
HAL Id: hal-00719964
https://hal.science/hal-00719964v1

Submitted on 23 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous Online Learning of Velocity Kinematics on
the iCub: a Comparative Study

Alain Droniou, Serena Ivaldi, Vincent Padois, Olivier Sigaud

To cite this version:
Alain Droniou, Serena Ivaldi, Vincent Padois, Olivier Sigaud. Autonomous Online Learning of Velocity
Kinematics on the iCub: a Comparative Study. IEEE/RSJ International Conference on Intelligent
Robots and Systems, Oct 2012, Vilamoura, Portugal. To appear. �hal-00719964�

https://hal.science/hal-00719964v1
https://hal.archives-ouvertes.fr


Autonomous Online Learning of Velocity Kinematics on the iCub: a

Comparative Study

Alain Droniou, Serena Ivaldi, Vincent Padois and Olivier Sigaud

Abstract— In the last years, several regression algorithms
have been proposed to learn accurate mechanical models of
robots. Comparisons are proposed at the conceptual level or
through the use of recorded databases, but they deliver limited
conclusions with respect to the real performance of these
algorithms in their true context of use, i.e. online learning on the
real robot interacting with its environment, within a feedback
control loop. In this paper, we provide an empirical study
of three state-of-the-art regression methods through online
learning on the iCub robot holding a tool. We show that
they can effectively learn a visuo-motor kinematic model for a
simple visual servoing task in a very limited time (few minutes),
without making any a priori hypothesis on the geometry of
the robot and its tool. Furthermore, we can draw from the
results some stronger conclusions about the comparison of the
algorithms than previous studies based on databases.

I. INTRODUCTION

The increasing complexity of tasks addressed by humanoid

robotics requires accurate geometrical and mechanical mod-

els which can be difficult to obtain in practice, especially

when they are required to use a variety of tools. In such

situations, robot controllers cannot purely rely on hard-coded

models, even when precise CAD models of the robot are

available [1]. The main reason for this is that kinematic

controllers are not usually aware of the real dynamics of

the robot. They rely on decentralized joint level controllers

which account for rigid-body dynamics and non-linear ef-

fects as unknown disturbances and thus do not act as pure

integrators. Also, they assume that geometrical/mechanical

models do not change over time, which does not fit in a

real-life scenario where the robot may change its kinematics

properties1, due to wear or malfunction. A possible strategy

consists in letting the robot learn autonomously its own

models, for example by interacting with the environment

through its end-effectors (its hands in the simplest case), and

exploiting a visual feedback to improve its accuracy while

performing a task. Here we focus on the case where the

geometrical properties of the tool and the environment are

not known in advance.

All the authors are with: Université Pierre et Marie Curie, Institut des
Systèmes Intelligents et de Robotique - CNRS UMR 7222, Pyramide Tour
55 - Boite Courrier 173, 4 Place Jussieu, 75252 Paris CEDEX 5, France.
Contact: firstname.lastname@isir.upmc.fr

This work is supported by the French ANR program (ANR 2010
BLAN 0216 01 - http://macsi.isir.upmc.fr) and partially by the RTE
company through its chair “Robotics Systems for field intervention in
constrained environments” hold by Vincent Padois.

1For example, elastic tendons actuating the joints may loosen in time,
inducing small errors in the kinematics models which would be generally
difficult to detect and automatically compensate for.

Fig. 1. Experimental setup: the humanoid robot iCub, holding an unknown
tool, ideally represented by the green ball on the stick, reaching for a target,
represented by the red ball. Motion capture markers used for recording the
experiments are also visible.

In such contexts, Machine Learning (ML) techniques su-

persede classical approaches grounded on accurate exhaus-

tive modeling [2], [3], [4]. However, the application of such

techniques to online learning embedded on a real robot

performing a visuo-motor task are not so common. More

importantly, performance comparisons of such techniques

under these more challenging experimental conditions are

very rare. Comparisons relying on recorded databases can

only convey limited conclusions on the practical applicability

of such techniques in real scenarios, because they do not

address several additional difficulties: the potential danger

of any inadequate physical movement from the robot (for

itself and for the environment), the necessity to deal with

collisions and visual occlusions, the presence of uncontrolled

noise at different sensory and motor levels, the difficulty to

perform reproducible experiments with an accurate timing,

the limited time available for learning, etc.

In this paper we propose such a comparison in the context

of the incremental and autonomous learning of the velocity

kinematics of a humanoid robot. We show how it is possible

to make the robot learn its visuo-motor velocity relationship

for a visual servoing task in a limited time and with a final

accuracy which outperforms the hard-coded model derived

from the CAD description of the robot. Our approach stems

from the analysis of [5] and [6]. The former explored the

possibility of learning the velocity kinematics of a simulated

robot, comparing two supervised ML algorithms, namely

LWPR and XCSF. The latter added a third algorithm, ISS-

GPR, and performed a detailed comparison using a database

recorded from a real robot performing a visual servoing task.

Here we further investigate the performance of the algorithms

in an on-line task where learning is performed from scratch.



In particular, we study to what extent conclusions drawn

from recorded databases still hold in this setting. We also

investigate the generalization capability of the three algo-

rithms and evaluate the robustness of the parameter settings

that we use to diverse learning contexts.

The paper is organized as follows. In Section II, we de-

scribe the visual servoing problem, and give a brief overview

of the regression algorithms. In Section III, we describe the

robotics setup and the design of experiments, focusing on

the technical issues that have to be solved to perform an

online comparison. In Section IV, we empirically compare

the learning algorithms under several criteria: the time they

need to learn a satisfactory model, the accuracy of that

model, their generalization capability when evaluated in a

different context and their robustness to parameter setting.

Finally, in Section V, we highlight our main conclusions

and sketch an agenda of future studies.

II. METHODS

In the paper we derive a closed-loop controller for a

generic end-effector, whose inverse kinematics is learnt from

experience, based on the visual feedback from the cameras

of the robot. We denote by ξ ∈ R
p the Cartesian pose of

the end-effector expressed in a reference frame attached to

the cameras (e.g. the head), and by ξ⋆ ∈ R
p the desired

pose to attain. The controller drives the end-effector towards

a desired target using ξ̇⋆ = λ (ξ⋆ − ξ), where λ > 0 is

a positive definite matrix. Desired velocities ξ̇ ∈ R
p in the

Cartesian space are related to joint velocities q̇ ∈ R
n through

the Jacobian matrix J ∈ R
p×n, s.t. ξ̇ = J(q)q̇. When the

kinematic chain is redundant with respect to the task, the

joint velocities can be found using the Jacobian pseudo-

inverse q̇ = J# (q)ξ̇ + P J(q)q̇0, where q̇0 optimizes a

secondary task projected, using P J(q), in the null space

of the Jacobian [7]. The Jacobian matrix J (q) is learnt

incrementally and on-line. As a follow-up of the comparison

presented in [6], the following regression algorithms are used

through our experiments.

1) LWPR: The Locally Weighted Projection Regression

(LWPR) algorithm is a recursive function approximator, using

a sum of linear models weighted by normalized Gaussians,

also called receptive fields. It usually provides accurate

approximation along trajectories in very large spaces at low

computational cost [8].

2) XCSF: XCSF is a function approximation algorithm

based on Learning Classifier Systems [9]. XCSF manages

a population of rules, called classifiers, which contain a

condition part and a prediction part: precisely, the classifiers

form a population that clusters the condition space into a set

of overlapping prediction models [10].

3) ISSGPR: The Incremental Sparse Spectrum Gaussian

Process for Regression (ISSGPR) is based on a regularized

least square method with random features [11]2. It can be

2 ISSGPR is also referred as IRFRLS [6], [2]

seen as an approximation of the Fourier transform of the

function to learn, which allows the exploitation of some

regularity properties to make the learning process more

robust and simpler. The quality of predictions depends on

the number D of features which are the learned Fourier

coefficients.

It is worth noticing that XCSF learns directly the velocity

kinematics Jacobian matrix J(q) whereas LWPR and ISSGPR

learn the forward kinematic model ξ = f(q). Therefore, in

their case the Jacobian is retrieved after derivation.

III. ROBOTIC SETUP

Experiments are carried out on the iCub, a 104cm high

full-body humanoid platform [12]. We use the head and

the arm for a total of 6 DOF: pitch and yaw joints in

the neck, the 3 DOF of the shoulder and the elbow. Thus

q = [qh, qa]
⊤, with qh ∈ R

2 , qa ∈ R
4. The kinematic

chain is redundant with respect to the task space, which,

considering only positions, is such that ξ ∈ R
3. As in [13],

a gaze system ensures that the target is always visible by

the robot cameras, controlling the head independently of

the arm with a simple law: q̇⋆
h = Kξ⋆ + KDξ̇

⋆
, which

asymptotically brings the error to zero. As in [5], [14], a

Regularized Damped Least Squares Pseudo-Inverse is used

to avoid singularities of the arm. At the beginning of the

learning phase, the robot is exploring its space from scratch.

Since the Jacobian J (q) is refined incrementally, the arm

may accidentally collide with the robot’s body or the en-

vironment during the learning phase. To prevent damages,

a joint level impedance velocity controller is used: given

a desired joint velocity q̇⋆, the commanded torque τ at

the joint is computed as the sum of an impedance term

(with fixed stiffness κs and damping κd) and a gravity

compensation torque τg . Precisely, τ = −κs(q−q⋆)−κdq̇
⋆+

τg . The following stiffness-damping values are used for

the arm joints: (0.4, 0.03), (0.4, 0.03), (0.4, 0.03), (0.2, 0.01)
[Nm/deg,Nm/deg/s] for joints 0, 1, 2, 3 respectively

(shoulder and elbow). These values provide a compliant

but not springy behavior during contacts (an evaluation of

the stiffness-damping map for the iCub arm is presented

in [15]). The feedforward torque τg is computed using the

dynamics library iDyn and the CAD dynamical parameters of

the iCub [16]. The end-effector and the target are identified

through an OpenCV-based module in the camera images,

providing their coordinates in the visual reference frames,

(u, v)left, (u, v)right. Their Cartesian position in the 3D space

is then estimated through a stereo reprojection module, based

on a calibration procedure of the cameras. A graphical

representation of the interconnection between the software

modules is shown in Fig. 2.

A. Experimental tasks

We consider three online visual servoing experiments (see

Fig. 3), where the robot is required to reach or track a



Fig. 2. Software architecture used for the online learning experiments.

(a) (b) (c)

Fig. 3. Three contexts for performing the experiments: the first two
pictures show the exploration of two different workspaces during the asterisk
experiments, while the third shows the robot interacting with a human
partner for tracking the target moved randomly in the workspace.

target with the tip of a tool. To generalize over the end-

effector and the target, we use a green and a red ball of

4cm diameter. The green ball is placed on top of a stick,

held by the robot: this emulates an unknown tool used by

the robot as end-effector. We consider a reaching movement

successful when both balls collide. In [5], only the centers

of the balls are considered, and they are emulated in the

simulated environment. In [17], a minimum jerk trajectory

between the centers is the reference for a tracking task, but

is hard-coded in the controller.

The first two experiments consist in performing multiple

reaching point-to-point trajectories, reproducing a star-like

asterisk on a vertical plane. Eight target points are visited

sequentially in a clockwise manner, first pointing outwards

from a centered point then inwards back to the center. To

improve reproducibility of “the asterisk” task, a rigid guide

of about 32× 34cm is used to constrain the target to move

in a vertical plane. In context A (see Fig. 3(a)), the plane is

centered in front of the robot at about 30cm. In context B

(see Fig. 3(b)), the plane is rotated of 45 degrees and shifted

on the right side of the robot, so that the distance between

the target and the head varies between 10 and 35cm, thus

allowing the exploration of a different space. It must be noted

that the target moves between the points, but is manually

guided by a human operator holding a stick with a red ball.

This induces a perturbation to the ideal nominal trajectory,

that is straight lines between the points. This approach is

necessary since the learning process may come with different

solutions to drive the end-effector towards the target, with

variable orientations, velocities etc. which are not predictable

and could damage the robot with rigid setups even if it is

compliant at joint level.

In the last experiment (context C - see Fig. 3(c)) the target

is moved by the human in an unpredictable manner across

the robot’s workspace. This task allows an unconstrained

exploration of the reachable space of the robot, at the price

of a lesser reproducibility.

B. Performance metrics

In order to compare the performance of the learnt model,

we track the Cartesian position of both end-effector and

target through a CodaMotion motion capture system with

active markers3. We interpolate the position of the center

of the balls from two markers attached to the sticks, since

markers directly placed on the balls can be occluded during

contacts and obviously they cannot be placed precisely at

the center of the ball. This solution induces inaccuracies in

the estimation of the center of the balls. Since the latter are

distant 4cm from each other when the balls are in contact,

there is a bias in the evaluation of the recorded trajectory.

A precise quantification of the performance of the task is

difficult to obtain in practice. In [5], the main performance

metrics is the time necessary to draw an entire asterisk

(globally 16 point-to-point movements) in the space, but the

study is performed in a simulated environment. The target

is instantaneously switching from one desired position to

the next, there is no visual occlusion between the hand of

the robot and the target, and there is no physical interaction

between the end-effector and the target. In our study, all these

impairments are met. The green ball (the end-effector) must

physically touch the red one (the target); the latter moves

from one desired position to the next along a trajectory which

is not always perfectly straight in the Cartesian space, since

it must avoid to collide with the arm when it is on the way.

Moreover, during the exploration phase, it is not infrequent

that the hand of the robot occludes the target in the visual

field, which triggers an automated reset of the gaze controller

into a predefined pose of the head, in search of the target.

A similar mechanism is also used whenever the robot is not

able to detect its end-effector, but in this case a coupled

“head-arm reflex” is implemented, which drives both into

an initial position. A similar mechanism is implemented in

[18], inspired by [19]. All these elements cause the duration

of each asterisk to be variable in practice with respect to a

nominal performance, since in each trial minor changes in

the learnt model can trigger one or more undesirable effects.

3www.codamotion.com



C. Parameters of the algorithms

In [6] a comparison among the aforementioned regression

algorithms is presented, with an accurate statistical analysis

of the influence of the parameters on the learning process.

A database recorded from the iCub is used. To summarize,

ISSGPR outperforms XCSF and LWPR in terms of both

speed of convergence and precision. However, the number

of features of ISSGPR has to be suitably chosen in order

to ensure the responsiveness in real-time control, according

to an accuracy/time trade-off. From the same database, we

extract a set of optimal parameters for each algorithm for the

asterisk tasks, which are reported hereinafter.

OPTIMIZED PARAMETERS FOR XCSF, LWPR AND ISSGPR

ISSGPR

Parameter Value

γ 10−6

λ 10−12

D 1000

XCSF LWPR

Parameter Value Parameter Value

∆ 0.1 useMeta true

converConditionRange 0.995 updateD true

minConditionStretch 0.005 penalty 0.001

ǫ0 0.005 penalty 0.2

maxPopulationSize 1500 setInitAlpha 0.01

startCondensation 500 setInitD 50

1 2 3 4 5

Trials

0

200

400

600

800

1000

A
st

e
ri

sk
d

u
ra

ti
o
n

(s
)

Time necessary to perform an entire asterisk

ISSGPR

LWPR

XCSF

KDL

Fig. 4. Time necessary to perform an entire asterisk, trial after trial, for
LWPR, XCSF, ISSGPR and using the KDL model.

IV. EXPERIMENTAL RESULTS

A. Learning from scratch

Once a suitable tuning of the parameters is found, as

described in Section III-C, the set of optimal parameters can

be used for learning from scratch, i.e. without bootstrapping

the learning session with a local, demonstrated or initial

model. The asterisks experiments are performed in context A

(see Fig. 3(a)). As in [5], the performance metrics is the

asterisk duration, i.e. the time necessary to execute an entire

0 100 200 300

100

200

300

LWPR

0 100 200 300

100

200

300

ISSGPR

0 100 200 300

100

200

300

XCSF

0 100 200 300

100

200

300

KDL

Fig. 5. Trajectory of the 5th asterisk of the learning process using LWPR,
XCSF, ISSGPR and the KDL model (used as baseline). The red dots represent
the target points and have approximately the same size than the ball.

task. This performance is recorded after each new asterisk.

Fig. 4 shows the comparison of the performance of the three

algorithms while executing the asterisk task, averaged over

four learning sessions. The performance of the KDL
4 model,

i.e. the CAD model provided with the iCub software libraries,

is also shown. Of course, this latter performance does not

change since this model does not improve over time. On

average, the time necessary to perform an entire asterisk

task gradually decreases over learning. ISSGPR improves

its performance faster than LWPR and XCSF, and finally

performs better than its competitors and the KDL model.

Fig. 5 shows the corresponding trajectory after the fifth

asterisk. Due to many noise and perturbation phenomena

that cannot be prevented in robotics experiments on a non

industrial and complex robot such as iCub, these trajectories

are still far from straight, even with the KDL model.

B. Generalization capabilities

In order to highlight the generalization capabilities of the

regression algorithms, we carry out the following experiment.

We perform a learning session of each algorithm for precisely

10 minutes, where the task is to track the target along

the asterisk in context A. Then a simple control session

is performed in context B (see Fig. 3(b)) for 10 more

minutes exploiting as such (i.e., learning is disabled) the

model previously learnt in context A. Experimental results

are shown in Fig. 6. As expected, LWPR and XCSF fail,

since their generalization capability is very limited due to

the use of many local models. Conversely, ISSGPR is able to

perform the task in the “unknown” space. Since it learns the

coefficients of the Fourier approximation of the model, it is

4www.orocos.org/kdl



less sensitive to the locality of the training data. Remarkably,

this property allows also performing fast tracking in unex-

plored spaces, as described in context C. Fig. 8 show the

performance of ISSGPR in tracking a target moved manually

by the human at different velocities: since the human moves

the target unpredictably, the explored space during tracking

is different from the ones used for the learning. Besides a

small delay (mostly due to vision processing) the tracking is

quite fast and precise, especially given the reduced training

before (less than 10 minutes).

50 100 150 200 250 300 350 400 450
750

800

850

900

950

1000

1050

1100

1150

1200
LWPR

50 100 150 200 250 300 350 400 450
800

850

900

950

1000

1050

1100

1150

1200
ISSGPR

50 100 150 200 250 300 350 400 450
800

850

900

950

1000

1050

1100

1150

1200
XCSF

Fig. 6. Generalization capability of the three algorithms. Performance of
a simple controller in context B, exploiting the models obtained after 10
minutes of a learning session in context A. Only ISSGPR manages to perform
an entire asterisk (it performed 5 sequences in 10 minutes), whereas XCSF

and LWPR were not even able to finish one sequence. More precisely, XCSF

executed only 4 reaching movements and LWPR only 1 out of 16.

150 200 250 300 350 400 450 500 550
750

800

850

900

950

1000

1050

1100

1150

1200
LWPR

150 200 250 300 350 400 450 500 550
750

800

850

900

950

1000

1050

1100

1150

1200
ISSGPR

150 200 250 300 350 400 450 500 550
750

800

850

900

950

1000

1050

1100

1150

1200
XCSF

Fig. 7. Performance of the three algorithms when learning is performed
in context B with parameters tuned for context A.

0 20 40 60 80 100 120

Time (s)

−600

−400

−200

0

200

400

600

800

1000

P
o
si

ti
o
n

(m
m

)

Tracking of a manually moved target

Target

End-effector

q̇max = 30q̇max = 15 q̇max = 45

z

y

x

Fig. 8. Trajectories of the end-effector while tracking a target moved
randomly by a human across the entire workspace, at different velocities.
Only ISSGPR is shown.

C. Robustness of parameters

A general critique to the application of regression methods

in robotics is that most of the state-of-the-art algorithms

require a practical ’hands-on’ expertise, especially in the

choice of the numerous parameters affecting the performance

of the learning process and in the amount of data which

are required to attain a desired accuracy. The goal of the

following experiment is to show that even if the parameters

of the algorithms are tuned on a subset of the reachable

workspace and are optimized for learning in that particular

space, they are equivalently good for learning in another

subset of the robot workspace. In other terms, we test the

robustness of the learning algorithms with respect to the

parameters which are tuned for a portion of the workspace

which is different from the one explored during learning. The

experiment consists in learning from scratch the visuo-motor

Jacobian, performing the asterisk task in the space of context

B with the parameters which are tuned for the context A. The

former context is generally harder to explore: being closer

to the robot, it exacerbates visual occlusions and contacts is-

sues. Results are reported in Fig. 7. Overall, the performances

of the learning algorithms are mildly affected by the context

switch. This suggests that the parameters optimization does

not necessarily requires a pervasive sampling of the state

space explored during the online learning task.

D. Video

The effectiveness of the proposed approach is also evident

from the video attached to the paper. The iCub performs

the asterisk experiment and is able to incrementally learn

its visuo-motor kinematics relationship with the three algo-

rithms in a visual servoing task: the video shows a compar-

ison among three sessions (with ISSGPR, LWPR and XCSF

respectively) where learning is from scratch. The time to

perform the first asterisk is coherent with the results shown in

Fig. 4. For the selected trials, we have 140, 190, 280 seconds

respectively. ISSGPR performs better than the alternative ML

algorithms: remarkably, only few seconds are necessary to

have a model sufficiently good to track the desired target

with roughly straight paths. We also show its performance in

tracking a target moved manually by the human at different

velocities, as in Fig. 8. The full video is available at http:

//macsi.isir.upmc.fr.

V. CONCLUSIONS AND FUTURE WORK

With a suitable tuning, state-of-the-art ML algorithms

can be readily used in combination with closed-loop con-

trollers in online robotics experiments. In this work, we

show that after a short training session (e.g. five asterisks,

corresponding to less than 10 minutes on average), the

learnt velocity kinematics provided by regression algorithms

performs comparably with the one based on the mechanical

model of the robot. A longer training session may further

improve the performance, as suggested in [5] for simulated



data. The numerous sources of perturbations during the exe-

cution of the trajectories induce a lot of noise which makes

the comparison harder, and put additional complications to

provide statistical significance tests, as is done in [6] on a

recorded database.

An interesting point raised by this work is that com-

paring ML algorithms for obtaining mechanical models of

a robot through online interaction experiments may not

be as straightforward as on databases of recorded data.

Indeed, similar works [20] circumvent some experimental

issues by simulating the target to track in the operational

space. However such approaches require to hard-code in

the architecture the knowledge of the target trajectory. Thus

a kinematics model of the robot is necessary to project

the target in its workspace, which biases the performance

analysis. Conversely, in our approach the learning process

relies on a pure visual feedback and a physical interaction

between end-effector and target. Occlusions and collisions

cannot be avoided, and limit the repeatability of the trials.

We plan to improve the experimental protocol to avoid these

issues. First, we will implement predictive models which can

avoid resetting both arm and head once the end-effector or

the target are occluded or disappear from the visual field.

Then, we will add a mechanism to better handle self-body

contacts and generate escape trajectories when the robot

collides with the environment.

The supplemental video attached to the paper shows the

difficulties of the experimental setup, but also highlights the

fast convergence and the performance of the algorithms in

an online control task. In accordance with the results of [6],

ISSGPR performs better than LWPR and XCSF with respect

to all the criteria studied here. Indeed, when learning from

scratch, ISSGPR is the fastest in terms of time of convergence

and the most accurate in terms of function approximation. It

also benefits from a far better generalization capability over

a different workspace and it is not too sensitive to the set of

parameters used to perform the experiments.

Future studies will investigate whether ISSGPR still out-

performs when the dimensionality of the problem increases

(both in terms of complexity of the task and number of

controlled DOF in the robot). With the use of NIPALS as

a regression method [21], we expect LWPR to learn more

compact models that may make a difference when addressing

whole body control.

Given the encouraging outcomes of our empirical studies,

we plan to perform similar experiments for learning the

robot dynamics during interactions with the environment.

We will thereby confront the algorithms to less regular

functions. Previous works in simulation [22] and with

recorded databases [23], [24] provide a baseline for these

investigations. However since the iCub is only endowed

with proximal force/torque sensors and not with joint torque

sensors, additional challenges in the definition of a suitable

experimental protocol will be faced.

REFERENCES

[1] O. Sigaud and J. Peters, “From motor learning to interaction learning
in robots,” in From Motor Learning to Interaction Learning in Robots,
O. Sigaud and J. Peters, Eds. Springer, 2010, ch. 1, pp. 1–12.

[2] O. Sigaud, C. Salaün, and V. Padois, “On-line regression algorithms
for learning mechanical models of robots: a survey,” Robotics and

Autonomous Systems, vol. 59, pp. 1115–1129, 2011.
[3] M. Hoffmann, H. Marques, A. Arieta, H. Sumioka, M. Lungarella,

and R. Pfeifer, “Body schema in robotics: A review,” IEEE Trans.

Autonomous Mental Development, vol. 2, no. 4, pp. 304–324, 2010.
[4] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a

survey,” Cognitive Processing, pp. 1–22, 2011.
[5] G. Sicard, C. Salaün, S. Ivaldi, V. Padois, and O. Sigaud, “Learning

the velocity kinematics of iCub for model-based control: XCSF versus
LWPR,” in Int. Conf. on Humanoid Robots, 2011, pp. 570 – 575.

[6] A. Droniou, S. Ivaldi, P. Stalph, M. Butz, and O. Sigaud, “Learning
velocity kinematics: Experimental comparison of on-line regression
algorithms,” in Robotica, 2012, pp. 15–20.

[7] L. Sciavicco and B. Siciliano, Modelling and Control of Robot

Manipulators, 2nd ed. Springer, 2005.
[8] S. Vijayakumar and S. Schaal, “Locally weighted projection regres-

sion: An O(n) algorithm for incremental real time learning in high
dimensional space,” in Int. Conf. on Machine Learning, 2000.

[9] S. W. Wilson, “Function approximation with a classifier system,”
Genetic and Evolut. Comp. Conf., pp. 974–981, 2001.

[10] M. V. Butz, P. L. Lanzi, and S. W. Wilson, “Function approximation
with XCS: Hyperellipsoidal conditions, recursive least squares, and
compaction,” IEEE Trans. on Evolutionary Computation, pp. 12:355–
376, 2008.

[11] A. Gijsbert, “Incremental learning for robotics with constant update
complexity,” Ph.D. dissertation, Italian Institute of Technology, 2011.

[12] L. Natale, F. Nori, G. Metta, M. Fumagalli, S. Ivaldi, U. Pattacini,
M. Randazzo, A. Schmitz, and G. G. Sandini, Intrinsically motivated

learning in natural and artificial systems. Springer-Verlag, 2012, ch.
The iCub platform: a tool for studying intrinsically motivated learning.

[13] L. Natale, F. Nori, G. Metta, and G. Sandini, “Learning precise 3D
reaching in a humanoid robot,” in Int. Conf. of Development and

Learning, 2007, pp. 1–6.
[14] S. Chiaverini, O. Egeland, and R. K. Kanestrom, “Achieving user-

defined accuracy with damped least-squares inverse kinematics,” in
Int. Conf. Advanced Robotics - ICAR, 1991, pp. 672–677.

[15] B. Berret, S. Ivaldi, F. Nori, and G. Sandini, “Stochastic optimal con-
trol with variable impedance manipulators in presence of uncertainties
and delayed feedback,” in Int. Conf. on Intelligent Robots and Systems,
2011, pp. 4354–4359.

[16] S. Ivaldi, M. Fumagalli, M. Randazzo, F. Nori, G. Metta, and
G. Sandini, “Computing robot internal/external wrenches by means
of inertial, tactile and F/T sensors: theory and implementation on the
iCub,” in Int. Conf. on Humanoid Robots, 2011, pp. 521–528.

[17] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
space control: A theoretical and empirical comparison,” Int. Journ. of

Robotics Research, vol. 27, no. 6, pp. 737–757, 2008.
[18] A. Baranes and P.-Y. Oudeyer, “Intrinsically motivated goal explo-

ration for active motor learning in robots: a case study,” in IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, 2010.
[19] N. Berthier, D. Mccall, R. Clifton, and D. Robin, “Proximodistal

structure of early reaching in human infants,” Experimental Brain

Research, vol. 127, pp. 259–269, 1999.
[20] B. Bocsi, P. Hennig, L. Csato, and J. Peters, “Learning tracking control

with forward models,” in Int. Conf. on Robotics and Automation, 2012.
[21] H. Wold, “Soft modelling by latent variables: the non-linear iterative

partial least squares (NIPALS) approach,” Perspectives in Probability

and Statistics, pp. 117–142, 1975.
[22] J. S. de la Cruz, D. Kulic, and W. Owen, “Online incremental learning

of inverse dynamics incorporating prior knowledge,” in Int. Conf. on

Autonomous and Intelligent Systems, 2011.
[23] A. Gijsberts and G. Metta, “Incremental learning of robot dynamics

using random features,” in Int. Conf. on Robotics and Automation,
2011, pp. 951–956.

[24] D. Nguyen-Tuong and J. Peters, “Using model knowledge for learning
inverse dynamics,” in Int. Conf. on Robotics and Automation, 2010.


