
HAL Id: hal-00720153
https://hal.science/hal-00720153v1

Preprint submitted on 24 Jul 2012 (v1), last revised 24 Jul 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Technical Report: CSVM format for scientific tabular
data

Gérôme Beyries, Frédéric Rodriguez

To cite this version:
Gérôme Beyries, Frédéric Rodriguez. Technical Report: CSVM format for scientific tabular data.
2012. �hal-00720153v1�

https://hal.science/hal-00720153v1
https://hal.archives-ouvertes.fr

1

Technical Report: CSVM format for scientific tabular data

CSVM specification v.1.0 (CSVM-1): concept and design, guidelines for the
implementation of APIs (Perl, Python).

Gérôme Beyries
a,b,c

, Frédéric Rodriguez
a,b,*

a
 CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, LSPCMIB, UMR-

5068, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France.
b
 Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt

Biologique, LSPCMIB, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
c
 Work completed at locations

a,b
.

Abstract

The CSVM (CSV with metadata data) is issued from CSV format and used for storing experimental data,

models, specifications. CSVM allows the storage of tabular data with a limited but extensible amount of

metadata. This increases the exchange and long term use of RAW data because all information needed to use

subsequently the data are included in the CSVM file. Basic CSVM files are readable by current tools (i.e.

spreadsheets) for handling tables. Using full possibilities of concept, it is possible to deviate from a strict

table and annotate also inside the data block. CSVM file are pure ASCII files and could provide a template

for implementing best practices in handling raw data at a laboratory level, in exchange between data sources,

in long term resources, or in collaborative processes particularly when different scientific fields are implied.

In this document we describe the first (CSVM-1) release of CSVM format.

Keywords

Open format; CSVM; CSV; Tabular data; Perl; Python; Specification; RAW data; Data exchange; Open

Data.

Status

This document is a recommendation for a file format and some guidelines for the design of corresponding

APIs. The design principles and concepts defined in this document are non-normative. This format if fully

documented and publicly available, it can be used as an Open format.

* Corresponding authors.

CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de

Narbonne, F-31062 Toulouse Cedex 9, France.

Tel.: þ33 (0) 5 61556486; fax: þ33 (0) 5 61556011.

E-mail address: Frederic.Rodriguez@univ-tlse3.fr (F. Rodriguez).

2

1. W&H of CSVM File format

The CSVM format is derived from CSV, the main goal behind CSVM is to have a simple data format usable

in a generic manner, as closest as possible from CSV. Why and How is explained in this section.

1.1. CSV file format

CSV (Comma Separated Values) is a de facto industry standard to exchange tabular data from spreadsheets

or databases. A CSV file is constituted from a header line (first line, for column identification) and data lines.

Each column is separated by a character not used in data, i.e. a TAB or a comma. A example of CSV tabular

data (separators not shown) below:

Table 1. - CSV table of vehicles.

"ID" "MODEL" "TYPE" "MANUFACTURER"
24 Xsara VTS Citroen
#12 Civic Type R Honda
38 Clio RS Renault
12 Coupé 16VT Fiat
45 306 S16 Peugeot

Each column is separated by a particular character, i.e. a TAB. To have a more rich content, some

conventions must be used in CSV files
1
 (using Unicode characters, XML bindings ...).

1.2. History of CSVM design

Collaborative scientific projects (PEVS
2
, GIS-ECOBAG P2 : Zone Atelier Adour-Garonne, LTERs

3
 …) in

environmental science, for the period 1998-2002, have shown that this kind format was missing. For us, the

main issue was not data modeling or RDBMS conception but 1) how we could aggregate raw data in

collaborative projects with actors of different scientific fields and 2) how we could ensure a raw data storage

on long term without loosing information.

We were involved in some working packages and we found that 80% of data was tabular data (one or n

independent tables). To exploit, later, this information (i.e. integrating in RDBMS) we needed to store data in

a convenient manner, but in the same time we collected data.

A classical dialog exists between people which make databases (and need data to do a modeling work) and

people which collect data (and expect to use database to store data in the same time). But the scope of our

work was not Agile database techniques, because we worked on directly on RAW data.

RAW data is an extended ensemble relative to data itself. Data sets (i.e. in a RDBMS) are designed and

populated to answer a scientific question. On the contrary, RAW data could contain a lot of information

without interest for the current scientific work, but nobody could say if this information will be used later.

So we wanted to get out database paradigms and work directly on RAW data. We design methods and file

formats able to produce a view of RAW data in response of a scientific stimulus. This view (table(s) or a

collection) should be directly usable to produce or populate RDBMS.

We wanted also to support collective intelligence needed by collaborative projects. These processes involve

sharing RAW data of different scientific fields and entities, in the same time. This was the main issue; we

expected that if RAW data was correctly annotated and if these annotations were understood by all actors

(scientific field vs. scientific field and scientist vs. IT developers) much of the process could be achieved and

implemented.

1
 For some proposals: http://www.python.org/dev/peps/pep-0305/ (CSV file API) -

http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm
(http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm).

2
 Programme Environnement Vie et Sociétés du CNRS (PEVS).

3
 Long Term Ecological Research (LTER).

http://www.python.org/dev/peps/pep-0305/
http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm

3

A solution in our context was to add metadata to data tables. The metadata to be written should be as generic

as possible, so we excluded data descriptors related to a scientific field, descriptors should be related to data

itself with nearly no modeling of data. The metadata to be written should be also as short as possible, if

writers made a big supplementary work to annotate, the aim could not be reached. The ensemble (data +

metadata) should be compatible with current tools used by scientists, engineers, or technicians to write data.

We placed the metadata block at the bottom of the file after the data block, so the data table could be edited

on a spreadsheet, text editor and we retained a CSV (comma separated values) like format. Additional

planned features were:

 to embed limited but extensible metadata.

 to be an ASCII format.

 to be the closest as possible from CSV. One user, using the same spreadsheet or text editor, may easily

modify CSV data to produce CSVM data or use only the CSV part of CSVM data.

 to be used for experimental data , but also for data description, specifications ... in other ways store in a

same format : the data, the results, the model.

 to be an alternative for tabular data stored in XML files.

 to be loadable by our applications without implementing a specific parser code.

 to be usable for relational databases import/export as an intermediate format.

In the period 2002-2004 the concept was in place, we made the design of format itself and we implemented

the first API written in Perl Language. We began also to apply this file format outside environmental

sciences (chemistry, enzymology) in order to have a proof of concept with respect of genericity.

In the period 2004-2010 we worked on a Python API and made full applications in scientific fields such as

medicinal chemistry, structural bioinformatics.

In the recent period (2010-) we worked on extension of CSVM. Work is carried out to release a new version

(CSVM-2) which some improvements such as support of recursive and embedded data.

1.3. CSVM and XML

CSVM is not designed to be a substitute of XML or CSV. But if needed, CSVM could offer a full XML

interface, the idea is to serialize XML file, and code XML tree topology as a particular CSVM column. In

fact, the result of an XML DOM parser is very near from a serialized XML structure stored in CSVM flat

file. The binding of CSVM vs. XML is out of the scope of this document.

1.4. CSVM by example

The CSV data of Table1 is rewritten in CSVM and shown below:

Table 2. - CSVM table of vehicles.

24 Xsara VTS Citroen
#12 Civic Type R Honda
38 Clio - Renault
12 Coupé 16VT Fiat
45 306 S16 Peugeot

#TITLE Vehicle data
#HEADER ID MODEL TYPE MANUFACTURER
#TYPE NUMERIC TEXT TEXT TEXT
#WIDTH 50 50 50 50

The header line is removed and a metadata block (blue, red, green text) is appended at the end of data

(orange text). The metadata block is signed by keywords and lines beginning by a # character (blue, red text).

The column titles of CSV file, are now found in a metadata line beginning by keyword #HEADER. After,

the keyword, the order of columns in metadata block, is the same as found in data block, with one cell for the

keyword (red, blue text).

4

Delimiters, empty cells, empty rows, remarks :

Each cell in data block or metadata block is separated by same delimiters as CSV files, i.e. a TAB or another

character. Only the colored cells need to be separated by a given delimiter.

An empty cell is defined, as in a CSV file, by two consecutive delimiters. If any char is found (including a

SPACE) the cell is not empty. A good practice is to use a specific character to mark empty cells. In the

previous example the character ‘-‘ is used to mark an empty cell, then it will be more easy to use a text editor

rather than a spreadsheet program.

A true CSVM file
The CSVM file accepts empty rows between the data and metadata (purple) blocks, or inside data block

(after Clio model). Rows in data block beginning by # are not read by a CSVM parser, but could be

embedded in the CSVM file (red row). Now we show the same CSVM data but with a ‘!’ character as

delimiter and as it could be written in a real file.

Table 3a. - CSVM file of vehicles.

24!Xsara!VTS!Citroen

#12!Civic!Type R!Honda

38!Clio!-!Renault

12!Coupé!16VT!Fiat

45!306!S16!Peugeot

#TITLE!Vehicle data

#HEADER!ID!MODEL!TYPE!MANUFACTURER

#TYPE!NUMERIC!TEXT!TEXT!TEXT

#WIDTH!50!50!50!50

Annotation of data
The previous file shows that a particular row marked by a # symbol (first character) could be masked to the

parser. But it is also possible to use this strategy to add information on a row, given the same example with

green rows:

Table 3b. - CSVM file of vehicles.

24!Xsara!VTS!Citroen

#12!Civic!Type R!Honda

38!Clio!-!Renault

This model is discontinued

See http://en.wikipedia.org/wiki/Fiat_Coup%C3%A9 for information

12!Coupé!16VT!Fiat

45!306!S16!Peugeot

So CSVM admits two levels of annotation: 1) the metadata block and 2) remarks: insertion of rows marked

by # characters in data block. The metadata block is compatible with spreadsheets, remarks are not. We stop

the development of remarks at this level, because this could lead to conceive generic descriptors.

5

2. CSVM-1 specifications

Here some specifications describing the flat file file format in the first version. The later versions will not

change anything on this but will add some #TYPEs (links, images), guidelines for inserting ASCII data in

fields, inserting binary objects, inserting tables in cells to provide a tree like structure.

2.1. Metadata keywords

The #TITLE, #HEADER and #TYPE keywords, must be always integrated in a CSVM file. These keywords

are the support of genericity.

Table 4. - Metadata keywords.

Keyword Explanation

#TITLE The title of the table/sheet

#HEADER Columns identifiers/titles

#TYPE Data type of columns

#WIDTH An indicator of quantity of text typically contained in column.

We have also introduced the #META keyword to add something to the metadata block. This keyword is

optional. Parsing CSVM file with our API needs only the four previous keywords and will process #META

if this keyword is found in the CSVM file.

2.2 The #TITLE keyword

This record is used to store general information about the table and uses one field and one row, typically the

title of the table. But the string used as a value for this keyword could be used for anything you want.

If this row is used with a secondary separator to store other column metadata than #HEADER and #TYPE,

we recommend to use optional #META keyword rather than #TITLE.

2.3 The #HEADER keyword

It is obvious than the #HEADER is the title of a column, as we found in some CSV files with this kind of

information. Each #HEADER keyword doesn’t need to be surrounded by a delimiter such as simple quote or

double quote.

2.4. The #TYPE keyword

This keyword is used to give the data types for each column. Giving a CSV file for environmental data:

Table 5. - Working CSV example (some rows are deleted).

Diameter Density Nature

15 3 Perchis

20 4 Perchis

…

55 2 Fut

60 1 Fut

In this example, the data of columns Diameter et Density (diameter, density) are number, so numerical data ,

in the other hand, the column Nature (nature) are textual, in fact character strings, and are tagged as text data.

The different data types supported are resumed in the following table:

Table 6. - Values usable with a #TYPE keyword.

Sub value Type

NUMERIC Numerical data (float or integers).

TEXT character strings (unlimited length)

6

DATE Date, at format DD/MM/YYYY or MM/DD/YYYY

BOOLEAN Two state data.

Case of BOOLEAN columns
In the case of BOOLEAN column, the corresponding data in data block must be codes using 0 (false) or 1

(true). But it is possible to code the same values in a TEXT row as ‘y’ or ‘n’ or any string.

Case of NUMERIC columns
The NUMERIC data is used to store numeric values (as text value) but without making a signature on a float

or integer values. We expect that after the CSVM parser as loaded all data, the application could check using

the #HEADER value the good numeric format.

If not, alternative exists in CSVM to use INTEGER or FLOAT values for #TYPE keywords. But, remember

that a CSVM file is loaded by the parser as a string, a matrix of string, a CSVM object embedding a matrix

of string. So for a CSVM specification, the value used in #TYPE is not related to a specific processing, all

must be done by the application. The value which can be affected to #TYPE keyword is only at

programmer’s charge, but we recommend to use only very generic types (NUMERIC, INT, INTEGER,

FLOAT, REAL, TEXT; STRING etc).

So the question how to handle diversity if two programmer’s use different #TYPE values ? Why not to store

them in a CSVM file ? This file could be used as a conversion tool. We have defined a specific CSVM

dictionary concept for such purposes. This that we don’t need to specify a lot of sub values for #TYPE

keyword.

All of these values must be integrated in a cell after #TYPE keyword, in the same order than data columns.

In the case of previous example, we get:

Table 7. - Working CSVM example (char | used as separator).

15|3|Perchis|

...|...|...|

60|1|Fut|

#TITLE|Foret du boila

#HEADER|Diameter|Density|Nature

#TYPE|NUMERIC|NUMERIC|TEXT

#WIDTH|50|50|100

2.5. The #WIDTH keyword

This keyword is used in transformations of CSVM files to other formats usable on web pages, to display

tabular data (i.e.: Javascript tables, Javascript lists). In other cases, the entire #WIDTH line can be forgotten

or, better, filled with values (0, 10, 50 ..) :

Table 8. - Unused #WIDTH line(filled with zero values).

#WIDTH|0|0|0

The unit (the values) used by #WITH is an arbitrary unit, formerly corresponding to a width of column

expressed in pixels. In fact, consider that it is an approximation of the maximum quantity of data (string

lengths) contained in column for all lines of the CSVM table (see example below):

Table 9. - Using #WITH to control fields/columns widths.

...|...|...

John-Andrews Howard-Smith|1|yes

#TITLE|Who was here table

#HEADER|name|was_here|Oral communication

#TYPE|TEXT|BOOLEAN|BOOLEANYN

#WIDTH|100|10|10

7

If you use the same CSVM file with without correct proportions (dummy values or zeros) of #WITH, it

could be a signal for parser to calculate the accurate values from column contents. But in all cases for using

or not #WIDTH, this row must be found in CSVM file.

2.6 The #META keyword by example

The following table is used to encode a small collection of molecules with specific values of #TYPE

(IMAGE, LINK). The table uses TAB separator (red arrows) and the columns where #TYPE=LINK uses a

secondary separator (the | char). The left part of this cell is used to store the location of URL and the right

part a name of this URL.

Figure 1. – A small collection of chemicals (enzyme inhibitors).

This table will be processed in a workflow and displayed as a dynamic Javascript table, showing images of

molecules, and reactive hyperlinks:

Figure 2. – JavaScript dynamic table issued from the previous CSVM file.

Please remark that in this output the column in which #HEADER=SECTOR has disappeared. This particular

behavior is coded in #META field of CSVM: ‘yes’ string is used if column must be displayed and ‘no’ if not.

A SPACE is used as secondary field separator.

This is an example of #META use, this keyword is very often used for storing external reference of data

table (i.e. URL, bibliographic references etc).

8

2.7. CSVM Guidelines

Please read carefully information related to CSV format (i.e.: the two links given in first section), CSVM

guidelines are simplest that CSV.

Classical delimiters
Classically, the characters used as CSV delimiters are (in brackets) [, ; : SPACE TAB | !]. Please, take in

account that some of these characters can be found in data. So it is better to use delimiter not found in data:

as TABs, or rare characters as § (also ALT-245 on PC/Windows). We prefer to avoid some characters found

in OS syntax as / \ | or characters such as < >.

Composite text delimiters
The DOUBLE COTE or SIMPLE COTE characters (" or ') are often used to delimit text data including

characters usable also as delimiters (COMMA, SPACES, POINTS ..). The following table gives some

examples:

Table 10. - Using composite text delimiters in CSV files.

Data Delimiter Number of columns

"Bonjour, dit'il", c'est pour aujourd'hui ou demain ? , 2

Bonjour, dit'il, c'est pour aujourd'hui ou demain ? , 3

Bonjour, dit'il, c'est pour aujourd'hui ou demain ? ' 4

"Bonjour, dit'il"'c'est pour aujourd'hui ou demain ? ' 4

Take in account, as shown here, that the corresponding number of columns can be slightly different from one

case to other. In order to specify the simplest rules as possible, the CSVM specification don't make use of

composite text delimiters ' and ". You must use an adequate column delimiter to keep composite data in each

column. A way is to use TABs or ‘§’ character, as shown below:

Table 11. – CSVM’s approach.

Data Delimiter Number of columns

Bonjour, dit'il§c'est pour aujourd'hui ou demain ? § 2

Exporting CSVM from a spreadsheet
After data and metadata integration, you need to export CSVM. This is the same as exporting Text CSV data.

If the spreadsheet uses more than one sheet, you cannot export the sheets in the same CSVM file, but each

sheet in a separate CSV file.

 Classical 'save as' command.

 On file requester widget, select the CSV format..

 Perhaps you have fields to complete 'depending on software):

 Character set must be Occidental Europa.

 Field separator must be TAB or § character if you can feed this field.

 Do not use text separator as " « ' or another character.

Successfully CSVM export has been done from Open Office and Microsoft software.

Changing delimiters in CSV/CSVM files
Use a text editor or a word processor and use the Find/Replace tool, CSVM API must provide functions to

do this kind of task.

9

3. Using CSVM with Perl language

The following scheme explains in 3 main layers, how we could use CSVM data. The bottom layer is the

CSVM file itself, the CSVM API is used to read the file and convert data in a CSVM object including a data

matrix (or a data matrix directly). Then the upper layer (at application level) uses the CSVM object.

Figure 3. - CSVM model.

In Perl language, the CSVM data structure, used as a $csvm_ptr object is defined in build::csvm package and

is constituted of the following fields:

Figure 3. – Perl CSVM structure.

Field Type Init Information
SOURCE String = undef; CSV/CSVM file name
CSV String = undef; CSV or CSVM (CSV filetype)
HEADER_N Integer = 0; Value of c+1
HEADER Array [0..c] of String = []; CSVM #HEADER fields list
TITLE_N Integer = 0; Typically 1, let for future use
TITLE String = undef; CSVM title
TYPE_N Integer = 0; Value of c+1
TYPE Array [0..c] of String = []; CSVM #TYPE fields list
WIDTH_N Integer = 0; Value of c+1
WIDTH Array [0..c] of String = []; CSVM #WIDTH fields list
DATA_R Integer = 0; r+1, numer of CSVM data rows
DATA_C Integer = 0; c+1, numer of CSVM data columns
DATA Matrix [0..r][0..c] of String = []; CSVM data matrix
META String = undef; CSVM #META field string

Here is a short explanation on how it is possible to parse a CSVM file, first of all you need to import the

build::csvm Perl package :

use build::csvm;

After you need to define a csvm object, implemented as a pointer to a CSVM structure :

my $in_ptr = &csvm_ptr_new; ## pointer to csvm structure

At least you can parse a CSVM file in a CSVM structure, the string $in_file_path.$in_file_name is the path

and name of CSVM file appended:

10

$in_ptr->csvm_ptr_read_csvm($in_file_path.$in_file_name);

If field delimiters are not TABs, you can use the method csvm_ptr_read_extended_csvm to load file with

field ($sep value) specification:

$csvm_ptr->csvm_ptr_read_extended_csvm($fsep);

You can also load a file in a string ($s) transform the string and import the string in CSVM structure

knowing line separator ($lsep) and field separator ($fsep) using the method csvm_ptr_get_csvm.

$csvm_ptr->csvm_ptr_get_csvm($s, $lsep , $fsep);

You can now apply some methods or access and transform each field of structure:

$in_ptr->csvm_ptr_dump(0,0); # echoes structure
$in_ptr->{'TITLE'} = "Modified title."; # change field title
print "[".$self->{'DATA'}->[$i][$j]."]"."\n";

In order to clean memory after all operations, we recommend the following sequence :

$in_ptr->csvm_ptr_clear;
undef $in_ptr;

It is possible to access to CSVM data without using a CSVM object, a subroutine is provided in build::csvm

which returns a string matrix from CSVM file (the file contents are stored in a string $s):

my @matrix = &csvm_matrix_data($s, $lsep , $fsep , $fields_n);

In which $lsep and $fsep are the row and fields separators. Note that no analysis of CSVM string is done

before parsing data in CSVM structure. In this case you need to provide the number of columns wanted in

the resulting matrix (must see build::csvm &csvm_matrix_data for more information).

Today (2012 first edition of this document) the CSVM Perl API (created 2002-2004) and restricted in a core

of basic functionality common to Python API.

11

4. Using CSVM with Python language

The following lines are part of definition of csvm_ptr object defined in build.parsers.csvm package, with

nearly the same fields found in Perl version :

Figure 4. –Python CSVM object.

class csvm_ptr:
 """
 Follows CSVM specs (v:1.x) for contents of data structure. Standard column
 types are NUMERIC,TEXT,DATE,BOOLEAN. Some of us, use also INTEGER, FLOAT
 for numeric types. Some of us, use also NODE, LINK, IMAGE for web data
 embedded in CSVM files. WIDTHs (10,50 if not set) are for Javascript tables
 and can be omitted.
 *** 1.01/080304/fred
 """
 def __init__(self):
 self.SOURCE = "" # path/file name of readed CSVM file
 self.CSV = "" # CSVM or CSV depending of file contents
 self.TITLE_N = 0 #Titles of CSVM file (let for future, only one string used today)
 self.TITLE = "" # Title of CSVM file
 self.HEADER_N = 0 # Number of data columns titles
 self.HEADER = [] # List of data column titles
 self.TYPE_N = 0 # Number of data columns types (= self.HEADER_N)
 self.TYPE = [] # List of data column types
 self.WIDTH_N = 0 # Number of data columns widths (= self.HEADER_N)
 self.WIDTH = [] # List of data column widths
 self.DATA_R = 0 # Number of data rows
 self.DATA_C = 0 # Number of data columns (= self.HEADER_N)
 self.DATA = [] # String matrix containing data
 self.META = "" # Meta string

4.1 Using the CSVM API

The description of CSVM APIs is out of scope of this document but it could be useful to provide an example

to understand how a CSVM file could be used. Given the following pieces of code in Python, first we use a

blank CSVM object :

 print "*** A new blank CSVM structure"
 c = csvm_ptr()
 print "*** Print the empty structure ... "
 c.csvm_ptr_dump(0,0)
 print "=> Is the empty structure is a CSVM object = ", csvm_iscsvm(c)
 print "=> Is self.DATA matrix is a CSVM object = ", csvm_iscsvm(c.DATA)

Which gives :

*** A new blank CSVM structure

*** Print the empty structure ...

DUMP: CSVM info {

SOURCE

CSV

META []

TITLE_N 0

TITLE

HEADER_N 0

TYPE_N 0

WIDTH_N 0

DATA_R 0

DATA_C 0

 -1 -1

}

 done

=> Is the empty structure is a CSVM object = True

=> Is self.DATA matrix is a CSVM object = False

12

Now we will to load a CSVM file, dumps it, dump a row :

 print "*** Read test.csvm and fills the structure ..."
 c = csvm_ptr_read_extended_csvm(c,"test/test1.csvm","\t")
 print "*** Dump all ... "
 c.csvm_ptr_dump(0,0)
 print
 print "*** Print as string the second row (numbered as 1 in CSVM) ... "
 s = c.csvm_ptr_str_dump(2,0)
 print s

The dump methods, printouts all metadata, for all the rows :

*** Read test.csvm and fills the structure ...

*** Dump all ...

DUMP: CSVM info {

SOURCE test/test1.csvm

CSV CSVM

META [Test of|meta|fields|use]

TITLE_N 1

TITLE CSV File [test\test.csv]

HEADER_N 15

TYPE_N 15

WIDTH_N 15

0 50 NUMERIC {numero}

1 50 TEXT {fichier_mol}

2 50 TEXT {nom}

3 50 NUMERIC {vrac}

4 50 TEXT {plaque}

5 50 TEXT {chimiste}

6 50 TEXT {observations}

7 50 TEXT {ref_produit}

8 50 TEXT {ref_cahier}

9 50 TEXT {code_labo}

10 50 TEXT {no_equipe}

11 50 TEXT {no_boite}

12 50 TEXT {droits}

13 50 TEXT {let_ligne_boite}

14 50 TEXT {no_col_boite}

DATA_R 6

DATA_C 15

 6 15

0 [1][af01.mol][Tyrosine][10][oui][M.Dupont][existe sous forme de sel de

sodium][af01][C1][CCC][1][1][L][A][1]

1 [5][af02.mol][Histidine][20][oui][J.Smith][][af02][C1][CCC][1][1][L][B][1]

2 [2][af03.mol][Tryptophane][20][oui][nous][][af03][C1][CCC][1][1][L][C][1]

3 [3][af04.mol][Proline][12][non][eux][][af04][C2][][][][][][]

4 [4][af05.mol][Adenosine][0][oui][elle@ici][Plus de produit

disponible][af05][C1][CCC][1][1][L][F][3]

5 [6][af06.mol][Phosphatidyl Choline][300][non][lui@labas][Purifié a partir de jaune

d'oeuf][af06][D2][][][][][][]

}

 done

Or one particular row :

*** Print as string the second row (numbered as 1 in CSVM) ...

DUMP: CSVM info {SOURCE test/test1.csvm

CSV CSVM

META [Test of|meta|fields|use]

TITLE_N 1

TITLE CSV File [test\test.csv]

HEADER_N 15

TYPE_N 15

WIDTH_N 15

0 50 NUMERIC {numero}

1 50 TEXT {fichier_mol}

2 50 TEXT {nom}

3 50 NUMERIC {vrac}

4 50 TEXT {plaque}

5 50 TEXT {chimiste}

6 50 TEXT {observations}

7 50 TEXT {ref_produit}

8 50 TEXT {ref_cahier}

13

9 50 TEXT {code_labo}

10 50 TEXT {no_equipe}

11 50 TEXT {no_boite}

12 50 TEXT {droits}

13 50 TEXT {let_ligne_boite}

14 50 TEXT {no_col_boite}

DATA_R 6

DATA_C 15

[5] [af02.mol] [Histidine] [20] [oui] [J.Smith] [] [af02] [C1] [CCC] [1]

 [1] [L] [B] [1]

 done

It easy to extract one column using its index value, as a string with a new delimiter or a classical Python list

of strings:

 print "*** Extract the second column (numbered as 1 in CSVM)"
 print "-> as string with a separator '|'"
 print csvm_ptr_str_getvec(c,0,2,"|")
 print "-> as vector (Python list) of strings"
 print csvm_ptr_getvec(c, 0, 2)

*** Extract the second column (numbered as 1 in CSVM)

-> as string with a separator '|'

af01.mol|af02.mol|af03.mol|af04.mol|af05.mol|af06.mol

-> as vector (Python list) of strings

['af01.mol', 'af02.mol', 'af03.mol', 'af04.mol', 'af05.mol', 'af06.mol']

But it is also possible to extract a column using the value of #HEADER (column titles, strict_mode=1) or a

substring in this value (strict_mode = 0):

 print "*** Extract columns on the value of headers"
 print "-> the column named 'fichier_mol' in strict mode"
 ls = csvm_ptr_getcol(c, 'fichier_mol', 1)
 print "found %d column in CSVM stream" % (ls[0])
 print ls[1]
 print "-> the columns in which string 'no_' is found"
 ls = csvm_ptr_getcol(c, 'no_', 0)
 print "found %d columns in CSVM stream" % (ls[0])
 for i in range (1, ls[0]+1, 1):
 print i, ls[i]

*** Extract columns on the value of headers

-> the column named 'fichier_mol' in strict mode

found 1 column in CSVM stream

['af01.mol', 'af02.mol', 'af03.mol', 'af04.mol', 'af05.mol', 'af06.mol']

-> the columns in which string 'no_' is found

found 3 columns in CSVM stream

1 ['1', '1', '1', '', '1', '']

2 ['1', '1', '1', '', '1', '']

3 ['1', '1', '1', '', '3', '']

Then changing some this such as the delimiter is very simple and we could make a new CSVM file, using the

§ as new delimiter.

 print "*** Making a new CSVM as string for export (changing th field separator)"
 s = csvm_ptr_make_csvm(c,"\n","§")
 print s

*** Making a new CSVM as string for export (changing the field separator)

1§af01.mol§Tyrosine§10§oui§M.Dupont§existe sous forme de sel de sodium§af01§C1§CCC§1§1§L§A§1§

5§af02.mol§Histidine§20§oui§J.Smith§§af02§C1§CCC§1§1§L§B§1§

2§af03.mol§Tryptophane§20§oui§nous§§af03§C1§CCC§1§1§L§C§1§

3§af04.mol§Proline§12§non§eux§§af04§C2§§§§§§§

4§af05.mol§Adenosine§0§oui§elle@ici§Plus de produit disponible§af05§C1§CCC§1§1§L§F§3§

6§af06.mol§Phosphatidyl Choline§300§non§lui@labas§Purifié a partir de jaune d'oeuf§af06§D2§§§§§§§

#TITLE§CSV File [test\test.csv]

#HEADER§numero§fichier_mol§nom§vrac§plaque§chimiste§observations§ref_produit§ref_cahier§code_labo§no

_equipe§no_boite§droits§let_ligne_boite§no_col_boite

#TYPE§NUMERIC§TEXT§TEXT§NUMERIC§TEXT§TEXT§TEXT§TEXT§TEXT§TEXT§TEXT§TEXT§TEXT§TEXT§TEXT

#WIDTH§50§50§50§50§50§50§50§50§50§50§50§50§50§50§50

#META§Test of|meta|fields|use

14

It is also simple to export as CSV flow, notice that a Python module exists in API to import CSV files as they

were CSVM files.

 print "*** Making a simple CSV as string for export (changing the field separator)"
 s = csvm_ptr_make_csv(c,"\n","§",'"')
 print s

*** Making a simple CSV as string for export (changing th field separator)

"numero"§"fichier_mol"§"nom"§"vrac"§"plaque"§"chimiste"§"observations"§"ref_produit"§"ref_cahier"§"c

ode_labo"§"no_equipe"§"no_boite"§"droits"§"let_ligne_boite"§"no_col_boite"

1§"af01.mol"§"Tyrosine"§10§"oui"§"M.Dupont"§"existe sous forme de sel de

sodium"§"af01"§"C1"§"CCC"§"1"§"1"§"L"§"A"§"1"

5§"af02.mol"§"Histidine"§20§"oui"§"J.Smith"§""§"af02"§"C1"§"CCC"§"1"§"1"§"L"§"B"§"1"

2§"af03.mol"§"Tryptophane"§20§"oui"§"nous"§""§"af03"§"C1"§"CCC"§"1"§"1"§"L"§"C"§"1"

3§"af04.mol"§"Proline"§12§"non"§"eux"§""§"af04"§"C2"§""§""§""§""§""§""

4§"af05.mol"§"Adenosine"§0§"oui"§"elle@ici"§"Plus de produit

disponible"§"af05"§"C1"§"CCC"§"1"§"1"§"L"§"F"§"3"

6§"af06.mol"§"Phosphatidyl Choline"§300§"non"§"lui@labas"§"Purifié a partir de jaune

d'oeuf"§"af06"§"D2"§""§""§""§""§""§""

The following call could be used to close csvm_ptr object and free the memory.

 print "*** Close CSVM structure."
 c.csvm_ptr_clear()

A lot of functions exist in Python API, this is a set of basic functions that are shown here.

15

5. The CSVM parser

We have defined fuzzy data types such as TEXT or NUMERIC as a signal to users and code designers,

because from our point of view, CSVM format (particularly #TYPE row) must not be constrained by a data

type interpretation and a normative list of allowed types.

Reading the previous examples, it is obvious that the CSVM parser doesn’t interpret the data using #TYPE

keyword: all is parsed as strings (scalar, lists and matrix) in memory. The parser is uncoupled from data, this

gives the ability to use any kind of data type in the CSVM file, and let the application layer interpret the

information depending on the metadata stored in the CSVM file.

Remember that a CSVM file (A) with very particular types can be documented by another CSVM file (B), in

example for the B-file:

CONCENTRATION Mol/L NUMERIC FLOAT

MOL_CONC MOL/L NUMERIC FLOAT

MASSIC_CONC G/L NUMERIC FLOAT

MOLECULE_ID - NUMERIC INTEGER

NAME - TEXT STRING

FORMULA - TEXT SMILES

FORMIMG - IMAGE URL_SMALL|URL_IMAGE

#TITLE Small types table

#HEADER NAME UNIT CSVM_TYPE REAL TYPE

#TYPE TEXT TEXT TEXT TEXT

#WIDTH 10 10 10 10

#META Version 1.1 (Jule 12 2011) by [John]

In this file, we store the #HEADER values of file A, eventually the units, and a real type to be used by

application. If some coworkers had used the same information in CSVM files, but with different names (i.e.

CONCENTRATION vs. MOL_CONC) or different units (MASSIC_CONC vs. MOL_CONC) the data of B-

File could be used to restore initial information or normalize data.

Some less obvious types can be defined (i.e. a molecular formula expressed with SMILES
4
 format).

Composite format can also be define, in the last row an image is defined by an URL for the reduced picture

and another for the full picture.

With the same parser and the same format we can read the two CSVM files, the one(s) with data and the one

with information on the previous. This kind of approach can be used also to define conversion of

metadata/data (typically units, names, types …) between CSVM files. For such purposes we have defined a

first extension of CSVM files (readable with the same parser) and called it CSVM dictionaries.

6. Open Format

Due to metadata block added to CSV block, CSVM is not RFC4180
5
 compliant.

CSVM is as an Open Format following the definition proposed by the Linux Information Project
6
 (any

format that is published for anyone to read and study but which MAY OR MAY NOT BE encumbered by

patents, copyrights or other restrictions on use). We expect that CSVM could be a Free Format (IS NOT

encumbered by any copyrights, patents, trademarks or other restrictions) after a running time.

4
 Chemical File Format [Wikipedia] - http://en.wikipedia.org/wiki/Chemical_file_format

5
 Y. Shafranovich (2005), Common Format and MIME Type for Comma-Separated Values (CSV) Files, RFC 4180, The

Internet Society - http://tools.ietf.org/html/rfc4180
6
 Open Format [Wikipedia] - http://en.wikipedia.org/wiki/Open_format

http://en.wikipedia.org/wiki/Chemical_file_format
http://tools.ietf.org/html/rfc4180
http://en.wikipedia.org/wiki/Open_format

16

7. Conclusion and perspectives

At this date, different fields of science (environmental sciences, chemistry, enzyme kinetics, structural

bioinformatics, rational drug design) were sampled, and computer scientists have used CSVM files for a

range of current tasks needed by laboratory’s activities:

 Pure tabular data;

 Indexes, collection of files;

 External parameters files for software components (wrappers, converters, filters …);

 Aggregation of tables;

 Conversion of table data (dictionaries);

 Mixed file for data, parameters, results (short times series);

 Driver for software pipes (linear, parallel);

 Phenomenological Model’s or EDO systems specification and storage;

 Key / value(s) files and dictionaries

 Database schema and tables

 Trees

We expect that this list is not exhaustive, because the typical range of CSVM files is from 1-1000, 5000 rows

and 1-20, 30 columns, about the same range than a current spreadsheet file.

But not the same use, CSVM is useful to store data in long term and to be included in software pipes,

particularly with automation written in Python.

CSVM is not a substitute for formats in use to handle mass data (HF5, NetCDF …) with ASCII or binary

storage. CSVM is not also a substitute of XML, because it is focused on tabular data, and a same generic

parser could be used for all kind of data and data types. CSVM is a light format designed to handle

complexity of small data islands handled everyday at laboratory
7
.

CSVM was mainly used in Microsoft environments, but conceived to be independent of Operating System,

so a validation phase targeting Unix/Linux systems is planned. Other topics are treated like extending

conversion with other tabular formats and spreadsheets.

But the main effort is focused on extension of CSVM leading to CSVM-2 specification. We want take in

account a lot of requirements not easy fulfilled by other light data formats, particularly: 1) to embed ASCII

or binary data in the same ASCII table, 2) to embed CSVM data inside a CSVM cell and make rooted trees

of mixed CSVM tables and single CSVM cells.

References

 G. Beyries. Composants logiciels génériques pour les collections de données. Mémoire ingénieur Ecole

des Techniques du Génie Logiciel (2004).

 G. Beyries, F. Rodriguez. Quels outils informatiques pour les collections de données ? Restitution

Programme ECOBAG P1, Agen (2004).

 Software design and components for enzymology, S.Gavalda, F.Rodriguez, G.Beyries, C.Blonski. 21
ème

CBSO, Ax-Les-Thermes (2006).

 M. Gerino et coll. Bilan et dynamique de la matière organique et des contaminants au sein d’une

discontinuité ex de la retenue de Malause. Restitution des travaux scientifiques du projet de recherche

Ecobag P2 (2006).

 S. Gau, F. Rodriguez, C. Lherbet, C. Menendez, M. Baltas. Approches interdisciplinaires pour la

conception rationnelle d’inhibiteurs. RECOB 13, Aussois (2010).

7
 Additional Supporting Information may be found at http://buildblog.buildez.net/

http://buildblog.buildez.net/

17

Acknowledgments

We are grateful to Professor Pierre Tisnes (LSPCMIB, UMR 5068 CNRS-Toulouse University) and Dr.

Philippe Vervier (CNRS-Toulouse University and GIS ECOBAG) for supporting this first phase of work.

We thank Pr. Magali Gerino (ECOLAB, UMR 5245 CNRS-Toulouse University) and collaborators for

advices and helpful discussions about this work.

We would like to thank the CNRS, the “Université Paul Sabatier” and GIS ECOBAG (2002-2004) for their

financial support.

We thank all collaborators in different laboratories which shared data with us and helped us to develop the

format's usage

