HDAC6 is able to promote hsp27

gene transcription linked to stress response [42]. Furthermore, it

has been reported that HDAC6 is a powerful modifier of

carcinogenesis and its stabilization by Hsp27 may contribute to

oncogenic pathways activation [43].

Procaspase-3 is a major cysteine protease involved in apoptosis

and differentiation pathways [44,45]. An interaction has already

been described between the pro-domain of procaspase-3 and

Hsp27, which modulates procaspase-3 cleavage and activation

[32]. Our new finding implicates that, in HeLa cells, Hsp27 could

regulate procaspase-3 half-life. We were not able to realize the

same experiments in MCF-7 breast cancer cells because caspase-3

is inactivated due to a deletion mutation in exon 3 of the gene

[46]. Our results are in accordance with a previous study that has

already described a procaspase-3 down-regulation when Hsp27 is

immuno-depleted [7]. However, the authors suggested that the

down-regulation of procaspase-3 was a consequence of its cleavage

in functionally caspase-3. In contrast, our results suggest that, in

the absence of Hsp27, procaspase-3 is rapidly degraded through

the ubiquitin/proteasome pathway.

STAT2 is a central transcription factor implicated in interferon

and anti-viral responses [35]. We show here that STAT2, which

interacts with Hsp27 large oligomers, was degraded in Hsp27

depleted stable cells. In these cell lines, we were unable to detect a

decrease in the level of STAT3, a protein that has already been

demonstrated to interact with Hsp27 [21,33]. However, we found

that the phosphorylation of STAT3, which reflects its transcrip-

tional activation, was down-modulated in response to IL-6 and

also heat shock. However, in cells transiently transfected with

shRNA encoding vector, we confirmed that STAT3 was degraded

and its phosphorylation down-regulated. Hence, in our cell

conditions, the establishment of stable cell lines altered the

degradation of STAT3 in absence of Hsp27. This reflects an

adaptation mechanism as well as the tight regulation that controls

STAT3 stabilization and activation [21].

It can be hypothesized that, in cancer cells, the abundance of

Hsp27 may, similarly to Hsp90 [20], contribute to the stabilization

of several oncogenic proteins. One example of such an activity

refers to the function of Hsp27 in bortezomib treated cells where

the proto-oncogene STAT3 is constitutively activated [15,21,47].

Another example, in the context of apoptosis after androgen

ablation and chemotherapy, concerns the translation initiation

factor 4E (eIF4E) that shows a decreased expression at the protein,

but not mRNA, level in cells depleted of Hsp27 [22]. Interaction

with eIF4E was confirmed but the active oligomeric size of Hsp27

is still not known. Based on the work dealing with Hsp90, a protein

which, in yeast, appears to stabilize approximately 10% of the

proteome [18], the number of client proteins interacting with

Hsp27 complex oligomeric and phosphorylated sub-structures [4]

could also be very high. Indeed, Hsp27 has been referred to act as

‘‘holdase’’ or ‘‘molecular sponge’’. Nevertheless, identification of

Hsp27 client proteins is a difficult task. For example, a powerful

mass-spectrometry study identified an important number of

Figure 6. HeLa cells were lysed in the presence of 0.1% Triton X-100 and the 10,0006g soluble supernatants were applied to
sepharose CL-6B gel filtration columns as described in Materials and methods. 29, 66, 150, 200, 443, 669 and 2000 (kDa) indicate the
apparent native size of gel filtration markers. A, The presence of Hsp27, HDAC6, STAT2 and procaspase-3 in pooled fractions eluted from the columns
was detected by western blot analysis. B, interactions between Hsp27 and client proteins analyzed by Co-IP experiments using a goat polyclonal anti-
Hsp27 antibody. Column fractions corresponding to either procaspase-3, STAT2 or HDAC6 were pooled and used for immunoprecipitation.
Immunoprecipitated proteins and input cell lysates were analyzed side by side in immunoblots probed with the indicated antibodies. A
representative negative control of Co-IP was performed with a control antibody and revealed (here the anti procaspase 3).
doi:10.1371/journal.pone.0029719.g006
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proteins that bind sHsps after heat shock [48], but this approach

was not successful in non-stressed conditions.

The results presented here suggest that at least three new

polypeptides: HDAC6, STAT2 and procaspase-3 could be client

proteins of Hsp27. Hence, it becomes more and more evident that,

in unstressed cells, Hsp27 acts as a key regulator of a pleiotropic

number of target proteins. Based on the Hsp90 chaperoning

model, our findings support the hypothesis that Hsp27 has its own

client proteins; a property that may be shared by Hsp chaperones.

However, whether Hsp27, similarly to Hsp90, could stabilize

mutant forms of specific proteins is not yet known. The results

presented here also suggest that, in cancer cells, rational design of

stable peptides, based on the Shepherdin model [49], or chemical

drugs could be an approach to target Hsp27 oncogenic functions

by counteracting its interaction with specific oncogenic client

proteins.

Supporting Information

Data S1 A, quantification of stat3 gene relative expression by

qPCR analysis. B, HeLa cells were transitively transfected with

Sh27 or Ms27. 48 h after transfection, samples were collected and

analyzed by western blot with STAT3 antibody.
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