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Semianalyticity of isoperimetric profiles

It is shown that, in dimensions < 8, isoperimetric profiles of compact real analytic Riemannian manifolds are semi-analytic. RESUM É : On montre qu'en dimensions < 8, le profil isopérimétrique d'une variété riemannienne compacte est semi-analytique.

1 Introduction

The problem

Let M be a compact real analytic Riemannian manifold. We are concerned with the regularity of the isoperimetric profile of M . Given 0 < v < vol(M ), consider all integral currents in M with volume v. Define I M (v) as the least upper bound of the boundary volumes of such currents. In this way, one gets a function I M : (0, vol(M )) → R + called the isoperimetric profile of M . In fact, for each 0 < v < vol(M ), there exist currents in M with volume v and boundary volume I M (v). Such minimizing currents will be called bubbles, for short. Here is a typical example. For a > 0, let S denote the circle of length 2π. Let M = S × S. Then the isoperimetric profile of M is easily computed to be Profile of a flat torus This is proven as follows. In 2 dimensions, the boundaries of these bubbles are smooth, they have constant geodesic curvature, therefore they lift to disjoint unions of circles of equal radii or lines in R 2 = M . It follows that bubbles are either round disks or annuli bounded by parallel geodesics, or complements of such. There remains to minimize boundary length among these three families.

I M (v) =      √ 4πv for 0 < v ≤ 4π, 4π for 4π ≤ v ≤ 4π(π -1), 4π(4π 2 -v) for 4π(π -1) ≤ v < 4π 2 .
Question 1 For general real analytic manifolds, is it true that bubbles fall into finitely many analytic families, and that the profile is piecewise analytic ?

This has been proven in [START_REF] Pansu | Sur la régularité du profil isopérimétrique des surfaces riemanniennes compactes[END_REF] in dimension 2 only.

The results

First, in a neighborhood of zero.

Theorem 1 Let M be a compact real analytic Riemannian manifold. There exists > 0 such that I M is real analytic on (0, ).

The isoperimetric profile of Euclidean

space R n is I R n (v) = n(ω n ) 1/n v n-1/n
, where ω n is the volume of the unit ball in R n . In a curved manifold,

I M (v) n-1 ∼ n(ω n ) 1/n v n-1/n as v tends to 0.
Question 2 For a compact analytic Riemannian n-manifold, is I M (v) an analytic function of v 1/n on [0, ) ?

We have only a partial answer.

Theorem 2 Let M be a compact real analytic Riemannian manifold. Assume that the absolute maxima of scalar curvature are nondegenerate critical points. Then there exists an analytic function f defined in a neighborhood of 0 such that

I M (v) = f (v 1/n ) for v small enough.
Away from 0, our result also requires an extra assumption.

Theorem 3 Let M be a compact real analytic Riemannian manifold. Let 0 < v 0 < vol(M ). Assume that all bubbles of volume v 0 are smooth. Then I M is semi-analytic on a neighborhood of v 0 .

Since bubbles are known to be smooth in dimensions < 8, [START_REF] Almgren | Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints[END_REF], it follows that

Corollary 4 If the dimension of M is less than 8, I M is semianalytic on [0, vol(M )].
Question 3 Our method of proof relies on the regularity of bubbles. Can this be circumvented ?

Proof of Theorem 1

It relies on results from [START_REF] Nardulli | The isoperimetric profile of a compact riemannian manifold for small volumes[END_REF]. There, it is shown that small bubbles is a subset of a smooth finite dimensional family of domains called pseudo-balls. We merely need show that if the metric is real analytic, pseudo-balls form a compact, finite dimensional real analytic set, on which the volume and boundary volume functions are real analytic.

Pseudo-balls are solutions of a differential equations which is weaker than constancy of mean curvature, but to which the implicit function theorem can be applied. Specificly, for k ≥ 0, consider the bundle F k → M whose fiber at p ∈ M consists in C k,α functions on the unit sphere in the tangent space T p M . There is a smooth map Φ : R × F 2 → F 0 with the following properties.

1. Let r > 0, p ∈ M and x ∈ F 2 p . If the graph, in polar coordinates, of r(1 + x) has constant mean curvature, then Φ(r, p, x) = 0.

2. For all p ∈ M , Φ(0, p, 0) = 0.

3. The differential of Φ restricted to the fibers is an isomorphism.

Lemma 1 Φ : R × F 2 → F 0 is a real analytic map.

Proof: Φ(r, p, x) has two components, Φ(r, p, x) = (A(r, p, x), Q • Ψ(r, p, x)). The fact that Ψ is smooth is shown in [START_REF] Nardulli | The isoperimetric profile of a compact riemannian manifold for small volumes[END_REF], Proposition 1.1. The map A is defined implicitely, by an equation whose smoothness is established in [START_REF] Nardulli | The isoperimetric profile of a compact riemannian manifold for small volumes[END_REF], Lemma 2.1. When the metric is real analytic, the same proofs show that A and Ψ are real analytic.

From the implicit function theorem, it follows that for all p ∈ M and for r small enough, the equation Φ(r, p, x) = 0 has a unique small solution x = x(r, p) which depends analytically on (r, p) ∈ R × M . Theorem 6 of [START_REF] Nardulli | The isoperimetric profile of a compact riemannian manifold for small volumes[END_REF] asserts that there exist r 0 > 0 and v 0 > 0 such that every bubble of volume less than v 0 coincides with the domain N + (p, r) bounded by the graph, in polar coordinates, of the function r(1 + x(r, p)), for some r ≤ r 0 and some p ∈ M . Therefore, for v < v 0 ,

I M (v) = min{vol(∂N + (p, r)) |p ∈ M, 0 ≤ r ≤ r 0 , vol(N + (p, r)) = v}. Define the lower contour c(A) of a subset A ⊂ R 2 as the function v → inf{w ∈ R | (v, w) ∈ A}.
Then the restriction of I M to [0, v 0 ] coincides with the lower contour of the image of the real analytic map

Ω : [0, r 0 ] × M → R 2 , (r, p) → (vol(∂N (p, r)), vol(∂N + (p, r))).
Since [0, r 0 ]×M is semi-analytic and compact, Ω([0, r 0 ]×M ) is a compact subanalytic set. Its lower contour is a subanalytic function. According to S. Lojasiewicz (Theorem 6.1 in [START_REF] Bierstone | Semianalytic and subanalytic sets[END_REF]), subanalytic functions on the real line are semi-analytic. Semi-analytic functions are piecewise analytic, thus there exists > 0 such that I M is analytic on (0, ). This complete the proof of Theorem 1.

Proof of Theorem 2

For (p, ρ) ∈ M × R + , let β(p, ρ) denote the pseudo-ball defined by

β(p, vol(N + (p, r)) 1/n ) = N + (p, r). Since vol(N + (p, r)) 1/n ∼ ω 1/n n r is a 1 to 1 analytic function of r, the notation is unambiguous. Let f (p, ρ) = f (vol(∂β(p, ρ))) = f ρ (p).
Then f is real analytic. Furthermore, among pseudo-balls of volume v = ρ n , bubbles are characterized as minima of f ρ . The following expansion

f ρ (p) = c n ρ n-1 (1 - 1 2n(n + 2) ω -2/n n Sc(p)ρ 2 + O(ρ 4 ))
is computed in [START_REF] Nardulli | The isoperimetric profile of a compact riemannian manifold for small volumes[END_REF], Lemma 3.6, compare [START_REF] Ye | Foliation by constant mean curvature spheres[END_REF]. If the absolute maxima p 1 ,...,p k of the scalar curvature function Sc are non degenerate critical points, then each of them deforms into a critical point p i (ρ) of f ρ that depends analytically on ρ. Therefore (Theorem 8 in [START_REF] Nardulli | The isoperimetric profile of a compact riemannian manifold for small volumes[END_REF]),

I M (ρ n ) = min i=1,...,k f ρ (p i (ρ)).
There exists > 0 and i such that the minimum is equal to f ρ (p i (ρ)) for all ρ ∈ [0, ). Indeed, otherwise, some function f ρ (p i (ρ)) -f ρ (p j (ρ)) would change sign infinitely many times near 0, contradiction. Thus the right hand side is analytic on [0, ). This completes the proof of Theorem 2.

Theorem 1 of [START_REF] Nardulli | Regularity of solutions of the isoperimetric problem that are close to a smooth manifold[END_REF] asserts that for j large enough, ∂β j is the graph in normal exponential coordinates of a function u j on ∂B whose C 2,α -norm tends to zero, contradiction. The last statement is obvious.

Lemma 5 Assume that all volume v 0 bubbles in M are smooth. Then there exists > 0 such that if β is a bubble of volume ∈ [v 0 -, v 0 + ], then β is smooth, and (β, h β ) belongs to the open set U (B) for some volume v 0 bubble B.

Proof: By contradiction. Otherwise, there exists a sequence β j of bubbles with vol(β j ) → v 0 that avoids all U (B). By compactness of integral currents of bounded boundary volume, we can assume that β j converges in flat norm to some integral current B. By continuity of volume and semi-continuity of boundary volume, B is a bubble of volume v 0 . By assumption, B is smooth. Theorem 1 of [START_REF] Nardulli | Regularity of solutions of the isoperimetric problem that are close to a smooth manifold[END_REF] asserts that for j large enough, ∂β j is the graph in normal exponential coordinates of a C 2,α -small smooth function u j on ∂B. Therefore β j is smooth and (β j , h β j ) belongs to U (B), contradiction.

Lemma 6 Assume that all volume v 0 bubbles in M are smooth. Then there exists > 0 such that the set B of pseudo-bubbles with volumes ∈ [v 0 -, v 0 + ] is contained in a finite union of compact semi-analytic pieces of finite dimensional real analytic manifolds, on which the volume and boundary volume functions are real analytic. There exist compact semi-analytic subsets W i ⊂ ΨB i which suffice to cover BH.

The proof of Theorem 3 is completed in the same manner as the proof of Theorem 1. In dimensions less than 8, F. Almgren has shown that all bubbles are smooth. Therefore the profile is semianalytic in a neighborhood of every point of the closed interval [0, vol(M )]. It follows that it is semi-analytic on this interval. This proves Corollary 4.

Proof:

  It was just proven that the set B of bubbles with volumes ∈ [v 0 -, v 0 + ] is compact in flat topology and the set BH = {(B, h B ) | B ∈ B} is covered by the sets U (B). According to Lemma 4, it is compact in C 2,α -topology as well. Therefore, BH can be covered with finitely many open sets U (B 1 ),...,U (B N ). The set ΨB i of B i -pseudo-bubbles in U (B i ) is an analytic submanifold.
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Proof of Theorem 3

We follow M. Tamm's strategy, [START_REF] Tamm | Subanalytic sets in the calculus of variations[END_REF]. We aim at including bubbles in a parametrized analytic variety. We shall first do this in a neighborhood of a smooth bubble B with volume v 0 . Our first candidate is the set of domains whose boundary is a graph in normal exponential coordinates to ∂B and has constant mean curvature. To decide wether this set is a submanifold in some function space, let us examine the mean curvature operator and its linearization.

Pseudo-bubbles

Let B be a smooth bubble with volume v 0 . Let H B : C 2,α (∂B) → C 0,α (∂B) denote the operator which to a function u on ∂B associates the mean curvature of the graph of u in normal exponential coordinates to ∂B. In particular, H B (0) = H(∂B) = h B is the constant mean curvature of ∂B. Let L B : C 2,α (∂B) → C 0,α (∂B) denote its linearization at 0 (sometimes called the Jacobi operator).

Lemma 2 For all v ∈ C 2,α (∂B)

where ∆ ∂B v = div(∇v) is the Laplace operator on ∂B ( with negative spectrum when taken on the round sphere), ||II ∂B || 2 is the Hilbert-Schmidt squared norm (tr(A t A) for a square matrix A) of the second fundamental form of ∂B and Ric(ν) is the Ricci curvature of the ambient manifold M in the direction ν of the unit outward normal vector to ∂B evaluated at a point of ∂B.

Proof: We recall here formula (6) of 3.3 of [6]

Here θ denotes the gradient of the signed distance function to ∂B. For the meaning of the other terms involved in [START_REF] Arthur | Einstein Manifolds[END_REF], see [START_REF] Nardulli | Regularity of solutions of the isoperimetric problem that are close to a smooth manifold[END_REF]. The operator L B satisfies then

). At first observe that only the first and fourth term of (2) contribute to L B . Denoting by U (r) = ∇θ the shape operator of the equidistant hypersurfaces to ∂B at distance r, we have U (r) = U 0 +U 1 r +• • • , hence by using the Riccati equation satisfied by U (see [START_REF] Chavel | Riemannian geometry. A modern introduction[END_REF]) we can compute If L B were invertible (i.e. m(B) = 0), the implicit function theorem would imply that nearby domains with constant mean curvature boundary come in one analytic family parametrized by the value of mean curvature.

Unfortunately, L B is not always invertible. Therefore, instead of solving H(u) = h, h ∈ R, we shall solve

is a real analytic map, whose linearization at 0 is P B • L B . By construction, it is onto. In fact, the restriction of

B is an isomorphism (see for example [START_REF] Arthur | Einstein Manifolds[END_REF], page 464). Note that Φ B (0, h B ) = 0. The following variant of the implicit function theorem provides us with an open neighborhood U B of (0, h B ) in C 2,α (∂B) × R in which the solutions of Φ B (u, h) = 0 form a real analytic submanifold. We shall call such solutions B-pseudo-bubbles. Lemma 3 Let E, P and F be real analytic Banach manifolds, let e 0 ∈ E, f 0 ∈ B, p 0 ∈ P be such that Φ(e 0 , p 0 ) = f 0 . Let Φ : E × P → B be a real analytic map. Assume that the differential dΦ of Φ at (e 0 , p 0 ) in the direction of E has a finite dimensional kernel K ⊂ T e 0 E, which admits a closed complement K ⊥ . Assume that the restriction of dΦ to K ⊥ is invertible. Then, in a neighborhood of (e 0 , p 0 ) the solutions of equation Φ(e, p) = f 0 form a real analytic submanifold parametrized by a neighborhood of (0, p 0 ) in K × P .

Proof: Apply the implicit function theorem to Ψ : E × P → F × K defined by Ψ(e, p) = (Φ(e, p), π K (e)) where π K is a local submersion onto K.

Compactness in C 2,α -topology

Let us define the C 2,α -topology on the space of domains with smooth boundary as follows: as neighborhoods of a smooth domain β, take all domains S whose boundary is the graph, in normal exponential coordinates, of a C 2,α -small function on ∂β. Using a result from [START_REF] Nardulli | Regularity of solutions of the isoperimetric problem that are close to a smooth manifold[END_REF], we show that on smooth bubbles with volume close to v 0 , the topologies induced by the C 2,α -topology on smooth domains and the flat topology on currents coincide. Lemma 4 Let B be a bubble of volume v 0 . For all δ > 0, there exist > 0 such that if β is a bubble of volume ∈ [v 0 -, v 0 + ] with vol(β∆B) < , then there exists a smooth function u on ∂B with u C 2,α < δ such that ∂β is the graph in normal exponential coordinates of u. Conversely, the graph of a C 2,α -small function on ∂B bounds a current which is close to B volumewise.

Proof: By contradiction. Otherwise, there exists a sequence β j of bubbles with vol(β j ) → v 0 and vol(β j ∆B) → 0 such that ∂β j is not the normal exponential graph of a C 2,α -small function on ∂B.