

Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross attending the Patagonian Shelf

Juan Pablo Seco Pon, Ornela Beltrame, Jorge Marcovecchio, Marco Favero,

Patricia Gandini

▶ To cite this version:

Juan Pablo Seco Pon, Ornela Beltrame, Jorge Marcovecchio, Marco Favero, Patricia Gandini. Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross attending the Patagonian Shelf. Marine Environmental Research, 2011, 72 (1-2), pp.40. 10.1016/j.marenvres.2011.04.004 . hal-00720183

HAL Id: hal-00720183 https://hal.science/hal-00720183

Submitted on 24 Jul 2012 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross Thalassarche melanophrys attending the Patagonian Shelf

Authors: Juan Pablo Seco Pon, Ornela Beltrame, Jorge Marcovecchio, Marco Favero, Patricia Gandini

PII: S0141-1136(11)00047-X

DOI: 10.1016/j.marenvres.2011.04.004

Reference: MERE 3520

To appear in: Marine Environmental Research

Received Date: 23 December 2010

Revised Date: 19 April 2011

Accepted Date: 22 April 2011

Please cite this article as: Seco Pon, J.P., Beltrame, O., Marcovecchio, J., Favero, M., Gandini, P. Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross Thalassarche melanophrys attending the Patagonian Shelf, Marine Environmental Research (2011), doi: 10.1016/j.marenvres.2011.04.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Title:
2	Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross
3	Thalassarche melanophrys attending the Patagonian Shelf
4	
5	Name of authors:
6	Juan Pablo Seco Pon ^{a,b*} , Ornela Beltrame ^{c,d} , Jorge Marcovecchio ^d , Marco Favero ^{a,b} ,
7	Patricia Gandini ^{a,e,f}
8	
9	Affilitations of the authors:
10	^a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av.
11	Rivadavia 1917 (C1033AAJ) Buenos Aires, Argentina.
12	^b Vertebrados, Departamento de Biología, Facultad de Ciencias Exactas y Naturales,
13	Universidad Nacional de Mar del Plata. Funes 3250 (B7602AYJ) Mar del Plata,
14	Provincia de Buenos Aires, Argentina. Tel. +54 223 4752426 int. 466.
15	^c Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad
16	Nacional de Mar del Plata. Funes 3250 (B7602AYJ) Mar del Plata, Provincia de Buenos
17	Aires, Argentina.
18	^d Laboratorio de Química Marina, Instituto Argentino de Oceanografía (IADO). Florida
19	4000, Edificio E1, Casilla de Correo 804 (8000) Bahía Blanca, Provincia de Buenos
20	Aires, Argentina.
21	^e Universidad Nacional de la Patagonia Austral. CIPD Av. Prefectura s/n (9050) Puerto
22	Deseado, Provincia de Santa Cruz, Argentina.
23	^f Wildlife Conservation Society. Wildlife Conservation Society, 2300 Southern
24	Boulevard, 18 Bronx, New York 10460.
25	
26	*Corresponding author:
27	Juan Pablo Seco Pon (double family name)
28	Tel. +54 223 4752426 int. 466.

29 E-mail: <u>secopon@mdp.edu.ar</u>

30 Abstract

31

32 We investigated the concentrations of cadmium, chromium, copper, iron, nickel, lead 33 and zinc among feather tissues in sexes of Black-browed Albatross Thalassarche 34 melanophrys killed in longliners off Argentina in 2005. We found no different metal 35 concentration with sex for cadmium, copper, iron, lead and zinc in feathers of adult 36 birds, though there were significant body-size differences between sexes. However, the 37 concentrations of trace metals differed significantly among the type of feather within 38 individual bird. The mean concentrations of copper, iron, and zinc in breast feathers of 39 T. melanophrys were lower than those reported for the species from Georgias del Sur/ 40 South Georgia, the southern Indian Ocean and for other seabirds' worldwide. While 41 cadmium fall within the known range of concentrations for bird feathers lead were not. 42 Our results may be indicating that level of pollution in Patagonia may not be as 43 negligible as previously thought at least for some trace metals. 44 45

- 46 Keywords: Argentina; Black-browed Albatross; Feather tissues; Trace metals; Ocean
- 47 space; Patagonian Shelf, Pollution monitoring; Seabirds.

1. Introduction

49	Seabirds, and in particular albatrosses, have been widely used for monitoring the
50	concentrations of contaminants in diverse marine regions as they feed far away from
51	land and occupy high trophic levels in marine food webs, thus making them susceptible
52	to the bioaccumulation of pollutants (Burger et al., 1994; Wolfe et al., 1998).
53	Accordingly, monitoring of seabird species has proved to be an important method for
54	assessing concentrations and effects of chemical contaminants in the aquatic
55	environment (Gard and Hooper, 1995; Burger and Gochfeld, 2004; Mallory et al.,
56	2010), and a growing number of studies is currently available for monitoring pollution
57	(Honda et al., 1990; Elliott et al., 1992; Hindell et al., 1999; Burger and Gochfeld,
58	2000a; Savinov et al., 2003; Borga et al., 2006). Nevertheless, it has to be stressed that
59	trace metal concentrations in seabirds depend on a variety of features such as their life
60	history traits, breeding cycle, behavior and physiology, diet composition and the
61	intensity and timing of exposure in foraging areas (Honda et al., 1986; Elliot et al.,
62	1992; Nygärd et al., 2001).
63	Previous published studies report trace metals concentrations for a number of
64	South Atlantic albatross and petrel species (e.g. Muirhead and Furness 1988, and
65	Thompson and Furness 1989a,b from Gough Island, and Becker et al., 2002, González-
66	Solís et al., 2002, and Anderson et al., 2010 from Islas Georgias del Sur/ South Georgia
67	Islands). It is noteworthy to stress that the majority of the studies were conducted in
68	feather tissues, and that for some metals (e.g. lead and mercury) the concentrations in
69	feathers are strongly and positively correlated to the levels in blood (Burger and
70	Gochfeld, 1990; Monteiro and Furness, 2001). Moreover, feather samples have been
71	used extensively for evaluating trace metals exposure on various seabird species due to

72	several methodological advantages they bring over other tissues (e.g. feathers provide
73	easily obtainable and non-invasive matrices, they also provide retrospective time series
74	analyses, and endangered species can be resampled systematically and released without
75	substantial harm) (see Goede and De Bruin, 1986; Burger, 1993; Pilastro et al., 1993;
76	Monteiro et al., 1998; Burger and Gochfeld, 2004, 2009). This is particularly relevant
77	considering that all albatross species are globally threatened with extinction (ACAP,
78	2009; BirdLife International, 2010).
79	The Patagonian Shelf off Argentina and its shelf-break is an important
80	ecosystem whose diversity of species and level of endemism is accompanied by a great
81	biomass and abundance of food for a large number of marine vertebrates (fish, turtles,
82	birds and mammals) most of which are migratory species from distant areas such as
83	Antarctica, Australasia and Western Africa (Croxall and Wood, 2002; Acha et al., 2004;
84	Favero and Silva Rodríguez, 2005). Several authors suggested that the Patagonian Shelf
85	is an area where local pollution by trace metals is neglible or non-existent (Stewart et
86	al., 1999; González-Solís et al., 2002; Barbieri et al., 2007). However, more robust
87	information from the region is still needed for understanding contaminant
88	concentrations and defining biological indicators in this important ecosystem.
89	This article presents novel data on concentrations of cadmium, chromium,
90	copper, iron, lead, nickel and zinc in feathers of Black-browed Albatross Thalassarche
91	melanophrys (herein BBA), coming from individuals incidentally killed while attending
92	commercial longliners operating in the Patagonian Shelf off Argentina. Black-browed
93	albatrosses breed in several subantarctic islands and archipelagoes in the Southern
94	Ocean chiefly at the Malvinas/ Falkland Islands and other island groups off southern
95	Australia, Chile, and New Zealand and off south-eastern South Africa. Approximately

96	67% of the global population (estimated at ca. 602,000 breeding pairs) breeds in
97	Malvinas/Falkland Islands (ACAP 2009), just 400 km of the Argentine mainland. The
98	majority of the Malvinas/ Falkland Islands BBAs are resident on the Patagonian Shelf
99	throughout the year, remaining largely within the core area of incubating birds (ca.
100	within 3500 km), and in shelf and shelf-break waters (see Grémillet et al., 2000; Huin,
101	2002). Birds from adjacent colonies (e.g. Georgias del Sur/ South Georgia Islands)
102	migrate primarily to the east, reaching the Benguela Current area, with small numbers
103	wintering on the Patagonian Shelf or around Australia (Prince et al., 1998; Phillips et
104	al., 2005).
105	We focused on BBA given that: (1) it is the most important Procellariiform bird
106	in Argentinean waters in terms of biomass (Favero and Silva Rodríguez, 2005), (2) it
107	shows a strong interaction with commercial fisheries, and as such is the most commonly
108	incidentally taken albatross species in Argentine waters (Favero et al., 2003; Gandini
109	and Frere, 2006; Gómez-Laich et al., 2006; Seco Pon et al., 2007; Favero, 2008), and
110	(3) it is listed as Endangered by the International Union for the Conservation of Nature
111	(IUCN, BirdLife International, 2010). The overall objective of this study was to 1) to
112	establish baseline trace metal concentrations against which to measure changes in
113	elemental concentrations over time, and 2) to test hypotheses of no difference in the
114	trace metal concentrations in BBA feathers coming from (a) different parts of the body,
115	and (b) individuals of different sex.
116	

- **2. Materials and methods**
- **2.1. Sample collection**

120	All of the birds sampled in this study were incidentally captured in the Kingclip
121	Genypterus blacodes demersal longline fishery operating in waters of the Patagonian
122	Shelf, Argentina chiefly between 42°S to 47°S and 59°W to 63°W. The longline systems
123	used by this fishing industry has been previously described (Gandini and Frere, 2006;
124	Seco Pon et al., 2007). Overall, 50 adult BBAs incidentally captured during spring and
125	summer 2005 were analyzed. Although a larger number of BBA carcasses were
126	retrieved from longline operations at that period (see Seco Pon et al., 2007), only those
127	birds without evidence of predation while they had been immersed on the longline were
128	used in this study. Some of the birds were processed aboard fishing vessels while others
129	were deep frozen and later transferred still frozen to the Centro de Investigaciones de
130	Puerto Deseado, Argentina. After biometric measurements were made (Appendix A),
131	birds were classified as juveniles or adults based on plumage characteristics and bill
132	coloration (Prince et al., 1993). Sex was determined by visual inspection of gonads in
133	the laboratory. The last grown primary feather (P10) (see Prince et al., 1993) was
134	systematically obtained from the right wing of each sampled individual as a random
135	pinch of feathers was plucked from the right side of the breast of the same individual.
136	Given the difficulty in handling and weighing single feathers, multiple breast feathers
137	were grouped and placed in envelopes. Although there may be some variation in metal
138	concentrations among breast feathers, by using several feathers the differences are
139	generally averaged (Bond and Diamond, 2008). Primary feathers were stored apart from
140	breast feathers.
1 4 1	

2.2. Element analysis

143	P10 and breast feathers were washed vigorously (at least three times) in
144	deionized water alternated with acetone to remove loosely adherent external
145	contamination (Burger et al., 1994), and then dried at 60° C. All materials associated
146	with trace metal extraction were thoroughly acid-cleaned and rinsed with deionized
147	water before use (Clesceri et al., 1998). Samples were digested in a mixture of
148	concentrated acids, according to methods described by Marcovecchio and Ferrer (2005).
149	About 250 mg were removed from the outermost (distal) segment of each feather and
150	mineralized with a 1:3 perchloric-nitric acid mixture in a thermostatic bath (at 120 ± 10
151	°C) up to minimum volume. Solutions were made up to 10 ml with 0.7 % nitric acid.
152	Each feather segment was sectioned, and each section digested separately to ensure the
153	reproducibility of the method.
154	Element concentrations were determined using a Perkin-Elmer AA-2380 atomic
155	absorption spectrophotometer with air/acetylene flame. Analytical grade reagents were
156	used to build up the relevant blanks and calibration curves, and the analytical quality
157	(AQ) was tested against reference materials (mussel tissue flour, R.M.N°6) provided by
158	the National Institute for Environmental Studies (NIES) from Tsukuba (Japan). All
159	elements were analyzed in dry mass tissue. Percentages ranges of recovery in the
160	analysis of reference materials to assess analytical quality were between 91-101% for all
161	the considered metals. The obtained values from the analysis of the reference materials
162	were within the range of certified ones. The analytical precision expressed as
163	coefficients of variance are < 10 % for all the metals based on replicate analysis.
164	Instrumental detection limits ($\mu g g^{-1}$) were: cadmium: 0.20, lead: 1.50, copper: 0.77,
165	zinc: 0.88, iron: 2.73, nickel: 1.54 and chromium: 0.29.
166	

2.3. Data analysis

168	Elements with mean concentrations below limits of detection (LOD), such as nickel
169	and chromium, were reported in the summary statistics but excluded from further
170	considerations or statistical analyses (see Anderson et al., 2010). Among the remaining
171	elements, concentrations in some samples were below the limits of detection (maximum
172	48% and 24% of samples for cadmium in P10 and breast feathers respectively, 36% and
173	42% of samples for lead in P10 and breast feathers respectively). In these cases, a value
174	equal to one-half the LOD limit for the type of feather sampled was assigned. Where
175	element concentrations were below the limits of detection in >40% of samples overall
176	for a particular type of feather those elements were also included in summary statistics
177	but excluded from subsequent statistical analyses.
178	To analyze the relationship of metal concentrations with type of feather and sex,
179	we employed general linear mixed models (GLMM) with normal error structure and
180	identity link function (Crawley, 2007). This analysis was performed using GLMM to
181	consider the non-independence of the type of feather within an individual bird. The
182	relationship between the metal concentrations and type of feather and sex was modeled
183	with individual identity as a random effect and type of feather and sex as fixed effect
184	(Crawley, 2007). We also examined the covariation among elements in type of feathers
185	of male and female birds using Pearson correlations. To run the GLMM and the
186	Pearson, data were transformed using $log_{10}(x)$ when necessary to accomplish
187	assumptions of normality and variance homoscedasticity (Zar, 1999). Both arithmetic
188	and geometric means are given to facilitate comparisons with other studies in literature.
189	Statistical analysis of the data was performed using R software, Version 2.5.1. (R
190	Development Core Team, 2004). In all cases, differences were considered significant

191	where <i>P</i> was ≤ 0.05 . Due to the small number of juvenile birds analyzed in this study (<i>n</i>
192	= 6), statistical analyses were conducted in adult birds only. Metal concentrations ($\mu g g^{-}$
193	¹ dry mass) are presented as means \pm one SD.
194	
195	3. Results
196	The mean concentration of cadmium, copper, iron, lead and zinc in the last
197	grown primary and breast feathers of BBA are given in Table 1. Using GLMM, we
198	found no significant interaction between feather type and sex for any of the metals
199	analyzed (GLMM, all P > 0.49). However, the cadmium (GLMM: $F_{1,43} = 35.08$, $P < 100$
200	0.001), copper (GLMM: $F_{1, 43} = 72.43$, $P < 0.001$), iron (GLMM: $F_{1, 43} = 39.80$, $P < 0.001$)
201	0.001), lead (GLMM: $F_{1, 43} = 19.48$, $P < 0.001$), and zinc (GLMM: $F_{1, 43} = 122.73$, $P < 0.001$)
202	0.001) concentrations differed significantly among the type of feather within individual
203	BBA. Breast feathers had significantly higher concentrations of cadmium, copper and
204	lead than primary feathers, whilst primary feathers had significantly higher
205	concentrations of iron and zinc than breast feathers.
206	Correlations among trace metal concentrations within feather type from birds of
207	a particular sex were in general non significant, although there were some significant
208	relationships. We found a significant positive correlation between copper and zinc
209	concentrations in breast feathers of both male and female BBAs. Cadmium and copper,
210	and iron and lead concentrations were correlated in the last grown primary feathers of
211	male birds (Table 2).
212	

4. Discussion

214 Overall, variation in the concentration of some metals (e.g. cadmium, cooper, 215 iron and zinc) resulted as a function of the type of feather (either breast or primary) of 216 individual BBA considered. Black-browed albatrosses moult their primary feathers 217 biennially during the non-breeding period (Prince et al., 1993). This takes place from 218 late April to early September – early October in the South Atlantic (Tickell, 2000). Like 219 most small albatrosses, BBA replace its flight feathers seasonally in ordered sequences: 220 the primaries outward and the secondaries inwards (Prince et al., 1993), but not all 221 flights feathers are moulted in a single year (Onley and Scofield, 2007). Moreover, 222 albatrosses have more flight feathers than any other group of birds, and based on pattern 223 of feather replacement in North Pacific albatrosses, Edwards and Rowher (2005) 224 suggested that other species of albatross such as BBA may have multiple moult series 225 throughout their wings. Because birds are able to eliminate a substantial portion of their 226 body burden of certain trace metals via feather moulting, the concentration of certain 227 metals may be not constant along this period (Dauwe et al., 2003). However, we lack 228 information on the moulting sequence of birds retrieved dead from longline operations. 229 Hence, comparisons and conclusions in this study are drawn exclusively from body 230 feathers given that there are known to be most representative of concentrations in 231 plumage as a whole (Furness et al., 1986; Lewis and Furness, 1991; Burger and 232 Gochfeld, 2004).

There is very limited information in the literature on toxic elements apart from mercury in feathers from seabirds attending the Patagonian Shelf (González-Solís et al., 2002; Anderson et al., 2010). However, regional comparisons are possible given that concentrations of some of the metals analyzed in this study are available for the same species from Georgias del Sur/ South Georgia, and the southern Indian Ocean (see Kim

238	et al., 1998; Anderson et al., 2010). Since pollution by trace metals in the Patagonian
239	Shelf is presumably non-existent or negligible (Stewart et al., 1999; González-Solís et
240	al., 2002; Barbieri et al., 2007), we expected the concentrations of metals in feathers to
241	be relatively low. In fact, Table 3 draws a parallel between elemental concentrations in
242	feathers of BBA from the Southern Ocean region and related species – all
243	Procellariiformes – from other locations in the world.
244	Cadmium is a non-essential metal that comes from a variety of anthropogenic
245	sources (Burger, 1993; Furness, 1996). When compared with concentrations in the same
246	tissue, cadmium concentrations in feathers of BBA analyzed in this study were lower
247	than those reported in adult BBA and Grey-headed Albatross T. chrysostoma from
248	Georgias del Sur/ South Georgia (Anderson et al., 2010) but higher than those of the
249	same species from the southern Indian Ocean (Kim et al., 1998). In a broader
250	comparison, on average, cadmium fall within the known range of concentrations from
251	bird feathers of related Procellariiformes species from different biogeographic areas (see
252	Table 3). Like cadmium, lead is an element that plays no role in metabolic processes of
253	animal organisms. It is an extremely toxic element with a wide range of harmful effects
254	in birds (see review in De Francisco et al., 2003). Normal background concentrations of
255	lead in feather of adult seabirds are in the range of 0.51 to 1.68 $\mu g~g^{\text{-1}}$ dry mass (Mendes
256	et al., 2008; Burger and Gochfeld, 2009). Unfortunately regional comparisons are not
257	possible since lead concentrations in BBA from neighboring waters were below the
258	limit of detection (Anderson et al., 2010). Still, lead concentrations in BBA analyzed in
259	this study were higher than those reported for birds obtained from fishing operations in
260	the Indian Ocean (Kim et al., 1998). Moreover, lead concentrations in BBA feathers

examined in the present study tended to be higher than those in any of the seabirdspecies compared (see Table 3).

263	Copper concentrations in this study were lower than those reported for BBA
264	from Georgias del Sur/ South Georgia and the Indian Ocean (Kim et al., 1998;
265	Anderson et al., 2010). Similar pattern was obtained when comparing BBA with related
266	Procellariiformes species from other areas. Iron is a critical element for almost all
267	vertebrates, but can have toxic effects of different magnitude on different bird taxa
268	(Randell et al., 1981). Little information is available for iron concentrations in feather
269	tissues of seabirds. In this study, iron concentrations in feathers were in general lower
270	than those reported in BBA and other three albatross species from Georgias del Sur/
271	South Georgia (Anderson et al., 2010). Zinc, one of the essential elements required for
272	feather formation (Sunde, 1972), showed in this study lower concentrations than those
273	reported for BBA from Georgias del Sur/ South Georgia (Anderson et al., 2010), and
274	any of the seabird species compared (see Table 3).
275	There are few studies concerning studies of sex differences in elemental
276	concentrations in birds. Burger (1993) summarized studies of sex-related differences in
277	metal concentrations in feathers of birds and reported differences in three out of eight
278	species studied. For example, there were no significant differences between sexes for
279	the same array of metals in feathers of adult Laysan Albatrosses Phoebastria
280	immutabilis from northern Pacific (Burger and Gochfeld, 2000c). In this study, no
281	different metal concentration with sex was observed for cadmium, copper, iron, lead,
282	and zinc in feathers. Considering that biometric measurements revealed significant
283	body-size differences between sexes in BBA (in line with that reported by Phillips et al.,
284	2004 and Gandini et al., 2009), this finding was unexpected considering that metal

285	concentrations were reported to vary in those species with body-size differences
286	between sexes or differential diets, and also that females can eliminate trace metals by
287	sequestering them in the eggshell or transferred via vitellus or the albumen (Burger,
288	1993; Furness, 1996; Lacoue-Labarthe et al., 2008; Bond and Diamond, 2009; Burger
289	and Gochfeld, 2009). Other relevant variables (e.g. age, sex-specific foraging strategies,
290	relative proportion of sex and time that birds spend behind fishing vessels, etc.) could
291	play a role in determining metal concentrations. BBA frequently follow fishing vessels,
292	being benefited from discards along the Patagonian Shelf (Croxall and Gales, 1998).
293	Accordingly, BBA is the most abundant Procellariiform species attending national
294	longline vessels, roughly representing 40% of individuals recorded in recent years
295	(Gandini and Seco Pon, 2007). Additional research is needed to address the relative
296	contribution of discards and offal from national longliners in BBA diet and the
297	influence diet has upon metal concentrations in sexes of the species.
200	

298

299

300 5. Conclusion

301 The results of this study indicate that the bulk of the toxic elements analyzed in feathers were below the medians of those reported for seabirds worldwide, but lead 302 303 concentrations were higher than BBA from the Indian Ocean and any of the related 304 Procellariiformes species selected for comparison. Thus, our results may be indicating 305 that level of pollution in Patagonia may not be as negligible as previously thought at 306 least for some trace metals. However, one disadvantage when using pelagic seabirds 307 such as albatrosses to characterize marine environments is the wide feeding range of 308 albatrosses also greatly varying between and within the year (Grémillet et al., 2000;

309	Huin, 2002). Yet, other disadvantage when using feathers to evaluate concentrations of
310	lead, cadmium, and many other elements is that total concentration may be the result of
311	two combined processes: deposition (from the atmosphere onto the surface of feather)
312	or incorporation (from the blood) (Furness and Camphuysen, 1997). For feathers to be
313	maximally useful as tools to assess current body burden or concentrations of metals in
314	internal avian tissues there should be a solid relationship between the concentrations in
315	feathers and other tissues (Burger, 1993). Given that relatively high lead concentrations
316	have been reported in several tissues (e.g. blood, bones, feathers) and vital organs (e.g.
317	liver, kidneys, salt gland) of pelagic seabird species (see Kim et al., 1998; Burger and
318	Gochfeld, 2000c; González-Solís et al., 2002; Metcheva et al., 2006; Anderson et al.,
319	2010), further investigations are needed to study features of lead bioaccumulation in
320	different tissues of Black-browed albatrosses feeding in the Patagonian Shelf,
321	particularly in bone as this is the principal site for long-term storage (De Francisco et
322	al., 2003).

323

324

325 Acknowledgements

Authors would like to thank Dr. Laura Mauco and all the crew of the F/V Argenova
XXII. Two anonymous referees greatly improved an early version of the manuscript.
Thanks to Dr. Germán García for providing statistical help. This work was supported by
the Instituto Argentino de Oceanografía, Universidad Nacional de la Patagonia Austral,
Universidad Nacional de Mar del Plata, CONICET and by the company ARGENOVA
S.A.

5. References

334	Acha, E.M., Mianzan, H.W., Guerrero, R.A., Favero, M., Bava, J. 2004. Marine fronts
335	at the continental shelves of austral South America: Physical and ecological
336	processes. Journal of Marine Systems 44, 83–105.
337	Agreement on the Conservation of Albatrosses and Petrels (ACAP). 2009. The ACAP
338	Species Assessments. Available from: <u>http://www.acap.aq/acap-species</u> .
339	Anderson, O.R.J., Phillips, R.A., Shore, R.F., McGill, R.A.R., McDonald, R.A.,
340	Bearhop, S. 2010. Element patterns in albatrosses and petrels: influence of
341	trophic position, foraging range, and prey type. Environmental Pollution 158,
342	98–107.
343	Barbieri, E., Garcia, C.A.B., Passos, E.A., Aragão, K.A.S. 2007. Heavy metal
344	concentration in tissues of Puffinus gravis sampled on the Brazilian coast.
345	Ararajuba 15, 69–72.
346	Becker, P.H., González-Solís, J., Behrends, B., Croxall, J.P. 2002. Feather mercury
347	levels in seabirds at South Georgia: influence of trophic position, sex and age.
348	Marine Ecology Progress Series 243, 261–269.
349	BirdLife International. Species factsheet: Thalassarche melanophrys. Available from:
350	http://www.birdlife.org./datazone/speciesfactsheet.php?id=3959.
351	Bond, A.L., Diamond, A.W. 2008. High within-individual variation in total mercury
352	concentration in seabird feathers. Environmental Toxicology and Chemistry 27,
353	2375–2377.
354	Bond, A.L., Diamond, A.W. 2009. Total and methyl mercury concentrations in seabird
355	feathers and eggs. Archives of Environmental Contamination and Toxicology
356	56, 286–291.

357	Bond, A.L., Lavers, J.L. 2011. Trace element concentrations in feathers of Flesh-footed
358	Shearwaters (Puffinus carneipes) from across their breeding range. Archives of
359	Environmental Contamination and Toxicology. DOI: 10.1007/s00244-010-9605-
360	3.
361	Borga, K., Campbell, L., Gabrielsen, G.W., Norstrom, R.J., Muir, D.C.G., Fisk, A.T.
362	2006. Regional and species specific bioaccumulation of major and trace
363	elements in arctic seabirds. Environmental Toxicology 25, 2927-2936.
364	Bugoni, L., McGill, R.A.R., Furness, R.W. 2010. The importance of pelagic longline
365	fishery discards for a seabird community determined through stable isotope
366	analysis. Journal of Experimental Marine Biology and Ecology 391, 190-200.
367	Burger, J. 1993. Metals in avian feathers: bioindicators of environmental pollution.
368	Reviews in Environmental Toxicology 5, 203–311.
369	Burger, J., Gochfeld, M. 1990. Tissue levels of lead in experimentally exposed Herring
370	Gull (Larus argentatus) chicks. Journal of Toxicology and Environmental
371	Health 29, 219–233.
372	Burger, J., Gochfeld, M. 1991. Lead, mercury and cadmium in feathers of tropical terns
373	in Puerto Rico and Australia. Archives of Environmental Contamination and
374	Toxicology 21, 311–315.
375	Burger, J., Gochfeld, M. 1992. Heavy metal and selenium concentrations in Black
376	skimmers Rynchops niger: gender differences. Archives of Environmental
377	Contamination and Toxicology 23, 431–434.
378	Burger, J., Gochfeld, M. 2000a. Effects of chemicals and pollution on seabirds, in:
379	Schreiber, E.A., Burger, J. (Eds.), Biology of marine birds. CRC Press, Boca
380	Raton, Florida, pp. 485–525.

381	Burger, J., Gochfeld, M. 2000b. Metals in albatross feathers from Midway Atoll:
382	influence of species, age and nest location. Environmental Research Section A
383	82, 207–221.
384	Burger, J., Gochfeld, M. 2000c. Metals in Laysan Albatrosses from Midway Atoll.
385	Archives of Environmental Contamination and Toxicology 38, 254–259.
386	Burger, J., Gochfeld, M. 2000d. Metals levels in feathers of 12 species of seabirds from
387	Midway Atoll in the northern Pacific Ocean. Science of the Total Environment
388	257, 37–52.
389	Burger, J., Gochfeld, M. 2004. Marine birds as sentinels of environmental pollution.
390	EcoHealth 1, 263–274.
391	Burger, J., Gochfeld, M. 2009. Mercury and other metals in feathers of Common Eider
392	Somateria mollissima and Tufted Puffin Fratercula cirrhata from the Aleutian
393	Chain of Alaska. Archives of Environmental Contamination and Toxicology 56,
394	596–606.
395	Burger, J., Nisbet, I.C.T., Gochfeld, M. 1994. Heavy metal and selenium levels in
396	feathers of known-aged Common terns Sterna hirundo. Archives of
397	Environmental Contamination and Toxicology 26, 351–355.
398	Burger, J., Schreiber, E.A., Gochfeld, M. 1992. Lead, cadmium, selenium and mercury
399	in seabird feathers from the tropical mid-Pacific. Environmental Toxicology and
400	Chemistry 11, 815-822.
401	Clesceri, L.S., Greenberg, A.E., Eaton, A.D. 1998. Standard methods for the
402	examination of water and wastewater. 20th ed. American Public Health
403	Association, Washington.
404	Crawley, M.J. 2007. The R book. Wiley, Chichester, U.K.

405	Croxall, J.P., Gales, R. 1998. An assessment of the conservation status of albatross, in:
406	Robertson, G., Gales, R. (Eds.), Albatross Biology and Conservation. Surrey
407	Beatty and Sons Ltd, Australia, pp. 46–65.
408	Croxall, J.P., Wood, A.G. 2002. The importance of the Patagonian Shelf for top
409	predator species breeding at South Georgia. Aquatic Conservation: Marine and
410	Freshwater Ecosystems 12, 101–118.
411	Dauwe, T., Bervoets, L., Pinxten, R., Blust, R., Eens, M. 2003. Variation of heavy
412	metals within and among feathers of birds of prey: effects of molt and external
413	contamination. Environmental Pollution 124, 429–436.
414	De Francisco, N., Ruiz Troya, J.D., Aguera, E.I. 2003. Lead and lead toxicity in
415	domestic and free living birds. Avian Pathology 32, 3–13.
416	Edwards, A.R., Rohwer, S. 2005. Large-scale patterns of molt activation in the flight
417	feathers of two albatross species. Condor 107, 835-848.
418	Elliot, J.E., Scheuhammer, A.M., Leighton, F.A., Pearce, P.A. 1992. Heavy metal and
419	metallothionein concentrations in Atlantic Canadian seabirds. Archives of
420	Environmental Contamination and Toxicology 22, 63-73.
421	Favero, M., Khatchikian, C., Arias, A., Silva Rodríguez, M.P., Cañete, G., Mariano-
422	Jelicich R. 2003. Estimates of seabird by-catch along the Patagonian Shelf by
423	Argentine longline fishing vessels, 1999 - 2001. Bird Conservation International
424	13, 273–281.
425	Favero, M., Silva Rodríguez, M.P. 2005. Estado actual y conservación de aves pelágicas
426	que utilizan la plataforma continental Argentina como área de forrajeo. El
427	Hornero 20, 95–110.

428	Favero, M. 2008. South American perspective: fisheries mortality, in: De Roy, T.,
429	Jones, M., Fitter, J. (Eds.), Albatross: their world, their ways. David Bateman
430	Ltd, Auckland, pp. 176–177.
431	Furness, R.W. 1996. Cadmium in birds, in: Beyer, W.N., Heinz, S.H., Redmon-
432	Norwood, A.W. (Eds.), Environmental contaminants in wildlife. Lewis
433	Publishers, Boca Raton, Florida, pp. 389-404.
434	Furness, R.W., Camphuysen, Kees (C.J.). 1997. Seabirds and monitors of the marine
435	environment. ICES Journal of Marine Science 54, 726–737.
436	Furness, R.W., Muirhead, S.J., Woodburn, M. 1986. Using bird feathers to measure
437	mercury in the environment: relationship between mercury content and moult.
438	Marine Pollution Bulletin 17, 27–37.
439	Gandini, P., Frere, E., García, M.F., Seco Pon, J.P. 2009. Sexual differences in external
440	measurements of Black-browed albatross Diomedea melanophrys incidentally
441	killed during longline operations. El Hornero 23, 43–46.
442	Gandini, P., Seco Pon, J.P. 2007. Seabird assemblages attending longline vessels in the
443	Argentinean Economic Exclusive Zone. Ornitología Neotropical 18, 553-561.
444	Gandini, P.A., Frere, E. 2006. Spatial and temporal patterns in the bycatch of seabirds in
445	the Argentinean longline fishery. Fisheries Bulletin 104, 482–485.
446	Gard, N.W., Hooper, M.J. 1995. An assessment of potential hazards of pesticides and
447	environmental contaminants, in: Martin, T.E., Finch, D.M. (Eds.), Ecology and
448	management of neotropical migratory birds: A synthesis and review of critical
449	issues. Oxford University Press, New York, pp. 295–310.
450	Goede, A.A., De Bruin, M. 1986. The use of bird feathers for indicating heavy metal
451	pollution. Environmental Monitoring and Assessment 7, 249–256.

452	Gómez-Laich, A., Favero, M., Mariano-Jelicich, R., Blanco, G., Cañete, G., Arias, A.,
453	Silva Rodríguez, M.P., Brachetta, H. 2006. Environmental and operational
454	variability affecting the mortality of Black-Browed Albatrosses associated to
455	longliners in Argentina. Emu 106, 21–28.
456	González-Solís, J., Sampera, C., Ruiz, X. 2002. Metals and selenium as bioindicators of
457	geographic and trophic segregation in Giant petrels Macronectes spp. Marine
458	Ecology Progress Series 244, 257–264.
459	Grémillet, D., Wilson, R.P., Wanless, S., Chater, T. 2000. Black-browed albatrosses,
460	international fisheries and the Patagonian Shelf. Marine Ecology Progress Series
461	195, 269–280.
462	Hindell, M.A., Brothers, N., Gales, R. 1999. Mercury and cadmium concentrations in
463	the tissues of three species of southern albatrosses. Polar Biology 22, 102–108.
464	Honda, K., Marcovecchio, J.E., Kan, S., Tatsukawa, R., Ogi, H. 1990. Metal
465	concentrations in pelagic seabirds from the North Pacific Ocean. Archives of
466	Environmental Contamination and Toxicology 19, 704–711.
467	Honda, K., Nasu, T., Tatsukawa, R. 1986. Seasonal changes in mercury accumulation in
468	the Black-eared Kite, Milvus migrans lineatus. Environmental Pollution 42,
469	325–334.
470	Huin, N. 2002. Foraging distribution of the Black-browed Albatross, Thalassarche
471	melanophrys, breeding in the Falkland Islands. Aquatic Conservation: Marine
472	and Freshwater Ecosystems 12, 89–99.
473	Hutton, M. 1991. Accumulation of heavy metals and selenium in three seabird species
474	from the United Kingdom. Environmental Pollution 26, 129–145.

475	Kim, E.Y., Goto, R., Tanabe, S., Tanaka, H., Tatsukawa, R. 1998. Distribution of 14
476	elements in tissues and organs of oceanic seabirds. Archives of Environmental
477	Contamination and Toxicology 35, 638–645.
478	Kojadinovic, J., Le Corre, M., Cosson, R.P., Bustamante, P. 2007. Trace elements in
479	three marine birds breeding on Reunion Island (Western Indian Ocean): Part 1-
480	Factors influencing their bioaccumulation. Archives of Environmental
481	Contamination and Toxicology 52, 418–430.
482	Lacoue-Labarthe, T., Warnau, M., Oberhänsli, F., Teyssié, J.L., Jeffree, R., Bustamante,
483	P. 2008. First experiments on the maternal transfer of metals in the cuttlefish
484	Sepia officinalis. Marine Pollution Bulletin 57, 826–831.
485	Lewis, S.A., Furness, R.W. 1991. Mercury accumulation and excretion in laboratory
486	reared black-headed gull Larus ridibundus chicks. Archives of Environmental
487	Contamination and Toxicology 21, 316-320.
488	Mallory, M.L., Robinson, S.A., Hebert, C.E., Forbes, M.R. 2010. Seabirds as indicators
489	of aquatic ecosystem conditions: A case for gathering multiple proxies of seabird
490	health. Marine Pollution Bulletin 60, 7–12.
491	Marcovecchio, J., Ferrer, L. 2005. Distribution and geochemical partitioning of heavy
492	metals in sediments of the Bahía Blanca Estuary, Argentina. Journal of Coastal
493	Research 21, 826–834.
494	Mendes, P., Eira, C., Torres, J., Soares, A.M.V.M., Melo, P., Vingada, J. 2008. Toxic
495	element concentration in the Atlantic Gannet Morus bassanus (Pelecaniformes,
496	Sulidae) in Portugal. Archives of Environmental Contamination and Toxicology
497	55, 503–209.

498	Metcheva, R., Yurukova, L., Tedorova, S., Nikolova, E. 2006. The penguin feathers as
499	bioindicator of Antarctica environmental state. Science of the Total Environment
500	362, 259–265.
501	Monteiro, L.R., Furness, R.W. 2001. Kinetics, dose-response, and excretion of
502	methylmercury in free-living adult Cory's Shearwaters. Environmental Science
503	and Technology 35, 739–746.
504	Monteiro, L.R., Granadeiro, J.P., Furness, R.W. 1998. Relationship between mercury
505	levels and diet in Azores seabirds. Marine Ecology Progress Series 166, 259-
506	265.
507	Muirhead, S.J., Furness, R.W. 1988. Heavy metals concentrations in the tissues of
508	seabirds from Gough Island, South Atlantic Ocean. Marine Pollution Bulletin
509	19, 278–283.
510	Nygärd, T., Lie, E., Røv, N., Steinnes, E. 2001. Metal dynamics in an Antarctic food
511	chain. Marine Pollution Bulletin 7, 598–602.
512	Onley, D., Scofield, P. 2007. Albatrosses, petrels and shearwaters of the world.
513	Princeton University Press.
514	Phillips, R.A., Silk, J.R.D., Croxall, J.P., Afanasyev, V., and Bennett, V.J. 2005.
515	Summer distribution and migration of non-breeding albatrosses: Individual
516	consistencies and implications for conservation. Ecology 86, 2386–2396.
517	Phillips, R.A., Silk, J.R.D., Phalan, B., Catry, P., and Croxall, J.P. 2004. Seasonal
518	sexual segregation in two Thalassarche albatross species: competitive exclusion,
519	reproductive role specialization or foraging niche divergence? Proceedings of
520	the Royal Society of London Series B Biological Sciences 271, 1283–1291.

521	Pilastro, A., Congiu, L., Tallandini, L., Turchetto, M. 1993. The use of bird feathers for
522	the monitoring of cadmium pollution. Archives of Environmental Contamination
523	and Toxicology 24, 355–358.
524	Prince, P.A., Croxall, J.P., Trathan, P.N., and Wood, A.G., 1998. The pelagic
525	distribution of South Georgia albatrosses and their relationship with fisheries, in:
526	Robertson, G., Gales, R. (Eds.), Albatross Biology and Conservation. Surrey
527	Beatty and Sons Ltd, Australia, pp. 137–167.
528	Prince, P.A., Rodwell, S., Jones, M., Rother, Y.P. 1993. Moult in Black-browed and
529	Grey-headed Albatrosses Diomedea melanophrys and D. chrysostoma. Ibis 135,
530	121–131.
531	R Development Core Team. 2004. R: a language and environment for statistical
532	computing. R Foundation for Statistical Computing, Vienna, Austria. Available
533	from: <u>http://www.R-project.org</u> .
534	Randell, M.G., Patnaik, A.K., Gould, W.J. 1981. Hepatopathy associated with excessive
535	iron storage in mynah birds. Journal of the American Veterinary Medical
536	Association 179, 1214–1217.
537	Savinov, V.M., Gabrielsen, G.W., Savinova, T.N. 2003. Cadmium, zinc, copper,
538	arsenic, selenium and mercury in seabirds from the Barents Sea: levels, inter-
539	specific and geographical differences. Science of the Total Environment 306,
540	133–158.
541	Seco Pon, J.P., Gandini, P., Favero, M. 2007. Effect of longline configuration on the
542	seabird mortality in the Argentine semi-pelagic Kingclip Genypterus blacodes
543	fishery. Fisheries Research 85, 101–105.

544	Stewart, F.M., Phillips, R.A., Bartle, J.A., Craig, J., Shooter, D. 1999. Influence of
545	phylogeny, diet, moult schedule and sex on heavy metal concentrations in New
546	Zealand Procellariiformes. Marine Ecology Progress Series 178, 295–305.
547	Stewart, F.M., Thompson D.R., Furness R.W., Harrison N. 1994. Seasonal variation in
548	heavy metals levels in tissues of Common guillemots Uria aalgae from
549	Northwest Scotland. Archives of Environmental Contamination and Toxicology
550	27, 168-175.
551	Sunde, M.L. 1972. Zinc requirement for normal feathering of commercial Leghorn-type
552	pullets. Poultry Science 51, 1316–1322.
553	Thompson, D.R., Furness, R.W. 1989a. Comparison of the levels of total and organic
554	mercury in seabird feathers. Marine Pollution Bulletin 20, 577–579.
555	Thompson, D.R., Furness, R.W. 1989b. The chemical form of mercury stores in South
556	Atlantic seabirds. Environmental Pollution 60, 305–317.
557	Tickell, W.L.N. 2000. Albatrosses. Pica Press, East Sussex, U.K.
558	Wenzel, C., Gabrielsen, G.W. 1995. Trace accumulation in three seabird species from
559	Hornøya, Norway. Archives of Environmental Contamination and Toxicology
560	29, 198–206.
561	Wolfe, M.F., Schwarzbach, S., Sulaiman, R.A. 1998. Effects of mercury on widlife: A
562	comprehensive review. Environmental Toxicology and Chemistry 17(2), 146-
563	160.
564	Zar, I. 1999. Biostatistical analysis. Forth Edition. Prentice-Hall Press, Englewood
565	Cliffs, New Jersey.
566	

- 567 **Table 1** Mean trace metal concentrations (in $\mu g g^{-1}$, dry mass) \pm SD in the last grown
- 568 primary (P10) and breast feathers of adult Black-browed Albatross *Thalassarche*
- 569 melanophrys killed as by-catch in longline fisheries off Argentina in 2005. Geometric
- 570 means are given in parentheses.
- 571

- **Table 2** Interelement concentrations with statistically significance in feathers of males
- 573 (above the diagonal, n = 27) and females (below the diagonal, n = 17) Black-browed
- 574 Albatross recovered from longline operations off Argentina.

- 578 **Table 3 -** Average (arithmetic mean) trace metal concentrations in feathers (µg g⁻¹, dry
- 579 mass) of Black-browed Albatross and other seabirds from the literature and from this
- 580 study.
- 581

- 582 Appendix A Biometric data (mean ± SD) of adult Black-browed Albatross
- 583 Thalassarche melanophrys incidentally killed in longliners off Argentina. Kruskall-
- 584 Wallis one-way ANOVA (*H*) and probabilities (*P*) are also given.
- 585

> Information on the concentrations of trace metals in southern ocean seabirds is scarce.
> We examine concentrations of seven trace metals in feathers of Black-browed
Albatross off Argentina. > Concentrations of cadmium, copper, iron, lead and zinc in feathers were not affected by sex. > The mean concentrations of cooper, iron, and zinc in feathers of birds were lower than those reported for the species from relative nearby oceanic areas. > While cadmium concentrations fall within the known range for bird feathers lead were not. > Our results may be indicating that level of pollution in Patagonia may not be as negligible as previously thought at least for some trace metals.

> Concentrations of trace metals in feathers of Black-browed Albatross were examined.

> Concentrations of cadmium, copper, iron, lead and zinc were not affected by sex. > Concentrations of essential elements were lower than those reported for the species. > As cadmium concentrations fall within the known range for feathers lead were not. > Level of pollution in Patagonia may not be negligible at least for lead.

	Male (<i>i</i>	Male (<i>n</i> = 27)		Female (<i>n</i> = 17)		
	Primary feather	Breast feathers	Primary feather	Breast feathers		
Cadmium	0.33 ± 0.32	0.69 ± 0.67	0.33 ± 5.67	0.71 ± 0.64		
	(0.21)	(0.39)	(0.24)	(0.46)		
Chromium	< LOD	< LOD	< LOD	< LOD		
Copper	4.86 ± 1.75 (4.54)	9.67 ± 3.22 (9.04)	4.60 ± 1.83 (4.24)	10.02 ± 2.88 (9.66)		
Iron	(1.01) 101.73 ± 122.32 (149.12)	(38.10)	(1.2.1) 232.63 ± 355.77 (121.28)	(0.00) 29.65 ± 23.33 (21.87)		
Lead	5.71 ± 5.67 (3.35)	3.17 ± 3.34 (1.96)	7.61 ± 12.03 (3.01)	3.35 ± 2.55 (2.56)		
Nickel	< LOD	< LOD	< LOD	< LOD		
Zinc	102.76 ± 127.37	28.18 ± 67.37	175.35 ± 135.67	72.95 ± 27.31		
	(152.16)	(72.11)	(138.67)	(69.16)		

¹< LOD below limit of detection.

TABLE 1

Cd	Cu	Fe	Pb	Zn
*********	NS	NS	NS	NS
*****	NS	NS	NS	NS
0.523 (0.05)	********	NS	NS	0.840 (< 0.001)
NS	******	NS	NS	NS
NS	NS	****	NS	NS
NS	NS	****	NS	NS
NS	NS	NS	*****	NS
NS	NS	0.510 (0.06)	*****	NS
NS	0.563 (0.05)	NS	NS	*****
NS	NS	NS	NS	**********
	**************************************	******* NS ************************************	******* NS NS ******** NS NS 0.523 (0.05) ************************************	******** NS NS NS ************************************

²First row gives values for breast feathers. Second row gives values for the last grown primary feathers. Comparisons with Pearson correlation (P values); NS indicates P values > 0.10

TABLE 2

Species		Location	Cadmium	Copper	Iron	Lead	Zinc	Source
Other seabirds from the Southern Ocean								
Black-browed Albatross	Thalassarche melanophrys	Bird Island, Georgias del Sur/ South Georgia	0.578	8.613	610.216	< LOD ^a	39.592	Anderson et al. (2010)
		southern Indian Ocean*	0.070	10.4	Na	0.426	71.7	Kim et al. (1998)
		Patagonian Shelf**	0.200	1.01	1.46	4.31	1.84	This study
Grey-headed Albatross	Thalassarche chrysostoma	Bird Island, Georgias del Sur/ South Georgia	0.196	5.661	229.219	< LOD ^a	50.115	Anderson et al. (2010)
Wandering Albatross	Diomedea exulans	Bird Island, Georgias del Sur/ South Georgia	0.317	6.032	166.858	< LOD ^a	58.16	Anderson et al. (2010)
Northern Giant Petrel	Macronectes halli	Bird Island, Georgias del Sur/ South Georgia	0.083	6.211	103.719	< LOD ^a	67.557	Anderson et al. (2010)
Southern Giant Petrel	Macronectes giganteus	Bird Island, Georgias del Sur/ South Georgia	0.289	6.877	95.208	< LOD ^a	90.208	Anderson et al. (2010)
White-chinned Petrel	Procellaria aequinoctialis	Bird Island, Georgias del Sur/ South Georgia	0.138	13.11	262.076	< LOD ^a	77.646	Anderson et al. (2010)
Antarctic Prion	Pachyptila desolata	Bird Island, Georgias del Sur/ South Georgia	0.059	20.176	1.010.868	< LOD ^a	113.658	Anderson et al. (2010)
Blue Petrel	Halobaena caerulea	Bird Island, Georgias del Sur/ South Georgia	0.074	8.745	986.705	< LOD ^a	6.953	Anderson et al. (2010)
Flesh-footed Shearwater	Puffinus carneipes	Lord Howe and Western Australia, Australia***	0.188	14.005	Na	0.493	50416	Bond and Lavers (2010)
		Kauwahaia and Lady Alice Islands, New Zealand***	0.065	14.063	Na	0.419	96115	Bond and Lavers (2010)
Other Procellariiformes globally								
Black-footed Albatross	Phoebastria nigripes	Midaway Atoll, North Pacific	0.152	Na	Na	0.973	Na	Burger and Gochfeld (2000
Laysan Albatross	Phoebastria immutabilis	Midaway Atoll, North Pacific	0.364	Na	Na	0.799	Na	Burger and Gochfeld (2000
Bonin Petrel	Pterodroma hypoleuca	Midaway Atoll, North Pacific	0.129	Na	Na	1.35	Na	Burger and Gochfeld (2000
Wedge-tailed Shearwater	Puffinus pacificus	Midaway Atoll, North Pacific	0.071	Na	Na	0.478	Na	Burger and Gochfeld (2000
Christmas Shearwater	Puffinus nativitatis	Midaway Atoll, North Pacific	0.950	Na	Na	2.38	Na	Burger and Gochfeld (2000

*< LOD below the limit of detection; Na not analyzed.
* Black-knowed Albatross, Groy-headed Albatross and White-chinned Petrel combined.
** Values reported in fresh mass.

TABLE 3