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ON THE OPTIMAL STOPPING OF A
ONE-DIMENSIONAL DIFFUSION®

DAMIEN LAMBERTON! AND MIHAIL ZERVOSH

July 23, 2012

Abstract
We consider the one-dimensional diffusion X that satisfies the stochastic differential
equation

in the interior int Z = Ja, [ of a given interval Z C [—o0, 00, where b, o : int Z — R are
Borel-measurable functions and W is a standard one-dimensional Brownian motion.
We allow for the endpoints a and g8 to be inaccessible or absorbing. Given a Borel-
measurable function r : Z — R, that is uniformly bounded away from 0, we establish
a new analytic representation of the r(-)-potential of a continuous additive functional
of X. Furthermore, we derive a complete characterisation of differences of two convex
functions in terms of appropriate r(-)-potentials, and we show that a function F' :
Z — Ry is r(-)-excessive if and only if it is the difference of two convex functions and
—(%O‘QF” +bF' —rF) is a positive measure. We use these results to study the optimal
stopping problem that aims at maximising the performance index

o foxp (= [ X0 dt) FX 1| ®

over all stopping times 7, where f : Z — R, is a Borel-measurable function that may
be unbounded. We derive a simple necessary and sufficient condition for the value
function v of this problem to be real-valued. In the presence of this condition, we
show that v is the difference of two convex functions, and we prove that it satisfies the
variational inequality

1 _
max {5021)” + b —rv, f— v} =0 (3)
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in the sense of distributions, where f identifies with the upper semicontinuous envelope
of f in the interior int Z of Z. Conversely, we derive a simple necessary and sufficient
condition for a solution to (3) to identify with the value function v. Furthermore,
we establish several other characterisations of the solution to the optimal stopping
problem, including a generalisation of the so-called “principle of smooth fit”. In our
analysis, we also make a construction that is concerned with pasting weak solutions
to (1) at appropriate hitting times, which is an issue of fundamental importance to
dynamic programming.

1 Introduction

We consider the one-dimensional diffusion X that satisfies the SDE (1) in the interior int Z =
|, B[ of a given interval Z C [—o0, 0o]. We assume that b, o : int Z — R are Borel-measurable
functions satisfying appropriate local integrability and non-degeneracy conditions ensuring
that (1) has a weak solution that is unique in the sense of probability law up to a possible
explosion time at which X hits the boundary {a, 8} of Z (see Assumption 1 in Section 2).
If the boundary point « (resp., [3) is inaccessible, then the interval Z is open from the left
(resp., open from the right), while, if « (resp., ) is not inaccessible, then it is absorbing and
the interval 7 is closed from the left (resp., closed from the right).

In the presence of Assumption 1, a weak solution to (1) can be obtained by first time-
changing a standard one-dimensional Brownian motion and then making an appropriate
state space transformation. This construction can be used to prove all of the results that we
obtain by first establishing them assuming that the diffusion X identifies with a standard
one-dimensional Brownian motion. However, such an approach would hardly simplify the
formalism because the data b (resp., o) appear in all of the analysis exclusively (resp., mostly)
though the operators £, L, defined by (36)—(37) below. Furthermore, deriving the general
results, which are important because many applications assume specific functional forms for
the data b and o, by means of this approach would require several time changes and state
space transformations, which would lengthen the paper significantly.

Given a point z € int Z, we denote by L* the right-sided local time process of X at level
z (see Revuz and Yor [32, Section VI.1] for the precise definition of L* and its properties).
Also, we denote by B(J) the Borel o-algebra on any given interval J C [—o0,00]. With
each signed Radon measure p on (int Z, B(int I)) such that 072 is locally integrable with
respect to |u|, we associate the continuous additive functional

B Iz
1= Lop(dz), t€[0, Ty AT, 4
At /a O'2<Z) M( Z), [ ) 5[7 ( )
where T, (resp., Tj) is the first hitting time of a (resp., #). It is worth noting that (4)
provides a one-to-one correspondence between the continuous additive functionals of the
Markov process X and the signed Radon measures on (int Z, B(int I)) (see Theorem X.2.9,
Corollary X.2.10 and the comments on Section 2 at the end of Chapter X in Revuz and



Yor [32, Section X.2]). We also consider a discounting rate function r : Z — R, we assume
that this is a Borel-measurable function that is uniformly bounded away from 0 and satisfies
a suitable local integrability condition (see Assumption 2 in Section 2), and we define

A= M (X) = /0 r(Xs) ds. (5)

Given a signed Radon measure p on (intZ, B(int Z)), we consider the r(-)-potential of
the continuous additive functional A*, which is defined by

R.(z) = E, [ /O Rt dAf] . (6)

We recall that a function F': int Z — R is the difference of two convex functions if and only
if its left-hand side derivative F” exists and its second distributional derivative is a measure,
and we define the measure LF' by

LF(dr) = %UZ(x)F"(dx) +b(x)F' (z) de — r(x)F(z) dx.

In the presence of a general integrability condition ensuring that the potential R, is well-
defined, we show that it is the difference of two convex functions, the measures LR, and —u
are equal, and

xr) = 3 T ﬂ S z €T & s
Rula) = () /H o ) + G U(a) /[ )

[ 2ol 00 e
_/}a,mCO'Q(S)p’(S) {w<x>’gp<x>}ﬂ<d ) (7)

where C' > 0 is an appropriate constant, p : int Z — R is the scale function of X, and ¢, :
intZ — ]0,00[ are C* functions with absolutely continuous with respect to the Lebesgue
measure derivatives spanning the solution space of the ODE

1

50 (2)g"(x) + b@)g'(z) = r(w)g(x) =0,

and such that ¢ (resp., ©) is decreasing (resp., increasing) (see Theorem 6). If the signed
measure u" is absolutely continuous with respect to the Lebesgue measure with Radon-
Nikodym derivative given by a function h, then the potential R,» admits the expressions

Ry(z) =E, [ /0 I ) dt}

x s B S
= 2ow) [ s+ 2ot [ EDnsas 9



(see Corollary 8 for this and other related results). Conversely, we show that, under a general
growth condition, a difference of two convex functions F': intZ — R is such that (a) both
limits limy . F(y)/e(y) and lims F(y) /¢ (y) exist, (b) F admits the characterisation

—imM x x imM x
F(@) = tim — ola) + Bgr(z) + lim S0 () )

and (c) an appropriate form of Dynkin’s formula holds true (see Theorem 7). With a view to
optimal stopping, we use these results to show that a function F': Z — R, is r(-)-excessive
if and only if it is the difference of two convex functions and —LF' is a positive measure (see
Theorem 9 for the precise result).

If r is constant, then general theory of Markov processes implies the existence of a
transition kernel u” such that R,(x) = faﬂ[u”(:p, s) pu(ds) (see Meyer [27] and Revuz [31]).

]
If X is a standard Brownian motion, then

1
u"(x,s) = e Varle—s|

\/Z
(see Revuz and Yor [32, Theorem X.2.8]). The general expression for this kernel provided
by (7) is one of the contributions of this paper. On the other hand, the identity in (8)
is well-known and can be found in several references (e.g., see Borodin and Salminen |8,
11.4.24]). Also, Johnson and Zervos [20] prove that the potential given by (6) admits the
analytic expression (7) and show that the measures LR, and —p are equal when both of the
endpoints a and § are assumed to be inaccessible.

The representation of differences of two convex functions given by (9) is also new. Such
a result is important for the solution to one-dimensional infinite time horizon stochastic
control as well as optimal stopping problems using dynamic programming. Indeed, the
analysis of several explicitly solvable problems involve such a representation among their
assumptions. For constant r, Salminen [34] considered more general one-dimensional linear
diffusions than the one given by (1) and used Martin boundary theory to show that every
r-excessive function admits a representation that is similar to but much less straightforward
than the one in (9). Since a function on an open interval is the difference of two convex
functions if and only if it is the difference of two excessive functions (see Cinlar, Jacod,
Protter and Sharpe [11]), the representation derived by Salminen [34] can be extended to
differences of two convex functions. However, it is not straightforward to derive such an
extension of the representation in Salminen [34] from (9) or vice-versa when the underlying
diffusion satisfies (1) and r is constant.

The result that a function F' is r(-)-excessive if and only if it is the difference of two convex
functions and —LF is a positive measure is perhaps the simplest possible characterisation of
excessive functions because it involves only derivative operators. In fact, we show that this
result is equivalent to the characterisations of excessive functions derived by Dynkin [15] and
Dayanik [12] (see Corollary 10).



We use the results that we have discussed above to analyse the optimal stopping problem
that aims at maximising the performance criterion given by (2) over all stopping times 7,
assuming that the reward function f is a positive Borel-measurable function that may be
unbounded (see Assumption 2 in Section 2). We first prove that the value function v is the
difference of two convex functions and satisfies the variational inequality (3) in the sense of
distributions, where f is defined by

limsup,_,, f(y), ifr€intZ,
?(x) = f(a), if v is absorbing and x = «a, (10)
f(B), if 8 is absorbing and x = 3

(see Definition 1 and Theorem 12.(I)—(II) in Section 6). This result provides simple criteria
for deciding which parts of the interval Z must be subsets of the so-called waiting region.
Indeed, the derived regularity of v implies that all points at which the reward function f
is discontinuous as well as all “minimal” intervals in which f cannot be expressed as the
difference of two convex functions (e.g., intervals throughout which f has the regularity of a
Brownian sample path) should be parts of the closure of the waiting region. Similarly, the
support of the measure (Lf)" in all intervals in which £f is well-defined should also be a
subset of the closure of the waiting region.

We then establish a verification theorem that is the strongest one possible because it
involves only the optimal stopping problem’s data. In particular, we derive a simple necessary
and sufficient condition for a solution w to (3) in the sense of distributions to identify with
the problem’s value function (see Theorem 13.(I)—(II)).

These results establish a complete characterisation of the value function v in terms of the
variational inequality (3). Indeed, they imply that the restriction of the optimal stopping
problem’s value function v in intZ identifies with the unique solution to the variational
inequality (3) in the sense of Definition 1 that satisfies the boundary conditions

f(y) : v(y) f(y)

lim vly) = limsup —= and lim —== = limsup ——..
vemtZylo (y) yla - 9(Y) vemtZyts (y) yrs - YY)

It is worth noting that, if a (resp., [3) is absorbing, then the corresponding boundary condi-
tion is equivalent to

lim wv(y) =limsu resp., lim = limsu
ol o) =t ) (e in o) =t f0)
(see (28)—(29)). Also, it is worth stressing the precise nature of these boundary conditions.
The limits on the left-hand sides are taken from inside the interior int Z of Z and they indeed
exist. On the other hand, the limsups on the right-hand sides are taken from inside Z itself.
Therefore, if, e.g., a is absorbing, then we are faced either with
v(a) = fle) = lim w(y) =limsup f(y), if f(a)=Ilimsup f(y) > limsup f(y),
yla

y€int Z, yla yla yEint Z, yla

bt



v(a) = f(a) < lim  o(y) =limsup f(y), if f(a) <limsup f(y) = limsup f(y).

yEnt T, ylor yla yla yEint Z, yla
Furthermore, we prove that
v(z) = inf{Ap(z) + By(z) | A,B>0and Ap+ By > f} (11)

for all z € intZ (see Theorem 13.(III)). In fact, this characterisation can be used as a
verification theorem as well (see also the discussion further below).

In the generality that we consider, an optimal stopping time might not exist (see Exam-
ples 1-4 in Section 8). Moreover, the hitting time of the so-called “stopping region”, which
is given by

T =if{t>0] v(X,) = f(Xs)}, (12)

may not be optimal (see Examples 2 and 4). In particular, Example 2 shows that 7% may
not be optimal and that an optimal stopping time may not exist at all unless f satisfies
appropriate boundary / growth conditions. Also, Example 4 reveals that 7* is not in general
optimal if f # f. In Theorem 12.(III), we obtain a simple sequence of e-optimal stopping
times if f is assumed to be upper semicontinuous, and we show that 7* is an optimal stopping
time if f satisfies an appropriate growth condition.

Building on the general theory, we also consider a number of related results and char-
acterisations. In particular, we obtain a generalisation of the so-called “principle of smooth
fit” (see part (III) of Corollaries 15, 16 and 17 in Section 7).

In view of the version of Dynkin’s formula (98) in Corollary 8, we can see that, if h is
any function such that R, given by (8) is well-defined, then

T/\Ta/\TB
supE, U e MR(Xy) dt 4 ¢ f<X7>1{T<ooJ
g 0
= Ry (z) +supE, [G_ATATQATﬁ (f - Ruh) (XT/\TQ/\TB)]'{T<OO}:|
= Ryn (z) +supE, [eiATATaATﬁ (f - Ru”)+ (XTATa/\TB)l{T<OO}] : (13)

Therefore, all of the results on the optimal stopping problem that we consider generalise most
trivially to account for the apparently more general optimal stopping problem associated with
(13).

The various aspects of the optimal stopping theory have been developed in several mono-
graphs, including Shiryayev [35], Friedman [17, Chapter 16], Krylov [23], Bensoussan and
Lions [7], El Karoui [16], Oksendal [28, Chapter 10] and Peskir and Shiryaev [30]. In par-
ticular, the solution of optimal stopping problems using classical solutions to variational
inequalities has been extensively studied (e.g., see Friedman [17, Chapter 16], Krylov [23]
and Bensoussan and Lions [7]). Results in this direction typically make strong regularity

6



assumptions on the problem data (e.g., the diffusion coefficients are assumed to be Lipschitz
continuous). To relax such assumptions, Pksendal and Reikvam [29] and Bassan and Ceci [4]
have considered viscosity solutions to the variational inequalities associated with the opti-
mal stopping problems that they study. Closer to the spirit of this paper, Lamberton [24]
proved that the value function of the finite version of the problem we consider here satisfies
its associated variational inequality in the sense of distributions.

Relative to the optimal stopping problem that we consider here when r is constant,
Dynkin [14] and Shiryaev [35, Theorem 3.3.1] prove that the value function v identifies with
the smallest r-excessive function that majorises the reward function f if f is assumed to be
lower semicontinuous. Also, Shiryaev [35, Theorem 3.3.3] proves that the stopping time 7*
defined by (12) is optimal if f is assumed to be continuous and bounded, while Salminen [34]
establishes the optimality of 7* assuming that the smallest r-excessive majorant of f exists
and f is upper semicontinuous. Later, Dayanik and Karatzas [13] and Dayanik [12], who
also considers random discounting instead of discounting at a constant rate r, addressed the
solution of the optimal stopping problem by means of a certain concave characterisation of
excessive functions. In particular, they established a generalisation of the so-called “principle
of smooth fit” that is similar to, though not the same as, the one we derive here.

There are numerous special cases of the general optimal stopping problem we consider
that have been explicitly solved in the literature. Such special cases have been motivated
by applications or have been developed as illustrations of various general techniques. In
all cases, their analysis relies on some sort of a verification theorem. Existing verification
theorems for solutions using dynamic programming and variational inequalities typically
make strong assumptions that are either tailor-made or difficult to verify in practice. For
instance, Theorem 10.4.1 in @Qksendal [28] involves Lipschitz as well as uniform integrability
assumptions, while, Theorem 1.2.4 in Peskir and Shiryaev [30] assumes the existence of
an optimal stopping time, for which, a sufficient condition is provided by Theorem 1.2.7.
Alternatively, they assume that the so-called stopping region is a set of a simple specific
form (e.g., see Riischendorf and Urusov [33] or Gapeev and Lerche [18]).

Using martingale and change of measure techniques, Beibel and Lerche [5, 6], Lerche
and Urusov [26] and Christensen and Irle [10] developed an approach to determining an
optimal stopping strategy at any given point in the interval Z. Similar techniques have also
been extensively used by Alvarez [1, 2, 3|, Lempa [25] and references therein. To fix ideas,
we consider the following representative cases that can be associated with any given initial
condition z € Z. If there exists a point d; > x such that

Cy :=sup S = Sd) (14)

() (dr)’

then v(x) = C19(x) and the first hitting time of {d; } is optimal. Alternatively, if there exist
points k € ]0, 1] and ¢y < & < dy such that

Cy = sup /(@) _ f(e2) _ f(dy)
@ T (L= @) e T (L —welen) )+ (1 - m)eld)

7

(15)




then v(z) = kCoth(x) + (1 — K)Cop(x) and the first hitting time of {co, d2} is optimal. On
the other hand, if x is a global maximiser of the function f/(Av + By), for some A, B > 0,
then z is in the stopping region and v(z) = f(z). It is straightforward to see that the
conclusions associated with each of these cases follow immediately from the representation
(11) of the value function v (see also Corollary 14 and part (II) of Corollaries 15, 16 and 17).
Effectively, this approach, which is summarised by (11), is a verification theorem of a local
character. Indeed, its application invariably involves “guessing” the structure of the waiting
and the stopping regions. Also, e.g., (14) on its own does not allow for any conclusions for
initial conditions x > d; (see Example 5). It is also worth noting that, if f is C', then this
approach is effectively the same as application of the so-called “principle of smooth fit”: first
order conditions at dy (resp., co, d3) and (14) (resp., (15)) yield the same equations for d;,
Cy (resp. co, dy, K, () as the one that the “principle of smooth fit” yields (see also the
generalisations in part (III) of Corollaries 15, 16 and 17).

In stochastic analysis, a filtration can be viewed as a model for an information flow.
Such an interpretation gives rise to the following modelling issue. Consider an observer
whose information flow identifies with a filtration (#:). At an (#:)-stopping time 7, the
observer gets access to an additional information flow, modelled by a filtration (G;), that
“switches on” at time 7. In this context, we construct a filtration that aggregates the two
information sources available to such an observer (see Theorem (19)). Building on this
construction, we address the issue of pasting weak solutions to (1), or, more, generally, the
issue of pasting stopping strategies for the optimal stopping problem that we consider, at
an appropriate stopping time (see Theorem (20) and Corollary 21). Such a rather intuitive
result is fundamental to dynamic programming and has been assumed by several authors in
the literature (e.g., see the proof of Proposition 3.2 in Dayanik and Karatzas [13]).

The paper is organised as follows. In Section 2, we develop the context within which
the optimal stopping problem that we study is defined and we list all of the assumptions
we make. Section 3 is concerned with a number of preliminary results that are mostly of
a technical nature. In Section 4, we derive the representation (7) for r(-)-potentials and
the characterisation (9) of differences of two convex functions as well as a number of related
results. In Section 5, we consider analytic characterisations of 7(-)-excessive functions, while,
in Section 6, we establish our main results on the optimal stopping problem that we consider.
In Section 7, we present several ramifications of our general results on optimal stopping,
including a generalisation of the “principle of smooth fit”. In Section 8, we consider a
number of illustrating examples. Finally, we develop the theory concerned with pasting
weak solutions to (1) in the Appendix.



2 The underlying diffusion and the optimal stopping
problem

We consider a one-dimensional diffusion with state space an interval of the form
I=]a,pl or I=[a,p] or I=]a,fp] or I=]a/p (16)

for some endpoints —oc0 < a < f < oo. Following Definition 5.20 in Karatzas and
Shreve [21, Chapter 5], a weak solution to the SDE (1) in the interval Z is a collection
S: = (Q, F, F,, P, W, X) such that (Q, F, F,P,) is a filtered probability space satisfying
the usual conditions and supporting a standard one-dimensional (F;)-Brownian motion W
and a continuous (F;)-adapted Z-valued process X. The process X satisfies

t/\Ta/\TB
/ [16(X0)| + 0(X.,)] du < o (17)
0
and
t/\Ta/\TB t/\Ta/\TB
Xomua, =o+ [ bX)dur [ o) aw, (18)
0 0

forallt >0and o < & <z < 8 < 3, P,-a.s.. Here, as well as throughout the paper, we
denote by T}, the first hitting time of the set {y}, which is defined by

T,=inf{t>0| X, =y}, forycela,p,

with the usual convention that inf () = co. The actual choice of the interval Z from among
the four possibilities in (16) depends on the choice of the data b and o through the resulting
properties of the explosion time 7, AT} at which the process X hits the boundary {«, 8} of
the interval Z. If the boundary point « (resp., (3) is inaccessible, i.e., if

P, (T, <o0) =0 (resp., P,(Ts < o0) =0),

then the interval Z is open from the left (resp., open from the right). If « (resp., ) is not
inaccessible, then it is absorbing and the interval Z is closed from the left (resp., closed from
the right). In particular,

for all t > T, A Tp. (19)

X, = Qa, lf 1?mu—>Ta/\T5 Xy = «,
Ba if hmu—)Ta/\T[g Xu = 67

The following assumption ensures that the SDE (1) has a weak solution in Z, as described
above, which is unique in the sense of probability law (see Theorem 5.15 in Karatzas and
Shreve [21, Chapter 5]).



Assumption 1 The functions b, 0 : int Z — R are Borel-measurable,

o?(x) >0 forall x €intZ = |a, f], (20)
and
5 q _
/Mds<oo foralla <a < f < p. (21)
a 0%(s)
0

This assumption also implies that, given ¢ € int Z fixed, the scale function p, given by

pla) = / " exp (—2 / ) :5;% du) ds, forz € intZ, (22)

is well-defined, and the speed measure m on (int 7z, B(I)), given by

2
2@ ™

is a Radon measure. At this point, it is worth noting that Feller’s test for explosions provides
necessary and sufficient conditions that determine whether the solution of (1) hits one or
the other or both of the boundary points a, £ in finite time with positive probability (see
Theorem 5.29 in Karatzas and Shreve [21, Chapter 5]).

We consider the optimal stopping problem, the value function of which is defined by

m(dx) = (23)

v(r)= sup E,[e ™ f(X)lpeon] = sup J(S,,7), forazeZ, (24)
(Se,7)ETS (Se,7)ET2

where
J(S;,7) =E, [e_ATAT"ATﬁ f(XTATaATB)l{T<OO}] )

the discounting factor A is defined by (5) in the introduction, and the set of all stopping
strategies T, is the collection of all pairs (S,,7) such that S, is a weak solution to (1), as
described above, and 7 is an associated (F;)-stopping time.

We make the following assumption, which also implies the identity in (24).

Assumption 2 The reward function f : Z — R, is Borel-measurable. The discounting rate
function r : Z — R, is Borel-measurable and uniformly bounded away from 0, i.e., r(x) > 7o
for all z € Z, for some rq > 0. Also,

B _
/ r(s) ds < oo foralla<a<f<f. (25)

()

U

10



In the presence of Assumptions 1 and 2, there exists a pair of C! with absolutely contin-
uous first derivatives functions p,v : Z — R, such that ¢ (resp., ¢) is strictly decreasing
(resp., increasing), and

p(2) = p(Y)E; [e7"] = p(y)E, [e W 1ir,<ryy]  forally <, (26)
U(w) = P(Y)E, [e ] = P(y)E, [e Vv in,<ry]  forallz <y, (27)
for every solution S, to (1). Also,
if v is absorbing, then p(a) = lacli(rxl o(x) < oo and P(a) = lxlﬁvl P(x) =0, (28)
if B is absorbing, then ¢(3) := ll}% o(x) =0 and P(5) := 111%1 Y(z) < o0, (29)
and, if « (resp., B) is inaccessible, then lﬂﬁl{g o(x) = oo (resp., lxl%l P(x) = 00). (30)

An inspection of these facts reveals that, in all cases,

lim YWy, 20 (31)

vle (y) w18 Y(y)

The functions ¢ and v are classical solutions to the homogeneous ODE

L0(2)g" () + b(x)g (&) — r(x)a(x) = 0, (32)
and satisfy

P (z) — ¢ (x)(z) = Cp'(x) forall z € T, (33)
c)¥(c) and p is the scale function defined by (22). Furthermore,
),
the processes (e *p(X;)) and (e_At@Z)(Xt)) are local martingales. (34)

(o

)i
where C' = p(c)Y'(c) — ¢'(
given any solution S, to (1

The existence of these functions and their properties that we have listed can be found in
several references, including Borodin and Salminen [8, Section I1.1], Breiman [9, Chapter 16],
and It6 and McKean [19, Chapter 4].

3 Preliminary considerations

Throughout this section, we assume that a weak solution S, to (1) has been associated with
each initial condition x € int Z. We first need to introduce some notation. To this end, we
recall that, if ¢ : int Z — R is a function that is the difference of two convex functions, then
its left-hand side first derivative ¢’ exists and is a function of finite variation, and its second
distributional derivative ¢” is a measure. We denote by

g"(dx) = ghe(x) dz + gs(dx) (35)

11



the Lebesgue decomposition of the second distributional derivative g”(dx) into the measure
go () dz that is absolutely continuous with respect to the Lebesgue measure and the measure
gY(dx) that is mutually singular with the Lebesgue measure. Note that the function g
identifies with the “classical” sense second derivative of g, which exists Lebesgue-a.e.. In
view of these observations and notation, we define the measure £g on (int Z, B(int Z)) and
the function L,.g : int Z — R by

Lg(dz) = %UQ(x)g”(dfC) +b(x)g’ () dz — r(z)g(x) dz (36)
and
Lacg(r) = %02(96)9!;(93) +b(x)gl(z) —r(z)g(x). (37)

Given a Radon measure ;1 on (int Z, B(int I)) such that 072 is locally integrable with

respect to |u|, we consider the continuous additive functional A* defined by (4) in the
introduction. Given any ¢t < T, A T, A} is well-defined and real-valued because o <
infs<; X5 < sup,., X5 < B and the process L* increases on the set {X; = z}. Also, since
L# is an increasing process, A* (resp., —A") is an increasing process if yu (resp., —p) is a
positive measure. The following result is concerned with various properties of the process
A* that we will need.

Lemma 1 Let p be a Radon measure on (int Z, B(int I)) such that 0=2 is locally integrable
with respect to ||, consider any increasing sequence of real-valued Borel-measurable functions

(Cn) on I such that
0<C(2) <1 and lim (,(2)=1, p-a.e., (38)

n—oo

and denote by i, the measure defined by
pn(T) = /Cn(z) wu(dz), forT € B(intZ). (39)
r

AlMl s a continuous NCreasing process,
AF = AT = AT A Al = AR AR (40)

and

Ta/\Tﬁ Ta/\Tﬁ
lim E, [/ e dAt“"] =E, [/ e M dAt“] for all x € int 7. (41)
0 0

n—oo

Proof. The process Al#l is continuous and increasing because this is true for the local time
process L* for all z € Z. Also, (40) can be seen by a simple inspection of the definition (4)
of A*. To prove (41), we have to show that, given any x € int Z,

lim B, [1{"7,] = B [I7,a7,]. (42)

n—oo
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where

t t
I = / e M dAll and I, = / e M Al for t € [0, T, A Tj).
0 0

To this end, we note that (38) and the monotone convergence theorem imply that the
sequence (AL“ "') increases to A,lf“ for all t < T, A Tz as n — oo, because

A T || (dz) = : 02—(2)@(2) ul(dz), fort € [0, Ty ATj.
Also, we use the integration by parts formula to calculate
t t
/ e M dAlrl = e_AtAL“"l + / e Mup(X,) APl du,  for t € 0, T, A Tp. (43)
0 0

In view of these observations and the monotone convergence theorem, we can see that

0<I™ < 1™V forallte|0,T,ATs and n > 1, (44)
and
lim I/ =1, forallt €0, Ty ATsl, (45)
n—o0o

Combining these results with the fact that the positive processes I are increasing, we can
see that

I — lim I> lim I™=1"_ foralln>1
Ta/\TB t—)Ta/\T,(g t= t_>To¢/\TB t Ta/\TB -
and
Irar, = lim L= lim lim I < lim I, .
attB t—ToNTg t—TaNTg n—>00 T n—oo aNg

It follows that lim,,_ [;Z)ATB = I, aT;, Which, combined with monotone convergence theo-

rem, implies (42) and the proof is complete. O

We will need the results derived in the following lemma, the proof of which is based on
the Ito-Tanaka-Meyer formula.

Lemma 2 IfF :intZ — R is a function that is the difference of two convex functions, then
the following statements are true:

13



(I) The increasing process A is real-valued, and
t t

e MP(X,) = F(2)+ / e M dAEE 1 / e Mo (X, F (X)) dW,, fort €[0,T,ATs). (46)
0 0

(IT) If F is C* with absolutely continuous with respect to the Lebesque measure first derivative,

i.e., if LF(dx) = L, F(z) dx in the notation of (36)—(37), then
t t
/ e M dAEE = / e ML F(Xy) du, forte[0,T, ATg. (47)
0 0

Proof. In view of the Lebesgue decomposition of the second distributional derivative F"”(dx)
of F'as in (35) and the occupation times formula

B t
/ LiF! (2)dz = / o? (X, )F!(X,) du,
« 0

we can see that the It6-Tanaka-Meyer formula

Fx) =P+ [ oo ea) a3 [+ [ oxar o) a,

implies that

B

PO = P+ [ 30RO + 00RO [ dut 3 [ 17 R2)

t
+ / (X)) F' (X)) dW,. (48)
0
Combining this expression with the definition (37) of L,., we can see that
t t 1 [P
F(X,) = F(x) +/ r(X,)F(X,)du +/ L..F(X,)du+ 5/ L; F!'(dz)
0 0 a
t
+ [ote)r o) a, (19)
0

Using the occupation times formula once again and the definitions (36), (37) of £, L., we
can see that

/tz F(X.)d +1/BLZF"(d )—/ﬁiﬁ F(z)d +/ﬁ L Loy pra)
; ac u u 2 3 t L's Z) = ac z 4 0_2(2)2(7 z s y4

o« 0%(2) o

B L;
—/a 2(2) LF(dz)
— ALF (50)
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The validity of It6-Tanaka-Meyer’s and the occupation times formulae and (49)—(50) imply
that the process A is well-defined and real-valued. Also, (46) follows from the definition
(5) of the process A, (49)—(50) and an application of the integration by parts formula.

If LF(dx) = LaoF(x)dz, the definition of A“Y" and the occupation times formula imply
that

t
AFF = / L..F(X,) du,
0
and (47) follows. O

The next result is concerned with a form of Dynkin’s formula that the functions ¢, ¢
satisfy as well as with a pair of expressions that become useful when explicit solutions to
special cases of the general optimal stopping problem are explored (see Section 7).

Lemma 3 The functions p, 1 introduced by (26), (27) satisfy

—AraTgATS —ArATgATS
o) =B, | (X onrnry) | and (@) = By [ Y (Xonnry)| - (51)

for all stopping times T and all points & < x < B in I. Furthermore,

B [,y ] = P00 = o@D
] = @ — @i "
and
E, [e 51,5 g, ] = £E0@Q) — pla)p()
] = i@ - @ o
Proof. Combining (46) with the fact that Lo = 0, we can see that
e T (X nronry) = 9(2) + Mentont,, (54)

where

t
M, = / e Mg (X,) (Xa) dIV.
0

In view of (28) and the fact that the positive function ¢ is decreasing, we can see that
SUPyc(a,j] ¢(y) < oo. Therefore, M*a"5 is a uniformly integrable martingale because it is a
uniformly bounded local martingale. It follows that E, [MTAT& ATB} = 0 and (54) implies the
first identity in (51). The second identity in (51) can be established using similar arguments.

Finally, (52) and (53) follow immediately once we observe that they are equivalent to the
system of equations

Plw) = p(@E: [ Ly cry] + @(B)E: | L gycny]
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and

_ _ = —Ar.
Y(z) = Y(@)E, [6 A 1{Ta<TB}] + V(B)E. [6 P lryeray|
which holds true thanks to (51) for 7 = oc. O

We conclude this section with a necessary and sufficient condition for the value function
of our optimal stopping problem to be finite.

Lemma 4 Consider the optimal stopping problem formulated in Section 2, and let f be
defined by (10) in the introduction. If

f:T — Ry is real-valued, limsup f) < oo and limsup W) < 00, (55)
ylo P(Y) vig - ()
then v(z) < oo for all x € T,
lim sup vly) = lim sup ) and limsup vly) = lim sup @ (56)
() o P(Y) ytg - V() vte - V()

If any of the conditions in (55) is not true, then v(x) = oo for all x € int Z.

Proof. If (55) is true, then we can see that

il;}y) % < oo and ig}y) @J/}Zi < oo forallyeZ.
Also,
f(z) < ig,) %gp(x) + ig}y) % (x) forall z,y € Z.

In view of (34), the processes (e (X;)) and (e~¢)(X;)) are positive supermartingales.
It follows that, given any stopping strategy (S,,7) € T,
u _
J(Sz, 7) < sup MIEm [e A”T‘”Tﬁ@(XTATQATB)l{moo}]
usy P(u)
f(u)

+ sup —uEx [e_A”T“ATﬁw(XT/\Ta/\Tﬁ)1{r<oo}}

< sup 00(e) +sup T, (57

which implies that v(z) < co.
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To show the first identity in (56), we note that (57) implies that

oe) _ o fW) ) via)
o@) =0 o) D ) o)

Combining this calculation with (31), we obtain

v(z) (u)

limsup —= < sup —=,
zla QO(I‘) uy P u)

which implies that limsup,,, v(y)/¢(y) < limsup,, f(y)/¢(y). The reverse inequality fol-
lows immediately from the fact that v > f. The second identity in (56) can be established
using similar arguments.

If the problem data is such that the first limit in (55) is infinite, then we consider any
initial condition = € intZ and any sequence (y,) in Z such that y, < z for all n > 1 and
limy, o0 f(Yn)/¢(yn) = 0co. We can then see that

o(@) > lm J(S,.T,) > lim fu)E, [ ] @ tim LW _

where S, is any solution to (1). Similarly, we can see that v(z) = oo for all z € int Z if the
second limit in (55) is infinite or if there exists a point y € int Z such that f(y) = oc. O

4 r(-)-potentials and differences of two convex func-
tions

Throughout this section, we assume that a weak solution S, to (1) has been associated with
each initial condition x € intZ. Accordingly, whenever we consider a stopping time 7, we
refer to a stopping time of the filtration in the solution S,.

We first characterise the limiting behaviour at the boundary of Z of a difference of two
convex functions on int Z, and we show that such a function satisfies Dynkin’s formula under
appropriate assumptions.

Lemma 5 Consider any function F :int Z — R that is a difference of two convex functions
and s such that
[F(y)] [F(y)]

limsup —= < o0 and limsup —= < 0. (58)
o P(Y) s YY)

(I) If —=LF is a positive measure, then

Ta/\Tﬁ
E. [/ e M dAtEF] < oo forallz e intZ. (59)
0

17



(IT) If F satisfies

Ta/\Tﬁ
E. [/ e M dAFT < 0o, for some x € int 7, (60)
0

then both of the limits limy |, F(y)/¢(y) and limgyg F(y)/¢(y) ezist.
(IIT) Suppose that F satisfies (60),

lim £ly) =0 and lim £ly) = 0. (61)

via ¢(y) 8 P (y)

If x € int T is an initial condition such that (60) is true, then

T/\Ta/\Tﬁ
E, [e’ATF(XT)l{KTa/\Tﬂ}] =F(z) +E, [/ e dAfF]
0
g E:L' |:€7ATATQAT/B F(XT/\TQ/\Tﬁ)l{T/\Ta/\T5<OO}i| (62)

for every stopping time T; in the last identity here, we assume that

F(o) = lim F(4) = 0 (p F(9) = lim Fi(y) = o)

if a (resp., B) is absorbing, namely, if P, (T, < co) > 0 (resp., P, (T < 00) > 0), consistently
with (61).

Proof. Throughout the proof, 7 denotes any stopping time. Recalling (46) in Lemma 2, we
write

t
NFCG) = F@)+ [ e aagt o, (63)
0

where M is the stochastic integral defined by
t
M, = / e Mo (X, F (X,) dW,.
0

We consider any decreasing sequence («y,) and any increasing sequence ([3,) such that

a<a,<r<fB,<pforalln>1, lima,=a and lim 8, = 0. (64)
n—oo

n—o0

Also, we define

t/\T@/\TB
na ) =ntfezo [T 00 auz dfaa, (65)
0
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where we adopt the usual convention that inf ) = oo, and we note that the definition and
the construction of a weak solution to (1) (see Definition 5.5.20 in Karatzas and Shreve [21])
imply that these stopping times satisfy

(@, ) >0 forall £ >1 and glim (@, B) =Tz A Tj. (66)
—00
The function F” is locally bounded because it is of finite variation. Therefore, we can use
[t0’s isometry to calculate

E, [M?

TATe(am,Bn

) =Eq

< sup [F (y)]°E,

y€E[an,Bn]

2

TATe(Qm ,Bn) 9
/0 [e Mo (X,)F (X)) du]
</{ sup [Fi(y)]

T¢(am,Bn)
/ o?(X,) du
0
ye[anyﬁn}

< 00, (67)

which implies that the stopped process M7/ 7(@m:fn) i5 a uniformly integrable martingale.
Combining this observation with (63), we can see that

Ex [eiATATl(amyﬁn)F(XT/\TZ(CVm,ﬁn))] — F(x) + Em

TATe(Cm,Bn)
/ e M dAEF
0

In view of (66) and the local boundedness of F', we can pass to the limit using the dominated
convergence theorem to obtain

T/\TZ(amvﬁn)
/ e A dAEF
0

_ — AT AT AT
—E, [c n F(Xep, a5,

=E, [G_ATF(XT)l{TSTam/\Tﬁn}} + F(am)Ex [e_ATam 1{Tam<7/\Tﬁn}]
+ F(ﬁnﬂEm [eiATB" 1{T5n<7—/\Tam}]

F(z)+ lim E,

f—r00

F(ay,) Es [G_AT‘“" 1{Tam<r/\TBn}}
o(am) E, [e™ Ton |
F(B) B [0 Lpy <o, ]

W) B[]

the last identity following thanks to (26)—(27).

=E, [V F(X) 1<, 3] + 0(2)

+1(x) (68)
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Proof of (I). If —LF is a positive measure, then —A*" = A=£F = AILFl is an increasing
process. Therefore, we can use (66), (64) and the monotone convergence theorem to calculate

Tl(amyﬁn) Tern /\Tﬁn
/ e M dAfL:F = lim E, [ / e Mu dAfF }
0 0

lim lim E,

m,n—00 {—o00 m,n—00

Ta/\TB
= E:B [/ €7Au dAfL:F:| .
0

Combining this with assumption (58), the inequalities

E, [GfAT“m L7, <T3n}] E, [G_ATﬁ Lz, <Tam}]

0< <1 and 0< <1, 69
Efeten] - E. e ] (99
and (68) for 7 = 0o, we can see that
Ta/\TB
0<E, [ / e~ M gAlFr ']
0
Ta/\ng
= —E, {/ et dAfF]
0
F(am) Bo[e™on 1r,,, <, F(S) Bale ™0 Lipy, <x ﬂ)
= lim (F(z)— oz Ui am<Bntl _ h(p n Bn <Tam
mn—)oo( ( ) SO( >30(Oém) Em [6 ATam} w( )¢<Bn) Ea} [G_ATﬁn]
: | F(om) | . |F'(Bn))
< |F(x)| + ¢(x) lim sup + () lim sup
|[F(@)] + p(x) lim su ) () lim su B
< o0. (70)

Proof of (II). We now fix any initial condition = € intZ such that (60) is true and we
assume that the sequence (a,,,) has been chosen so that

F
lim (@) exists. (71)
m—o0 ()

In light of (40) in Lemma 1 and (66), we can see that the dominated convergence theorem
implies that

lim lim E,
m,n—00 £—00

TATe(tm,Bn) TATaNTg
/ e M dAET | =R, [/ e M dAEF ] (72)
0 0

The continuity of F' and (58) imply that there exists a constant C; > 0 such that

[F'(y)] < Crlp(y) +¥(y)] -
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Also, (34) implies that the processes (e ¢(X,)) and (e~**1)(X,)) are positive supermartin-
gales, therefore,

E, [e" [p(X;) + ¥ (X:)] Lirean] < Ci [p(2) + 9 ()] < oo
Since
e A |F (X )| Yrern, a1,y < Cre [0(X7) +(X;)] Lircoey forall m,n > 1,
we can see that the dominated convergence theorem implies that

lim E,[e™" F(X,)1{r<r,, a1,3] = Ee[e™ F(X0) Lreryngrers, )]

m—o0

and

lim E,[e ™ F(X)1p<n ary 3] = Eo[e ™ F(X0)1raronryy]- (73)

m,n—00

In view of these results, we can pass to the limit m — oo in (68) to obtain

TNT o /\TBn
F(z)+E, [/ e M dAEE
0

F(an) E; [G_AT‘“" ]—{Tam<r/\TBn}]

=E, [6‘ATF(XT)1{T<Ta}m{7gT5n}} + nll_r)%o o()

pan)  Eie ]
. F(Bn) Eele ™ 1r,, <onm )]
1 n m
+ m1—1>rcl>o w(l‘) @Z)(ﬁn) Eg; [eiATBn}
_ E,[e 11, <rat, 3] F(amn)
— Ar aSTN B, . m
=B [ P pemntrams, ] + o(0) E, [e=A7] i o(rm)

F(B,) Bale ™" Lim, rnty]
0G0 B[]

+ () (74)

the second equality following by an application of the dominated convergence theorem. These
identities prove that the limit lim,, F'(y)/¢(y) exists because (o,) has been an arbitrary
sequence satisfying (71) and the function F'/¢ is continuous.

Proving that the limit lim 5 F'(y)/¥(y) exists follows similar symmetric arguments.

Proof of (III). The event {7, < oo} has strictly positive probability if and only if « is
an absorbing boundary point, in which case, (28) and (61) imply that lim,, F(y) = 0. In
view of this observation and a similar one concerning the boundary point 3, we can see that
the first identity in (62) holds true. Finally, the second identity in (62) follows immediately
once we combine (61) with (69) and (72)—(74). O

21



The assumptions of the previous lemma involve the measure LF that we can associate
with a function on intZ that is the difference of two convex functions. We now address
the following inverse problem: given a signed measure p on (int Z, B(int I)), determine a
function F' on intZ such that F' is the difference of two convex functions and LF = —pu.
Plainly, the solution to this problem is not unique because Lo = L1y = 0. In view of this
observation, the solution R, that we now derive and identifies with the 7(-)-potential of the
continuous additive functional A* is “minimal” in the sense that it has the limiting behaviour
captured by (80).

Theorem 6 A signed Radon measure pu on (int Z, B(int Z)) satisfies

a?(s)p'(s) a2(s)p'(s)

for all x € Z, if and only if

[t s+ [ 2 < o (75)
Jev,z| [z.8

B 1 Ta/\TB
/ lu|(ds) < oo and E, [/ e dAL“'] < o0 (76)
a 0

o2(s)

foralla < a < B < B and all x € . In the presence of these integrability conditions, the
function R, : intZ — R defined by

oW 2 el
R = gote) [ i)+ o) [ BN,

where C' > 0 is the constant appearing in (33), identifies with the r(-)-potential of A",
namely,

To AT
R,(r) =E, { /O e M dAf;] : (78)
it is the difference of two convex functions, and
LR, (dz) = —p(dz) and LRy(de) = —|ul(dz). (79)
Furthermore,
R R Rul) L Rul) 50

yla  p(y) vt8  P(y) v @(y) vt P(y)

Proof. First, we note that, if the integrability condition (75) is true for some = € Z, then it is
true for all z € Z. If p is a measure on (int Z, B(int 7)) satisfying (75), then the function R,
given by (77) is well-defined, it is the difference of two convex functions, and it satisfies the
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corresponding identity in (79). To see these claims, we consider the left-continuous function
H :intZ — R given by H(y) = 0 and
H(x) o — ‘/i$ A W (dS) if x € ]Oz, ’}/[,
j‘[’y z| 002(5) ) p(ds), if v €],

where v is any constant in int Z. Given any points &, 3 € int Z such that & < v < 3, we can
use the integration by parts formula to see that

o) ~ [ W) ds = ~Hi) + [ S i)

H(B)p(B) — /ﬁ ¢ (s)H (s)ds = H(z)p(x) +/ _ 20(s)
w50 C?(8)P/(3)
for all z € [@, B]. It follows that the function R, defined by (77) admits the expression

R0 = |G g i) = Ha)ota) | )
:

p(ds)

e é§;?<8) ulds) + H(B)o(5)] (2

e / W/()H (s) ds — () /jgo%s)H(s)ds (s1)

for all & < @ < < 8 < B. This result, the left-continuity of H and (33) imply that

<< ot
[5 M[U <3> M(@)-H(aw(a)]w(x)

2z o(s) . Y
{c /[w 2(s)p/(s) " pud HH(ﬁ)w(ﬁ)} V' (x) — Cp/(z)H ()

/ VH() ds = ') [ o) H () ds (2)

for alla dig
(R.)" i ( :

@ < fB. Furthermore, we can see that the restriction of the measure
B has Lebesgue decomposition that is given by

r <
B(]a,
[% / e (S)u ) - H@w(@)| ')
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in the notation of (35). Combining these expressions with (81)—(82) and the definition (22)
of the scale function p, we can see that the restrictions of the measures LR, and —pu in
(Jo, B, B(Ja, B])) are equal. It follows that the measures LR, and —u on (int Z, B(int 7))
are equal because & < [ have been arbitrary points in intZ. Similarly, we can check that
the function R), that is defined by (77) with || in place of y1 is the difference of two convex
functions and satisfies the corresponding identity in (79).

To proceed further, we consider any Radon measure 1 on (int Z, B(int I)) Given mono-
tone sequences (o) and (5,) as in (64), we define

0, if z<a, or z> 0,,
Ga(2) =< 1, if 02(2) > % and o, < z < 3,
o%(z), ifo*(z) <+ and o, < 2 < By,

S

and we consider the sequence of measures (f,,) that are defined by (39). The functions Ry,,|,
defined by (77) with |u,| in place of y, are real-valued and satisfy

Ry, () = {

Combining this calculation with (31), we can see that R), | satisfies the corresponding limits
n (80). Since —LR),,| = |ptn| = |LR,,| is a positive measure, part (I) of Lemma 5 implies
that

Y(x) f[an 8] 02( p(s Qn(s)| |(ds), if z < ay,
(z f[an Bn] 72(s)p'(5) s)p ) Cn(5)| (ds), itz > f,.

C‘)MQll\D

Ta/\Tﬁ
E, {/ e M dAt“"'] <oo forallzeZ,
0

while, (62) in Lemma 5 with 7 = T}, A T implies that

TanTp oA g A )
an|(x) = —El« . dA

This identity, the fact that LRy, = —|u,| and (40) imply that the function Rj,, that is
defined as in (77) satisfies

Ta/\Tﬁ
Ry, (z) =E, U oA dAt””'} ' (83)
0

Since the sequence of functions ({,) is monotonically increasing to the identity function,
the monotone convergence theorem implies that

B(e) = Jim (Zolo) [ 8ol

2o [ =28 s
+ G0 [ IS ) ) 84
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If (75) is satisfied, then o~ is locally integrable with respect to ||, namely, the first condition
in (76) holds true, thanks to the continuity of the functions ¢, ¥ and p'. In this case, (41)
in Lemma 1 and (83) imply that

Ta/\Tﬁ Ta/\Tﬁ
lim RWH('T) = lim Em |:/ eiAt dAt'un:| = E:}: [/ e*At dAtﬂ:| (85)
n—00 0 ]

because ((,) satisfies (38). Combining this result with (84) and the fact that (75) implies
that Rj,(x) < oo, we can see that

Ta/\TB
Ry (x) = E, { / e dA'ﬁ'} < o0, (86)
0

and the second condition in (76) follows. Thus, we have proved that (75) implies (76).
Conversely, if (76) is satisfied, then (41) in Lemma 1 and (83) imply that (85) is true.
Combining (76) with (84) and (85), we can see that Ry, (z) < oo, and (75) follows.

If 41 satisfies the integrability conditions (75)-(76), then the function R, given by (77) is
well-defined and real-valued. Furthermore, it satisfies (78) thanks to (40), (86) with ' and
p~ in place of ||, and the linearity of integrals.

To establish (80), we consider any sequences (o), (5,) as in (64), and we calculate

Tom /\TBn
02 R(x)— lim E, [ / e dAu“}
0

m,n—00

Tam/\TBn
@ Ryy(z)+ lim E, [ / e~ dAfR“]
0

m,n—00

= lim E, [e_AT“mATBnR|H|(XTam/\T5n)]

m,n— 00

= lim Ryy(an)E; [ Ly, cry ]+ Lim Ry (B,)E; [e " 1{Tan<Tam}] )
the third identity following from (62) for 7 = T,,,, A Tj,. Since Ry, is a positive function,
each of the two limits on the right-hand side of this expression is equal to 0. We can therefore
see that the first of these limits implies that

. . _A
0= lim lim Ry(am)By [e™on 1r,, <1,y

— hm R‘M‘(Q{m)Ex [eiATam 1{Tam<TB}]

m—roo
29 1, R, (am) ()
= lim —/—————=
m—00 o)
which proves that lim, R, (y)/¢(y) = 0 because (a,,) has been arbitrary. We can show

that lim,3 Ry, (2)/¢(x) = 0 using similar arguments. Finally, the function |R,,| satisfies the
corresponding limits in (80) because |R,| < Ry, O
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The result we have just established and Lemma 5 imply the following representation of
differences of two convex functions that involves the operator £ and the functions ¢, .

Theorem 7 Consider any function F : intZ — R that is the difference of two convex
functions, and suppose that

F F
lim sup Fy)l < oo and limsup £ ()l
wa @) we - V()

and that the measure LF satisfies the equivalent integrability conditions (75)-(76) (see also
Remark 1 below). In this context, the limits lim,, F(y)/¢(y) and limus F(y)/v(y) both
exist, and the function F admits the representation

. F(y) . F(y)
F(z) =1lim —=¢(x) + R_sp(x) + lim —=19(2), 87
( ) " (P(y) ( ) ﬁF( ) e w(y) ( ) ( )
where R_;p is given by (77)-(78). Furthermore, given any points & < x < 3 in I and any
stopping time T,

< 00,

_A T/\Ta/\TB
E:}: [6 7—/\T&/\T’E}71<‘)(v7'/\7’¢3¢/\713)] = F('CU) + EI |:/ eiAu dASF:| ) (88>
0

i which expression, we denote

Flo) =t PG (resp, F9) = F()

if a (resp., ) is absorbing, namely, if P.(T, < co) > 0 (resp., P.(Ts < 00) > 0).

Proof. In the presence of the assumption that LF satisfies (75)—(76), Lemma 5.(II) implies
that the limits lim,, F'(y)/¢(y) and limg F(y)/¢(y) exist, while Theorem 6 implies that
the function R_,p is well-defined. In particular, (79) implies that £ (F — R_cp) = 0. It
follows that

F—R r=Ap+ By,

for some constants A, B € R. Combining (31) with (80), we can see that the constants A and
B are as in (87). Finally, (88) follows from the representation (87) of F, (51) in Lemma 3,
(62) in Lemma 5 and (80) in Theorem 6. O

Remark 1 In view of Lemma 5.(I), the positivity of the measure —LF is a sufficient
condition for LF to satisfy the integrability conditions (75)-(76). Also, if F is C! with
first derivative that is absolutely continuous with respect to the Lebesgue measure, then
LF(dx) = LaF(x)dx, where L, is defined by (37). This observation and part (II) of
Lemma 2 imply that, in this case (75)—(76) are equivalent to (89)—(90) below for h = L, F.
Furthermore, R_,r admits the expressions (91)-(92) below for h = —L,.F. O
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The measure LF and the potential R_,r have central roles in the characterisation of dif-
ferences of two convex functions we have established above. The following result is concerned
with the potential R_,r when LF' is absolutely continuous with respect to the Lebesgue
measure.

Corollary 8 Consider any function h : T — R that s locally integrable with respect to the
Lebesgue measure, and let " be the measure on (int Z, B(int I)) defined by

p(T) :/h(s) ds, forD e B(int7).

If uh satisfies the equivalent integrability conditions (75)-(76), which are equivalent to

) s)|as Bﬂ s)| ds < oo
/a 02(8)p1<8>|h< )| d +/$ JQ(S)p'(S)VL( )| ds < o0, (89)
E, |:/0 e_At}h(Xt)} dt:| < 00, (90)

then the function R,n :int T — R defined by (77) or, equivalently, by

— E T ' 7¢(8) S)ds 3 xT ’ 790(8) S)as
Ronle) = gola) | o) s+ Zote) [ Bty is. (o)

admits the probabilistic expression
Ta/\TB
R(z) =E, { / e Mh(X,) dt] : (92)
0
This function, as well as the function defined by
éuh (x) = E, {/ e Mh(X,) dt} , forx eintZ, (93)
0

is C with absolutely continuous first derivative and satisfies the ODE

1

Lacg(x) + h(x) = 50'2(1‘)9”(1‘) +b(z)g (x) — r(x)g(x) + h(z) = 0. (94)
The functions R, and Ruh satisfy

Y b)), o hE) u)

) =) alay = O g gy )
CRa) . Rp@) @) . ha)

W o) T o) T r@e@) T Ha)e@) )
Ral) . RaW) ) . h()

Ty R AT R N R P )



where

1, if a is absorbing, i I 1, if B is absorbing,
an =
0, if a is inaccessible, ? 0, if B is inaccessible.

Furthermore,

’T'/\Ta/\TB
Rﬂh (l‘) = El‘ |:/ G_Ath(Xt) dt + e_AT/\TaATB Rﬂh (XT/\TQ/\Tg)]-{T/\TQ/\T3<OO} (98)
0

for every stopping time T and all initial conditions x € int Z, in which expression, R, (o) = 0
(resp., Rn(B) =0) if a (resp., B) is absorbing, consistently with (96)-(97).

Proof. It is straightforward to check that the function R, defined by (91) is C' with
absolutely continuous first derivative and satisfies the ODE (94). This observation and (95)
imply the corresponding statements for R,.. The equivalence of (76) (resp., (78)) with
(90) (resp., (92)) is a consequence of part (II) of Lemma 2 and the identities pu"(dz) =
—LRn(dr) = —Lo Ry () dr = h(z)dz. Also, these identities, part (II) of Lemma 2 and
(62) imply (98), while the limits in (96)—(97) follow from (80) and (95).

To prove (95), we first note that

Ruh (l‘) = Em |:1{Ta<T5} / e_At dt:| h(a) + Ruh (l‘) + Ex
Ta

1{T,6<Ta}/T e dt] h(B).
5

In view of the definition (5) of A, we can see that, if « is absorbing, then

Ea: |:1{Ta<Tﬁ}/ G_At dt:| = Ea: |:1{Ta<Tﬁ}e_ATa / e—r(oz)(t—Ta) dt:|
Ta T,

1
= —FE, [e M1y, o1,

r(a)
26 1 o)

otherwise, this expectation is plainly 0. Similarly, we can see that

= w11
1{T5<Ta}/@, o dt] ~rE )

and (95) follows. O

Eq
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5 Analytic characterisations of r(-)-excessive functions

The following is the main result of this section.
Theorem 9 A function F : T — Ry is r(-)-excessive, namely, it satisfies
E, [e " F(X,)1{;<00}] < F(2) (99)

for all stopping times T and all initial conditions x € I, if and only if the following statements
are both true:

(I) the restriction of F in the interior int Z of T is the difference of two convexr functions
and the associated measure —LF on (int Z, B(int I)) 18 positive;

(II) if « (resp., B) is an absorbing boundary point, then F(a) < Uminfyeinez, 410 F(y) (resp.,
F(B) < liminfyeincz,yrp F(y)).

Proof. First, we consider any function F' : Z — R, with the properties listed in (I)—(II).
The assumption that —LF is a positive measure implies that —A“F = A=% is an increasing
process. Therefore, (88) in Theorem 7 implies that, given any points @ < x < 3 in T and
any stopping time 7 such that @ = a and 7 = 7 AT, (resp., 3 = 8 and 7 = 7 A T}) if
(resp., B) is absorbing,

F(ZL') Z Ex |:6_ATF(X7—)]—{T<T@/\TB}] + F(d)EZ‘ |:6_AT6¢ ]—{T@ST/\TB}] (1 - ]Ia)
+ 1;&} F(y)E, [e_AT"‘ 1{Ta§7/\TE}:| Io + F(B)E, [efATB 1{TB§TATa}:| (1—1Ip)

+lim F (v)E, [G_ATE 1{T5§T/\Ta}] I
Y

>E, [e—ATATdATg F<XT/\T@/\T§)] , (100)

the second inequality following from the assumption that F' satisfies the inequalities in (II).
If o (resp., () is inaccessible, then we can pass to the limit @ | a (resp., 3 1 3) using Fatou’s
lemma to obtain (99) thanks to the choices of & and 3 that we have made. It follows that
F' is r(-)-excessive.

To establish the reverse implication, we first show that an r(-)-excessive function is lower
semicontinuous and its restriction in int Z is continuous. Given an initial condition = € intZ
and a point y € Z, we can use (99) to calculate

Flo) 2 B[] £) = min { 110, 20 ),

This calculation and the continuity of the functions ¢, ¢ imply that F'(x) > limsup,,_,, F'(y),
which proves that F'is upper semicontinuous in int Z. The same arguments but with points
x €7 and y € intZ and their roles reversed imply that

AP0 S0
P 2 min{ G0 S0 PG
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It follows that F'(z) < liminf,eintz,y—e F(y), and the lower semicontinuity of F' in Z has
been established. In particular, part (II) of the proposition is true.
To prove that an r(-)-excessive function satisfies (I), we define the function F| by

F,(z) = ¢E, [/ e Mp(X,)dt|, forxzel, (101)
0

where ¢ > 0 is a constant, and we note that

(99) o
0< Fy(z) < q/ e "F(z)dt = F(x) forallxeT. (102)
0

If we consider the change of variables u = ¢t, then we can see that

F,(z) =E, { /0 e M (X, ) dul .

In view of (102), the continuity properties of the function F' and the continuity of the process
X, this expression implies that

lim Fy(z) = F(z) forall zeT. (103)

q—0

Given its definition in (101), Corollary 8 implies that the function F, is C* with absolutely
continuous first derivative and that it satisfies the ODE

%OQ(HC)F;’(JJ) +0(z) Fy(z) — (¢ +r(x)) Fy(x) + ¢F (z) = 0

in the interior of Z. In view of (102), we can see that

%O’Q<$)F:($) + b(:c)Fq’(a:) —r(z)F,(x) = —q[F(z) — F,(x)] <0.

This inequality implies that
d (d (E)Y _ . d 1\ 2r(x)Fy(x)
dx <dx <p’(:v) ) Fq( >d£L’ p’(x)) 0'2(:6)]7’(3:) <0, (104)

where p is the scale function of the diffusion X, which is defined by (22).
To proceed further, we introduce the antiderivatives A' and A? of a function g that is
locally integrable in Z, which are defined by

Ag) = [ oy wd g = [ [Tgrazay

respectively, where ¢ € 7 is a fixed point that we can take to be the same as the point
appearing in the definition (22) of the scale function p. Inequality (104) then implies that
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the function F,/p’ — A' ((1/p')'F,) — A?((2rF,)/(c%p)) is concave, which, combined with
(103), implies that the function G := F/p’ — A ((1/p')'F) — A*((2rF)/(0?p')) is concave.
The concavity of G and the equality

E,:G+A1 <(l,) F) + A? <22F,)
P p o%p

imply that F'/p’ is absolutely continuous and

F(2) = /(2) (G’_@) + A (QTF ) <x>) |

O-2p/

This expression shows that F’ has finite variation. Furthermore, taking distributional deriva-
tives, we can see that
2 I /" 2b(l‘) /

o?(x)

2r(x)
72(z)

F(z) dv = p'(x)G" (dx),

which proves that F' has the properties listed in part (I) thanks to the concavity of G. O

In the spirit of Dynkin [15, Theorems 15.10 and 16.4], Dayanik [12] proves that a func-
tion F' is r(-)-excessive if and only if the function F/p is (¢/p)-concave (equivalently, the
function F'/1 is (—p/1)-concave), and he shows that such concavity assumptions imply that
the function =D, (F/¢) defined by (105) is increasing (equivalently, the right-continuous
modification D;j/ »(F'/1) of the function defined by (106) is increasing) (see Proposition 3.1
and Remarks 3.1-3.3 of Dayanik [12] for the precise statements). Such a result, which focuses
on the functions —D, (F/¢), D;f/ »(F'/1), follows immediately from our analysis above.

Corollary 10 A function F : T — Ry isr(-)-excessive if and only if the following statements
are both true:
(I) the function —D,,, (F'/¢) given by

D o) = i ) @) = (F/0)(y)
D Fle)@) =~ S =) y)

1s well-defined, real-valued and increasing; equivalently, the function D;/w(F/@Z)) given by

) o FAO) — (F/) (@)
Do EIOD =38 o) — (/0)(w)
1s well-defined, real-valued and increasing, and

(I) if o (resp., B) is an absorbing boundary point, then F(a) < liminfyecinz 410 F(y) (resp.,
F(ﬁ) < lim infyeintI,yTB F(y))

for z € intZ, (105)

for xz €intZ, (106)
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Proof. Given a measure p on (int Z, B(int I)), we mean that —p is a positive measure
whenever we write p(dz) < 0 in the proof below. In view of Theorem 9, the result will follow
if we show that either of the functions given by (105), (106) is well-defined, real-valued and
increasing if and only if the restriction of F'in int Z is the difference of two convex functions
and LF < 0. To this end, we note that the functions given by (105), (106) are well-defined
and real-valued if and only if F” exists and is real-valued, in which case,

Cp@)F(x) — (@) F(x) 3 (@) F (z) — ¢'(x)F(x)

D;/SO(F/SO)(I‘) () (z) — ¢ (2)(z) - Cp'(x) ’
) Y@ (@) = ¢ (@)F@) @ $@)F () - (2)F(a)
Dw/w(F/w)(x) o (2)(x) — pla)(x) Cp/(z) '

The function —D, (F/¢) is increasing if and only if its first distributional derivative is a
positive measure, namely, if and only if the second distributional derivative of F is a measure
and

Qo(x) " QO”(SL’) , /
Cp’(x)F (dz) — Cp’(a:)F<x) dz — [p(x)F' () — ¢/ () F ()] ———=

In view of the definition (22) of the scale function p and the fact that p and C' are both
strictly positive, we can see that this is true if and only if

()50 () F"(d2) + ()b(a) . (2) dix — | 30 ()" () + b{a)!(2) | Fla) dx <0,

which is true if and only if —CF > 0, thanks to the fact that ¢ > 0 satisfies the ODE (32).
Similarly, we can see that the function D, w(F /1) is increasing if and only if —LF > 0. O

6 The solution of the optimal stopping problem

Before addressing the main results of the section, we prove that the value function v is
excessive.

Lemma 11 Consider the optimal stopping problem formulated in Section 2 and suppose that
its value function is real-valued. The value function v is r(-)-excessive, i.e.,

E, [e " 0(X;)1{rco0y] < v(2), (107)
for all initial conditions x € T and every stopping strategy (S,,7) € T,. Also,

v(z) = sup E,[e Arntants g ( Xoatants) Lir<ooy] forallz €T, (108)
(S, 7)ET

where f is given by (10).
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Proof. To prove the r(-)-excessivity of v, we first show that v is continuous in intZ and
lower semicontinuous in Z. To this end, we consider any points z,y € intZ. Given the

stopping strategy (S,,T,) € T, and any stopping strategy (S,,7) € T,, we denote by (S,,7)
a stopping strategy that is as in Corollary 21, so that

v(x) > J<S177A—) E, |:€7ATQATBf(XTa/\Tﬁ)l{Ta/\T5<Ty}:| +E, [eiATy]-{Ty<Ta/\T5}} J(Sy, )
Ea} [eiATy 1{Ty<TaATB}] J(Sy, 7').

v

Since (S,, 7) is arbitrary, we can use the dominated convergence theorem to see that this
inequality implies that

v(z) > lim E, [e’ATy 17, <Ta/\T5}} limsup v(y) = limsup v(y),
Yy—x Yy—T y—x

which proves that v is upper semicontinuous in int Z.
Repeating the same arguments with the roles of the points x,y € int Z reversed, we can
see that

liminfo(y) > imE, [e‘ATzl{Tx<Ta/\TB}] v(z) = v(x).
y—x y—x

If both a and § are absorbing, then we can use (26)—(29) to calculate
liminf o(z) > liminf (f(oz)Em [e*ATal{Ta@-ﬁﬂ + f(P)E, [eiATﬁ 1{Tﬁ<Ta}])

zeintZ, xla zeintZ, xla
) = fle) = vla)

(Laete) , 101
pl) )

while, if « is absorbing and S is inaccessible, then

= liminf
rla

xgrrlrtlzlr;fwv(x) > $grrlrt11u;fwf(a)Ex [G_ATQ] = lirg(ixnf % = f(a) =v(a).

If 5 is absorbing, then we can see that liminf,cin 7z 2+ v(2) > v(0) similarly. It follows that
v is lower semicontinuous in Z.
To show that v satisfies (107), we consider any stopping strategy (S,,7) € T,. We assume

that X117, takes values in a finite set {ay,...,a,} C intZ. For each i = 1,...,n,
we consider an e-optimal strategy (S ,77) € T,,. If we denote by (S5, 7°) € T, a stopping

strategy that is as in Corollary 21, then

v(z) = J(S;,7)

EJ} |:6_ATQAT’Bf(XTa/\T[g)]-{Ta/\T5<T}i| + Z EJ} [e_AT]-{XT:ai}] J(SZZ, 7_26)
i=1

Em |:€7ATQATBU(XTQ/\T3>]—{TQ/\T5<T}] + ZE:B [eiAT]-{XT:ai}} [U(ai) - 8] ’

i=1

v
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where the last inequality follows from the fact that f(Xz,a7,) = v(Xz,a7,) and the e-
optimality of the strategies (St ,77). Since € > 0 is arbitrary, it follows that

a;’ '

’U(ZL’) Z E;}: [e*ATATa/\TBU(XT/\TQ/\TB)l{T<OO}] s

and (107) follows in this case.
Now, we consider any stopping strategy (S,, ) € T, and we define

T, =inf{t>7| Xy €{a,...,a.}},

where (a,) is any sequence that is dense in int Z. Such a sequence of stopping times is such
that

Tol{T,aTs<r) = Ol ATs<7) fOr allm > 1 and nggo Tolir<Tontyy = Tl{r<TonTs)-

Therefore, lim,, oo 7 ATy AT = 7 AT, AT Our analysis above has established that (107)
holds true for each of the stopping strategies (S,,7,) € T,. Combining this observation with
Fatou’s lemma and the fact that v is lower semicontinuous, we can see that

’U(SL’) Z hm Hlf Em |:€7AT”ATQAT6,U<XTn/\Ta/\T5)1{Tn<00}] Z EJB [eiATATaATBU(XT/\Ta/\TB>1{T<OO}] )

n—oo

which establishes (107).
Finally, we note that the continuity properties of v and the inequality v > f imply that
v > f. This observation and the r(-)-excessivity of v imply that

’U(ZL‘) = sup EJ: [G_ATU(XT)]‘{T<OO}]

(Se,7)ET
> sup E, [e V(X )lpeny] = sup B, [e M f(X)1prang] = v(2),
(Se,7)ET2 (Sz,7)ETz
and (108) follows. O

Our main results in this section involve solutions to the variational inequality
max {Lv, f—v} =0 (109)
in the following sense.

Definition 1 A function v : Z — R, satisfies the variational inequality (109) if its restric-
tion in int Z is the difference of two convex functions,

—Lv is a positive measure on (int Z, B(int 7)), (110)
f(z) <w(x) for all z € int Z, (111)
and the measure Lv does not charge the open set {z € intZ | v(z) > f(z)}, (112)

where L is defined by (36) and f is defined by (10). O
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We now prove that the value function v satisfies the variational inequality (109) in the
sense of this definition. Also, we establish sufficient conditions for the existence of e-optimal
as well as optimal stopping strategies. It is worth noting that the requirements (118)—(119)
are not really needed: the only reason we have adopted them is to simplify the exposition
of the proof.

Theorem 12 Consider the optimal stopping problem formulated in Section 2. The following
statements are true.
(I) If the problem data is such that

f(y) f(y)

f(y) = o0, for somey €I, or limsup—+% =00 or limsup —2% = oo,
vl ©(y) w6 V(1Y)

then v(x) = oo for all x € T, otherwise, v(x) < oo for all x € T.
(IT) If the problem data is such that

f(y) f(y)

fly) < oo forally € Z, limsup =% < oo and limsup —% < oo, (113)
o PY) s ()

then the value function v satisfies the variational inequality (109) in the sense of Definition 1,

(y) f(y) : v(y) f(y)

lim = lim sup —=, lim —=% = limsup —= (114)
veieZoyla 9(y)  yla p(y)  vemZutsdy) g YY)

4

and

v(a) = f(a) (resp., v(B) = f(B)) if o (resp., B) is absorbing. (115)

(I11) Suppose that (113) is true and that f = f. Given an initial condition v € int T consider
any monotone sequences (o), (6,) in L such that

ap<zx<p, lma,=«a limg§,=7},, (116)
n—o0 n—oo
lim flam) = limsupM, lim f(Bn) = limsupM, (117)
nooeplam) yla o @Y) noed(Bh) s YY)
if a is absorbing and f(«) = limsup f(y), then o, = a for alln > 1, (118)
yla
and if B is absorbing and f(B) = limsup f(y), then B, = for alln > 1. (119)
y1B

Also, let S, be any weak solution to (1), and define the associated stopping times

T =inf{t>0| v(Xy)=f(Xy)} and 77 =17"AT,, NTj,. (120)
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Then
v(z) = lim E, [e 4 f(X,)] . (121)
n—o0

Furthermore, the stopping strategy (S,, ) € T, is optimal if

lim sup M =0 if a is 1naccessible, limsup M =0 if B is inaccessible, (122)
ya  PY) s YY)
f(a) = limsup f(y) if « is absorbing and f(5) =limsup f(y) if B is absorbing. (123)
yla y1B

Proof. We have established part (I) of the theorem in Lemma 4, so we assume that (113)
holds in what follows. In view of (56) and the fact that —Lv is a positive measure on
(intZ, B(int Z)) (see Theorem 9.(I) and Lemma 11), we can see that the restriction of v in
int Z satisfies all of the assumptions of Theorem 7. Therefore, the limits of v/ and v/1 in
(114) exist,

v(y) v(y)

v(z) = yeir}tlrll?yioz @w(x) + R_co(z) + yEi&gIIr}yTﬁ o) (x) forall z €intZ, (124)

and, given any stopping strategy (S.,7) € Ta,
A T/\T@/\TE
EJ} € TAT&ATB{)(XT/\T(}/\TB) = 'U(:L‘) + Ex |:/ e_Au dASU (125)
0

for all @ < z < /3 in Z, where

v(x), if z €intZ,
O(z) = { limyeintz, 410 v(y), if a is absorbing and = = «, (126)

limyeintz, 410 v(y), if B is absorbing and z = .

If v (resp., ) is absorbing, then (115) plainly holds true and

fla) =v(a) < liminf o(y) (resp., f(B) =v(B) < liminf v(y)) :

T yeintZ, yla T yeint Z,y18

thanks to the r(-)-excessivity of v (see Theorem 9.(II) and Lemma 11). Combining this
observation with the fact that the limit of v/ in (114) exists, we can see that
v(y) v(y)

. L (56) 1. f(y)
lim  —== =limsup —= = limsup —=.
veieZyla 9(y)  yla P(Y) yla P(Y)

We can establish the second identity in (114) similarly.
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With each initial condition x € int Z, we associate any monotone sequences (o, ), (5,) in

Z such that (116)—(119) hold true. If « (resp., /) is absorbing and «,, = « (resp., (3, =

then (114)—(115) and (118)—(119) imply that

v(a)= lim w resp., v(f)= lim v .
( ) y€int Z, ylo (y) ( P (6) y€Eint Z, y18 (y))
This observation, the definition of @ in (126) and (125) imply that
T/\Tan/\Tﬁn
E, G_ATATQ"ATﬁ"U(XrATan/\TBn )] =v(z) + E, {/ e dAﬁU]
0

for every stopping strategy (S, 7) € T,. Furthermore, (114) and (117) imply that

lim
n—oo gp(an) n—oo (p(()gn) n—oo (p(()gn)

and

o PO TG (B

Do 0(By) | nseo ()

6)7

(127)

(128)

(129)

Given a stopping strategy (S,,7) € 7, such that 7 = 7 AT, A T, we can use (26)—(27)

to calculate

Ex e_A‘r/\Tan ATg,, |:’U(X’T/\Tan /\Tgn) - ?(XT/\Tan/\Tﬁn )}}

= Em [eiAT [U(XT> - ?(XT>j| 1{T§Tan/\T5n}j| + [U(an) - 7<Oén>} Em [eiATa" 1{Tan<7'/\T6n}]

v(an) = o) Ba [0 1, <onty )]

=E, [ [0(X:) — F(X:)] Lieru,nry 3] + 0(2)

U(Bn) - 7(&1@) Em |:€7ATﬁn 1{Tﬁn <T/\Tan}]

+¥(x) v (B) E, [G_AT%}

ola) E, e o]

Combining this calculation with (128)—(129) and the monotone convergence theorem, we can

see that

lim E, |:6—A7—/\Tan/\TBn [v (XT/\Tan/\T,Bn ) — ?(XT/\T% AT, )] ]

=B, [e ™ [0(X,) = F(X:)]1rer)]
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where
{r< T, AT}, ifa<a,<p,<p,

I(r) = {r < T4}, if a, = a and 3, < 3,
B {r <T,}, if @ <, and 5, = 0,
Q, if a,, = a and 3, = S,

(see also (118)—(119)).
With each initial condition z € intZ, we associate any sequence of stopping strategies
(S, 7) € T, such that 7, = 74 A To A Tj and

1 —
v(x) — 20 = E; [e* f(Xr)1{rcoy]  forall £>1

(see (108) in Lemma 11). If « is absorbing and o < «,, (see (118)), then we may assume
without loss of generality that 7, < T,,, Pt-a.s.. To see this claim, suppose that « is absorbing
and o < a,, which is the case when f(a) < limsup,, f(y). Since 7, = 7, A T, A T,

N{To, < 7} = ({Tun < e AT} N {Ta, < Ts}
n=1 n=1
={T, < ANT,}N{T, <Ts}
= {Tg = Ta} N {Ta < Tg}
In view of this observation and the dominated convergence theorem, we can see that

lim Efe 7 [f(an) = F(Xr,)] 1z, <r} Lire<o0)]

n—oo

= ]imisup f(y) — f(a) E [eiATz 1{T[:TQ}O{TQ<T/3}:| .
Yy

If P¢(r, = T,) > 0, then the right-hand side of this identity is strictly positive, and there
exists k > 1 such that

Fla)E[e ™1, <oy] > Ele™™ f(X,) Lz, <rylin<so}]-
Given such a k, we can see that
E [e_ATL’ATO‘k f(Xn/\Tak )1{Tg/\Tak<OO}:|
= B [ f(X) ety otrecoet] + PO [0 g, o]

Z E |:6_A7'£ f(XTﬁ)]‘{TZSTak }O{Tg<00}j| + E |:6_A7'[ f(XTe)]‘{Tak<7-€}1{T€<OO}j|
=E [eiATZf<XTz)1{T[<OO}] )

and the claim follows. Similarly, we may assume that 7, < Tj, Pt-a.s., if 3 is absorbing and

Bn < B.
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In light of the above observations and (118)—(119), we can use the monotone convergence
theorem to calculate

lim inf B [e_A”ATO‘"ATﬁ" ?(XTZ/\TQ,L/\TB,L)} > T}LU;O E;, [B_AW?(XTZ)1{TZ§Tan/\T/3n}j|

n—00 r
=E, [ F(X)1r<o0] »

which implies that, for all £ > 1, there exists n, such that

- F 7A7' an i 1
Ei [e ATZf(XTZ)l{TZ<OO}:| S Ei |:€ o ZATB”Z f(XT[/\Tan[ /\TBne )] _'_ 2_£
It follows that, if we define
Tzo =Ty A Tan A Tgn y (131)
e ¢

then the stopping strategy (S:,75) € T, satisfies

v(z) — EL [e_ATé’f(XT;)] < (132)

In view of (127) and (131), we can see that

_ _ ui
v@)—Eﬁ&a“fﬂX¢ﬂ::Eik‘WWMX¢>—11X¢H]+EiL1/ eﬂ“dAﬁ},(B@
0
The first term on the right-hand side of this identity is clearly positive, while, the second

one is positive because —Luv is a positive measure and —A*Y is an increasing process (see
also (40) in Lemma 1). This observation and (132)—(133) imply that

lim E£ [e*%‘” [0(Xs) —f(XT;)H — lim Ef {— / Lo dAf”} ~0. (134)
{—00 £—00 0

Proof of (II). To prove that v satisfies the variational inequality (109) in the sense of
Definition 1, and thus complete the proof of part (II) of the theorem, we have to show that
(112) holds true because v > f and —Lv is a positive measure. To this end, we consider any
interval [&, 5] C {z € intZ | v(x) > f(z)} and we note that there exists £ > 0 such that

£ < min [v(z) — f(2)] < max v(z) <&
z€la,f z€[a,p]

because the restrictions of v — f and v in intZ are lower semicontinuous and continuous,
respectively. In view of this observation, we can see that

—A o _ —A o — —Ar.
e i u(Xpe) = f(Xpp)] > Ee Lire<mintyy 2 €e AT&1{75<T@<TB} + &e T"l{T;<T5<Td}
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and

—A_o r —Ao —A o
e [U(XT;) - f(XT;)} > &e T oty 2 e i U(sz’)l{r,?<Ta/\Tg}~

These inequalities and (134) imply that

lim E, [ s 1{7';<Td<TB}:| =0, lim [ TBl{ré’<TB<Ta}] =0,

{—00 f—o0
T, NTa ATz
lim E [ ~hg 0(Xre ) Lirecrant, }] =0 and lim E{ [—/ et dAfj”] =0. (135)
f—00 £ l—00 0

The first of these limits implies that

Jim B e ooy | = Jim S [e a1, o] (136)
because {1, < T5 < Tz} = {Ta < T3} \ {Ta < 77 A Tj}. Similarly, the second limit implies
that

lim Ez [
{—o0

Now, (127) and (131) imply that

Bl{T <T¢AT5 }] = IEEOEZ [ s 1{T5<T&}] : (137)
o TeATAAT; !
U(l‘) _ Ei |:6 Ao TONTS /\TB,U(XTO/\T AT )] + Eé _/ efAu dAfL:v
L 0 -

—A_o ~ _
= Ei |:6 ¢ U(XTO)]-{T;<T&ATB}] —+ ’U(Oé)Eﬁ [6 AT@ 1{T&§7—;ATB}

L

~ _A I Ty AT, /\TB T
+v(B)E; [e & 1{TBST;AT&}} +E; |- /0 e M dAL| .
In view of (135)—(137), we can pass to the limit as ¢ — oo to obtain

v(z) = lim {v(&)Ei [efAT& 1{Td<TB}} +v(B)E, [eiATél{T5<Ta}]}

p(B)Y(x) — () (B) o5y (@) — p(a)y(z)

~ @ @ @ - e@e )

the second identity following from (52)—(53) in Lemma 3. Since this identity is true for all
z €a, B and Lo = L1p = 0, it follows that the restriction of the measure Lv in = € |a, §]
vanishes, which establishes (112).

Proof of (I1I). We now assume that f = f and we consider the stopping times 7 and 7
that are defined by (120) on any given weak solution S, to (1). In view of (127) and the fact
that v satisfies (112), we can see that

’U(ZL‘) - EJ: [eiAT;;f(XT;{)} - EJ: [eiATr*l [U(XT,,’{) - f(XT;)H .

[oN
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Combining this result with the identities

lim E, (e [0(Xr) — F(0)]] 2 Es [ (Xn) = F(X)] Trgrm] =0,

n—oo

we obtain (121). B
To establish the optimality of (S,, 7*) if f = f and (122)—(123) are satisfied, we first note
that if « is inaccessible, then

0 < lim f(Oén)Em [eiATan 1{Tan<T*ATBn}] < lim f(Oén)Em [eiATan} (2) lim

n—o00 n—o0o n—o0 gp (an)

Similarly, if 8 is inaccessible, then

lim f(ﬁn)E:v [eiATB” 1{T3n<T*/\Tan}:| = 0.

n—oo

In view of (118)—(119) and (123), we can see that, if « (resp., ) is absorbing, then «,, = «
(xesp., B, = B) and

{T,, <7 N} ={To <7"NT3,} =1 (resp., {Ts, < T NTy,} = Q)).

In light of these observations and the monotone convergence theorem, we can see that

n—oo n—oo

lim E, [e ™™ f(X,.)] = lim (Ex [e™" f(Xo) Lot ATy, )]

+ f(an)Ea: [G_ATO‘" 1{Tan <’T*/\T5n}j| + f(ﬁn)Ea: |:€_AT57L ]—{T,Bn <T*ATan}])
= E, [e ™ f(Xo) i <o)

and the optimality of (S,,7*) follows thanks to (121). O

It is straightforward to see that the variational inequality (109) does not have a unique
solution. In the previous result, we proved that the value function v satisfies (109) as well
as the boundary / growth conditions (114). We now establish a converse result, namely a
verification theorem, which shows that v is the minimal solution to (109).

Theorem 13 Consider the optimal stopping problem formulated in Section 2 and suppose
that (113) holds true. The following statements are true.

(I) If a function w : int Z — Ry is the difference of two convex functions such that —Lw is
a positive measure, w(x) > f(x) for all x € int Z,

lim sup w(y) < oo and limsup w(y)
yla P(Y) s YY)

< 00,
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then v(x) < w(z) for all v € intZ.
(I) If a function w : int T — R is a solution to the variational inequality (109) in the sense
of Definition 1 that satisfies

w(y) f(y) w(y) f(y)

limsup —= =limsup ——= and limsup ——= = limsup —=, (138)
yetZyla P(Y)  ye.yla P(Y) vemZyt8 YY)  yez.yts YY)

then v(x) = w(x) for all x € int 7.
(III) The value function v admits the characterisation

v(z) = inf{ Ap(z) + By(z) | A, B >0 and Ap(y)+ B (y) > f(y) for ally € int T} (139)

for all x € intZ. Furthermore, if ¢ < d are any points in T such that v(z) > f(x) for all
x € e, d|, then there exist constants A, B such that

v(z) = Ap(z) + By(x) and Ap(y) + By(y) > f(y) for allz € |e,d| and y € int Z. (140)

Proof. A function w : intZ — R, that is as in the statement of part (I) of the theorem
satisfies all of the requirements of Theorem 7. Therefore, if Z is not open and we identify w
with its extension on Z that is given by w(a) = limy, w(y) (resp., w(B) = limys w(y)) if
(resp., ) is absorbing, then

T/\Tan/\Tﬁn
E, [e*A*ATMATﬂnw(XTATanATBn) =w(z)+E, {/ e M d ALY (141)
0

for every stopping strategy (S,,7) € T, where (a,), (8,) are any monotone sequences in
7 satisfying (116). Combining this identity with the fact that —Lw is a positive measure,
which implies that —A*" is an increasing process, we can see that

E, [efAMTWTBnw(XmTanATﬁn)] < w(x). (142)
This inequality and Fatou’s lemma imply that

E, eiATATaATBw(XT/\Ta/\TB)} < lim lnfEm [eiATATanAT’B"w(XT/\Tan/\TB )] < U)(.T),
n—00 n
which, combined with the inequality w > f, proves that v(z) < w(z).
If the function w satisfies (138) as well, then we choose any monotone sequences (ay,),
(Bn) as in (116)—(119) and we note that (128)-(129) hold true with the extension of w on 7

considered at the beginning of the proof in place of v. If we consider the stopping strategies
(Se, ) € T, where

o= (inf {t > 0| w(X)) = f(X)}) A Tw, AT,

n
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then we can see that (130) with w in place of v and (141) imply that
lim E, [e 4 f(X,.)] = w(x) + lim E, [e 4 [f(Xos) — w(X.s)]]
n—oo n—o0
=w(z) + E, [e_AT* F(XT*) — w(XT*)} 1F(T*)}

It follows that v(z) > w(x) thanks to (108) in Lemma 11, which, combined with the inequal-
ity v(z) < w(x) that we have established above, implies that v(z) = w(z).

To show part (III) of the theorem, we first note that, given any constants A, B € R,
the function A + B1) satisfies the variational inequality (109) if and only if Ap + By > f.
Combining this observation with part (I) of the theorem, we can see that v(z) is less than
or equal to the right-hand side of (139). To establish the reverse inequality, we first use (51)
in Lemma 3 and (127) with 7 = oo to obtain

Ez [eiATMTB [v(Xun1;) = Ap(XronTy) = BMXT&ATB)H

— o(F) — Ap(z) — BY(F) + Es [ /O A dAf”] (143)

for all points @ < Z < /3 in int Z and all constants A, B € R. Also, we fix any point = € intZ
and we consider any monotone sequences (o), (5,) in int Z such that

a, <xr<p, forallmn>1 and lim o, = lim G, = x. (144)

n—oo n—oo

If we define

_ v(Bn)¥(an) — v(an)P(Fn) _ p(Ba)v(an) — p(an)v(By)
! P(Bu)Y(an) — @(an)(Bn) @(Bn)(an) — o(an)¥(Bn)’

then we can check that

An‘:O(O‘n) + an(an) = U<an> and An@(ﬁn) + an(ﬁn) = U(ﬁn)a

and observe that the identity

—~

Tan/\Tﬁn
0=v(z) — Apnp(z) — Bpyp(z) + E, [/ e M dALY
0

follows immediately from (143) for @ = a,, # = x and 3 = 3,. Since —A* = A7£V is a
continuous increasing process, this identity, (144) and the dominated convergence theorem
imply that

v(x) > Ayp(z) + Bp(xz) and  v(x) = lirgo [Anp(z) + Bato(2)]. (145)

n—
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Also, given any y € |8,, B[, we can see that (143) with @ = a,,, # = 3, and 3 = y yields

T AT
[10) = Auls) = Bub ()]s, [ L] =B, [ [ e aa].
0

which implies that

Anp(y) + Batp(y) =2 v(y)  for all y € |5, 5. (146)
Similarly,

App(y) + Bab(y) > v(y) for all y € Ja, au,[. (147)

Combining these results with (31), we can see that

A, > lim v(y) >0 and B, > lim M >0 foralln>1.
y€int Z, ylo (p(y) yEint Z, y16 ’ll)(y)

If we consider any sequence (ng) such that limy ., A,, exists, then the positivity of the
constants A,, B, and (145) imply that lim, ,. B,, also exists and that both limits are
positive and finite. In particular, (145) and (146)—(147) imply that

v(z) = lim A,,p(z) + lim B,,¥(x)
£—r00 £—r00
and
v(y) < glim A o(y) + Zlim B,,¥(y) forallyeintZ\ {z}.
— 00 —00

It follows that v(x) is greater than or equal to the right-hand side of (139).

The existence of constants A, B such that the identity in (140) holds true follows from
the fact that the measure Lv does not charge the interval |c, d[. If [d, 5[ is not empty, then,
given any @ < 7 in e, d[ and y € [d, B[, we can see that (143) with 3 = y yields

o(0) = Aely) = BUIE: [ 1yp, )] = o | [ g

It follows that flgp(y)JrB@/)(y)g v(y) > f(y) because —A“Y = A~£¥is a continuous increasing
process. We can show that Ap(y) + By (y) > f(y) for all y € |a, ¢, if o, c] # 0, similarly,
and the inequality in (140) has been established. O

7 Ramifications including a generalisation of the “prin-
ciple of smooth fit”

Throughout the section, we assume that (113) is true, so that the value function is real-
valued, and that f = f. We can express the so-called waiting region V¥ as a countable union
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of pairwise disjoint open intervals because it is an open subset of int Z. In particular, we
write

W={zel| v > f=)}=JW, (148)

where
Wy = |ep, dyf, for some ¢y, dy € Z U {, 5} such that ¢, < dy,

and we adopt the usual convention that |c,c[ = () for ¢ € ZU {«, 8}. Since the measure Lv
does not charge the waiting region W,

v(x) = App(x) + Bpp(x)  for all z € W, (149)

for some constants A, and B,.

Our first result in this section is concerned with a characterisation of the value function
if the problem data is such that YW = int Z. Example 1 in Section 8 provides an illustration
of this case.

Corollary 14 Consider the optimal stopping problem formulated in Section 2, and suppose
that (113) is true and f = f. If Wy = |a, B[ and W, =0 for £ > 1, then

A1 = lim sup fy) and B; = limsup M (150)

o PY) s V()

Proof. The result follows immediately from the fact that v(z) = A;p(x) + Byy(x) for all
x €intZ, (31) and (114). O

We next study the special case that arises when a portion of the general problem’s value
function has the features of the value function of a perpetual American call option, which
has been extensively studied in the literature.

Corollary 15 Consider the optimal stopping problem formulated in Section 2, and suppose
that (113) is true and f = f. If Wy = |a, dy[, for some £ > 1 and dy € int Z, then

A, = lim sup M B, = !

v P(Y)  ¥(dy)

{f(dzz) - Az@(dz)} (151)

and

<1 forall x €la,d,
=1 forxz=d,, (152)
<1 forallx>d,.

f(z)
Agp(r) + B ()
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Proof. The identities in (151) follow immediately from the fact that v(x) is given by (149)
for all x € W, = |a, dy[, (31) and (114). The first two inequalities in (152) are trivial. Given
any = € |a, dy[, the fact that v(x) is given by (149) and part (III) of Theorem 13 imply that

Avp(z) + Brp(x) > fly) forally € intZ,

and the last inequality in (152) follows. O

Using similar symmetric arguments, we can establish the following result that arises in
the context of a perpetual American put option.

Corollary 16 Consider the optimal stopping problem formulated in Section 2, and suppose
that (113) is true and f = f. If Wy = |cy, B], for some £ > 1 and ¢, € int Z, then

— c = limsu M
() [f(ce) = Beto(cr)], By =1 ympw(y) (153)

and

<1 forallz<cy,
=1 forx=cy, (154)
<1 forallx € ey, O

f(x)
App(r) + B ()

The final result in this section focuses on a special case in which a component of the
waiting region W has compact closure in int Z, which is a case that can arise in the context
of the valuation of a perpetual American straddle option.

Corollary 17 Consider the optimal stopping problem formulated in Section 2, and suppose
that (113) is true and f = f. If Wy = |co, dy[, for some £ > 1 and c;,dy € int Z, then

A, — f(de)p(ce) — fleo)p(de) B, — o(de) f(ce) — (o) f(de)
@(de)(ce) — SO(CZ)Q/J(CZ@)’ ©(de)(ce) — p(ce)(dy)

(155)

and

<1 forall x € ey, dy],
=1 forxz=cy and x = d, (156)
<1 forallx<cyandx > d.

f(z)
Agp(x) + Bep()

Proof. The expressions in (155) follow immediately from the continuity of the value function.
The first two inequalities in (156) are a consequence of the definition of the waiting region
W, while the last one is an immediate consequence of part (II) of Theorem 13. U

Our final result is concerned with a generalisation of the “principle of smooth fit”.
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Corollary 18 Consider the optimal stopping problem formulated in Section 2, and suppose
that (113) is true and f = f. Also, consider any point y € intZ such thaty ¢ W. If f
admits right and left-hand derivatives at vy, then

fily) <vi(y) <o (y) < fL(y). (157)

Proof. The inequality v/, (y) < v’ (y) is an immediate consequence of the fact that Lv < 0.
The inequalities f} (y) < v/, (y) and v’ (y) < f/ (y) follow from the fact that v — f has a local
minimum at y. U

8 Examples

We assume that an appropriate weak solution S, to (1) has been associated with each initial
condition z € intZ in all of the examples that we discuss in this section. The following
example shows that an optimal stopping time may not exist if (122) is not satisfied. In this
example, the stopping region Z \ W is empty.

Example 1 Suppose that Z =0, 0o and X is a geometric Brownian motion, so that
dXt = bXt dt -+ O'Xt th,

for some constants b and o. Also, suppose that r is a constant. In this case, it is well-known
that
e(x) =2 and P(x) = 2",

where m < 0 < n are the solutions to the quadratic equation
L 5 L,
—0°k*+ (b—=0” | k—1r=0. (158)
2 2
In this context, if the reward function f is given by
k(z™ —x), ifz€]0,1],
flz) = N
Az —az7h), ifx>1,
for some constants x, A > 0, then
v(z) = K™ 4+ A"

— lim E, [e*“% Vo) (X, )] for all # > 0, (159)

Jj—00

where (a;) and (f3;) are any sequences in |0, co[ such that

a; <z < fjforalyj, lima; =0 and lim 3; =oco. (160)
j—oo Jj—o00
In particular, there exists no optimal stopping time. O
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The next example shows that an optimal stopping time may not exist if (122) is not

satisfied, while the stopping region Z \ W is not empty.

Example 2 In the context of the previous example, suppose that the reward function f is

given by
0, if x €10, 1],
flz) =141, if v =1,

A | I S

In view of straightforward considerations, we can see that
v(x) =2" forall x > 0.

In this case,

7" = inf {t Z 0 ‘ U(Xt) = f(Xt)} = T17
i.e., 7% is the first hitting time of {1}, and

v(z) = lim E, €_T<TIATBj)f<XT1/\TBj) >a™ =E, e f(X,,)] forallz>1,

J—00

where (§;) is any sequence in |z, oo[ such that lim; ., 5; = oc.

O

The following example shows that an optimal stopping time may not exist if (123) is not

satisfied. In this example, the stopping region Z \ W is empty.

Example 3 Suppose that Z = R, X is a standard one-dimensional Brownian motion

starting from x > 0 and absorbed at 0 and r is a constant. In this case, we can see that

o(z) =eV¥* and Y(z) = eV¥* — e VP,

If the reward function f is given by

0, if x =0,
f(l‘) - { —2V/2rx

e if z >0,

then we can see that

e VT if x> 0.

_——
U(x):{o, if £ =0,

In particular,
v(z) = lim E, [efr(TajATﬁj)f(XTaj/\Tﬂj)] for all > 0,

J—00

where (a;), (5;) are any sequences in |0, oo[ satisfying (160), and there exists no optimal

stopping time.
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The following example shows that an optimal stopping time may not exist if f # f. In
particular, the first hitting time 7* of the stopping region Z \ W may not be optimal.

Example 4 Suppose that X is a standard Brownian motion, namely, Z = R and dX; = dW},
and that r = 3. In this context, it is straightforward to verify that

p(x)=e® and Y(z)=e".

Also, consider the reward function

0, ifz<0,
fle) =<1, ifze]o1],
2, ifa>1,

which is not upper semicontinuous. In this case, we can see that

ev, if x <0,
v() = Chet 4 et ifae]0,1],
2, if 2> 1.

Given an initial condition x < 1 and an associated solution S, to (1), we note that
=mf{t>0] v(X;) = f(Xy)} =inf{t >0 X,>1}

defines an (F;)-stopping time because we have assumed that the filtration in S, satisfies the
usual conditions. However, X« =1, P,-a.s., and

E, [e_”*f(XT*)} =e" ! <u(r) forallz< 1.

In view of these considerations, we can see that there is no optimal stopping time for initial
conditions x < 1. 0

The final example that we consider illustrates that a characterisation such as the one
provided by (152) in Corollary 15 has a local rather than global character.

Example 5 In the context of the previous example, we consider the reward function
e, if x <0,

f@) =41, if z € [0,1],
1+ (z—1)2 ifz>1,

e’, if v <0,
S if 7 € [0,1],
—(z—2)%7®, ifox>1



implies that the function f/1 is strictly increasing in | — 0o, 0] and strictly decreasing in
10,00[. A first consideration of the associated optimal stopping problem suggests that the
value function v could identify with the function u given by

e’ if v <0,
u(z) =<1, if x € [0,1],
L+ (x—1)% ifzx>1

In particular, we can check that

u_x) > min{%,w} for all z,y € R.

(
u(y) (y) " ¥(y)

However, the function u is not excessive because

1 1 1
Lu(dx) = éu”(dx) — éu(:p) dxr = —6p(dx) — 5 (Lo, (2) + 2(z — 2)1 o((x)) da,
where 0y is the Dirac probability measure that assigns mass 1 on the set {0}, which implies
that
Lu(fe,d]) >0 foralll<c<d<2,

and suggests that [1,2] should be a subset of the waiting region W. In this example, the
value function v is given by

ea:’ lf.T < 0,
1, if z € [0, ay],
v(x) ~ 931 a—zx lo—ar+z (161)
lem—r 4 Lo , if x € a, a, ],
1+(3;_1)2, if x > a,,

where

al:1+\/§+21n(\/§—1>20.651 and a, =1+ 2~ 2.414.

These values for the boundary points a;, a, arise by the requirements that a; € |0, 1], a, > 2
and v should be C*! along a;, a, (see Corollary 18), which are associated with the system of
equations

a=a,+2In(a, —2),
atf —4a® +4a? — 1 = (a, — 1) (ar—l—\/§> <ar—1+\/§> = 0.
In particular, we can check that the function given by the right-hand side of (161) satisfies

all of the requirements of the verification Theorem 13.(II) and therefore identifies with the
value function v. O
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Appendix: pasting weak solutions of SDEs

The next result is concerned with aggregating two filtrations, one of which “switches on” at
a stopping time of the other one.

Theorem 19 Consider a measurable space (2, F) and two filtrations (H:), (Gi) such that
Hoo UGy C F. Also, suppose that (G;) is right-continuous and let T be an (H,)-stopping
time. If we define

Fr={A€H VG| AN{t <7} €MV Gy and

AN{s <7} €HV Gy for all s €0,1]}, (162)
then (Fy) is a filtration such that
Frie=Hre VG forallt>0 (163)
and
Fine = Hine VGo  for allt > 0. (164)

Proof. First, it is straightforward to verify that
H, CF, and Gy C F, forallt>D0. (165)

To prove that (F;) is indeed a filtration, we consider any times u < ¢ and any event A € F,,.
Using the definition of F,, we can see that

An{t<ti=An{u<tin{t <t} €H, VGV H: CHV Go,
AN{s<7}eH, VG, s CH; VG, forallse]|0,ul

and

An{s<t}=An{u<r}in{s<7}eH, VG VH; CH, VG, forallscelu,t].

It follows that A € F;.
To establish (163), we first show that G, C F,,4, which amounts to proving that, given
any t > 0 and A € G,

An{r+t<u}=An{r<u-—t}eF, forallu>D0. (166)
To this end, we note that

An{r<u—-t}n{u<r}=0€H,VGy forallu>D0.

51



Also, given any s,u > 0 such that s € Ju — ¢, ul,
An{r<u—-t}n{s<7r}=0€H,V Gu_s,
while, given any s,u > 0 such that s € [0, u — ],
An{r<u—t}n{s<7t}=An{s<7<u—t} €eH, + VG CH,VGy_s.

These observations and the definition (162) of (F;) imply that (166) holds true and G; C F. .
Combining this result with the fact that H,., C F,.4, which follows from (165), we can see
that H, 1, V G C Fryy.

To prove that F, .y C H.y; V G;, we consider any A € F,.,, and we show that

An{r+t<u}eHH,VvG forallu>0. (167)

Since AN{7+t<u} e Fgforallu >0, AN{r < u} € Fyzyy for all u > 0. Combining this
observation with the definition (162) of (F;) we can see that

An{r<ua}n{s<7} € HzgtVGars forallu>0and s <u+t. (168)
In particular,
An{a—e<7<u} € HztV Gy forallu>0andee]l0,ul.

In view of this result, we can see that, given any u > t,

jlu—1) (j+1)(u—t)}

n—1
Aﬂ{7+t§u}:UAﬂ{7§T§ EHqutJFM.
Jj=0 "

n

It follows that

An{r+t<u} e ﬂ'Hu\/QHM:'Hu\/Qt for all u > t,

n=1

the equality being true thanks to the right continuity of (G;). Combining this result with
the fact that
Aﬁ{7'+t§t} GHt\/gt,

which follows from (168) for u = s = 0, we obtain (167).
To prove (164), we first note that (165) implies that Hinr V Go C Finr. To establish the
reverse inclusion, we consider any A € F;,, and we show that

AN{tAT<u} €eH,VGy forall u>D0.
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Since AN{t A7 < a} € F; for all @ > 0, the definition (162) of (F;) implies that
An{tnr<u}n{s<7}€HsVGy_s foralu>0andse]|0ul (169)
For & = s = 0, this implies immediately that
AN{t AT <0} € HoV Go. (170)
Also, it implies that
AnN{a—e<7<u}eH;VG. foraluel0tfandee]|0,u
In view of this observation, we can see that
n—1 . .
An{trnT <u} = UAF‘I{% <7< @} G’HU\/Q% for all u € 0, ¢].
=0
It follows that
An{tnT<u}=An{r<u} e ﬁ%uvg% =H,V Gy foralluel0i

n=1
because (G;) is right-continuous. In particular, this implies that

Aﬁ{T<t}ZUAm{T§nLHt}€Ht\/go

n=1
Combining this observation with the fact that
An{t <7} eH, VG,

which follows from (169) for u = s = t, we can see that

An{tAnT <u}=A=An{r <t}UAN{t <71} €e H;VGy CH,V Gy forall u>t. (171)
From (170)—(171), it follows that A € Hiar V Go. O

The following result is concerned with the pasting of two stopping strategies, in particular,

two weak solutions to (1), at an appropriate stopping time.
Theorem 20 Consider initial conditions xg,r1 € intZ and stopping strategies

(8%, 7) = (90, F°, FO. B0 W, X%),7) and (S, 7') = (@, F', FLBL W', X7), 7).

Given any event A € FY such that A C {X%1;7° < oo} = 21}, there exists a stopping
strateqy (Sgy, 7O = ((Q,}",}},IP’M, VV,X),TO’l) € Ty, such that

J(Sgy, 701 = J(S?

xQo?

)+ ES, [ 001, | I8, 7, (172)

where 7. is the (F?)-stopping time defined by 79 = 701 4c + 00l 4.
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Proof. Without loss of generality, we assume that {X% = 21} # 0. For j = 0,1, we define
on the product space (Q, F, IP’xO) (QO x QY Flo FL IP’O ®PL ) the independent filtrations
(F7) given by F? = ® {Q', 0} and Fl = {QO 0} ® .El, the (.7-"]) -stopping times 7/ given
by 7 (w® w!) = 77 (w]) the (F})-Brownian motions W7 given by Wi (W, w!) = W (w?), and
the continuous (F/)-adapted processes X7 given by X/ (w° w') = XJ (w9). Also, we denote
by TJ the first hitting time of {y} by X7, fory € T and j = 0, 1. In particular, we note that

each of the collections (Q, F,Fi ' Puys Wi ,XJ) is a weak solution to the SDE (1) with initial
condition ;.

We next consider the filtration (F;) that is defined by (162) in Proposition 19 above with
(Hy) = (FD), (G)) = (F}) and 7 = 79, so that

Fropr = Foo, VFL and  Fipzo = Foso V Fo, (173)

F

and we define . .
A=Ax Q' and A= A°x Q! (174)
The independence of (F7), (F}) and (164) imply that the processes (W0 ., ¢ > 0) and
((Wt/\ 0)2 —t A0, t>0) are (F;)-martingales. On the other hand, (173) and the fact that
(F0), (F}) are independent imply that W1 is an (Fro)- Browman motion. Since (t—7°)" is
an (Fzo4)-stopping time for all t > 0 and 74 (t —7°)" = 7%V ¢, the time-changed processes
(W} .o+, t > 0) and ((W(lt q00)? = (t=7°)%, t > 0) are (Froy,)-martingales, while the

(t=70)
(Fsov¢)-adapted process (X Lo, 1> O) satisfies

(t=79)

-7+t (t=70)* 5 5
Xl =t / b(X) ds + / o (X1 V!
0 0
t

t
:1'1‘|“/ b(X(ls,;.O)Jr) d(s_%0)++/ O(X(s 70)+ )dWs 70)+
0 0

t t
=T + / 1{70<3}b(X 8 7.0 ) dS —+ / 1{7:0S3}0-(X(18—’7'0)+) dWSI. (175)
0

In fact, all of these processes are (.Ft):adapted. To see this, we consider, e.g., the process
(X(lt I 0), and we note that {X(ltf%o)+ € C} € Froy,; implies that

{X(L@ﬁ ceCyn{fvt<u}eF, foralu>D0.

Therefore,

o1 ~0 Sl o ~0 nt
{X(tiﬁzO)-’» € C} m{T < t} = U{X(t77'10)+ € C’}ﬂ {T Vi S 7’L—~|»1} € E

n=1

It follows that

(Xl €CY = {XL € CYN{t <7} U{X] oo € CYN{F <t} € F,
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because X} = x; is a constant, which establishes the claim. Furthermore, (W(L%O)Jr, t>0)

and ((Wt 70)+) (t —7°)F, t > 0) are in fact (F,)-martingales. Indeed, given s < ¢, we
can check e.g., that

IE:L“o [Wé_;())+ ‘ -7:3]
= IE:L“o [Emo [W&—%O)Jr | -F%O\/s} ‘ -Fs] = Eg:o [W(ls_;()ﬁ | Fs| = W(ls_;())ﬁ (176)

the last equality following because (W(L%O)Jr, t > 0) is (F;)-adapted. For future reference,
we also note that

B [F0i7 . 7]
= Eq [Ewo [WT?OW(L%Oﬁ |-7:%0\/s} | ]:8} = [W Ws 7o)+ |-7:s] W/\TOWS FO)+- (177)

In view of (173) and (174), the process Y defined by Y; = 1317104 is (Froq,)-adapted.
Using arguments similar to the ones we developed above, we can see that the time-changed
process given by

Yo+ = 14100510, 20,

is (F;)-adapted, which proves that the random variable (7°47!)1 ;4001 ;. is an (F;)-stopping
time. It follows that the random variable

0 =min {714 +ooly, (F*+ 7)1 4001} =71 + (70 + 7)1, (178)

is an (F;)-stopping time.
To proceed further, we define

Wi = Whso + Wi_so)r
and
Xi = Xz?/\i-o + (XE - XBO) Lielgzocyy + (X(ltf%oﬁ - 901) Lil{zo<n
= X{1gcr0y + XP1 gL pocyy + X royr Lil o<y, (179)

and we note that . .
Xoon = X%1 5 +Xh1; (180)

Given y € Z, if we denote by T, the first hitting time of {y} by X, then
Tl =T;, Telz =T, (181)
Taz=(F+T1) 15 and Tyt = (4 T}) 14 (182)
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because 711 < (T + T4)1;. Since W is the sum of two (JF;)-martingales, it is an (F)-
martingale. Furthermore, since

- 2 ~ 2 ~ ~
W2 —t= {(W,?Mo) —tA %0} + {(Wé_%m) —(t— %0)+} + 2W 20 Wi _s0)4,

and the three processes identified on the right-hand side of this identity are (F;)-martingales
(see (176)—(177)), the process (W2 —t) is an (F;)-martingale. From Lévy’s characterisation
theorem, it follows that W is an (F;)-Brownian motion. Also, combining (179) with (175)
and the fact that X° satisfies the SDE (1), we can see that

Xo=at [ ooy b(£9) ds + / oy () 1P
0 0
1z /t Liro<b(XY) ds + 14 /t Lio<qo (X) dW]
0 0
#0 [ Apcab(Rlae) s 1 [ Ao (K ) i
=z + /t b(X,)ds + /ta(Xs) dWs.
0 0
This calculation and the preceding considerations show that

(Sx077071) - ((Q’f’ft’]P)me/’X)’Tovl) S 7;0.

To complete the proof, we use the definition (5) of A, (178)—(179) and (181)-(182) to
calculate

[

0

1A 00pr, 1, (X) =154 r(X,)ds =15 [A%O(XO) T A Fing (X1
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In view of this observation, (173)-(174), (178)-(182) and the independence of (F?), (F}),
we can see that

J<Smoa 7_0,1) _ Emo |:€_A7-0,1ATQATB (X)f(XTO’ll\Ta/\Tﬁ)l{TO’1<OO}:|

5.,

—A FOATY /\T0

st
_AOXO A1AT1AT1 h

+ Eaﬂo f(X~1/\T1/\T1)1{Tl<oo} | \/ Fo

0 —A OATO/\TO
= Emo [ f(XTO/\TO/\TO)lAC1{TO<OO}:|

— —A; FINTIAT b
‘|‘Em0 |: Ao X0 |: 1 é f(Xll/\Tl/\Tl)l{T looo} |.F0:| :|
—A

“Artnrgary ()

J(Sgo, TAc) + Emo |: 7'0 1A] E:Bo |:€ f<X11/\T1/\T1)1{T <OO}:|

_ —A 1t (X
J(Sgo, TAC> + EO |:€ ATO(XO)]_A] E:}n [e AT Té f(Xll/\T1/\T1)1{T <oo}:|
and (172) follows. O

Iterating the construction above, we obtain the following result.

Corollary 21 Fix an initial condition v € int Z and any distinct points aq,...,a, € intZ.
Given stopping strategies

(89, 7°%) = ((Q°, F°, 7, B, WP, X°),7°)  and (S, 7") = (@, F, F, P, W' X"),71),

1=1,...,n, define A = {Xgol{To@o} €{ay,..., an}} € FY%. Then, there exists a stopping
strateqy (Sy, T) € Ty such that

J(S ) TAc + ZEO [ a 1{X0 —al}] J(Sii’Ti)a

where 79 is the (F})-stopping time defined by 5. = 71 4c + 00l 4.
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