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Thomas Lux
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University of Kiel ∗
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Kiel Institute for the World Economy
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Abstract

This paper develops a methodology for estimating the parameters of
dynamic opinion or expectation formation processes with social interac-
tions. We study a simple stochastic framework of a collective process of
opinion formation by a group of agents who face a binary decision prob-
lem. The aggregate dynamics of the individuals’ decisions can be analyzed
via the stochastic process governing the ensemble average of choices. Nu-
merical approximations to the transient density for this ensemble average
allow the evaluation of the likelihood function on the base of discrete ob-
servations of the social dynamics. This approach can be used to estimate
the parameters of the opinion formation process from aggregate data on
its average realization. Our application to a well-known business climate
index provides strong indication of social interaction as an important el-
ement in respondents’ assessment of the business climate.
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1 Introduction

Recent literature has started to consider the role of social interdependencies be-
tween individual decisions. The potential importance of social interactions has
been highlighted in analyses of such diverse phenomena as human capital ac-
quisition (Bénabou, 1993), social pathologies due to peer group effects (Glaeser,
Sacerdote and Scheinkman, 1996), or herding in financial markets (Kirman,
1993; Lux, 1995). Existence and uniqueness of equilibria in large economies
with both local or global interactions have been studied recently by Horst and
Scheinkman (2006).

Empirical work on social interactions has mostly been based on an adap-
tation of the discrete choice framework allowing for social spillovers in agents’
utility functions. Brock and Durlauf (2001a,b) provide an introduction into the
econometric implementation of this approach. While the discrete choice ap-
proach typically studies social interactions in cross-sectional data and assumes
that the configuration of choices represents a self-consistent equilibrium, we are
interested in a dynamic process of ongoing opinion formation within a group
of agents. While our incorporation of social influences is very close (both in
its spirit and its formal implementation) to Brock and Durlauf’s more static
approach to social interaction, we do not necessarily impose that agents have
settled at an equilibrium. Another difference is that we do not model social
interaction effects as due to spillovers in utility or payoff functions. Due to the
nature of the time series we wish to model, we are profoundly ignorant about
the relevant underlying incentives of agents. In fact, there might be no incentive
component of any importance in our particular setting.

One area in which a dynamic process of opinion formation could arguably be
of some relevance is survey data on business expectations or so-called sentiment
indices that are published by academic and private institutes in most developed
countries. While these indices attract quite some public attention upon their
regular compilation, they have found only scarce consideration in the macroe-
conomics literature. Due to the underlying motivation for collecting such data,
much of the limited body of available literature focuses on the predictive power
for macroeconomic activity of these surveys (cf. Hüfner and Schröder, 2002;
Gelper et al., 2007, Taylor and McNabb, 2007). However, as far as we know,
attempts at formulating behavioral models for the underlying data-generating
process of these surveys are practically non-existent. While social interactions
have been hypothesized to be of some importance in expectation formation (Car-
oll, 2003), such factors have to my knowledge not been incorporated explicitely
in the small sample of papers testing positive models of expectation formation.
The hypothesis underlying our present study is that these survey data might
be viewed as the result of a social process of opinion formation among the re-
spondents. If these data could be explained via social interactions, they would
represent behavioral components of macroeconomic activity quite different from
rational attempts at forecasting the future development of the business cycle.
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Rather than representing rational forecasts of future economic developments
they could be interpreted as manifestations of animal spirits. Our paper can,
thus, be seen as an attempt to operationalize the alleged role of animal spirits
in macroeconomic fluctuations (cf. Akerlof and Shiller, 2009, for a prominent
example of the recent surge of interest in ‘non-rational’ fluctuations of expecta-
tions and confidence).

Fig. 1 gives an intuitive preview on our subsequent results. The figure
contrasts the monthly observations of the ZEW Business Climate Index for
the German economy compiled by the Centre for European Economic Research
(German acronym: ZEW) at the University of Mannheim from about 350 re-
spondents with a frequent measure of real economic activity (HP filtered indus-
trial production). The business climate index is computed so that it is bounded
by +1 and -1 from above and below (see sections 2 and 4 for details). Quite
obvious, positive (negative) values are meant to indicate an optimistic (pes-
simistic) majority among respondents. The higher the absolute value, the more
pronounced the positive (negative) outlook for the German economy. A glance
at the lower panel shows a striking contrast to the real thing: while the output
gap as measured by the residuals from the HP filter appears quite noisy, the
climate index has much more obvious swings between low and high values. It
appears that there is a much clearer image of the business cycle dynamics in the
eyes of the observers compared to what can be extracted from real economic ac-
tivity. The ZEW index is also characterized by very abrupt and drastic switches
between more optimistic or more pessimistic majorities than any switch between
positive or negative realizations of the output gap.

Fig. 1 about here

The pronounced swings of our sentiment series is quite typical of such data.
While, in principle, these swings could be caused by the revelation of important
news about the subsequent development, the hypothesis we are going to explore
in this paper is that these swings are imprints of a process of social interaction
among respondents. It is not difficult to imagine that respondents’ changing
assessments of the economic outlook are at least in part influenced by the evo-
lution of the opinion of their peers. Interpersonal effects might come into play
via private exchange of opinions but probably even more so via the influence
of a ‘social field’ of the average mood of their peer group of which they learn
through a variety of professional and private channels of communication.

To test for social interaction in opinion formation, we will adopt a formal-
ization along the lines of Weidlich and Haag (1983) and Lux (1995). While the
basic goal is to identify potential interaction effects, this framework is general
enough to allow us to also cover exogenous factors of influence on the opin-
ion dynamics. Naturally enough, macroeconomic data would be our candidate
explanatory variables. Including both these exogenous forces and an intrinsic
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feedback allows us to study their interplay in the formation of group expecta-
tions.

There is another important issue we explore in our study: while we have a
relatively constant number of respondents in our survey (about 350), it is not
clear whether all these participants would, in fact, act as independent decision
makers. This issue is quite subtle: apart from the overall hypothesized inter-
action effect, there might be coherence within subgroups of the entire pool of
respondents that is so strong as to lead to entirely or highly correlated syn-
chronized behavior among subgroups. The behavior of synchronized subgroups
would simply collapse onto that of a single agent (and any member of the group
would be a representative agent of it). The dynamics of the opinion formation
process would look differently if certain subgroups would always move together.
The framework to be formalized below allows us to cope with this phenomenon:
first, we start by specifying the opinion dynamics for a given number of indepen-
dent actors, equal to the average number of respondents in the survey. Since
the number of agents explicitly appears as a variable in our model, we may,
however, also adopt an agnostic view and let the model speak on the number
of effectively independent agents. As it turns out, endogeneizing the number of
active groups of agents allows a huge improvement in the goodness-of-fit of the
model. Subsequent statistical analyses confirm that this specification covers the
salient features of the data much better than alternative specifications.

Further explanatory power is obtained by allowing for a ‘momentum’ ef-
fect in addition to the baseline social interaction. In contrast to these refine-
ments of the social part of the dynamics, allowing for an additional feedback
from macroeconomic data (e.g., industrial production) improves only slightly
the goodness-of-fit with a more modest increase of the likelihood. Our simple
stochastic model also allows to compute confidence bounds for future observa-
tions from the transient density. We use these to assess whether the empirical
series could be a likely realization of the process of social interaction given the
initial condition and the macro influence. We also explore whether any single
entry would be a probable realization conditional on last month’s entry and the
contemporaneous macro feedback. As it turns out, in both cases the empirical
data hardly ever move out of the pertinent 95 percent confidence intervals which
nicely confirms the explanatory power of the model.

The rest of the paper is structured as follows: in section 2, the basic stochas-
tic framework of social interactions will be introduced together with a review of
its properties. Section 3 contemplates the problem of estimating the parameters
of such a stochastic framework with an ensemble of interacting agents. Section 4
provides some results on Monte Carlo experiments with small samples to arrive
at insights on the reliability and accuracy of our subsequent estimates. Section
5 then contains the application to the ZEW index of the business climate, and
section 6 provides a detailed analysis of the statistical properties of Monte Carlo
replications of the estimated models to explore their explanatory power together
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with an assessment of their goodness-of-fit. Section 7 concludes.

2 A ‘canonical’ stochastic model of social inter-
action

As a simple formalization for the process of social opinion formation, we adapt
an approach that goes back at least to Weidlich and Haag (1983) and that had
been used in behavioral finance models by Lux (1995, 1997). The model deals
with a binary choice problem and stochastic transitions of agents between both
alternatives due to exogenous factors and group pressure. Let the two groups
have occupation numbers n+ and n− respectively, with the overall population
size being 2N (multiplication by 2 simply serves to avoid the case of an odd
number of individuals).
The aggregate outcome of this choice process at any point in time can be de-
scribed via the difference between the number of individuals in the “+” and
“−” groups:

n =
1
2
(n+ − n−), (1)

or an equivalent opinion index :

x =
n

N
=

n+ − n−
2N

with x ∈ [−1, 1]. (2)

Agents’ beliefs are either optimistic or pessimistic; they change their beliefs
in continuous time, with a Poisson process describing the changes from the “+”
to the “−” group or vice versa within the next instant. We denote the pertinent
transition rates by w↑ and w↓ and assume that they are the same for all agents
within each group.

Following the earlier literature quoted above we assume an exponential func-
tional form of the transition rates w↑ and w↓:

w↑ = v exp(U), w↓ = v exp(−U). (3)

The function U might be labeled the ‘forcing function’ for transitions and
is analogous to the utility function in a discrete choice setting. It is assumed
to consist of a constant factor (bias) α0 and a second component formalizing
group pressure in favor or against homogeneous decisions, α1x:

U = α0 + α1x. (4)

The parameters of the model are, thus: v which determines the frequency
(time scale) of moves between groups, α0 which generates a bias towards the
choice of “+” (“−”) opinions if positive (negative) and α1 which formalizes the
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degree of group pressure (if it is positive, if negative it would rather imply a ten-
dency of non-conformity). With this set-up the opinion dynamics is described
as the aggregate outcome of 2N coupled jump Markov processes for agents’
choices in continuous time. During small time increments ∆t, the probability of
an agent to switch from his previous group (decision) to the other alternative,
is approximately equal to w↑∆t and w↓∆t, respectively. Interpersonal differ-
ences are covered in the stochasticity of the process, i.e. by the very fact that
individual choices are not deterministic, but are only determined in expectation.

A few comments on the underlying ‘philosophy’ of this framework are in or-
der: First, it might be important to emphasize that we do not view this model
so much as a description of microscopic behavior, but rather as a phenomeno-
logical model for the dynamics resulting from the supposedly more multifaceted
social interaction of our respondents. Since the ‘true’ interactions might be
much more complex, our interest is, therefore, less in the verisimilitude rather
than the empirical performance of the model. As a consequence, the viewpoint
here is not that this simple story of social interaction should be taken at face
value concerning its assumed decision processes, but rather that it might pro-
vide an empirically successful approximation to the social component of the
dynamics of the ZEW survey (and maybe other surveys as well).1 Because of
this phenomenological interpretation, we also abstain from a strict considera-
tion of information sets. As one referee noted, the continuous time dynamics
with transition rates given by eqs. (3) and (4) implies that agents also react
to changes of sentiment between the discrete monthly observations which are
not available public information. However, our interpretation is that there is an
ongoing public opinion formation process among agents so that they have some
feeling for the change of business climate even between the discrete points in
time when the survey results are published (we could try to model this commu-
nication between survey publications via a noisy information transmission, but
our concern here is to have a compact model of the outcome of a social opinion
dynamics rather that an exact choice-theoretic description on the micro level).
We have estimated a version of the model in which we had frozen x in eq. (4)
at its last public observation xti during tε[ti, ti+1] with ti the points of time at
which the survey results are published. Results are virtually identical to those
reported below (details are available on request).

We also believe that it is important to model the opinion process in contin-
uous time: agents will very likely have an opinion about the future prospects of
the economy at any point in time and will also very likely often change their view
at points in time between survey publication dates. The hypothesized opinion
formation process (that in reality covers a collection of influences such as inter-
personal communication, exposure to media influence etc.) will also not only be
activated at discrete points in time. The discrete measurements will thus collect

1Subsequent applications (Ghonghadze and Lux, 2009; Lux, 2009) show that the model
(or extended versions of it) can be used for out-of-sample forecasting of sentiment changes.
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the results of previous social interaction between publication dates. We, thus
view the business climate survey as a discrete sample of a stochastic process in
continuous time. This perspective is standard in many areas, e.g. models of the
term structure of interest rates in finance or mathematical models in epidemi-
ology (Iacus, 2008). Diffusion processes from epidemiology have been adapted
and expanded in the social science quite some time ago (Bartholomew, 1973).
In a sense, our approach here is similar in that we apply a kind of epidemic
process to our sentiment data, but instead of a macroscopic diffusion process
we start with an idealized microscopic formalisation of agents’ interactions.2

Models with the above basic ingredients have been thoroughly investigated
in the literature. The basic features of the model can be summarized by the
following findings3:

i) For α1 ≤ 1, the group dynamics defined by (3) and (4) is characterized
by a stationary distribution with a unique maximum. If α0 = 0, this
maximum is located at x∗ = 0. It shifts to the right (left) for α0 > 0
(< 0).

ii) For α1 > 1 and α0 not too large, the stationary distribution has two
maxima x+ > 0 and x− < 0. If α0 = 0, the distribution is symmetric
around 0. It becomes asymmetric if α0 6= 0 with right-hand (left-hand)
skewness and more concentration of probability mass in the right (left)
maximum if α0 > 0 (< 0) holds.

iii) If |α0| becomes very large, the smaller mode vanishes and the station-
ary distribution becomes uni-modal again. This happens if |α0| increases
beyond the bifurcation value α0 given by:

cosh2(α0 −
√

α1(α1 − 1)) = α1 (5)

with cosh(.) denoting the hyperbolic cosine, cosh(x) = 1
2 (ex + e−x). One

might note that these findings are perfectly analogous to those in models of
discrete choice with social interactions, cf. Brock and Durlauf (2001b, proposi-
tions 1 through 3): Moderate influence of social interaction (α1 ≤ 0) leads to a
balanced distribution of the population on both alternative choices while strong
interaction leads to the emergence of a majority in one alternative. A positive
(negative) bias α0 generates asymmetry as it introduces a preference for one of
both alternatives.

In most applications, the first step towards an analysis of the above group
dynamics consists in the derivation of a quasi-deterministic law of motion for
the first moment of x:

2We could, in fact have estimated a diffusion model with similar dynamic behavior as
our agent-based model (e.g. the double-well potential: dxt = a(xt − x3

t )dt + σdWt) but the
estimated parameters would have had no behavioral interpretation.

3cf. Weidlich and Haag (1983, chap. 2), Lux (1995); essentially the same jump-Markov
process is used by Blume and Durlauf (2003) as a dynamic process of strategy revisions in a
discrete choice framework with social interactions.
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d

dt
x = v(1− x)eα0+α1x − v(1 + x)e−α0−α1x

= 2v[tanh(α0 + α1x)− x] cosh(α0 + α1x).
(6)

(6) is exact in the limit of an infinite population and provides a first-order
approximation of the dynamics of x for finite populations. Convergence of our
jump process to the ordinary differential equation (6) in the limit N →∞ can be
demonstrated along the lines of Horst and Rothe (2008). Fluctuations around
this first order approximation can be shown to follow an Ornstein-Uhlenbeck
process. Since we are interested in finite populations, we will use a different
kind of diffusion approximation as detailed in Appendix A.

3 Estimation: The Basic Framework

While the stochastic properties of population processes like the one depicted in
sec. 2 have been studied in great detail (Weidlich and Haag, 1983; Aoki, 1996;
Weidlich, 2000), this literature has not developed a systematic approach towards
estimation of such models. In the following I will outline how such models can
be estimated via a fairly conventional maximum likelihood procedure. The basic
ingredient in our estimation procedure is the so-called Fokker-Planck equation
for the time development of the transitional density of macroscopic observables
of the process. The Fokker-Planck equation associated to a stochastic process
is a parabolic partial differential equation that occupies a very prominent place
in statistical physics (Risken, 1989; van Kampen, 2007).

For diffusion processes, the Fokker-Planck equation gives the exact law of
motion for the transient density. Parameter estimation on the base of the
Fokker-Planck equation, then, seems straight forward: if one has available dis-
crete observations of a diffusion process and if the Fokker-Planck equation of the
hypothesized process could be solved explicitly, the time-dependent solution to
the transient density at the times of observations could be used to compute the
likelihood of each observation conditional on the realization of the process in the
previous period. Unfortunately, for many interesting models, a closed-form so-
lution to the Fokker-Planck equation is not available. In this case, however, one
can still resort to numerical approximations of the Fokker-Planck equation. Nu-
merical integration of partial differential equations via finite difference of finite
element methods is also a well developed field (Thomas, 1995) and has found
important applications both in statistical physics and financial mathematics
(Seydel, 2002, part III). Surprisingly, the approach outlined here has only found
scarce applications in the literature so far. The first to propose approximate
ML estimation on the base of a numerical integration of transitory densities
has been Poulsen (1999) who applies this framework for estimation of models
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of the term structure of interest rules. His approach has been compared to al-
ternative methods by Jensen and Poulsen (2002). Hurn et al. (2006) propose
refinements using finite elements rather than finite differences. In their recent
survey paper on estimation methods for stochastic differential equations Hurn
et al. (2007) point out that numerical solution of the Fokker-Planck equation is
the only completely generic estimation method.4 Given that it is also very close
to exact maximum likelihood, it seems surprising that it had been used only in
the few papers mentioned in this paragraph.

For jump Markov processes like the present one, Fokker-Planck equations
can be obtained in different ways as approximations to the law of motion for
the transient density. The prevalent use of the Fokker-Planck equation for par-
ticle or molecular dynamics in physics and chemistry is typically based on the
so-called Kramers-Moyal expansion (Risken, 1996, c. 4, van Kampen, 2007,
c. 2). The Kramers-Moyal expansion is obtained as a Taylor series expansion of
a continuous limit of the exact law of motion of the transient density. We provide
a derivation of this heuristic approach in Appendix A. The resulting diffusion
approximation consists in the stochastic differential equation with drift and
diffusion terms equal to the first-order and second-order terms of the Kramers-
Moyal expansion. The Appendix also provides details on the convergence of the
original process to this diffusion limit.

In order to set the stage for our approximate ML estimation, consider a
parabolic partial differential equation:

∂f(x)
∂t

=
∂

∂x
(µ(x, θ)f(x)) +

∂2

∂x2
(g(x, θ)f(x)). (7)

If (7) refers to a Fokker-Planck equation, f(x, t) is the transitory density of
x, and µ(x, θ) = −A(x, θ) , g(x, θ) = 1

2D(x, θ) with A(x, θ) and D(x, θ) the drift
and diffusion functions of the process, and θ is a set of unknown parameters that
one wants to estimate.

If no closed-form solution for f(x, t) is available (which will mostly be the
case), one can study the time development of the density via numerical integra-
tion of eq. (7). Various methods for discretisation of the stochastic equation
(7) can be used. Applying a finite difference approach, the first and second
derivatives on both sides of eq. (7) could be approximated either via forward
differences of backward differences (called explicit or implicit methods). Higher
accuracy of the approximation can be achieved by combining both forward and

4Other methods proposed in the literature either suffer from biases (such as the Euler
method or discrete maximum likelihood, used as a benchmark below) or are applicable only
for certain types of stochastic differential equations (e.g. methods based on characteristic
functions or Hermite polynomial expansions of the transitional density).
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backward differences by computing central differences around intermediate grid
points.

To concretize the finite difference approximation, consider a ‘space’ grid with
distance h between adjacent knots: xj = x0 + j ·h; j = 0, 1, ..., Nx and similarly
equally spaced points along the time axis between t = 0 and the final time T :
ti = i · k with i = 0, ..., Nt and k = T

Nt
.

In a forward discretization, (7) would have to be replaced by

f i+1
j − f i

j

k
=

µj+1f
i
j+1 − µjf

i
j

h
+

gj+1f
i
j+1 − 2gjf

i
j + gj−1f

i
j−1

h2
(8)

with f i
j := f(x0 + j · h, ik) and µj := µ(x0 + j · h, θ), gj := g(x0 + j · h, θ).

This forward approximation is also known as the explicit finite difference ap-
proximation as it provides a closed-form solution for the mesh points at time
i+1. Replacing the forward difference on the left-hand side by the backward dif-
ference f i

j − f i−1
j , we obtain the implicit finite difference approximation. While

the forward and backward approximations are of local accuracy (at the mesh
points) O(k)+O(h2), higher accuracy can be obtained by taking the average of
both the forward and backward difference approximation. This is known as the
Crank-Nicolson method and can be shown to have local accuracy O(k2)+O(h2).
Note that the Crank-Nicolson approach effectively approximates the continuous-
time diffusion at intermediate points (i+ 1

2 )k rather than those on the grid itself.

Because of the necessity of restricting the approximation to a finite inter-
val, boundary conditions have to be imposed in order to prevent transitions to
inaccessible states. In the present application boundary conditions should pre-
vent a leakage of probability mass to points outside the support of the transient
density. The very natural condition to conserve mass within the support is,
therefore:

f j

− 1
2

= f(x0− 1
2
h, jk) = 0 and f j

Nx+ 1
2

= f(x0+(Nx+
1
2
)h, jk) = 0. (9)

While such simple Dirichlet boundary conditions preserve the local second
order accuracy, more complex derivative boundary conditions in certain appli-
cations would require a careful analysis of the errors brought about by their
discretization. In our setting, the no-flux boundary conditions guarantee con-
servation of probability mass within the underlying x-interval if (7) governs the
dynamics of a transient density (i.e. if (7) is a Fokker-Planck equation).

The drift term of the Fokker-Planck equation for our process is given by:

A(x) =
n−
2N

w↑(x)− n+

2N
w↓(x) = v(1− x)eα0+α1x − v(1 + x)e−α0−α1x (10)

10
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which, of course, coincides with the right-hand side of (6), while the diffusion
term is:

D(x) =
1
N

(
n−
2N

w↑(x)+
n+

2N
w↓(x)) =

1
N

(v(1−x)eα0+α1x +v(1+x)e−α0−α1x).

(11)

This is certainly a case in which the conditional density can not be solved for
explicitly due to the high degree of non-linearity of both the drift and diffusion
components. For numerical integration, we can, however, resort to the Crank-
Nicolson scheme as introduced above. Fig. 2 shows an example with a strongly
peaked initial distribution which evolves into a bi-modal distribution over time.
Underlying parameters are: v = 3, α0 = 0, α1 = 1.2, N = 50 for the parame-
ters of the agent-based model, h = 0.0025 and k = 0.01 for the discretization
in “space” and time, T = 3 for the time horizon of the numerical integration
and a space grid extending from −1 to 1 in accordance with the support of the
variable x has been used. The initial condition, x0 = 0, has been approximated
by a Normal distribution with density ΦN (x0 +A(x)k, D(x)k) evaluated at grid
points −1 + jh; j = 0, 1, . . . , Nx, in the x direction for the first time increment
k. This avoids the problems of a Dirac δ-function as initial condition and can
be interpreted as a first-order Euler approximation using the known drift and
diffusion functions for the initialization of the approximation.

Fig. 2 about here

On the base of the Crank-Nicolson (or any other finite difference approxi-
mation), we can estimate the parameters of a diffusion process with discretely
spaced observations via approximate maximum likelihood: The negative log-
likelihood of a sample of observations X0, . . . , XT is

−logf0(X0 | θ)−
T−1∑
s=0

logf(Xs+1 | Xs, θ) (12)

where f0(X0 | θ) is the density of the initial state (which in practical appli-
cations will be skipped because of its negligible influence and the possible lack
of a closed-form solution for the stationary density) and f(Xs+1 | Xs, θ) is the
value of the transitional density at s+1 conditioned on the previous observation
at time s,Xs. This continuous density is approximated by our finite difference
scheme. Poulsen (1999) shows that the pertinent estimator is consistent, asymp-
totically normal and can be asymptotically equivalent to full ML estimates, at
least under the Crank-Nicolson approximation scheme. In his Theorem 3, he
shows that the grid size has to behave like k(T ) = T−δ with δ > 1

4 which will
be guaranteed in our applications.
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4 Monte Carlo Simulations of Approximate ML
Estimation

We now turn to estimation of model parameters on the base of the numerical
approximation to the Fokker-Planck equation. In order to study the perfor-
mance of the method we conduct a small simulation experiment on the base of
our canonical interaction model. Because of the time needed for approximate
ML with numerical integration of the transient density we have to restrict this
Monte Carlo study to a few selected parameter values. The following sets of
parameters have been chosen:

• set I: v = 3, α0 = 0, α1 = 0.8,

• set II: v = 3, α0 = 0.2, α1 = 0.8,

• set III: v = 3, α0 = 0, α1 = 1.2,

• set IV: v = 3, α0 = 0.2, α1 = 1.2.

In all scenarios, N = 50, i.e. the population size is equal to 100 (2N). Our
choice of parameters is governed by our interest to compare the performance in
situations with uni-modal and bi-modal distributions, with and without a bias
term α0 6= 0.

Because of the computational demands of this method, the sample size has
been restricted to T = 200 observations at discrete integer time intervals which
have been extracted from a true multi-agent simulation with small time incre-
ments ∆t = 0.01. The order of magnitude of this sample size is also in line with
the number of available monthly observations of the ZEW index in our sample
(which is 176). The time scaling parameter v has been fixed in order to have
a certain number of switches between both modes in the bi-modal case as oth-
erwise we would not expect the estimation procedure to detect a bi-modal dis-
tribution (whether this conjecture really holds, might be checked in subsequent
Monte Carlo experiments). The Crank-Nicolson finite difference discretization
is applied with widths k = 1

8 (k = 1
16 )and h = 0.02 in the time and space direc-

tion, respectively (note that in the space direction h = 0.02 corresponds exactly
to the discreteness of the index x for our setting with N = 50). In order to have
a certain benchmark for comparison of accuracy of the parameter estimates, we
compare the resulting estimates with those obtained under k = 1. The later
can be interpreted as an Euler approximation since it approximates the tran-
sient density by a Normal distribution (with mean and standard deviation taken
from the drift and diffusion functions of the Fokker-Planck equation) which in
the Crank-Nicolson approach is used only for the initialization of the iterations.
This Euler approximation does, of course, not yield consistent estimates and
so we would expect it to be inferior to the Crank-Nicolson-ML approach. In
order to get some insight into the dependence of the parameter estimates on the
step size used in the Crank-Nicolson approximation, we also compare results

12
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obtained with time increments k = 1
8 and k = 1

16 .

Table 1 shows our results exhibiting the mean estimates, finite sample stan-
dard errors and root-mean squared errors for all underlying parameters. The
main message is that we can estimate the parameters v, α0 and α1 quite ac-
curately even for our relatively small sample of 200 observations. In all cases,
the Crank-Nicolson estimates are by far better than those obtained on the base
of the Euler approximation, in terms of bias and standard error. One also in-
fers that estimated parameters become somewhat less reliable in the cases of
parameter sets II and IV as compared to I and III, respectively. The reason is
probably that a positive bias interferes with the effects of interaction so that the
variability of estimated parameters across samples increases. Nevertheless, the
overall bias and standard error still remain reasonable even in those cases with
α0 = 0.2 (with the exception perhaps of the estimates of v for parameter set IV).
In contrast, Euler estimates appear essentially useless in these cases. As con-
cerns the influence of the density of the grid, we observe only minor differences
between the Crank-Nicolson approximations with k = 1

8 and k = 1
16 . In fact,

results do not uniformly improve when reducing the time increments: while one
obtains slight improvements for the parameters α0 and α1, the estimates of v
seem to deteriorate. The near equivalance of both settings together with seem-
ingly reasonable biases and standard errors suggests the conclusion that using
finer grids would probably not improve significantly the quality of the param-
eter estimates. In an unpublished Appendix (available upon request), we also
provide evidence for the alleged second-order accuracy of the Crank-Nicolson
approximations which underscores its suitability for ML estimation.

Table 1 about here

Another set of Monte Carlo experiments is motivated by realizing that the
number of agents (the system size) N appears as a variable in the diffusion
part of the Fokker-Planck equation. Neglecting the issue of discreteness of N ,
we can, in principle, also use our approach to arrive at an estimate of the
number of active agents instead of imposing a predetermined value of N . In
our pertinent Monte Carlo experiments, we use again parameter sets I through
IV, with N = 25, N = 50 or N = 175 in both cases. The results are exhibited
in Table B1 in the Appendix. Given the small sample size, the behavior of
the estimates seems also quite satisfactory. We comment on a few particular
observations in the Appendix.

5 Empirical Application: Interaction Effects in
a Business Climate Index

Since we have focused on a very simple interaction scheme, it is not obvious that
its structural features should be easily applicable to economic data. Weidlich

13
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and Haag (1983, c. 5) and Kraft, Landes and Weise (1986) had proposed sim-
ple business cycle models with, for example, investment decisions being driven
by an opinion process like the one outlined in Sec. 2. Such models could be
estimated using the above methodology. We leave this more demanding multi-
variate application to future research and turn to a particular type of uni-variate
time series in which interaction effects could arguably play some role. Various
surveys of business climate or sentiment are regularly conducted in many coun-
tries that seem to receive much more attention by the public than by academic
researchers. The leading examples are the Michigan Consumer Sentiment In-
dex and the Conference Board Index for the U.S. economy, which have been
reported monthly since the end of the 70ties (Ludvigson, 2004, Souleles, 2004).
In Germany, similar surveys are conducted by the Ifo Institute (Ifo Business Cli-
mate Index) and the Center for European Research (ZEW) at the University of
Mannheim (denoted the ZEW Index of Economic Sentiment). A broader range
of confidence indices is compiled by the European Commission for the member
states of the European union (European Commission, 2007). Many of these
indices are close to the simple structure of our ‘canonical’ model in that they
very literally ask for wether respondents are optimistic (“+”) or pessimistic (“-
”) concerning the prospects of their economy. The only difference to our above
model is that these indices mostly also allow for a neutral assessment. To ac-
comodate this additional possibility we might assume that neutral subjects can
be assigned half and half to the optimistic and pessimistic camp which, then,
would allow us to apply our model directly to these data5. Here we focus on
the ZEW index as one particularly interesting example. What makes it par-
ticularly suitable for our purpose is that in contrast to many other sentiment
indices it represents the average of binary resp. tertiary responses in a very di-
rect way, i.e. without any further aggregation involved, and that it has a rather
constant number of participants (about 350 respondents) while other indices
exhibit more fluctuations in their number of respondents over time. The group
of respondents is furthermore more homogeneous than in most other surveys as
it consists mainly of leading professionals from the finance and insurance indus-
try. This selection of respondents implies, on the one hand, that there should
be more communication within this group (directly and indirectly via targeted
media) than in a more anonymous sample selected via randomized nation-wide
telephone interviews. On the other hand, one could hypothesize that financial
experts should be less prone to interaction effects which lends further interest
to our results.

The index is, in fact, reported as the percentage of optimists minus pessimists
so that it can be directly used as the opinion index x in Sec. 2. The available
monthly record of the ZEW sentiment index (starting in December 1991 and

5As detailed in Weidlich and Haag (1983, c. 6) the above framework could easily be
extended by allowing for a neutral valuation and various degrees of positive or negative sen-
timents by slight changes of individuals’ transition rates. Adopting the formalization of tran-
sition rates proposed by Weidlich and Haag, the macroscopic dynamics of the index would
indeed remain unchanged.
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running through July, 2006) had already been displayed in Fig. 1 above. What
is striking is the very pronounced cyclical behavior of the ZEW index with very
sudden movements upward and downward and a certain stagnation at times
at a high or low plateau. One could, in fact, argue that the dynamics of the
ZEW index is reminiscent of a bi-modal stochastic dynamics switching between
a high positive and a moderately negative equilibrium. In the introduction,
we had already compared this series with what it is designed to predict, the
cyclical component in economic activity. This cyclical component appears in the
lower panel of Fig. 1 in the form of residuals of monthly industrial production
from the Hodrick-Prescott filter. Somewhat surprising, the perception of the
business cycle dynamics as reflected in the survey allows a much more clear-cut
categorization of its phases than the much more random appearance of filtered
IP.

The ZEW surveys are based on about 350 respondents so that we might
take this information as a parametric restriction on N (assuming N=175). We,
then, have to estimate the parameters v, α0 and α1 in a baseline application of
our interacting-agents framework. Results are shown in Table 2. Interestingly,
the crucial parameter α1 is significantly larger than unity indicating bi-modality
of the limiting distribution. Despite the impression of a dominance of positive
assessment over the whole sample period (quite in contrast to stereotypes of
German angst) the bias term α0 turns out to be not significantly different from
0. Unfortunately, simulations of the estimated model show, that it most likely
would get stuck within one mode over a time horizon of the length of our sam-
ple (176 observations) and would on average at most switch only once from one
mode to the other (cf. Figs. 3 and 5 below). This is due to the fact that, in
our framework, transitions between modes are governed by chance fluctuations
and become more and more unlikely the higher the number of agents. Vice
versa, frequent switches would only occur for a relatively small size of the un-
derlying population. In order to reconcile our observation of a relatively large
number of apparent switches of the mood of the respondents with the ‘official’
system size of 350 respondents, we could argue that the ‘effective’ system size is
smaller than the official number. This would happen if some respondents would
actually move broadly synchronously and would, therefore, not act like inde-
pendent agents (independent in performing their movements, not independent
in the sense that their movements between “+” and “-” were not influenced by
other agents). While we cannot check this assertion due to the anonymity of
the data, we could let the index itself speak on the underlying effective system
size by adding N to the list of parameters estimated via approximate ML. Table
2 shows that this added flexibility leads to a relatively large increase in the log
likelihood and is preferred over the baseline model by both the AIC and BIC
criteria. The ‘effective’ number of agents in our estimation is only about 40 (2N)
compared to the much higher official sample size of about 350. As concerns the
other parameters, α0 still is insignificant, while the interaction coefficient falls
marginally below 1 indicating uni-modality albeit with possibly large excursions
into extreme configurations. Remarkably, the estimate of the parameter v de-
creases from 0.78 to 0.15 when proceeding from model 1 to model 2. The likely
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reason is that the first model would have to come up with a higher mobility of
the population (higher propensity to change opinion) in order to compensate
for the stagnatory tendency of the larger imposed population of model 1.

Table 2 about here

We have remarked in sec. 2 that our framework allows to incorporate exoge-
nous effects on the opinion formation process. In order to do so we simply could
expand the influence function U by introducing additional factors that could be
of importance to the assessment of the business cycle by the respondents of the
survey:

Ut = α0 + α1xt + α2yt. (13)

Most naturally, y could be macroeconomic data of the same frequency itself
(i.e. monthly), although our framework could also accommodate data of higher
or lower frequency. Various such macro feedbacks have been investigated. As
typical macroeconomic data at monthly frequency we tried interest rates, indus-
trial production and changes of unemployment rates. In our model 3 we report
the influence of industrial production (deseasonalized and HP filtered, as dis-
played in Fig. 1). Note that the direction of the feedback is not predetermined
in our model, i.e. α2 could turn out positive or negative. The outcome of the
exercise shows that industrial production adds some explanatory power: we ob-
tain a significantly negative coefficient together with lower values of the AIC and
BIC criteria. For interest rates, in contrast (results are available upon request),
the estimated coefficients α2 are not significant and overall improvements com-
pared to model 2 are smaller. Quite the same holds for various measures of
unemployment (with the change over the past 12 months entering as regressor
because of the non-stationarity of the raw data): parameter estimates oscillate
between significant and insignificant depending on which measure is used, the
AIC and BIC values are between those of models 2 and 3 and the parame-
ter estimates of the interaction components are hardly affected. Remarkably,
the coefficient for the influence of changes of unemployment is positive in all
cases. Combining two or three macroeconomic factors leads to very modest
improvements (logL ≈ 649). Mostly, at most the coefficient for IP remains sig-
nificant, while again the parameters for the interaction components are barely
affected. However, even for model 3, the improvement compared to model 2
is much smaller than the increase in likelihood achieved by adding N as a free
parameter (the step from model 1 to model 2). What is perhaps puzzling is
the negative sign of the feedback effect from industrial production (similarly we
obtained counterintuitive positive coefficients for unemployment and somewhat
more plausible negative ones for interest rates) which is in contrast to a positive
contemporaneous correlation of about 0.28 between both series. It appears to
depict some type of ‘contrarian’ behavior: if the economic data is indicating
a boom phase, our respondents already appear to forestall the overheating of
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the economy and the subsequent downturn and vice versa.6 In the estimation
exercise reported in Table 2, the realization of industrial production is that of
the previous period (which, in fact, in the case of IP is not known at this time to
survey participants since the first statistical estimates are only released some-
what later). We have also experimented with various leads and lags without
much change of the results.

Models 4 and 5 in Table 2 depict another extension of our baseline model:
here we include a kind of ‘momentum’ effect in the opinion dynamics. Eq. (13)
is now modified to include the change of the climate index from the month t−1
to the last observation:

Ut = α0 + α1xt + α2yt + α3(xt − xt−1). (14)

One may interpret this as respondents reacting not only to the net influence
of their environment but being particularly sensitive to changes of the busi-
ness climate themselves.7, 8 Note that a priori again both a positive as well
as negative feedback (if any) could be imagined. In fact, the negative coeffi-
cient on industrial production might suggest a similar contrarian element for
the perceived momentum. As it turns out (cf. Table 2), the momentum effect is
significantly positive. It again leads to a remarkable improvement of the model,
but does not affect previously estimated parameters by too much. Adding in-
dustrial production as an explanatory variable (model 5) again leads to a further
increase of the likelihood which is, however, again much more modest compared
to the gain obtained from model 4. Smaller gains would result from alternative
macroeconomic factors. In summary it, therefore, appears that macroeconomic
variables add only a very slight fraction of the explanatory power, while the ma-
jor improvements are obtained via refinements of our social opinion formation

6One frequently finds press releases emphasizing an ‘unexpected’ decline or increase of the
ZEW index in view of the tendencies of macroeconomic indicators at the same time.

7We have to be a bit careful about the interpretation of the momentum term in our
stochastic process: in order to guarantee that the process has Markov properties, we assume
that agents only become aware of the current ‘momentum’ ∆xt = xt−xt−1 at the time when
the new survey is released (at time t). Respondents are, therefore, assumed to not update
this variable between surveys. In this way, we can use it as an independent variable in the
transition rates without having to modify the structure of the Fokker-Planck equation. If,
in contrast, agents would update ∆xt between integer time steps, we would have to deal
with a continuous time dynamics with delays for which finite difference approximations would
become quite cumbersome.

8Following the recommendation of one referee, we have also estimated a more general
variant of models IV and V where we allowed for an arbitrary time lag xt − xt−δ in the
‘momentum’ term. In order to estimate the new delay parameter δ, we have treated xt−δ as a
quasi-continuous quantity by taking the weighted average between observations xt−int(δ) and
xt−int(δ)−1 for non-integer δ (with int(·) denoting the integer part of its argument and weights
being fixed in accordance with the fractional part of δ). Of course, the lower admissible bound
for δ in this estimation exercise is 1 and it turned out, that the ML estimation converged to
this lower bound. Given the rapid changes of the sentiment index, it seems plausible that the
respondents could have a relatively short time horizon for assessing the ‘momentum’ of the
business climate.

17



Page 18 of 38

Acc
ep

te
d 

M
an

us
cr

ip
t

process.9

6 Specification Tests

How closely do time series from the estimated models mimic the empirical be-
havior of the ZEW index? Fig. 3 exhibits three simulations over the same time
horizon (T = 176 integer periods) of model 5 together with the empirical data.
For these simulations, we have used time increments ∆t = 0.01 for the ongoing
opinion formation between integer time steps and have injected the knowledge
of the current exogenous factor (HP-filtered industrial production) as well as
the ‘momentum’ of the index itself at integer time steps. As it can be seen,
the visual appearance of the three Monte Carlo runs is pretty similar to that
of the index itself and the feedback from industrial production seems to direct
the simulations towards a pattern that is broadly synchronous with the ups
and downs of the empirical record. Model 2 to 4 are not too different in their
appearance. In contrast, model 1 yields a very different pattern as shown in
the lower right panel of Fig. 3 since with the higher ‘official’ number of respon-
dents shifts between equilibria become less frequent than with N ≈ 20. Fig. 4
shows the mean and 95 percent confidence bounds from the transient density
computed for model 3 over the whole observation period given the first obser-
vation of the index as the initial condition and incorporating the feedback from
industrial production. Since the empirical record stays within the 95 % bounds
for practically the entire time horizon, we may conclude that we have no rea-
son to reject the hypothesis that the empirical data could have emerged as one
particular sample path from our stochastic model. We note that simulations of
models 2, 4, and 5 would lead to very similar patterns. However, for models 2
and 4 the sample paths would not be synchronous to the empirical series simply
because there is no exogenous factor.10 As can be seen from Fig. 5, the 95 per-
cent confidence interval from model 1 excludes the better part of the empirical
record, so that this baseline model could be clearly rejected as a potential data-
generating process. For model 5, we could not perform the same exercise since
the discrete momentum effect is hard to capture in the Fokker-Planck equation.
We can, however, resort to numerical simulations in this case which gave a 95
percent confidence interval (from 1000 repetitions) that improves slightly on the
analytical results for model 3 in Fig. 4 (not shown here because it is almost
undistinguishable from Fig. 3). Overall, our models 3 and 5, in fact, show how
the fuzzy exogenous information in the lower panel of Fig. 1 could be trans-
lated into a much clearer image of the business cycle dynamics in the view of
the respondents’ sentiments (upper panel of Fig. 1) via the self-referential and

9This holds at all stages of our estimation exercise: if we add industrial production as an
explanatory variable in model 1 (with fixed N=175), the likelihood only increases to -722.9
with virtually unchanging parameters for the social dynamics.

10While this synchronous behavior appears quite striking in simulated time series, the sta-
tistical improvement by models 3 and 5 compared to models 2 and 4 in terms of the ‘distance’
criterion in Table 3 is relatively modest.
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self-reinforcing dynamics of the opinion formation process.

Figure 3 about here

Figure 4 about here

Since the estimated interaction parameter, α1, in models 2 through 4 is
marginally below the bifurcation value of unity, the ups and downs of the sen-
timent index during the observation period would likely reflect shifts of unique
equilibria that alternate between optimistic and pessimistic majorities. Note,
however, that a standard, say 95 confidence interval for α1 would not exclude
the possibility α1 > 1 so that we could as well have an underlying bimodal pro-
cess with switches between both modes triggered by exogenous forces together
with the inherent volatility of the opinion dynamics.

As another specification test11 we try to assess whether the abruptness of
the up and down movements of the index is captured by our model. For this
purpose we compute a series of one-period iterations of the transient density
and extract the 95 percent confidence intervals conditional on the realization in
the previous period. Fig. 6 shows the 95 % confidence bounds for the subse-
quent period’s realization from model 5 which apparently is never left by the
empirical record. Upon close investigation one might, however, find some of the
downturns are getting close to the lower boundary while the ups are pretty
much in the center of the 95 percent bound.

Figure 5 about here

Figure 6 about here

Table 3 provides a statistical analysis of 1000 Monte Carlo replications of
models 1 through 5 on the base of the estimated parameters displayed in Ta-
ble 2. In order to get an impression of how closely we match the statistical
features of the data, we compare a selection of conditional and unconditional
moments. The table shows the means and simulated 95 percent boundaries for
the first four unconditional moments together with the relative deviation (the
squared value of the mean divided by the variance) as defined in Chen (2002)
and the mean absolute distance between the entries of each simulation and the
176 empirical observations. As we can see, for the first to third moments as
well as the relative deviation, models 2 to 5 are all pretty close to the empirical
numbers while model 1 (using the ‘official’ number of 350 active agents) is far
off the mark in all cases. This confirms the visual impression reported above

11For a more direct test we could use the test for uniform residuals of out-of-sample density
forecasts (Pedersen, 1994, Diebold et al., 1998). Using as in-sample data for parameter esti-
mation the observations until the end of 2000 this relatively weak test does not reject models
2 and higher on the base of the remaining out-of-sample density forecasts.
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that the patterns of all models with an endogenous number of effective agents
are relatively similar while model 1 stands out by its tendency of getting frozen
in the lower mode due to the negative initial condition and the high level of
persistence caused by the large number of 350 agents. For the remaining statis-
tics, we first see that kurtosis is relatively poorly matched by all models, which
might however be attributed to the volatility of this measure for small samples.
The distance between the empirical observations and synthetic data again shows
the greatest discrepancy for model 1 compared to all others while the feedback
from industrial production in models 3 and 5 seems to have contributed to a
better fit compared to models 2 and 4. Again, this provides a confirmation of
our visual impression reported above.

Table 4 reports autocorrelations of the index for lags 1 to 10. A glance at
smaller lags again indicates that ACFs from models 2 to 5 are all very close
to their empirical counterpart while model 1 has a much lower degree of de-
pendence. Interestingly, models 2 and 3 are only able to match about the first
four lags while the autocorrelations remain much higher than the empirical ones
for the longer lags. Inclusion of the ‘momentum’ effect leads to a better fit of
the entire range of autocorrelations between 1 and 10 lags and also achieves a
close agreement in the estimate of the parameter of fractional differentiation as
given in the last row of Table 4. This statistics is the parameter for hypoth-
esized hyperbolic decay of the autocovariances, E[xtxt−τe ∼ τ2d−1 and it is
estimated via the method proposed by Geweke and Porter-Hudak (1983). The
motivation for inclusion of this statistics comes from the finding that various
survey data in the political arena are characterized by long-term dependence
in the sense of hyperbolic decay of their autocovariances and autocorrelation
functions (Box-Steffensmeier and Smith, 1998).12

Table 3 about here

Table 4 about here

7 Conclusion

Given the immense public attention devoted to survey measures of business cli-
mate or economic sentiment, there has been surprisingly little work trying to
model these data. Of course, under a rational expectations perspective, the most
interesting aspect would be to test unbiasedness of such survey expectations and
to find out whether they have predictive power beyond that of other macroe-
conomic data. However, not all economists firmly believe in the ubiquitous
validity of the rational expectation hypothesis. If we go to the other extreme,
business climate surveys might rather reflect Keynes’ notorious animal spirits
at work. In this paper we have adopted the latter viewpoint. However, rather

12Alfarano and Lux (2007) show that models with multi-modal distributions might lead to
time series with apparent long memory.
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than taking the state of prevailing animal spirits as given, we have proposed
a positive model to explain the fluctuations in respondents’ confidence in the
economic development. As it turned out, this model appears to have significant
explanatory power for the ups and downs of the business climate index under
investigation: the model’s parameters for the conjectured social interaction are
strongly significant, and apparently this social component of the opinion dy-
namics is much more important for the goodness-of-fit of various variants of our
model than added macroeconomic variables. In the absence of alternative ex-
planatory models, we conducted a series of specification tests that on the whole
suggest that the empirical record could have been envisaged as a particular sam-
ple path from our model. Alternative ‘rational’ explanations of the development
of the business climate would have to show that the pronounced swings could be
explained by the release of important bits of information within the pertinent
time intervals.13 This is a problem similar to the identification of important
news at the time of large changes of financial prices (cf. Cutler et al., 1989) and
a casual search for such explanations did not reveal any plausible candidates for
such information shocks. While we cannot exclude such explanations, we leave
the burden of the proof to proponents of rational expectations and reiterate that
the social contagion of animal spirits apparently provides us with a framework
that explains the data well without having to rely on unobservable information
shocks.

There are many directions into which research could fruitfully proceed from
here: first, one should obviously study similar data sets from other countries to
see whether interaction patterns are similar or not. We have already started such
a comparative project and found quite similar results to those reported above
in quite a number of cases. Second, if business cycles are, in fact, generated (at
least partially) by animal spirits, the business climate measures would interact
with objective economic quantities like industrial production.14 It would, there-
fore, be worthwhile to include the opinion dynamics into a multi-variate setting
of both objective measures of economic activity and more subjective survey in-
dices. While conceptionally not too difficult to imagine, such a framework would
be computationally extremely demanding and would require the development of
more efficient numerical algorithms. Third, one would also like to identify ani-
mal spirits in cases where no survey data exists. This would pose the challenge of
developing indirect methods of inference to identify hidden psychological states.

13One could certainly argue that the supposed interaction effects can be explained away by
correlated information. In the absence of individual data, we cannot discriminate between
unobserved exogenous factors and interaction effects (as shown by Lee, 2007, such an iden-
tification would require a sample with multiple groups of different sizes). In any case, an
alternative explanation based on unobserved common shocks would be empirically void.

14Note that causality tests cannot distinguish between rational expectations and animal
spirits: while positive causation between contemporaneous survey expectations and future
realizations of economic activity are routinely interpreted as evidence for rational expectations
(if unbiased), they could as well be the imprint of a true causality running from survey
expectations to subsequent economic development.
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A Appendix A: Diffusion Approximation of the
Jump Process

Fokker-Planck equations for Poissonian jump processes of ensembles of particles
and molecules are pervasively found in physics and chemistry (Risken, 1989; van
Kampen, 2007). In the pertinent literature, the Fokker-Planck equation for such
processes is typically obtained in a heuristic way via the so-called Kramers-
Moyal expansion of the law of motion of the transition density. We provide
details on this approximation below. As a starting point, note that conditional
probabilities of our Markov process for the sentiment index x can be witten as:

P (x +
1
N

, t + τ |x, t) = ω↑(x) τ + o(τ),

P (x− 1
N

, t + τ |x, t) = ω↓(x) τ + o(τ), (A1)

P (x′, t + τ |x, t) = o(τ) for x′ /∈ {x− 1
N

, x, x +
1
N
}

for sufficiently small τ . As a consequence, the change in time of the proba-
bility over all x is:

P (x, t + τ)− P (x, t) = (ω↑(x− 1
N

) τ + o(τ)) P (x− 1
N

, t)

+ (ω↓(x +
1
N

) τ + o(τ)) P (x +
1
N

, t)

− (ω↓(x) τ + ω↑(x) τ + o(τ)) P (x, t) + o(τ) (A2)

In the limit τ → 0 we obtain the so-called Master equation in continuous
time:

dP (x, t)
dt

= ω↑(x− 1
N

) P (x− 1
N

, t)

+ ω↓(x +
1
N

) P (x +
1
N

, t) − (ω↑(x) + ω↓(x)) P (x, t) (A3)

For large N , the right-hand side of (A3) can be approximated by a Taylor
series:
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∂P (x, t)
∂t

= ω↑(x) P (x, t) +
∂

∂x
[ω↑(x) P (x, t)] (− 1

N
)

+
1
2

∂2

∂x2
[ω↑(x) P (x, t)](− 1

N
)2 + o(

1
N2

)− ω↑(x) P (x, t)

+ ω↓(x) P (x, t) +
∂

∂x
[ω↓(x) P (x, t)]

1
N

+
1
2

∂2

∂x2
[ω↓(x) P (x, t)]

1
N2

+ o(
1

N2
)− ω↓(x) P (x, t) (A4)

We arrive at:

∂P (x, t)
∂t

= − 1
N

∂

∂x
[(ω↑(x)− ω↓(x)) P (x, t)]

+
1
2

1
N2

∂2

∂x2
[(ω↑(x) + ω↓(x)) P (x, t)] + o(

1
N2

) (A5)

As it turns out, the Taylor series expansion up to order two yields the stan-
dard format of a Fokker-Planck equation of a diffusion process with drift and dif-
fusion terms depicted in eqs. (10) and (11) in the main text. It is worthwhile to
note that convergence of the Taylor series expansion

∑∞
q=1

(−1q)
q!

∂q

∂xq {aq(x) P (x, t)}
is guaranteed in our example because of boundedness of aq(x). The so-called
Kramers-Moyal expansion detailed above is equivalent to an approximation of
the underlying jump Markov process by a continuous diffusion process whose
infinitesimal generator has drift and diffusion terms coinciding with those of the
second-order Taylor series expansion eq. (A5). The corresponding process x̃N

can be described by the stochastic differential equation

dx̃N = A(x̃N )dt +
√

D(x̃N )dBt (A6)

with Bt a standard Brown motion and A(x̃t) and D(x̃t) the drift and diffusion
terms (given by eqs. 10 and 11 in the main text in our particular case). The
textbooks in statistical physics remain completely silent on the validity of this
approximation. However, Theorem 11.3.1. in Ethier and Kurtz (1986, p. 460)
shows that the heuristically derived diffusion process x̃N indeed approximates
the original jump Markov process in a probabilistic sense. Since Ethier and
Kurtz consider arbitrary density-dependent jump intensities, our model falls
into their class of processes and their theorem is immediately applicable to our
model. Skipping the involved details, Ethier and Kurtz’s Theorem 11.3.1 shows
that the heuristic diffusion approximation x̃N (t) of a population-based jump
process with population size N (denoted by xN ) obeys for N ≥ 2 and bounded
time horizons T > 0:

sup
t≤T

|xN (t)− x̃N (t)| ≤ ΓT
n

logN

N
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with ΓT
n a random variable whose distribution asymptotically decays as ∼ N−2.

Since our empirical application is based on the iteration of the transient density
over bounded intervals [ti, ti+1] we might expect the probabilistic approximation
to be sufficiently accurate. Indeed, our Monte Carlo experiments confirm that
this approach works well both for fixed and endogenous N . Note that this ‘naive’
heuristic diffusion approximation is different from an approximate dynamics of
the form:

x̂N (t) = x̄t +
1√
N

ξt (A7)

with x̄t the expectation of eq. (6) and ξt a diffusion process for the fluctuations
around the deterministic mean value process. The later would coincide with
what is called a small-noise approximation in statistical physics (van Kampen, c.
X). Along similar lines as in the more involved model of Horst and Rothe (2008),
a first-order approximation on the base of eq. (A7) would lead to the ordinary
differential equation (6) in the main text (the deterministic limit for an infinite
population). To second order, this concept would give rise to an Ornstein-
Uhlenbeck process. The pertinent Fokker-Planck equation of this process would,
however, be different from the one derived via the above heuristic approach (one
would obtain a linear Fokker-Planck equation for ξt, cf. van Kampen, c. X,
for details). However, this approximation would only be valid for the stable
regime (α < 1) or for the dynamics in the vicinity of one of the models in the
unstable case (α > 1). Starting out around the unstable mode x = 0 in the
case α > 1, the fluctuations would grow linearly and (A7) would not be an
admissible approximation.

The standard small-noise approximation would, therefore, not be applicable
in the presence of jumps between modes or arbitrary initial values possibly in the
vicinity of an unstable mode. Nevertheless, it is worthwhile to note that asymp-
totically for N →∞ and for bounded time intervals, both approximations, x̃N

and x̂N , are equivalent (cf. Ethier and Kurtz (1986), Theorem 11.3.2).

B Appendix B: Monte Carlo Runs with Endoge-
nous N

Table B1 provides the results on our Monte Carlo runs with estimated parame-
ters v, α0, α1, and N . The basic message is that even for the small sample sizes
of our study, the extended sets of parameters can be efficiently estimated. The
average biases across the 200 replications are small in most cases except for a
few outliers. One particular outlier is the case α0 = 0, α1 = 0.8, N = 175 for
which N is strongly biased upwards. However, as the medians show this bias
might be due to some extreme realizations. Another interesting observation is
that our algorithm has problems in disentangling the effects of a large bias and
strong social interaction (α0 = 0.2, α1 = 1.2). This is perhaps not too surprising
since with x fluctuating around a unique positive mode the factor α1x would
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exhibit only small fluctuations. Interestingly, however, this effect diminishes
with increasing N .

Crank-Nicolson (k = 1/8) Crank-Nicolson (k = 1/16)
v α0 α1 N v α0 α1 N

a0 = 0.000 means 3.390 0.001 0.777 32.400 4.024 0.001 0.774 32.618
a1 = 0.800 medians 3.268 0.000 0.807 26.011 3.401 0.000 0.812 26.726
N = 25 FSSE 2.471 0.007 0.172 19.703 2.565 0.007 0.180 20.063

RMSE 2.634 0.007 0.173 21.000 2.756 0.007 0.181 21.414
a0 = 0.000 means 4.766 0.002 0.736 80.047 4.840 0.002 0.713 80.058
a1 = 0.800 medians 3.595 0.000 0.847 61.461 3.876 0.000 0.856 64.865
N = 50 FSSE 3.763 0.007 0.277 62.459 3.950 0.007 0.303 64.302

RMSE 4.149 0.007 0.284 69.170 4.349 0.008 0.314 70.834
a0 = 0.000 means 6.589 0.001 0.673 392.688 8.252 0.002 0.673 479.833
a1 = 0.800 medians 3.385 0.000 0.824 191.185 4.362 0.000 0.863 243.992
N = 175 FSSE 7.136 0.005 0.359 433.211 10.354 0.009 0.475 588.831

RMSE 7.972 0.005 0.380 483.861 11.587 0.009 0.490 661.749
a0 = 0.200 means 1.696 0.220 0.759 28.370 27.620 0.221 0.758 28.118
a1 = 0.800 medians 3.718 0.191 0.813 26.637 4.215 0.190 0.813 26.711
N = 25 FSSE 20.696 0.123 0.229 9.451 38.345 0.120 0.222 8.707

RMSE 23.250 0.125 0.232 10.012 45.488 0.122 0.225 9.228
a0 = 0.200 means 6.965 0.249 0.711 52.319 7.048 0.259 0.694 50.922
a1 = 0.800 medians 3.216 0.208 0.790 50.401 3.410 0.208 0.789 48.795
N = 50 FSSE 16.054 0.158 0.281 19.450 14.627 0.168 0.300 18.396

RMSE 16.497 0.165 0.294 19.539 15.141 0.178 0.318 18.379
a0 = 0.200 means 4.035 0.279 0.662 185.145 4.985 0.294 0.637 184.206
a1 = 0.800 medians 3.196 0.209 0.784 175.450 3.334 0.219 0.770 164.994
N = 175 FSSE 2.992 0.229 0.399 86.822 5.742 0.240 0.418 92.877

RMSE 3.159 0.242 0.422 87.197 6.062 0.258 0.448 93.101
a0 = 0.000 means 3.161 0.000 1.197 26.372 3.110 0.000 1.196 26.050
a1 = 1.200 medians 3.001 0.000 1.197 26.168 3.065 0.000 1.197 26.021
N = 25 FSSE 0.746 0.009 0.015 3.975 0.598 0.009 0.015 3.563

RMSE 0.762 0.009 0.015 4.196 0.606 0.009 0.015 3.705
a0 = 0.000 means 3.097 0.004 1.187 51.587 3.099 0.004 1.187 51.468
a1 = 1.200 medians 3.053 0.000 1.197 51.526 3.072 0.000 1.196 51.356
N = 50 FSSE 0.761 0.031 0.050 6.593 0.686 0.031 0.050 6.516

RMSE 0.765 0.032 0.052 6.766 0.691 0.031 0.052 6.664
a0 = 0.000 means 3.825 0.026 1.127 176.176 3.781 0.055 1.138 175.935
a1 = 1.200 medians 2.967 0.011 1.172 159.542 2.999 0.011 1.174 158.175
N = 175 FSSE 7.201 0.356 0.513 242.764 3.902 0.723 0.666 242.663

RMSE 7.230 0.357 0.517 242.159 3.970 0.724 0.667 242.057
a0 = 0.200 means 3.410 0.669 0.619 19.130 4.556 0.656 0.635 19.296
a1 = 1.200 medians 1.501 0.596 0.715 18.465 1.705 0.588 0.736 18.976
N = 25 FSSE 9.547 0.390 0.488 5.205 14.034 0.391 0.489 5.183

RMSE 9.531 0.609 0.758 7.837 14.086 0.600 0.747 7.699
a0 = 0.200 means 22.016 0.256 1.134 54.254 39.919 0.342 1.042 52.693
a1 = 1.200 medians 10.118 0.173 1.244 54.290 20.864 0.210 1.186 53.523
N = 50 FSSE 30.421 0.338 0.414 12.290 40.372 0.367 0.449 12.193

RMSE 35.811 0.341 0.419 12.976 54.633 0.393 0.481 12.457
a0 = 0.200 means 5.686 0.318 1.059 171.394 5.994 0.341 1.031 170.926
a1 = 1.200 medians 2.834 0.195 1.209 174.389 3.027 0.280 1.102 167.431
N = 175 FSSE 15.959 0.520 0.628 48.890 15.518 0.544 0.658 53.062

RMSE 16.144 0.532 0.642 48.901 15.766 0.561 0.677 53.086

Table B1: Note: The table reports the statistics of 200 Monte Carlo runs of each parameter set
with a sample size of T = 200.
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ν α0 α1 α2 α3 N logL AIC BIC
Model 1 0.78 0.01 1.19 -726.9 1459.8 1464.1

(baseline) (0.06) (0.01) (0.01)
Model 2 0.15 0.09 0.99 21.21 -655.9 1319.7 1322.0
(end. N) (0.07) (0.06) (0.14) (9.87)
Model 3 0.13 0.09 0.93 -4.55 19.23 -650.4 1310.9 1311.1

(feedback from IP) (0.06) (0.07) (0.16) (2.53) (8.78)
Model 4 0.14 0.10 0.91 2.11 27.24 -627.5 1265.1 1265.4

(momentum effect) (0.05) (0.06) (0.14) (0.76) (9.63)
Model 5 0.12 0.11 0.86 -2.82 2.23 25.12 624.9 1261.9 1260.1

(momentum + IP) (0.05) (0.06) (0.16) (1.65) (0.81) (8.95)

Table 2: Parameter Estimates for Stochastic Models of Interacting Agents.
Note: Details on the underlying models appear in the main text. The num-
bers in brackets are standard errors of parameter estimates.
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models
ACF data 1 2 3 4 5

1 0.935 0.630 0.923 0.939 0.904 0.930
(95 %) (0.456 0.963) (0.845 0.967) (0.908 0.968) (0.844 0.944) (0.890 0.955)

2 0.830 0.404 0.853 0.880 0.796 0.848
(0.162 0.929) (0.715 0.936) (0.820 0.934) (0.674 0.879) (0.769 0.901)

3 0.709 0.266 0.789 0.819 0.691 0.762
(0.013 0.890) (0.595 0.907) (0.732 0.900) (0.523 0.811) (0.653 0.845)

4 0.584 0.175 0.729 0.758 0.592 0.675
(-0.080 0.857) (0.496 0.883) (0.652 0.866) (0.393 0.751) (0.541 0.784)

5 0.465 0.116 0.673 0.696 0.499 0.589
(-0.133 0.820) (0.398 0.860) (0.566 0.833) (0.266 0.699) (0.432 0.723)

6 0.363 0.075 0.620 0.633 0.419 0.508
(-0.171 0.784) (0.319 0.840) (0.478 0.797) (0.169 0.638) (0.335 0.662)

7 0.272 0.048 0.571 0.571 0.355 0.434
(-0.188 0.747) (0.241 0.813) (0.392 0.759) (0.092 0.594) (0.250 0.616)

8 0.186 0.032 0.525 0.512 0.302 0.366
(-0.197 0.703) (0.184 0.793) (0.317 0.722) (0.049 0.553) (0.171 0.565)

9 0.094 0.022 0.482 0.454 0.251 0.298
(-0.213 0.668) (0.121 0.774) (0.239 0.678) (-0.013 0.516) (0.088 0.514)

10 0.017 0.014 0.442 0.398 0.196 0.228
(-0.220 0.631) (0.078 0.752) (0.167 0.640) (-0.084 0.468) (0.002 0.463)

d 0.553 0.194 0.826 0.923 0.551 0.668
(-0.343 0.978) (0.338 1.261) (0.455 1.346) (0.027 0.992) (0.202 1.051)

Table 4: Autocorrelations and estimated parameter of fractional differentiation
d from 1.000 Monte Carlo simulations (95 percent confidence intervals from the
simulations are given in brackets).
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Figure 1: ZEW Sentiment Index and Industrial Production.
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Figure 2: An illustration of the development of the transient density in the
bimodal case. The initial state x0 has been approximated by a Normal distri-
bution with small standard deviation and mean x0.
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Figure 3: Simulated trajectories from models 5 and 1 (lower right-hand panel).
The broken lines show the empirical data
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Figure 4: Mean and 95 percent confidence interval for Model 3 (from Fokker-
Planck Equation conditional on initial observations and external macroeconomic
information)
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Figure 5: Mean and 95 percent confidence interval from Model 1 (from Fokker-
Planck Equation conditional on initial observations and external macroeconomic
information.)
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Figure 6: 95 Percent interval for one-step iterations of transient density of Model
5.
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