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FROM NEWTON TO BOLTZMANN: THE CASE OF SHORT-RANGE

POTENTIALS

Isabelle Gallagher, Laure Saint-Raymond, Benjamin Texier

Abstract. — We fill in all details in the proof of Lanford’s theorem. This provides a rigorous deriva-
tion of the Boltzmann equation as the mesoscopic limit of systems of Newtonian particles interacting
via a short-range potential, as the number of particles N goes to infinity and the characteristic length
of interaction ε simultaneously goes to 0, in the Boltzmann-Grad scaling Nεd−1 ≡ 1. The case of
localized elastic interactions, i.e., hard spheres, is a corollary of the proof. The time of validity of the
convergence is a fraction of the mean free time between two collisions, due to a limitation of the time
on which one can prove the existence of the BBGKY and Boltzmann hierarchies. Our proof relies on
the important contributions of King, Cercignani, Illner and Pulvirenti, and Cercignani, Gerasimenko
and Petrina.
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CHAPTER 1

THE BOLTZMANN-GRAD LIMIT

We study the qualitative behavior of systems of interacting particles of the form

(1.0.1)
dxi

dt
= vi , mi

dvi

dt
= −

∑

j 6=i

∇Φ(xi − xj) ,

for 1 ≤ i ≤ N, where (xi, vi) ∈ Rd ×Rd denote position and velocity of particle i with mass mi (which

we shall assume equal to 1 to simplify) and the force exerted by particle j on particle i is −∇Φ(xi−xj).

– When the system is constituted of two elementary particles, in the reference frame attached to the

center of mass, the dynamics is one-dimensional. The deflection of the particle trajectories from

straight lines can then be described through explicit formulas (which will be given in Chapter 3).

– When the system is constituted of three particles or more, the integrability is lost, and in general

the problem becomes very complicated, as already noted by Poincaré [34].

1.1. Thermodynamic limit

In the large N limit, called the thermodynamic limit, individual trajectories become irrelevant, and

the goal is to describe an average behaviour.

The Liouville equation relative to the particle system (1.0.1) is

∂tfN +

N∑

i=1

vi · ∇xi
fN −

N∑

i=1

N∑

j=1
j 6=i

∇xΦ (xi − xj) · ∇vi
fN = 0 .

We use the following notation: for any set of s particles with positions Xs := (x1, . . . , xs) ∈ Rds and

velocities Vs := (v1, . . . , vs) ∈ Rds, we write zi := (xi, vi) ∈ R2d and Zs := (z1, . . . , zs) ∈ R2ds. We

assume that the probability fN , referred to as the N -particle distribution function, satisfies for all

permutations σ of {1, . . . , N},
(1.1.1) fN (t, Zσ(N)) = fN (t, ZN ) ,

with Zσ(N) = (xσ(1), vσ(1), . . . , xσ(N), vσ(N)). This corresponds to the property that the particles are

indistinguishable.
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The average behavior of the particles is then described by the first marginal f
(1)
N of the distribution

function fN , defined by

f
(1)
N (t, Z1) :=

∫
fN (t, ZN )dz2 . . . dzN .

In this framework, in order for the average energy per particle to remain bounded, one has to assume

that the energy of each pairwise interaction is small. In other words, one has to consider a rescaled

potential Φε obtained

– either by scaling the strength of the force,

– or by scaling the range of potential.

1.2. Mean field versus collisional dynamics

According to the scaling chosen, we expect to obtain different asymptotics.

• In the case of a weak coupling, i.e. when the strength of the individual interaction becomes small

(of order 1/N) but the range remains macroscopic, the convenient scaling in order for the macroscopic

dynamics to be sensitive to the coupling is:

∂tfN +

N∑

i=1

vi · ∇xi
fN − 1

N

N∑

i=1

N∑

j=1
j 6=i

∇xΦ (xi − xj) · ∇vi
fN = 0 .

Then each particle feels the effect of the force field created by all the (other) particles

FN (x) = − 1

N

N∑

j=1

∇xΦ (x− xj) ∼ −
∫∫

∇xΦ(x− y)f
(1)
N (t, y, v)dydv .

In particular, the dynamics seems to be stable under small perturbations of the positions or velocities

of the particles.

In the thermodynamic limit, we thus get a mean field approximation, that is an equation of the form

∂tf + v · ∇xf + F · ∇vf = 0

for the first marginal, where the coupling arises only through some average

F := −∇xΦ ∗
∫
fdv .

An important amount of literature is devoted to such asymptotics, but this is not our purpose here.

We refer to [10, 38] for pioneering results, to [22] for a recent study and to [19] for a review on that

topic.

• The scaling we shall deal with in the present work corresponds to a strong coupling, i.e. to the

case when the amplitude of the potential remains of size O(1), but its range becomes small. We shall

assume throughout this text the following properties for Φ (a short-range potential).
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Assumption 1.2.1. — The potential Φ : Rd → R is a radial, nonnegative, nonincreasing function

supported in the unit ball of Rd, of class C2 in {x ∈ Rd , 0 < |x| < 1}. Moreover it is assumed that Φ

is unbounded near zero, goes to zero at |x| = 1 with bounded derivatives, and that ∇Φ vanishes only

on |x| = 1. Finally writing Φ(x) = Φ(|x|) we assume that for all ρ ∈ (0, 1),

(1.2.1) ρΦ′′(ρ) + 2Φ′(ρ) ≥ 0 .

Remark 1.2.2. — We refer to Chapter 3 for a justification of those assumptions, in particular (1.2.1)

that appears as a sufficient condition to define a scattering cross-section. Condition (1.2.1) can easily

be checked for a large class of potentials. For instance any potential of the form Φ(ρ) = ρ−k − 1

for ρ < 1 is suitable (for k ≥ 1). Potentials smooth at ρ = 1 can be constructed from that example by

using a smooth junction ([36]).

Introduce a small parameter ε > 0 corresponding to the typical interaction length of the particles.

Then in the macroscopic spatial and temporal scales, the Hamiltonian system becomes

(1.2.2)
dxi

dt
= vi ,

dvi

dt
= −1

ε

∑

j 6=i

∇Φ

(
xi − xj

ε

)
,

and the Liouville equation takes the form

(1.2.3) ∂tfN +
N∑

i=1

vi · ∇xi
fN −

N∑

i=1

N∑

j=1
j 6=i

1

ε
∇xΦ

(
xi − xj

ε

)
· ∇vi

fN = 0 .

With such a scaling, the dynamics is very sensitive to the positions of the particles.

Situa&on 1  
 

Situa&on 2  
 

V1 

V2 

X1 X2 

2ε


V1 

V2 

X1  X2 

2ε


Figure 1. Instability

Situations 1 and 2 on Figure 1 are different by a spatial translation of O(ε) only. However in Situation 1,

particles will interact and be deviated from their free motion, while in Situation 2, they will evolve

under free flow.
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1.3. The Boltzmann equation

Of course, particles move with uniform rectilinear motion as long as they remain at a distance greater

than ε to other particles. In the limit ε→ 0, we thus expect trajectories to be almost polylines.

Deflections are due to elementary interactions

– which occur when two particles are at a distance smaller than ε,

– during a time interval of order ε (if the relative velocity is not too small),

– which involve generally only two particles : the probability that a third particle enters a security

ball of radius ε should indeed tend to 0 as ε→ 0 in the convenient scaling. We are therefore brought

back to the case of the two-body system, which is completely integrable (see Chapter 3).

In order for the interactions to have a macroscopic effect on the dynamics, each particle should undergo

a finite number of collisions per unit of time. A scaling argument, giving the mean free path in terms

of N and ε, then shows that Nεd−1 = O(1). This is the Boltzmann-Grad scaling (see [21]).

In the limit ε → 0 with Nεd−1 = 1, we would like to obtain a kind of homogeneisation result : we

want to average the motion over the small scales in t and x, and replace the localized interactions by

pointwise collisions as in the case of hard spheres.

We shall therefore introduce an artificial boundary (following [27]) so that

– on the exterior domain, the dynamics reduces to free transport,

– on the interior domain, the dynamics can be integrated in order to compute outwards boundary

conditions in terms of the incoming flux. Note that such a scattering operator is relevant only if we

can guarantee that there is no other particle involved in the interaction.

The statistical distribution of deflection angles ω is then predicted by a function b = b(v − v1, ω), the

collision cross-section, which depends only on the microscopic interaction potential.

A counting argument leads then to the Boltzmann equation (introduced by Boltzmann in [7]-[8]) :

(1.3.1)





∂tf + v · ∇xf︸ ︷︷ ︸
free transport

= Q(f, f)︸ ︷︷ ︸
localized binary collisions

Q(f, f) :=

∫∫
[f(v′)f(v′1) − f(v)f(v1)]b(v − v1, ω)dv1dω .

v
′, v

′

1
pre-collisional velocities

The collision term, which acts only on the v-variable, is constituted of a gain term, corresponding to

the creation of particles of velocity v by collision between particles of velocities v′ and v′1, and of a loss

term, due to the disappearance of particles of velocity v by collision with particles of velocity v1.

Note that the joint probability of having particles of velocity (v′, v′1) (respectively of velocities (v, v1))

before the collision is assumed to be equal to f(t, x, v′)f(t, x, v′1) (resp. to f(t, x, v)f(t, x, v1)), meaning

that there is independence.

1.4. A convergence result

The goal of this text is to prove the following statement. It is written somewhat loosely, we refer

to Chapter 7 for a precise statement (see in particular the statement of Theorem 4 page 53). The

appropriate notion of independence is defined in Section 7.1 and the appropriate notion of convergence

is defined in Section 7.2.
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Theorem 1. — Assume that the repulsive potential Φ satisfies Assumption 1.2.1. Let f0 : R2d 7→ R+

be a continuous function, of integral one, and with exponential decay at large energies. Consider the

system of N particles, initially distributed according to f0 and “independent” (in a sense made precise

in Chapter 7), governed by the system (1.2.2). Then, in the Boltzmann-Grad limit N → ∞, Nεd−1 ∼ 1,

its distribution function converges to the solution to the Boltzmann equation (1.3.1) with initial data

f0, in the sense of observables.

1.5. Related results

The problem of asking for a rigorous derivation of the Boltzmann equation from the Hamiltonian

dynamics goes back to Hilbert [24], who suggested to use the Boltzmann equation as an intermediate

step between the Hamiltonian dynamics and fluid mechanics, and who described this axiomatization

of physics as a major challenge for mathematicians of the twentieth century.

We shall not give an exhaustive presentation of the studies that have been carried out on this question

but indicate some of the fundamental landmarks. First one should mention N. Bogoliubov [5], M.

Born, and H. S. Green [9], J. G. Kirkwood [28] and J. Yvan [42], who gave their names to the

BBGKY hierarchy we shall be using extensively in this study. H. Grad was able to obtain in [20]

a differential equation on the first marginal which after some manipulations converges towards the

Boltzmann equation. The first mathematical result on this problem goes back to C. Cercignani [11]

and O. Lanford [31] who proved the propagation of chaos by a careful study of trajectories of a hard

spheres system, and who exhibited – for the first time – the origin of irreversibility. The proof, even

though incomplete, is therefore an important breakthrough. The limits of their methods, on which

we will comment later on – especially regarding the short time of convergence – are still challenging

questions.

The argument of O. Lanford was then revisited and completed in several works. Let us mention

especially the contributions of K. Uchiyama [39], C. Cercignani, R. Illner and M. Pulvirenti [14] and

H. Spohn [37] who introduced a mathematical formalism, in particular for the existence of solutions

to the BBGKY hierarchy which turns out to be a theory in the spirit of the Cauchy-Kowalewskaya

theorem.

The term-by-term convergence of the hierarchy in the Boltzmann-Grad scaling was studied in more

details by Cercignani, V. I. Gerasimenko and D. I. Petrina [13] : it indeed requires refined estimates

on the set of “pathological trajectories”, i.e. trajectories for which the Boltzmann equation does not

provide a good approximation of the dynamics.

The method of proof was extended

– to the case when the initial distribution is close to vacuum, in which case global in time results may

be proved [14, 25, 26];

– to the case when interactions are localized but not pointwise [27]. Because multiple collisions are

no longer negligible, this requires a careful study of clusters of particles.

Many review papers deal with those different results, see [17, 35, 41] for instance. Our goal here is

to provide an elementary and self-contained presentation, which includes all the details of the proofs,

especially concerning convergence which to our knowledge is not completely written anywhere, and

concerning reasonable assumptions that can be made on the potential.
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CHAPTER 2

FORMAL DERIVATION OF THE BOLTZMANN EQUATION FOR

HARD-SPHERES

This chapter is intended to familiarize the reader with the methods and notation related to BBGKY

and Boltzmann hierarchies. We present formally, in the situation of hard-spheres, the passage from the

Liouville equation associated with the N -particle flow to the BBGKY hierarchy, and then the limit to

the Boltzmann equation. All the results stated here will be proved – in the more complicated case of

nonlocal interactions via a potential – in the next chapters. Readers already familiar with the subject

may skip this chapter altogether.

2.1. The N-particle flow

We consider N particles, the motion of which is described by N positions (x1, . . . , xN ) and N ve-

locities (v1, . . . , vN ), each in Rd. Denoting by ZN := (z1, . . . , zN ) the set of particles, each parti-

cle zi := (xi, vi) ∈ R2d is submitted to free flow on the domain

DN :=
{
ZN ∈ R2dN /∀i 6= j, |xi − xj | > ε

}

and bounces off the boundary ∂DN according to the laws of elastic reflection:

(2.1.1)

dxi

dt
= vi ,

dvi

dt
= 0 on DN

vin
i = vout

i − (vout
i − vout

j ) · νi,j νi,j

vin
j = vout

j + (vout
i − vout

j ) · νi,j νi,j if ∃j 6= i , |xi − xj | = ε ,

where νi,j := (xi − xj)/|xi − xj |, and in the case when νi,j · (vin
i − vin

j ) < 0 (meaning that the ingoing

velocities are precollisional).

Contrary to the potential case studied in the next chapters, it is not obvious to check that (2.1.1) defines

a global dynamics, at least for almost all initial data. Note that this is not a simple consequence of

the Cauchy-Lipschitz theorem since the boundary condition is not smooth, and even not defined for

all configurations. In the presence of a potential, we shall prove in this text that the set of trajectories

involving multiple collisions has zero measure. Let us prove this result for the hard sphere dynamics:

we call pathological a trajectory such that

- either there exists a collision involving more than two particles, hence the boundary condition is not

well defined;
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- or there are an infinite number of collisions in finite time so the dynamics cannot be globally defined.

In [2], Proposition 4.3 it is stated that outside a negligible set of initial data there are no pathological

trajectories; the complete proof is provided in [1]. Actually the setting of [1] is more complicated than

ours since the case of an infinite number of particles is considered. The arguments of [1] can however

be easily adapted to our case to yield the following result, whose proof we detail for the convenience

of the reader.

Proposition 2.1.1. — Let N, ε be fixed. The set of initial configurations leading to a pathological

trajectory is of measure zero in R2dN .

We first prove the following elementary lemma.

Lemma 2.1.2. — Let ρ,R > 0 be given, and δ < ε/2. Define

I :=
{
ZN ∈ BN

ρ ×BN
R / one particle will collide with two others on the time interval [0, δ]

}
.

Then |I| ≤ C(N, ε,R) ρd(N−2)δ2 .

Proof. — Just notice that I is embeded in
{
ZN ∈ BN

ρ ×BN
R /∃{i, j, k}distinct , |xi − xj | ∈ [ε, ε+ 2Rδ] and |xi − xk| ∈ [ε, ε+ 2Rδ]

}
,

and the lemma follows directly.

Proof of Proposition 2.1.1. — Now let R > 0 be given and fix some time t > 0. Let δ < ε/2 be a

parameter such that t/δ is an integer.

Lemma 2.1.2 implies that there is a subset I0(δ,R) of BN
R ×BN

R of measure at most C(N, ε,R)Rd(N−2)δ2

such that any initial configuration belonging to (BN
R ×BN

R )\I0(δ,R) generates a solution on [0, δ] such

that each particle encounters at most one other particle on [0, δ].

Now let us start again at time δ. We recall that in the velocity variables, the ball of radius R in RdN

is stable by the flow, whereas the positions at time δ lie in the ball BN
R+Rδ. Let us apply Lemma 2.1.2

again to that new initial configuration space. Since the measure is invariant by the flow, we can

construct a subset I1(δ,R) of the initial positions BN
R ×BN

R , of size C(N, ε,R)Rd(N−2)(1 + δ)d(N−2)δ2

such that outside I0 ∪ I1(δ,R), the flow starting from any initial point in BN
R ×BN

R is such that each

particle encounters at most one other particle on [0, δ], and then at most one other particle on [δ, 2δ].

We repeat the procedure t/δ times: we construct a subset Iδ(t, R) :=

t/δ−1⋃

j=0

Ij(δ,R) of BN
R × BN

R , of

measure

|Iδ(t, R)| ≤ C(N, ε,R)Rd(N−2)δ2
t/δ−1∑

j=0

(1 + jδ)d(N−2) ≤ C(N,R, t, ε)δ

such that for any initial configuration in BN
R ×BN

R outside that set, the flow is well-defined up to time t.

The intersection I(t, R) :=
⋂

δ>0

Iδ(t, R) is of measure zero, and any initial configuration in BN
R × BN

R

outside I(t, R) generates a well-defined flow until time t. Finally we consider the countable union of

those zero measure sets I :=
⋃

n

I(tn, Rn) where tn and Rn go to infinity, and any initial configuration

in R2dN outside I generates a globally defined flow. The proposition is proved.
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2.2. The Liouville equation and the BBGKY hierarchy

The Liouville equation relative to the particle system (2.1.1) is

(2.2.1) ∂tfN +

N∑

i=1

vi · ∇xi
fN = 0 in DN

with the boundary condition fN (t, Zin
N ) = fN (t, Zout

N ). We assume from now on that fN is invariant

by permutation in the sense of (1.1.1), meaning that the particles are indistinguishable.

One can associate with this Liouville equation a hierarchy of equations, satisfied by the marginals

f
(s)
N (t, Zs) :=

∫

R2d(N−s)

fN (t, Zs, zs+1, . . . , zN )11ZN∈DN
dzs+1 . . . dzN .

Let us derive this hierarchy formally. We integrate (2.2.1) over the (N − s) last variables, and we first

notice that ∫

R2d(N−s)

∂tfN (t, Zs, zs+1, . . . , zN )11ZN∈DN
dzs+1 . . . dzN = ∂tf

(s)
N (t, Zs) .

Next we compute
N∑

i=1

∫

R2d(N−s)

vi · ∇xi
fN (t, ZN )11ZN∈DN

dzs+1 . . . dzN

using Green’s formula. The boundary terms involve configurations with at least one pair (i, j), satisfy-

ing 1 ≤ i ≤ N and s+1 ≤ j ≤ N , with |xi −xj | = ε. According to the previous section we may neglect

configurations where more than two particles collide at the same time, so the boundary condition is

well defined. For any i ∈ {1, . . . , N} and any j ∈ {s + 1, . . . , N}, we denote by ν(i, j) the outwards

normal at any point of the boundary and we define

ΣN (i, j) :=
{
ZN ∈ R2dN , |xi − xj | = ε

}
.

Recalling that νi,j :=
xi − xj

|xi − xj |
we then obtain, using the invariance of fN by permutation,

N∑

i=1

∫

R2d(N−s)

vi · ∇xi
fN (t, ZN )11ZN∈DN

dzs+1 . . . dzN

= −
s∑

i=1

vi · ∇xi
f

(s)
N (t, Zs) +

1√
2

s∑

i=1

N∑

j=s+1

∫

ΣN (i,j)

νi,j · (vj − vi) fN (t, ZN ) dσi,j
N ,

with dσi,j
N the surface measure on ΣN (i, j), induced by the Lebesgue measure.

By symmetry this gives

N∑

i=1

∫

R2d(N−s)

vi · ∇xi
fN (t, ZN )11ZN∈DN

dzs+1 . . . dzN

= −
s∑

i=1

vi · ∇xi
f

(s)
N (t, Zs) +

N − s√
2

s∑

i=1

∫

ΣN (i,s+1)

νi,s+1 · (vs+1 − vi) fN (t, ZN ) dσi,s+1
N .

It remains to define the collision operator

(2.2.2) Cs,s+1f
(s+1)
N (t, Zs+1) := (N − s)

s∑

i=1

∫

Sε(xi)×Rd

νi,s+1 · (vs+1 − vi) f
(s+1)
N (t, Zs, zs+1) dσdvs+1



10 CHAPTER 2. FORMAL DERIVATION OF THE BOLTZMANN EQUATION FOR HARD-SPHERES

where Sε(xi) is the sphere of radius ε centered at xi and dσ is the surface measure on that sphere and

in the end we obtain the BBGKY hierarchy

(2.2.3) ∂tf
(s)
N +

∑

1≤i≤s

vi · ∇xi
f

(s)
N = Cs,s+1f

(s+1)
N in Ds ,

with the boundary conditions (2.1.1).

2.3. The Boltzmann hierarchy and the Boltzmann equation

Starting from (2.2.3) we now consider the limit N → ∞ under the Boltzmann-Grad scaling Nεd−1 ≡ 1.

The Duhamel formulation for (2.2.3) writes

f
(s)
N (t) = Ds(t)f

(s)
N,0 +

∫ t

0

Ds(t− τ)Cs,s+1f
(s+1)
N (τ) dτ ,

where Ds(t) denotes the s-particle flow on Ds with the boundary conditions (2.1.1).

Because of the scaling assumption, the collision term Cs,s+1f
(s+1)(Zs) is approximately equal to

−(N − s)εd−1
s∑

i=1

∫

S
d−1
1 ×Rd

ν · (vs+1 − vi)f
(s+1)
N (Zs, xi + εν, vs+1) dνdvs+1

which we may split into two terms, depending on the sign of ν · (vs+1 − vi):

s∑

i=1

∫

S
d−1
1 ×Rd

(
ν · (vs+1 − vi)

)

+
f

(s+1)
N (Zs, xi + εν, vs+1) dνdvs+1

−
s∑

i=1

∫

S
d−1
1 ×Rd

(
ν · (vs+1 − vi)

)

−
f

(s+1)
N (Zs, xi + εν, vs+1) dνdvs+1 .

Recall that pre-collisional particles are particles (xi, vi) and (xs+1, vs+1) for which

(xs+1 − xi) · (vs+1 − vi) < 0 .

The case when (xs+1 − xi) · (vs+1 − vi) > 0 is called the post-collisional case. Consider a set of

particles Zs+1 such that (xi, vi) and (xs+1, vs+1) are post-collisional. Provided that there is no other

particle among these s + 1 which has undergone a collision on a short time interval (which is almost

sure in the limit ε→ 0), we have

f
(s+1)
N (t, Zs, xs+1, vs+1) = f

(s+1)
N (t, Z∗

s , x
∗
s+1, v

∗
s+1)

where (z∗i , z
∗
s+1) is the pre-image of (zi, zs+1) by (2.1.1). Then neglecting the small spatial translations

in the arguments of f
(s+1)
N , we obtain the following asymptotic expression for the collision operator at

the limit:

C0
s,s+1f

(s+1)(t, Zs) :=

s∑

i=1

∫
11ν·(vs+1−vi)>0 ν · (vs+1 − vi)

×
(
f (s+1)(t, x1, v1, . . . , xi, v

∗
i , . . . , xs, vs, xi, v

∗
s+1) − f (s+1)(t, Zs, xi, vs+1)

)
dνdvs+1 .

The asymptotic dynamics are therefore governed by the following Boltzmann hierarchy:

(2.3.1) f (s)(t) = Ss(t)f
(s)
0 +

∫ t

0

Ss(t− τ)C0
s,s+1f

(s+1)(τ) dτ .

where Ss(t) denotes free-flow.
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Note that if f (s)(t, Zs) =

s∏

i=1

f(t, zi) (meaning f (s)(t) is tensorized) then f satisfies the Boltzmann

equation (1.3.1), where the cross-section b is simply b(vs+1 − vi, ω) := 11ω·(vs+1−vi)>0 ω · (vs+1 − vi).





CHAPTER 3

TWO-PARTICLE INTERACTIONS

In the case when the microscopic interaction between particles is governed by a short-range repulsive

potential, collisions are no more instantaneous and pointwise, and they possibly involve more than two

particles. Our analysis in Chapters 8 to 10 shows however that the low density limitNεd−1 → 0 requires

only a description of two-particle interactions, at the exclusion of more complicated interactions.

In this chapter we therefore study precisely, following the lines of [12], the Hamiltonian system (1.2.2)

for N = 2. The study of the reduced motion is carried out in Section 3.1, while the scattering map is

introduced in Section 3.2, and the cross-section, which will play in important role in the Boltzmann

hiearchy, is described in Section 3.3.

3.1. Reduced motion

We first define a notion of pre- and post-collisional particles, by analogy with the dynamics of hard

spheres:

Definition 3.1.1. — Two particles z1, z2 are said to be pre-collisional if they belong to the artificial

boundary and their distance is decreasing:

|x1 − x2| = ε, (v1 − v2) · (x1 − x2) < 0.

Two particles z1, z2 are said to be post-collisional if they belong to the artificial boundary and their

distance is increasing:

|x1 − x2| = ε, (v1 − v2) · (x1 − x2) > 0.

We consider here only two-particle systems, and show in Lemma 3.1.2 that, if z1 and z2 are pre-

collisional at time t−, then there exists a post-collisional configuration z′1, z
′
2, attained at t+ > t−.

Since ∇Φ(x) vanishes on {|x| ≥ ε}, the particles z1 and z2 travel at constant velocities v′1 and v′2 for

ulterior (t > t+) times.

Momentarily changing back the macroscopic scales of (1.2.2) to the microscopic scales of (1.0.1) by

defining τ := (t − t−)/ε and y(τ) := x/ε(τ), w(τ) = v(τ), we find that the two-particle dynamics is
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governed by the equations

(3.1.1)





dy1
dτ

= w1 ,
dy2
dτ

= w2 ,

dw1

dτ
= −∇Φ (y1 − y2) = −dw2

dτ
,

whence the conservations

(3.1.2)
d

dτ
(w1 + w2) = 0 ,

d

dτ

(
1

4
(w1 + w2)

2 +
1

4
(w1 − w2)

2 + Φ(y1 − y2)

)
= 0 .

From (3.1.2) we also deduce that the center of mass has a uniform, rectilinear motion:

(3.1.3) (y1 + y2)(τ) = (y1 + y2)(0) + τ(w1 + w2) ,

and that pre- and post-collisional velocities are linked by the classical relations

(3.1.4) w′
1 + w′

2 = w1 + w2, |w′
1|2 + |w′

2|2 = |w1|2 + |w2|2 .

A consequence of (3.1.1) is that (δy, δw) := (y1 − y2, w1 − w2) solves

(3.1.5)
d

dτ
δy = δw ,

d

dτ
δw = −2∇Φ(δy) .

We notice that, Φ being radial, there holds

d

dτ
(δy ∧ δw) = δw ∧ δw − 2δy ∧∇Φ(δy) = 0 ,

implying that, if the initial angular momentum δy0 ∧ δw0 is non-zero, then δy remains for all times in

the hyperplane orthogonal to δy0 ∧ δw0. In this hyperplane, introducing spherical coordinates (ρ, ϕ)

in R+ × Sd−2
1 , such that

δy = ρeρ and δw = ρ̇eρ + ρϕ̇eϕ

the conservations of energy and angular momentum take the form

1

2
(ρ̇2 + (ρϕ̇)2) + 2Φ(ρ) =

1

2
|δw0|2 ,

ρ2|ϕ̇| = |δy0 ∧ δw0| ,
implying ρ > 0 for all times, and

(3.1.6) ρ̇2 + Ψ(ρ, E0,J0) = E0 , Ψ :=
E0J 2

0

ρ2
+ 4Φ(ρ) ,

where we have defined

(3.1.7) E0 := |δw0|2 and J0 := |δy0 ∧ δw0|/|δw0| = sinα ,

which are respectively (twice) the energy and the impact parameter, π−α being the angle between δw0

and δy0 (notice that α ≥ π/2 for pre-collisional situations). In the limit case when α = 0, the movement

is confined to a line since ϕ̇ ≡ 0.

We consider the sets corresponding to pre- and post-collisional configurations:

(3.1.8) S± :=
{
(δy, δw) ∈ Sd−1 × Rd, ±δy · δw > 0

}
,

where Sd−1 is the unit sphere centered at the origin in Rd; in spherical coordinates pre-collisional

configurations correspond to ρ = 1 and ρ̇ < 0 while post-collisional configurations are correspond to

ρ = 1 and ρ̇ > 0.
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Lemma 3.1.2 (Description of the reduced motion). — For the differential equation (3.1.5)

with pre-collisional datum (δy0, δw0) ∈ S−, there holds |δy(τ)| ≥ ρ∗ for all τ ≥ 0, with the notation

(3.1.9) ρ∗ = ρ∗(E0,J0) := max
{
ρ ∈ (0, 1), Ψ(ρ, E0,J0) = E0

}
,

and for τ∗ defined by

(3.1.10) τ∗ := 2

∫ 1

ρ∗

(E0 − Ψ(ρ, E0,J0))
−1/2

dρ ,

the configuration is post-collisional (ρ = 1, ρ̇ > 0) at τ = τ∗.

Proof. — Solutions to (3.1.6) satisfy ρ̇ = ι(ρ)
(
E0 − Ψ(ρ)

)1/2
, with ι(ρ) = ±1, possibly changing

values only on {Ψ = E0}, by Darboux’s theorem (a derivative function satisfies the intermediate value

theorem). The initial configuration being pre-collisional, there holds initially ι = −1, corresponding

to a decreasing radius. The existence of ρ∗ satisfying (3.1.9) is then easily checked: we have |δy0| = 1

and δy0 · δw0 6= 0, so there holds Ψ(1, E0,J0) < E0, and Ψ is increasing as ρ is decreasing. The set

{τ ≥ 0, ρ(τ) ≥ ρ∗} is closed by continuity. It is also open: since Φ is nonincreasing, then ∂ρΨ 6= 0

everywhere and in particular at (ρ∗, E0,J0). So E0 − Ψ changes sign at ρ∗, which forces, by (3.1.6),

the sign function ι to jump from − to + as ρ reaches the value ρ∗ from above. This proves ρ ≥ ρ∗ by

connexity. The minimal radius ρ = ρ∗ is attained at τ∗/2, where τ∗ is defined by (3.1.10), the integral

being finite since ∂ρΨ does not vanish. Assume finally that for all τ > 0, there holds ρ(τ) < 1. Then

on [τ∗/2,+∞), ρ is increasing and bounded, hence converges to a limit radius, which contradicts the

definition of ρ∗. This proves ρ = 1 at τ = τ∗, a time at which ρ̇ > 0, since ι has jumped exactly once,

by definition of ρ∗.

Remark 3.1.3. — Denoting A : (y, w) → (y,−w), and φt : R2d → R2d the flow of (3.1.5), we find

that φ−t = A ◦φt ◦A, implying A ◦φt ◦A ◦φt ≡ Id, and time-reversibility of the two-particle dynamics.

ω


δy


δy’


apse line 

* 

δw


δw’


ρ


θ
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Figure 2. Reduced dynamics
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The reduced dynamics is pictured on Figure 2, where the half-deflection angle θ is the integral of the

angle ϕ as a function of ρ over [ρ∗, 1] :

(3.1.11) θ =

∫ 1

ρ∗

E1/2
0 I0

ρ2
(E0 − Ψ(ρ, E0, I0))

−1/2
dρ ,

With the initialization choice ϕ0 = 0, the post-collisional configuration is (ρ, ϕ)(τ∗) = (1, 2θ); it can

be deduced from the pre-collisional configuration by symmetry with respect to the apse line, which by

definition is the line through the origin and the point of closest approach (δy(τ∗/2), δw(τ∗/2)). The

direction of this line is denoted ω ∈ Sd−1.

3.2. Scattering map

We shall now define a microscopic scattering map σ̃0 that sends pre- to post-collisional configurations:

σ̃0 : (δy0, δw0) ∈ S− −→ (δy(τ∗), δw(τ∗)) = φτ∗(δy0, δw0) ∈ S+ .

By uniqueness of the trajectory of (3.1.5) issued from (δy0, δw0) (a consequence of the regularity

assumption on the potential, via the Cauchy-Lipschitz theorem), the scattering is one-to-one. It is also

onto, by Remark 3.1.3: the pre-image of (δy, δw) ∈ S+ by the scattering is I ◦ φτ∗(δy,−δw) ∈ S−.

Back in the macroscopic variables, we now define a corresponding scattering operator for the two-

particle dynamics. In this view, we introduce the sets

S±
ε :=

{
(z1, z2) ∈ R4d, |x1 − x2| = ε, ±(x1 − x2) · (v1 − v2) > 0

}
.

We define, as in (3.1.7),

(3.2.1) E0 = |v1 − v2|2 and J0 :=
|(x1 − x2) ∧ (v1 − v2)|

ε|v1 − v2|
=: sinα.

Definition 3.2.1 (Scattering operator). — The scattering operator is defined as

σε : (x1, v1, x2, v2) ∈ S−
ε −→ (x′1, v

′
1, x

′
2, v

′
2) ∈ S+

ε ,

where

(3.2.2)

x′1 :=
1

2
(x1 + x2) +

ετ∗
2

(v1 + v2) +
ε

2
δy(τ∗) = −x1 + ω · (x1 − x2)ω +

ετ∗
2

(v1 + v2) ,

x′2 :=
1

2
(x1 + x2) +

ετ∗
2

(v1 + v2) −
ε

2
δy(τ∗) = −x2 − ω · (x1 − x2)ω +

ετ∗
2

(v1 + v2) ,

v′1 :=
1

2
(v1 + v2) +

1

2
δw(τ∗) = v1 − ω · (v1 − v2) ω ,

v′2 :=
1

2
(v1 + v2) −

1

2
δw(τ∗) = v2 + ω · (v1 − v2) ω ,

where τ∗ is the microscopic interaction time, as defined in Lemma 3.1.2, (δy(τ∗), δw(τ∗)) is the micro-

scopic post-collisional configuration: (δy(τ∗), δw(τ∗)) = σ̃0((x1 − x2)/ε, v1 − v2), and ω is the direction

of the apse line. Denoting by ν := (x1 − x2)/|x1 − x2| we also define

σ0(ν, v1, v2) := (ν′, v′1, v
′
2) .
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The above description of (x′1, v
′
1) and (x′2, v

′
2) in terms of ω is deduced from the identities

δv(τ∗) = δv0 − 2ω · δv0 ω and δy(τ∗) = −δy0 + 2ω · δy0 ω
in the reduced microscopic coordinates.

By ∂ρΨ 6= 0 in (0, 1) and the implicit function theorem, the map (E ,J ) → ρ∗(E ,J ) is C2 just like Ψ.

Similarly, τ∗ ∈ C2. By Definition 3.2.1 and C1 regularity of ∇Φ (Assumption 1.2.1), this implies that

the scattering operator σε is C1, just like the flow map of the two-particle scattering (denoted φ in

Remark 3.1.3). The scattering σε is also bijective, for the same reason that the microsopic scattering

σ̃0 is bijective; the inverse map is σ−1
ε := I ◦ σε ◦ I , with notation introduced in Remark 3.1.3.

For any s ∈ N∗, R > 0, we denote Bs
R := {Vs ∈ Rds, |Vs| ≤ R} where | · | is the euclidean norm; we

often write BR := B1
R.

Proposition 3.2.1. — Let R > 0 be given and consider

S±
ε,R :=

{
(z1, z2) ∈ (Rd ×BR)2, |x1 − x2| = ε, ± (v1 − v2) · (x1 − x2) > 0

}
.

The scattering operator σε is a bijection from S−
ε,R to S+

ε,R.

The macroscopic time of interaction T∗ = T∗(E0,J0) := ετ∗, where τ∗ is defined in (3.1.10), is uniformly

bounded on compact sets of R+ \ {0} × [0, 1].

Proof. — We already know that σε is a bijection from S−
ε to S+

ε . By (3.1.4), it also preserves the

velocity bound. Hence σε is bijective S−
ε,R → S+

ε,R.

Now given E0 > 0 and J0 ∈ [0, 1], we shall show that τ∗ can be bounded by a constant depending only

on E0. Since Φ(ρ∗) ≤ E0/4, then ρ∗ ≥ Φ−1(E0/4). Let us then define i0 ∈ (0, 1) by

i0 :=
1

2
√

2
Φ−1

(E0

4

)
,

so that ρ2
∗ ≥ 8i20.

On the one hand it is easy to see, after a change of variable in the integral, using

d

dρ
(E0 − Ψ(E0,J0, ρ)) =

2E0J 2
0

ρ3
− 4Φ′(ρ) ≥ 2E0J 2

0

ρ3
≥ 2E0J 2

0 ,

that there holds the bound

τ∗ ≤ 1

E0J 2
0

∫ E0(1−J 2
0 )

0

dy√
y
≤ 2

√
1 − J 2

0

J 2
0

√E0

·

So if J0 ≥ i0, we find that

τ∗ ≤ 2√E0i20
=

16
√E0

(
Φ−1

(
E0

4

))2 ·

On the other hand for J0 ≤ i0 we define γ := Φ−1(E0/8) and we cut the integral defining τ∗ into two

parts:

τ∗ = τ
(1)
∗ + τ

(2)
∗ with τ

(1)
∗ = 2

∫ γ

ρ∗

(E0 − Ψ(E0,J0, ρ))
−1/2

dρ .

Notice that since ρ2
∗ ≥ 8i20 and J0 ≤ i0, then E0/4 − E0J 2

0 /4ρ
2
∗ ≥ 7E0/32 ≥ E0/8 so

ρ∗ = Φ−1
(E0

4
− E0J 2

0

4ρ2
∗

)
≤ Φ−1

(E0

8

)
= γ .
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The first integral τ
(1)
∗ is estimated using the fact that Φ′ does not vanish outside 1 as stated in

Assumption 1.2.1: defining

M(Φ) := inf
i0≤ρ≤γ

|Φ′(ρ)| > 0 ,

we find that on [i0, γ],

d

dρ
(E0 − Ψ(E0,J0, ρ)) =

2E0J 2
0

ρ3
− 4Φ′(ρ) ≥ 4M(Φ)

so

τ
(1)
∗ ≤

(
E0/2 − E0J 2

0 /γ
2
) 1

2

M(Φ)
≤

√E0√
2M(Φ)

·

For the second integral we estimate simply

τ
(2)
∗ ≤ 2

(
E0/2 − E0J 2

0 /γ
2
) 1

2

≤ 2
(
E0/2 − E0/8

) 1
2

=
4
√

2√
3E0

·

The result follows.

Remark 3.2.2. — If Φ is convex then M(Φ) = |Φ′(γ)|. Moreover if Φ is of the type
1

ρs
exp(− 1

1 − ρ2
)

then the proof of Proposition 3.2.1 shows that τ∗ may be bounded from above by a constant of the order

of C/
√
e0(1 + log e0) if E0 ≥ e0.

3.3. Scattering cross-section and the Boltzmann collision operator

The scattering operator in Definition 3.2.1 is parametrized by the impact parameter and the two

ingoing (or outgoing) velocities. However in the Boltzmann limit the impact parameter makes no

longer sense: the observed quantity is the deflection angle or scattering angle, defined as the angle

between ingoing and outgoing relative velocities. The next paragraph defines that angle and as well

as the scattering cross-section, and the following paragraph defines the Boltzmann collision operators

using that formulation.

3.3.1. Scattering cross-section. — With notation from the previous paragraphs, the deflection

angle is equal to π − 2Θ where Θ := α+ θ, the angle α being defined in (3.2.1) and θ being defined in

eqreftheta, so that

Θ = Θ(E0,J0) := arcsinJ0 + J0

∫ 1

ρ∗

dρ√
1 − 4Φ(ρ)

E0
− J 2

0

ρ2

·

The following result, and its proof, are due to [36]:

Lemma 3.3.1. — Under Assumption 1.2.1 and for all E0 > 0, the function J0 7→ Θ(E0,J0) ∈ [0, π/2]

satisfies Θ(E0, 0) = 0 and is strictly monotonic: ∂J0Θ > 0 for all J0 ∈ (0, 1). Moreover, it satis-

fies lim
J0→0

∂J0
Θ ∈ (0,∞] and lim

J0→1
∂J0

Θ = 0.

Proof. — An energy E0 > 0 being fixed, the limiting values Θ(E0, 0) = 0 and Θ(E0, 1) = π/2 are found

by direct computation. To prove monotonicity, the main idea of Saffirio and Simonella is to use the

change of variable

sin2 ϕ :=
4Φ(ρ)

E0
+

J 2
0

ρ2
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which yields

Θ(E0,J0) = arcsinJ0 +

∫ π
2

arcsinJ0

sinϕ
J0

ρ − 2ρΦ′(ρ)
E0J0

dϕ .

Computing the derivative of this expression with respect to J0 gives

∂Θ

∂J0
(E0,J0) =

1√
1 − J 2

0

(
1 − E0J 2

0

E0J 2
0 − Φ′(1)

)

+

∫ π
2

arcsinJ0

E2
0J 2

0 ρ
4 sinϕ

(J 2
0 E0 − ρ3Φ′(ρ))3

(
ρΦ′′(ρ) + 2Φ′(ρ) +

ρ3

E0J 2
0

(Φ′(ρ))2
)
dϕ

where ϕ is defined by

sin2 ϕ =
J 2

0

ρ2
+

2Φ(ρ)

E0
·

In view of the formula giving ∂J0Θ, it turns out assumption (1.2.1) implies ∂J0Θ > 0 for all J0 ∈ (0, 1),

and also the limits

lim
J0→0

∂J0Θ ∈ (0,∞] and lim
J0→1

∂J0Θ = 0

as soon as Φ′(1) = 0 (if not then lim
J0→1

∂J0Θ = ∞). The result follows.

Remark 3.3.2. — Note that one can construct examples that violate assumption (1.2.1) and for which

monotonicity fails, regardless of convexity properties of the potential Φ ([36]).

By Lemma 3.3.1, for each E0 we can locally invert the map Θ(E0, ·), and thus define J0 as a smooth

function of E0 and Θ. This enables us to define a scattering cross-section (or collision kernel), as follows.

!v

!x

"

#

Figure 3. Spherical coordinates

For fixed x1, we denote dσ1 the surface measure on the sphere {y ∈ Rd, |y − x1| = ε}, to which x2

belongs. We can parametrize the sphere by (α,ψ), with ψ ∈ Sd−2, where α is the angle defined in

(3.2.1). There holds

dσ1 = εd−1(sinα)d−2dαdψ.

The direction of the apse line is ω = (Θ, ψ), so that, denoting dω the surface measure on the unit

sphere, there holds

(3.3.1) dω = (sinΘ)d−2dΘdψ.
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By definition of α in (3.2.1), there holds

(x1 − x2) · (v1 − v2) = ε|v1 − v2| cosα,

so that
1

ε
(x1 − x2) · (v1 − v2) dσ1 = εd−1|v1 − v2| cosα (sinα)d−2 dαdψ

= εd−1|v1 − v2| J d−2
0 dJ0dψ ,

where in the second equality we used the definition of J0 in (3.2.1). This gives

(3.3.2)
1

ε
(x1 − x2) · (v1 − v2) dσ1 = εd−1|v1 − v2|J d−2

0 ∂ΘJ0 dΘdψ ,

wherever ∂ΘJ0 is defined, that is, according to Lemma 3.3.1, for J0 ∈ [0, 1).

Definition 3.3.3. — The scattering cross-section is defined for |v1 − v2| > 0 and Θ ∈ (0, π/2] by

(3.3.3) b(|v1 − v2|,Θ) := |v1 − v2|J d−2
0 ∂ΘJ0(sin Θ)2−d .

Abusing notation we shall write b(|v1 − v2|,Θ) = b(|v1 − v2|, ω).

By Lemma 3.3.1, the cross-section b is a locally bounded function of the relative velocities and scattering

angle.

3.3.2. Scattering cross-section. — The relevance of b is made clear in the derivation of the Boltz-

mann hierarchy, where we shall use the identity

(3.3.4)
1

ε
(x1 − x2) · (v1 − v2) dσ1 = εd−1b(|v1 − v2|, ω)dω ,

derived from (3.3.1), (3.3.2) and Definition 3.3.3. As in Chapter 2 (see in particular Paragraph 2.3),

we can formally derive the Boltzmann collision operators using this formulation: we thus define

C0
s,s+1f

(s+1)(t, Zs) :=

s∑

i=1

∫
11ν·(vs+1−vi)>0 ν · (vs+1 − vi)

×
(
f (s+1)(t, x1, v1, . . . , xi, v

∗
i , . . . , xs, vs, xi, v

∗
s+1) − f (s+1)(t, Zs, xi, vs+1)

)
dνdvs+1 ,(3.3.5)

where (v∗i , v
∗
s+1) is obtained from (vi, vs+1) by applying the inverse scattering operator σ−1

0 , using

σ−1
0

( xi − xs+1

|xi − xs+1|
, vi, vs+1

)
=
( xi − xs+1

|xi − xs+1|
, v∗i , v

∗
s+1

)
.

This can also be written using the cross-section:

C0
s,s+1f

(s+1)(t, Zs) :=

s∑

i=1

∫
b(|v1 − v2|, ω)

×
(
f (s+1)(t, x1, v1, . . . , xi, v

∗
i , . . . , xs, vs, xi, v

∗
s+1) − f (s+1)(t, Zs, xi, vs+1)

)
dωdvs+1 .

Remark 3.3.4. — It is not possible to define an integrable cross-section if the potential is not com-

pactly supported, no matter how fast it might be decaying. This issue is related to the occurrence of

grazing collisions and discussed in particular in [41], Chapter 1, Section 1.4. However it is still possible

to study the limit towards the Boltzmann equation, if one is ready to change the formulation of the

Boltzmann equation by renouncing to the cross-section formulation ([36]).

The question of the convergence to Boltzmann in the case of long-range potentials is a challenging open

problem; it was considered by Desvillettes and Pulvirenti in [15] in the linear case, while Desvillettes

and Ricci studied grazing collisions in [16].



CHAPTER 4

THE BBGKY HIERARCHY

The main goal of this text is to extend the formal strategy described in Chapter 2 for hard spheres to

general short-range potentials, then to rigorously justify all the steps of the convergence proof. This

necessitates the derivation of bounds for fN that do not depend on N.

Our starting point is the Liouville equation (1.2.3) satisfied by the N -particle distribution function fN .

We reproduce here equation (1.2.3):

(4.0.1) ∂tfN +
∑

1≤i≤N

vi · ∇xi
fN −

∑

1≤i 6=j≤N

1

ε
∇Φ

(
xi − xj

ε

)
· ∇vi

fN = 0 .

The arguments of fN in (4.0.1) are (t, ZN ) ∈ R+ × ΩN , where

ΩN :=
{
ZN ∈ R2dN , ∀i 6= j , xi 6= xj

}
.

The classical strategy to obtain a kinetic equation such as (1.3.1) is to write the evolution equation for

the first marginal of the distribution function fN , namely

f
(1)
N (t, z1) :=

∫

R2d(N−1)

fN (t, z1, z2, . . . , zN ) dz2 . . . dzN .

The point to be noted is that the evolution of f
(1)
N depends actually on f

(2)
N because of the quadratic

interaction imposed by the force F = −∇Φ. And in the same way, the equation on f
(2)
N depends

on f
(3)
N . Instead of a kinetic equation, we therefore obtain a hierarchy of equations involving all the

marginals of fN

(4.0.2) f
(s)
N (t, Zs) :=

∫

R2d(N−s)

fN (t, Zs, zs+1, . . . , zN ) dzs+1 · · · dzN .

In Section 4.1 it is shown that due to the presence of the potential, and contrary to the hard spheres

case described in Chapter 2, it is necessary to truncate those marginals away from the set ΩN . An

equation for the truncated marginals is derived in weak form in Section 4.2. In order to introduce

adequate collision operators, the notion of cluster is introduced and described in Section 4.3. Then

collision operators are introduced in Section 4.4, and finally the integral formulation of the equation

is written in Section 4.5.
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4.1. Truncated marginals

From (4.0.1), we deduce by integration that the untruncated marginals defined in (4.0.2) solve

(4.1.1)

∂tf
(s)
N (t, Zs) +

s∑

i=1

vi · ∇xi
f

(s)
N (t, Zs) −

1

ε

s∑

i,j=1
i6=j

F

(
xi − xj

ε

)
· ∇vi

f
(s)
N (t, Zs)

=
N − s

ε

s∑

i=1

∫
F

(
xi − xs+1

ε

)
· ∇vi

f
(s+1)
N (t, Zs, zs+1) dzs+1 .

There are several differences between (4.1.1) and the BBGKY hierarchy for hard spheres (2.2.2)-(2.2.3).

One is that the transport operator in the left-hand side of (4.1.1) involves a force term. Another is that

the integral term in the right-hand side of (4.1.1) involves velocity derivatives. Also, that integral term

is a linear integral operator acting on higher-order marginals, just like (2.2.2), but, contrary to (2.2.2),

is not spatially localized, in the sense that the integral in xs+1 is over the whole ball B(xi, ε), as

opposed to an integral over a sphere in (2.2.2).

This leads us to distinguish spatial configurations in which interactions do take place from spatial

configurations in which particles are pairwise at a distance greater than ε, by truncating off the

interaction domain
{
ZN , |xi − xj | ≤ ε for some i 6= j

}
in the integrals defining the marginals. For the

resulting truncated marginals, collision operators will appear as integrals over a piece of the boundary

of the interaction domain, just like in the case of hard spheres. The scattering operator of Chapter 3

(Section 3.2) will then play the role that the boundary condition plays in the case of hard spheres, as

sketched in Chapter 2.

Suitable quantities to be studied are therefore not the marginals defined in (4.0.2) but rather the

truncated marginals

(4.1.2) f̃
(s)
N (t, Zs) :=

∫

R2d(N−s)

fN (t, Zs, zs+1, . . . , zN )
∏

i∈{1,...,s}
j∈{s+1,...,N}

11|xi−xj |>ε dzs+1 · · · dzN ,

where | · | denotes the euclidean norm. Notice that

(f̃
(1)
N − f

(1)
N )(t, z1) =

∫

R2d(N−1)

fN (t, z1, z2, . . . , zN )
∏

j∈{2,...,N}

(1 − 11|x1−xj |>ε) dz2 · · · dzN

so that

(4.1.3) ‖(f̃ (1)
N − f

(1)
N )(t)‖L∞(R2d) ≤ C(N − 1)εd‖f (2)

N (t)‖L∞(Ω2) .

We therefore expect both functions to have the same asymptotic behaviour in the Boltzmann-Grad

limit Nεd−1 = 1. This is indeed proved in Lemma 7.1.3 and Corollary 7.2.3 in Chapter 7.

Given 1 ≤ i < j ≤ N, we denote dZ(i,j) the 2d(j−i+1)-dimensional Lebesgue measure dzidzi+1 . . . dzj ,

and dX(i,j) the d(j − i+ 1)-dimensional Lebesgue measure dxidxi+1 . . . dxj . We also define

(4.1.4) Ds
N :=

{
XN ∈ RdN , ∀(i, j) ∈ [1, s] × [s+ 1, N ], |xi − xj | > ε

}
,

where [1, s] is short for [1, s] ∩N = {k ∈ N, 1 ≤ k ≤ s}. Then the truncated marginals (4.1.2) may be

formulated as follows:

(4.1.5) f̃
(s)
N (t, Zs) =

∫

R2d(N−s)

fN (t, Zs, zs+1, . . . , zN )
∏

i∈{1,...,s}
j∈{s+1,...,N}

11|xi−xj |>ε11XN∈Ds
N
dZs+1,N .
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The key in introducing the truncated marginals (4.1.5), following King [27], is that it allows for a

derivation of a hierarchy that is similar to the case of hard spheres. The main drawback is that

truncated marginals are not actual marginals, in the sense that

(4.1.6) f̃
(s)
N (Zs) 6=

∫

R2d

11B(Xs+1)f̃
(s+1)
N (Zs, zs+1) dzs+1 ,

for any B ⊂ Rd(s+1), in particular if B = Rd(s+1), simply because Ds
N is not included in Ds+1

N .

Indeed, conditions |xj − xs+1| > ε, for j ≤ s, hold for XN ∈ Ds
N , but not necessarily for XN ∈ Ds+1

N .

Furthermore, Ds
N intersects all the Ds+m

N , for m ∈ [1, N − s]. A consequence is the existence of higher-

order interactions between truncated marginals, as seen below in (4.4.8). Proposition 5.3.1 in Chapter 5

states however that these higher-order interactions are negligible in the Boltzmann-Grad limit.

4.2. Weak formulation of Liouville’s equation

Our goal in this section is to find the weak formulation of the system of equations satisfied by the

family of truncated marginals
(
f̃

(s)
N

)
s∈[1,N ]

defined above in (4.1.5). From now on we assume that fN

decays at infinity in the velocity variable.

Given a smooth, compactly supported function φ defined on R+ × R2ds and satisfying the symmetry

assumption (1.1.1), we have

(4.2.1)

∫

R+×R2dN

(
∂tfN +

N∑

i=1

vi · ∇xi
fN − 1

ε

N∑

i=1

∑

j 6=i

F

(
xi − xj

ε

)
· ∇vi

fN

)
(t, ZN )

× φ(t, Zs)11XN∈Ds
N
dZNdt = 0 .

Note that in the above double sum in i and j, all the terms vanish except when (i, j) ∈ [1, s]2 and

when (i, j) ∈ [s+ 1, N ]2, by assumption on the support of F.

We now use integrations by parts to derive from (4.2.1) the weak form of the equation in the

marginals f̃
(s)
N . On the one hand an integration by parts in the time variable gives

∫

R+×R2dN

∂tfN (t, ZN )φ(t, Zs)11XN∈Ds
N
dZNdt = −

∫

R2dN

fN (0, ZN )φ(0, Zs)11XN∈Ds
N
dZN

−
∫

R+×R2dN

fN (t, ZN )∂tφ(t, Zs)11XN∈Ds
N
dZNdt ,

hence, by definition of f̃
(s)
N ,

∫

R+×R2dN

∂tfN (t, ZN )φ(t, Zs)11XN∈Ds
N
dZNdt = −

∫

R2ds

f̃
(s)
N (0, Zs)φ(0, Zs) dZs

−
∫

R+×R2ds

f̃
(s)
N (t, Zs)∂tφ(t, Zs) dZsdt .

Now let us compute

N∑

i=1

∫

R2dN

vi · ∇xi
fN (t, ZN )φ(t, Zs)11XN∈Ds

N
dZN =

∫

R2dN

divXN

(
VN fN (t, ZN )

)
φ(t, Zs)11XN∈Ds

N
dZN

using Green’s formula. The boundary of Ds
N is made of configurations with at least one pair (i, j),

satisfying 1 ≤ i ≤ s and s+ 1 ≤ j ≤ N , with |xi − xj | = ε.
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Let us define, for any couple (i, j) ∈ [1, N ]2,

(4.2.2)
Σs

N (i, j) :=
{
ZN ∈ R2dN , |xi − xj | = ε

and ∀(k, ℓ) ∈ [1, s] × [s+ 1, N ] \ {i, j}, |xk − xℓ| > ε
}
.

We notice that Σs
N (i, j) is a submanifold of

{
ZN ∈ R2dN , |xi − xj | = ε

}
, which is a smooth, codi-

mension 1 manifold of R2dN (locally isomorphic to the space Sd
ε ×Rd(2N−1)), and we denote by dσi,j

N

its surface measure, induced by the Lebesgue measure. Configurations with more than one collisional

pair, i.e., (i, j) and (i′, j′) with 1 ≤ i, i′ ≤ s, s + 1 ≤ j, j′ ≤ N , with |xi − xj | = |xi′ − xj′ | = ε,

and {i, j} 6= {i′, j′}, are subsets of submanifols of RdN of dimension at least two, and therefore con-

tribute nothing to the boundary terms.

Denoting νi,j :=
xi − xj

|xi − xj |
we therefore obtain by Green’s formula:

N∑

i=1

∫

R+×R2dN

vi · ∇xi
fN (t, ZN )φ(t, Zs)11XN∈Ds

N
dZN dt

= −
s∑

i=1

∫

R+×R2dN

fN (t, ZN )vi · ∇xi
φ(t, Zs)11XN∈Ds

N
dZNdt

+
1√
2

s∑

i=1

N∑

j=s+1

∫

R+×Σs
N

(i,j)

νi,j · (vj − vi) fN (t, ZN )φ(t, Zs) dσ
i,j
N dt .

By symmetry (1.1.1), this gives

N∑

i=1

∫

R+×R2dN

vi · ∇xi
fN (t, ZN )φ(t, Zs)11XN∈Ds

N
dZN dt

= −
s∑

i=1

∫

R+×R2dN

fN (t, ZN )vi · ∇xi
φ(t, Zs)11XN∈Ds

N
dZNdt

+
1√
2
(N − s)

s∑

i=1

∫

R+×Σs
N

(i,s+1)

νi,s+1 · (vs+1 − vi) fN (t, ZN )φ(t, Zs) dσ
i,s+1
N dt ,

so finally by definition of f̃
(s)
N , we obtain

(4.2.3)

N∑

i=1

∫

R+×R2dN

vi · ∇xi
fN (t, ZN )φ(t, Zs)11XN∈Ds

N
dZN dt

= −
s∑

i=1

∫

R+×R2ds

f̃
(s)
N (t, Zs)vi · ∇xi

φ(t, Zs) dZsdt

+
1√
2
(N − s)

s∑

i=1

∫

R+×Σs
N

(i,s+1)

νi,s+1 · (vs+1 − vi) fN (t, ZN )φ(t, Zs) dσ
i,s+1
N dt .
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Now let us consider the contribution of the potential in (4.2.1). We split the sum as follows:

1

ε

∑

i

∑

j 6=i

∫

R+×R2dN

F

(
xi − xj

ε

)
· ∇vi

fN (t, ZN )φ(t, Zs)11XN∈Ds
N
dZNdt

=
1

ε

s∑

i,j=1
j 6=i

∫

R+×R2dN

F

(
xi − xj

ε

)
· ∇vi

fN (t, ZN )φ(t, Zs)11XN∈Ds
N
dZNdt

+
1

ε

N∑

i,j=s+1
j 6=i

∫

R+×R2dN

F

(
xi − xj

ε

)
· ∇vi

fN (t, ZN )φ(t, Zs)11XN∈Ds
N
dZNdt .

We notice that the second term in the right-hand side vanishes identically. It follows that

1

ε

∑

i

∑

j 6=i

∫

R+×R2dN

F

(
xi − xj

ε

)
· ∇vi

fN (t, ZN )φ(t, Zs)11XN∈Ds
N
dZNdt

= −1

ε

s∑

i,j=1
j 6=i

∫

R+×R2ds

F

(
xi − xj

ε

)
· ∇vi

φ(t, Zs)f̃
(s)
N (t, Zs) dZsdt

so in the end we obtain

(4.2.4)

∫

R+×R2ds

f̃
(s)
N (t, Zs)

(
∂tφ+ divXs

(Vsφ) +
1

ε

s∑

i,j=1
j 6=i

F

(
xi − xj

ε

)
· ∇vi

φ
)
(t, Zs) dZsdt

= −
∫

R2ds

f̃
(s)
N (0, Zs)φ(0, Zs) dZs

− N − s√
2

s∑

i=1

∫

R+×Σs
N

(i,s+1)

νi,s+1 · (vs+1 − vi) fN (t, ZN )φ(t, Zs) dσ
i,s+1
N dt .

Remark 4.2.1. — Using the weak form of Liouville’s equation, we see that multiple collisions (which

occur as a boundary integral on a zero measure subset of ∂Ds
N ) can be neglected.

4.3. Clusters

We want to analyze the second term on the right-hand side of (4.2.4). We notice that in the space-

velocity integration the variables zs+2, . . . , zN are integrated over Rd(N−s−1) (with the restriction

that they must be at a distance at least ε from Xs) whereas zs+1 must lie in the sphere centered

at xi and of radius ε. It is therefore natural to try to express that contribution in terms of the

marginal f̃
(s+1)
N (Zs+1). However as pointed out in (4.1.6),

∫
f̃

(s+1)
N (Zs+1) dzs+1 6= f̃

(s)
N (Zs) .

The difference between those two terms is that on the one hand

∀XN ∈ Ds+1
N , one has |xj − xs+1| > ε for all j ≥ s+ 2 ,

which is not the case for XN ∈ Ds
N , and on the other hand

∀XN ∈ Ds
N , one has |xj − xs+1| > ε for all j ≤ s ,

a condition which does not appear in the definition of Ds+1
N .

This leads to the following definition.
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Definition 4.3.1 (ε-closure). — Given a subset XN = {x1, . . . , xN} of RdN and an integer s

in [1, N ], the ε-closure E(Xs, XN ) of Xs in XN is defined as the intersection of all subsets Y of XN

which contain Xs and satisfy the separation condition

(4.3.1) ∀y ∈ Y , ∀x ∈ XN \ Y , |x− y| > ε .

We denote |E(Xs, XN )| the cardinal of E(Xs, XN ).

Now let us introduce the following notation, useful in situations where XN belongs to Σs
N (i, s + 1),

defined in (4.2.2)

Notation 4.3.2. — If Xs+m = E(Xs, Xs+m) and if for some integers j0 ≤ s < k0 ≤ s + m, there

holds |xj − xk| > ε for all (j, k) ∈ [1, s]× [s+ 1, s+m] \ {(j0, k0)}, then we say that E(Xs, Xs+m) has

a weak link at (j0, k0), and we denote Xs+m = E〈j0,k0〉(Xs, Xs+m).

Moreover the following notion, following King [27], will turn out to be very useful.

Definition 4.3.3 (Cluster). — A cluster of base Xs = {x1, . . . , xs} and length m is any

point {xs+1, . . . , xs+m} in Rdm such that E(Xs, Xs+m) = Xs+m . We denote ∆m(Xs) the set of

all such clusters.

The proof of the following lemma is completely elementary.

Lemma 4.3.4. — The following equivalences hold, for m ≥ 1 :

(4.3.2)
(
E(Xs, XN ) = Xs+m

)
⇐⇒

(
E(Xs, Xs+m) = Xs+m and XN ∈ Ds+m

N

)
,

(4.3.3)

(
E(Xs, XN ) = Xs+m

XN ∈ Σs
N (i, s+ 1)

)
⇐⇒




E〈i,s+1〉(Xs, Xs+m) = Xs+m

XN ∈ Ds+m
N

|xi − xs+1| = ε


 ,

as well as the implication, for m ≥ 2,

(4.3.4)
(
E〈i,s+1〉(Xs, Xs+m) = Xs+m

)
=⇒

({
xs+2, . . . , xs+m

}
∈ ∆m−1(xs+1)

)
.

4.4. Collision operators

With the help of the notions introduced in Section 4.3, we now can reformulate the boundary integral

in (4.2.4).

Given 1 ≤ s ≤ N − 1 and XN in Σs
N (i, s + 1), there holds |xs+1 − xi| = ε, so that xs+1 belongs

to E(Xs, XN ), implying |E(Xs, XN )| ≥ s + 1. We decompose Σs
N (i, s + 1) into a disjoint union over

the possible cardinals of the ε-closure of Xs in XN :

(4.4.1) Σs
N (i, s+ 1) =

⋃

1≤m≤N−s

(
Σs

N (i, s+ 1)
⋂{

YN , |E(Ys, YN )| = s+m
})

,
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Figure 4. Clusters with weak links

implying
∫

Σs
N

(i,s+1)

νi,s+1 · (vs+1 − vi) fN (ZN )φ(Zs) dσ
i,s+1
N

=
∑

1≤m≤N−s

∫

Σs
N

(i,s+1)

11|E(Xs,XN )|=s+m νi,s+1 · (vs+1 − vi) fN (ZN )φ(Zs) dσ
i,s+1
N .

By assumption of symmetry (1.1.1) for fN and φ, if |E(Xs, XN )| = s+m, we can index the particles

so that E(Xs, XN ) = Xs+m : we obtain

(4.4.2)

∫

Σs
N

(i,s+1)

11|E(Xs,XN )|=s+m νi,s+1 · (vs+1 − vi) fN (ZN )φ(Zs) dσ
i,s+1
N

= Cm−1
N−s−1

∫

Σs
N

(i,s+1)

11E(Xs,XN )=Xs+m
νi,s+1 · (vs+1 − vi) fN (ZN )φ(Zs) dσ

i,s+1
N .

We use equivalence (4.3.3) from Lemma 4.3.4 and Fubini’s theorem to write
∫

Σs
N

(i,s+1)

11E(Xs,XN )=Xs+m
νi,s+1 · (vs+1 − vi)fN (ZN )φ(Zs)dσ

i,s+1
N

=
√

2

∫

Sε(xi)×Rd

νi,s+1 · (vs+1 − vi)φ(Zs)

×
(∫

R2d(m−1)

11E〈i,s+1〉(Xs,Xs+m)=Xs+m
f

(s+m)
N (Zs+m)dZ(s+1,s+m)

)
dσi(xs+1) ,

with dσi the surface measure on Sε(xi) :=
{
x ∈ Rd, |x − xi| = ε

}
. With (4.3.4), if m ≥ 2, then the

above integral over R2d(m−1) appears as an integral over ∆m−1(xs+1). We also remark that in the
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case m = 1, we have a simple description of E〈i,s+1〉(Xs, Xs+1) = Xs+1 :

(4.4.3)
(
11E〈i,s+1〉(Xs,Xs+1)=Xs+1

6= 0
)

⇐⇒
(

|xi − xs+1| ≤ ε

|xj − xs+1| > ε for j ∈ [1, s] \ {i}

)
.

This leads to the following definition of the collision term of order m ≥ 1, for s+m ≤ N : we define

(4.4.4)
Cs,s+mf̃

(s+m)
N (Zs) := mCm

N−s

s∑

i=1

∫

Sε(xi)×Rd

νs+1,i · (vs+1 − vi)

×G
(m−1)
〈i,s+1〉(f

(s+m)
N )(Zs+1) dσi(xs+1)dvs+1 ,

where for m = 1, by (4.4.3):

(4.4.5) G
(0)
〈i,s+1〉(f̃

(s+1)
N )(Zs+1) :=

( ∏

1≤j≤s
j 6=i

11|xs+1−xj |>ε

)
f̃

(s+1)
N (Zs+1) ,

and for m ≥ 2 :

(4.4.6)

G
(m−1)
〈i,s+1〉(f̃

(s+m)
N )(Zs+1)

:=

∫

∆m−1(xs+1)×Rd(m−1)

11E〈i,s+1〉(Xs,Xs+m)=Xs+m
f̃

(s+m)
N (Zs+m)dZ(s+2,s+m) .

The complex-looking indicator function 11E〈i,s+1〉(Xs,Xs+m)=Xs+m
will, in the estimates of the next

chapters, be simply bounded from above by one. This will be the case for instance in an estimate

showing that higher-order collision operators (4.4.6) are negligible in the thermodynamical limit; this

estimate is (5.3.1) in Proposition 5.3.1.

With (N − s)Cm−1
N−s−1 = mCm

N−s, we can now reformulate (4.2.4) into

(4.4.7)

∫

R+×R2ds

f̃
(s)
N (t, Zs)

(
∂tφ+ divXs

(Vsφ) − 1

ε

s∑

i,j=1
j 6=i

∇Φ

(
xi − xj

ε

)
· ∇vi

φ
)
(t, Zs) dZsdt

+

∫

R2ds

f̃
(s)
N (0, Zs)φ(0, Zs) dZs =

N−s∑

m=1

∫

R+×R2ds

φ(t, Zs)Cs,s+mf̃
(s+m)
N (t, Zs) dtdZs ,

so that f̃
(s)
N appears as a (formal) weak solution to

(4.4.8) ∂tf̃
(s)
N +

∑

1≤i≤s

vi · ∇xi
f̃

(s)
N − 1

ε

∑

1≤i 6=j≤s

∇Φ

(
xi − xj

ε

)
· ∇vi

f̃
(s)
N =

N−s∑

m=1

Cs,s+mf̃
(s+m)
N .

4.5. Mild solutions

We now define the integral formulation of (4.4.8). Denote by Φs(t) the s-particle Hamiltonian flow,

and by Hs the associated solution operator:

(4.5.1) Hs(t) : f ∈ C0(Ωs;R) 7→ f(Φs(−t, ·)) ∈ C0(Ωs;R) .

The time-integrated form of equation (4.4.8) is

(4.5.2) f̃
(s)
N (t, Zs) = Hs(t)f̃

(s)
N (0, Zs) +

N−s∑

m=1

∫ t

0

Hs(t− τ)Cs,s+mf̃
(s+m)
N (τ, Zs) dτ .
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The total flow and total collision operators H and CN are defined on finite sequences GN = (gs)1≤s≤N

as follows:

(4.5.3)





∀s ≤ N , (H(t)GN )s := Hs(t)gs ,

∀ s ≤ N − 1 , (CNGN )s :=

N−s∑

m=1

Cs,s+mgs+m ,
(
CNGN

)
N

:= 0 .

We define mild solutions to the BBGKY hierarchy (4.5.2) to be solutions of

(4.5.4) F̃N (t) = H(t)F̃N (0) +

∫ t

0

H(t− τ)CN F̃N (τ) dτ , F̃N = (f̃
(s)
N )1≤s≤N .

Remark 4.5.1. — At this stage, the use of weak formulations could seem a little bit suspicious since

they are used essentially as a technical artifice to go from the Liouville equation (1.2.3) to the mild form

of the BBGKY hierarchy (4.5.2). In particular, this allows to ignore pathological trajectories involving

multiple collisions. Nevertheless, the existence of mild solutions to the BBGKY hierarchy (to be proved

in the next two chapters) provides the existence of weak solutions to the BBGKY hierarchy, and in

particular to the Liouville equation (which is nothing else than the last equation of the hierarchy). The

classical uniqueness result for kinetic transport equations then implies that the object we consider, that

is the family of truncated marginals, is uniquely determined (almost everywhere).

Note that similarly we can define the total Boltzmann flow and collision operators S and C as follows:

(4.5.5)

{∀s ≥ 1 , (S(t)G)s := Ss(t)gs ,

∀ s ≥ 1 ,
(
C0G

)
s

:= C0
s,s+1gs+1 ,

where Ss denotes the free transport operator in s-particle space and C0
s,s+1 is defined in (3.3.5).





CHAPTER 5

CONTINUITY OF COLLISION OPERATORS

In view of proving the existence of mild solutions to the BBGKY hierarchy (4.5.2), we need continuity

estimates on the linear collision operators Cs,s+m defined in (4.4.4)-(4.4.5)-(4.4.6), and the total collision

operator CN defined in (4.5.3).

We first note that, by definition, the operator Cs,s+m involves only configurations with clusters of

length m. Classical computations of statistical mechanics, presented in Section 5.1, show that the

probability of finding such clusters is exponentially decreasing with m.

It is then natural to introduce functional spaces encoding the decay with respect to energy and the

growth with respect to the order of the marginal (see Section 5.2). In these appropriate functional

spaces, we can establish uniform continuity estimates for the BBGKY (Section 5.3) as well as for the

limiting Boltzmann collision operators (Section 5.4).

5.1. Cluster estimates

A point Xs ∈ Rds being given, we recall that ∆m(Xs) is the set of all clusters of base Xs and length m

(this notation is introduced in Definition 4.3.3 page 26).

Lemma 5.1.1. — For any symmetric function ϕ on RNd, any s ∈ [1, N − 1], any Xs ∈ Rds, the

following identity holds:

(5.1.1)

∫

R(N−s)d

ϕ(XN )dX(s+1,N) =

∫

Rd(N−s)

11XN∈Ds
N
ϕ(XN ) dX(s+1,N)

+

N−s∑

m=1

Cm
N−s

∫

∆m(Xs)

(∫

Rd(N−s−m)

11XN∈Ds+m
N

ϕ(XN ) dX(s+m+1,N)

)
dX(s+1,s+m) ,

implying, for ζ > 0,

(5.1.2)
1

m!

∫

∆m(Xs)

dX(s+1,s+m) ≤ ζ−m exp
(
ζκd(s+m)εd

)

and

(5.1.3)
∑

m≥1

ζm+1 exp
(
− ζκd(m+ 1)εd

)

m!

∫

∆m(x1)

dX(2,m+1) ≤ ζ
(
1 − exp

(
− ζκdε

d
))
,

where κd is the volume of the unit ball in Rd.
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Proof. — The first identity (5.1.1) is obtained by a simple partitioning argument, which extends the

splitting used to define Cs,s+m in (4.4.4) in the previous chapter. We recall that, given any Xs ∈ Rds,

the family {
(xs+1, . . . , xN ) , |E(Xs, XN )| = s+m

}
for 0 ≤ m ≤ N − s ,

is a partition of R(N−s)d. Then we use the symmetry assumption, as we did in (4.4.2), to find
∫

R(N−s)d

ϕ(XN )dX(s+1,N) =
∑

0≤m≤N−s

Cm
N−s

∫

R(N−s)d

11E(Xs,XN )=Xs+m
ϕ(XN )dX(s+1,N) .

It then suffices to use equivalence (4.3.2) from Lemma 4.3.4, noting that the set of all (xs+1, . . . , xs+m)

in Rmd such that E(Xs, Xs+m) = Xs+m coincides with ∆m(Xs). This proves (5.1.1).

Estimates (5.1.2) and (5.1.3) come from the counterpart of (5.1.1) at the grand canonical level, i.e.

when the activity ζ−1 is fixed, rather than the total number N of particles; Remark 5.2.3 expands on

this terminology.

For any bounded Λ ⊂ Rd, the associated grand-canonical ensemble for n non-interacting particles is

defined as the probability measure with density

ϕn(Xn) :=
ζn exp(−ζ|Λ|)

n!

∏

1≤i≤n

11xi∈Λ .

The s-point correlation function gs and the truncated s-point correlation function g̃s are defined by

gs(Xs) :=

∞∑

n=s

n!

(n− s)!

∫

R(n−s)d

ϕn(Xn)dX(s+1,n) ,

g̃s(Xs) :=

∞∑

n=s

n!

(n− s)!

∫

R(n−s)d

11Xn∈Ds
n
ϕn(Xn)dX(s+1,n) .

We compute ∫

R(n−s)d

ϕn(Xn)dX(s+1,n) = ζs exp
(
− ζ|Λ|

) (ζ|Λ|)n−s

n!

∏

1≤i≤s

11xi∈Λ ,

so that

(5.1.4) gs(Xs) = ζs exp
(
− ζ|Λ|

) ∞∑

k=0

(ζ|Λ|)k

k!

∏

1≤i≤s

11Λ(xi) = ζs
∏

1≤i≤s

11xi∈Λ .

Similarly, by definition of Ds
n in (4.1.4),

∫

R(n−s)d

11Xn∈Ds
n

∏

s+1≤j≤n

11xi∈Λ dX(s+1,n) =
∣∣∣Λ ∩

( ⋂

1≤i≤s

cBε(xi)
)∣∣∣ =

∣∣Λ ∩ cBε(Xs)
∣∣ ,

where we denote Bε(Xs) :=
⋃

1≤i≤s

Bε(xi), with Bε(xi) :=
{
y ∈ Rd, |y − xi| ≤ ε

}
. This implies

g̃s(Xs) = ζs exp
(
− ζ|Λ|

)∑

n≥s

(
ζ|Λ ∩ cBε(Xs)

∣∣)n−s

(n− s)!

∏

1≤i≤s

11xi∈Λ .

If Bε(xi) ⊂ Λ for all 1 ≤ i ≤ s, then |Λ| − |Λ ∩ cBε(Xs)| = |Bε(Xs)|. We obtain

(5.1.5) g̃s(Xs) = ζs exp
(
− ζ|Bε(Xs)|

)
, if Bε(Xs) ⊂ Λ .
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Besides, by (5.1.1),

gs(Xs) = g̃s(Xs)

+

∞∑

n=s

n−s∑

m=1

n!Cm
n−s

(n− s)!

∫

∆m(Xs)

(∫

R(n−s−m)d

11Xn∈Ds+m
n

gs(Xn) dX(s+m+1,n)

)
dX(s+1,s+m) .

By Fubini, we get

∞∑

n=s

n−s∑

m=1

n!Cm
n−s

(n− s)!

∫

∆m(Xs)

(∫

R(n−s−m)d

11Xn∈Ds+m
n

ϕn(Xn) dX(s+m+1,n)

)
dX(s+1,s+m)

=

∞∑

n=s

n−s∑

m=1

n!

(k − s)!(n− k)!

∫

∆k−s(Xs)

(∫

R(n−k)d

11Xn∈Dk
n
ϕn(Xn) dX(k+1,n)

)
dX(s+1,k)

=

∞∑

k=s+1

1

(k − s)!

∞∑

n=k

n!

(n− k)!

∫

∆k−s(Xs)

(∫

R(n−k)d

11Xn∈Dk
n
ϕn(Xn) dX(k+1,n)

)
dX(s+1,k)

=

∞∑

k=s+1

1

(k − s)!

∫

∆k−s(Xs)

g̃k(Xk)dX(s+1,k) .

We have proved that

(5.1.6) gs(Xs) = g̃s(Xs) +

∞∑

k=s+1

1

(k − s)!

∫

∆k−s(Xs)

gk(Xk)dX(s+1,k) .

We now show how identities (5.1.4)-(5.1.5)-(5.1.6) imply the bounds (5.1.2)-(5.1.3).

We first retain only the contribution of k = s + m in the right-hand side of (5.1.6). Given ε > 0

and Xs ∈ Rds, we choose Λ large enough so that Bε(Y ) ⊂ Λ for all Y ∈ ∆m(Xs). This gives

ζs ≥ 1

m!

∫

∆m(Xs)

ζs+m exp
(
− ζ|Bε(Xs+m)|

)
dX(s+1,s+m) ,

and now |Bε(Xs+m)| ≤ κdε
d(s+m) implies (5.1.2).

We finally fix an integer K ≥ 2 and choose s = 1 in (5.1.6). Given ε > 0 and x1 ∈ Rd, we choose Λ

large enough so that Bε(YK) ⊂ Λ for all YK ∈ ∆K(x1). This gives

ζ − ζ exp
(
− ζ|Bε(x1)|

)
≥

K∑

k=2

∫

∆k−1(x1)

ζk exp
(
− ζ|Bε(Xk)|

)
dX(2,k) ,

and bounding the volumes of balls from above, we find

ζ
(
1 − exp(−ζκdε

d)
)
≥

K−1∑

k=1

ζk+1

k!
exp

(
− ζκd(k + 1)εd

) ∫

∆k(x1)

dX(2,k+1) .

It then suffices to let K → ∞ to find (5.1.3). This ends the proof of Lemma 5.1.1.

5.2. Functional spaces

To show the convergence of the series defining mild solutions (4.5.2) to the BBGKY hierarchy, we need

to introduce some norms on the space of sequences (f̃ (s))s≥1. Given ε ≥ 0, β > 0, an integer s ≥ 1,

and a function gs : Ωs → R, we let

(5.2.1) |gs|ε,s,β := sup
Zs∈Ωs

(
|gs(Zs)| exp

(
βEε(Zs)

))
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where for ε > 0, the function Eε is the s-particle Hamiltonian

(5.2.2) Eε(Zs) :=
∑

1≤i≤s

|vi|2
2

+
∑

1≤i<k≤s

Φε(xi − xk) , with Φε(x) := Φ
(x
ε

)
,

and for ε = 0, E0 is the free Hamiltonian:

(5.2.3) E0(Zs) :=
∑

1≤i≤s

|vi|2
2

·

Notation 5.2.1. — For ε ≥ 0 and β > 0, we denote Xε,s,β the Banach space of continuous func-

tions Ωs → R with finite | · |ε,s,β norm.

By Assumption 1.2.1, for ε > 0 (and β > 0) there holds exp(βEε(Zs)) → ∞ as Zs approaches ∂Ωs. This

implies for gs ∈ Xε,s,β the existence of an extension by continuity: ḡs ∈ C0(R2ds;R) such that ḡs ≡ 0

on ∂Ωs, and ḡs ≡ g on Ωs.

For sequences of functions G = (gs)s≥1, with gs : Ωs → R, we let for ε ≥ 0, β > 0, µ ∈ R,

‖G‖ε,β,µ := sup
s≥1

(
|gs|ε,s,β exp(µs)

)
.

Notation 5.2.2. — For ε ≥ 0, β > 0, and µ ∈ R, we denote Xε,β,µ the Banach space of se-

quences G = (gs)s≥1, with gs ∈ Xε,s,β and ‖G‖ε,β,µ <∞.

The following inclusions hold:

(5.2.4) if β′ ≤ β and µ′ ≤ µ, then Xε,s,β′ ⊂ Xε,s,β , Xε,β′,µ′ ⊂ Xε,β,µ .

Remark 5.2.3. — These norms are classical in statistical physics, where probability measures are

called “ensembles”.

At the canonical level, the ensemble e−βEε(Zs)dZs is a normalization of the Lebesgue measure,

where β ∼ T−1 (and T is the absolute temperature) specifies fluctuations of energy. The Boltzmann-

Gibbs principle states that the average value of any quantity in the canonical ensemble is its equilibrium

value at temperature T .

The micro-canonical level consists in restrictions of the ensemble to energy surfaces.

At the grand-canonical level the number of particles may vary, with variations indexed by chemical

potential µ ∈ R.

5.3. Continuity estimates

We now establish bounds, in the above defined functional spaces, for the collision operators defined

in (4.4.4)-(4.4.6), and for the total collision operator CN (4.5.3). In Cs,s+m, the sum in i over [1, s]

will imply a loss in µ, while the linear velocity factor will imply a loss in β. The losses are materialized

in (5.3.2) by inequalities β′ < β, µ′ < µ.

Proposition 5.3.1. — Given β > 0 and µ ∈ R, for m ≥ 1 and 1 ≤ s ≤ N − m, the collision

operators Cs,s+m satisfy the bounds, for all GN = (gs)1≤s≤N ∈ Xε,β,µ,

(5.3.1)
∣∣Cs,s+mgs+m(Zs)

∣∣ ≤ εm−1Cde
mκd(2π/β)md/2

(
sβ−d/2 +

∑

1≤i≤s

|vi|
)
e−βEε(Zs)|gs+m|ε,s+m,β ,
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for some Cd > 0 depending only on d.

If ε < eµ−κd(β/2π)d/2, then for all 0 < β′ < β and µ′ < µ, the total collision operator CN satisfies the

bound

(5.3.2) ‖CNGN‖ε,β′,µ′ ≤ Cd(1 + β−d/2)
( 1

β − β′
+

1

µ− µ′

)
‖GN‖ε,β,µ ,

for some Cd > 0 depending only on d.

Considering the case m > 1 in (5.3.1), for which the upper bound is O(ε), we see that higher-order

interactions are negligible in the Boltzmann-Grad limit.

Estimate (5.3.2), a continuity estimate with loss for the total collision operator CN , is not directly

used in the following. In the existence proof (Chapter 6), we use instead the pointwise bound (5.3.1).

Proof. — We first consider the case m ≥ 2. From the definition of G
(m−1)
〈i,s+1〉 in (4.4.6), we obtain

∣∣G(m−1)
〈i,s+1〉(gs+m)(Zs+1)

∣∣ ≤ |gs+m|ε,s+m,β

∫

∆m−1(xs+1)×Rd(m−1)

exp
(
− βEε(Zs+m)

)
dZ(s+2,s+m) ,

where the norm | · |ε,s,β is defined in (5.2.1), and the Hamiltonian Eε is defined in (5.2.2). For the

collision operator defined in (4.4.4), this implies the bound

(5.3.3) |Cs,s+mgs+m(Zs)| ≤ mCm
N−s|gs+m|ε,s+m,β ×

∑

1≤i≤s

Ii,m(Vs) × Ji,m(Xs) ,

where Ii,m is the velocity integral

Ii,m(Vs) :=

∫

Rdm

(
|vs+1| + |vi|

)
exp

(
− β

2

s+m∑

j=1

|vj |2
)
dV(s+1,s+m) ,

and Ji,m is the spatial integral

Ji,m(Xs) :=

∫

Sε(xi)×∆m−1(xs+1)

exp
(
− β

∑

1≤j<k≤s+m

Φε(xj − xk)
)
dσ(xs+1)dX(s+2,s+m) .

The velocity integral is a product of Gaussian integrals and can be exactly computed:

(5.3.4) Ii,m(Vs) = (2π/β)(m−1)d/2
(
(2π/β)d/2|vi| + (2/β)d

)
exp

(
− β

2

∑

1≤j≤s

|vj |2
)
.

For the spatial integral, there holds

Ji,m(Xs) ≤ exp
(
− β

∑

1≤j<k≤s

Φε(xj − xk)
)
|Sε(xi)| × sup

x

∫

∆m−1(x)

dX(1,m−1)

≤ exp
(
− β

∑

1≤j<k≤s

Φε(xj − xk)
)
× κdε

d−1 ×
(
(m− 1)! ε(m−1)d exp(mκd)

)
,

where in the last bound we used identity (5.1.2) from Lemma 5.1.1 with s = 1 and ζ = ε−d. This

implies

|Cs,s+mgs+m(Zs)| ≤ Cdε
m−1

(
(N − s)εd−1

)m
emκd(2π/β)md/2

(
sβ−d/2 +

∑

1≤i≤s

|vi|
)

× e−βEε(Zs)|gs+m|ε,s+m,β .

In the Boltzmann-Grad scaling Nεd−1 ≡ 1, this gives (5.3.1). Above and in the following, Cd denotes

a positive constant which depends only on d, and which may change from line to line.
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In the case m = 1, by definition of G(0) in (4.4.5), there holds

∣∣G(0)
〈i,s+1〉(gs+1)(Zs+1)

∣∣ ≤ exp
(
− βEε(Zs+1)

)
|gs+1|ε,s+1,β ,

and this implies

|Cs,s+1gs+1(Zs)| ≤ (N − s)|gs+1|ε,s+1,β exp
(
− (β/2)

∑

1≤j<k≤s

Φε(xj − xk)
)
×
∑

1≤i≤s

Ii,1(Vs) × κdε
d−1 ,

from which (5.3.1) is deduced as above.

We turn to the proof of (5.3.2). From the pointwise inequality

∑

1≤i≤s

|vi| exp
(
− (γ/2)

∑

1≤i≤s

|vi|2
)
≤ s1/2(eγ)−1/2 , γ > 0 ,

we deduce for the above velocity integral Ii,m(Vs) the bound, for 0 < β′ < β,

∑

1≤i≤s

exp
(
(β′/2)

∑

1≤j≤s

|vj |2
)
Ii,m(Vs) ≤ Cd(2π/β)md/2

(
sβ−d/2 + s1/2(β − β′)−1/2

)
.

From the above bound in Ji,m(Xs), we deduce immediately, for 0 < β′ < β,

max
1≤i≤s

exp
(
β′

∑

1≤j<k≤s

Φε(xj − xk)
)
Ji,m(Xs) ≤ κd(m− 1)!emκdεmd−1 .

With (5.3.3), these bounds yield, in the Boltzmann-Grad scaling,

eβ′Eε(Zs)+µ′s
∣∣Cs,s+mgs+m(Zs)

∣∣ ≤ εm−1Cd(2π/β)md/2emκdeµ′s
(
sβ−d/2 + s1/2(β − β′)−1/2

)

× |gs+m|ε,s+m,β .

Summing over m, we finally obtain, for CN defined in (4.5.3),

‖CNGN‖ε,β′,µ′ ≤ Cd‖GN‖ε,β,µ sup
1≤s≤N

((
sβ−d/2 + s1/2(β − β′)−1/2

)
e−(µ−µ′)s

)

×
∑

1≤m≤N−s

e−m(µ−κd)εm−1(2π/β)md/2 .

If ε is small enough so that εeκd−µ(2π/β)d/2 < 1, then the above series is convergent, and

∑

1≤m≤N−s

e−m(µ−κd)εm−1(2π/β)md/2 ≤ eκd−µ(2π/β)d/2

1 − εeκd−µ(2π/β)d/2
·

Finally,

sup
1≤s≤N

((
sβ−d/2 + s1/2(β − β′)−1/2

)
e−(µ−µ′)s

)
≤ e−1(1 + β−d/2)(µ− µ′)−1 + (β − β′)−1,

and this yields (5.3.2). Proposition 5.3.1 is proved.

Remark 5.3.1. — We do not use the extra decay provided by the contribution of the potential in

the exponential of the Hamiltonian. This is quite obvious in the bound for Ji,m(Xs) in the proof

of Proposition 5.3.1, where we bound e−β
P

1≤j<k≤s+m Φε(xj−xk) by e−β
P

1≤j<k≤s Φε(xj−xk). Then, we

might be tempted to replace Eε by the free Hamiltonian E0 in the definition of the functional spaces.

The kinetic energy, however, is not a conserved quantity, so that in X0,s,β spaces the conservation of

energy (6.1.5) does not hold.
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5.4. Continuity estimate for the limiting collision operator

Similarly to Chapter 2, we can define a limiting collision operator (see in particular (3.3.5) introduced

in Chapter 3):

(5.4.1)

C0
s,s+1f

(s+1)(Zs) :=

s∑

i=1

∫

Sd−1×Rd

11ν·(vs+1−vi)>0 ν · (vs+1 − vi)

×
(
f (s+1)(t, x1, v1, . . . , xi, v

∗
i , . . . , xs, vs, xi, v

∗
s+1) − f (s+1)(Zs, xi, vs+1)

)
dνdvs+1 ,

where v∗i and v∗s+1 are obtained from vi, vs+1 and ν by the inverse scattering operator σ−1
0 introduced

in Chapter 3. The continuity estimate is as follows:

Proposition 5.4.1. — Given β > 0, µ ∈ R, the collision operator C0
s,s+1 satisfies the following bound,

for all gs+1 ∈ X0,s+1,β :

(5.4.2)
∣∣C0

s,s+1gs+1(Zs)
∣∣ ≤ Cdβ

−d/2
(
sβ−d/2 +

∑

1≤i≤s

|vi|
)
e−βE0(Zs)|gs+1|0,s+1,β ,

for some Cd > 0 depending only on d.

Proof. — There holds
∣∣C0

s,s+1gs+1(Zs)
∣∣ ≤

∑

1≤i≤s

∫

Sd−1×Rd

(
|vs+1| + |vi|

)(
|gs+1(v

∗
i , v

∗
s+1)| + |gs+1(vi, vs+1)|

)
dνdvs+1,

omitting most of the arguments of gs+1 in the integrand. By definition of |·|0,s,β norms and conservation

of energy (3.1.4), there holds

|gs+1(v
∗
i , v

∗
s+1)| + |gs+1(vi, vs+1)| ≤

(
e−βE0(Z

∗
s ) + e−βE0(Zs)

)
|gs+1|0,β

= 2e−βE0(Zs)|gs+1|0,s+1,β ,

where Z∗
s is identical to Zs except for vi and vs+1 changed to v∗i and v∗s+1. This gives

∣∣C0
s,s+1gs+1(Zs)

∣∣ ≤ Cd|gs+1|0,s+1,βe
−βE0(Zs)

∑

1≤i≤s

Ii,1(Vs) ,

borrowing notation from the proof of Proposition 5.3.1, and we conclude with (5.3.4).





CHAPTER 6

LOCAL-IN-TIME WELL-POSEDNESS FOR THE BBGKY AND

BOLTZMANN HIERARCHIES

We state and prove an existence and uniqueness result for mild solutions to the BBGKY hierarchy,

defined in (4.5.4), which we reproduce here:

(6.0.1) F̃N (t) = H(t)F̃N (0) +

∫ t

0

H(t− τ)CN F̃N (τ) dτ , F̃N = (f̃
(s)
N )1≤s≤N ,

as well as for the limit Boltzmann hierarchy

(6.0.2) F (t) = S(t)F (0) +

∫ t

0

S(t− τ)C0F (τ) dτ , F = (f (s))1≤s ,

where the limiting collision operator C0 as well as the free-particle flow S(t) are defined in (4.5.5).

6.1. Functional spaces and statement of the result

Existence and uniqueness for (6.0.1) will take place in spaces of Xε,β,µ-valued functions of time (see

Notation 5.2.2 page 34), where the indices β and µ themselves depend on time: in the sequel we

choose for simplicity a linear dependence in time, though other, decreasing functions of time could be

chosen just as well. Such a time dependence on the parameters of the function spaces is a situation

which occurs whenever continuity estimates involve a loss, which is the case here since the continuity

estimates on the collision operators lead to a deterioration in the parameters β and µ. We refer to

Section 6.3 for some comments.

Definition 6.1.1. — Given T > 0, a positive function β and a real valued function µ defined on [0, T ]

we denote Xε,β,µ the space of functions G : t ∈ [0, T ] 7→ G(t) = (gs(t))1≤s ∈ Xε,β(t),µ(t), such that for

all Zs ∈ R2ds, the map t ∈ [0, T ] 7→ gs(t, Zs) is measurable, and

(6.1.3) |‖G|‖ε,β,µ := sup
0≤t≤T

‖G(t)‖ε,β(t),µ(t) <∞ .

We define similarly

|‖G|‖0,β,µ := sup
0≤t≤T

‖G(t)‖0,β(t),µ(t) .

The existence result for the BBGKY hierarchy we shall prove is the following.



40 CHAPTER 6. LOCAL-IN-TIME WELL-POSEDNESS FOR THE BBGKY AND BOLTZMANN HIERARCHIES

Theorem 2 (Uniform existence for the BBGKY hiearchy). — Let β0 > 0 and µ0 ∈ R be

given. There are T > 0 and λ > 0 such that β := β0 − λT > 0, as well as ε0 > 0 and C > 0, such

that for all 0 < ε ≤ ε0, defining µ := µ0 − λT , any family of initial marginals F̃N (0) =
(
f̃

(s)
N (0)

)
s∈N∗

in Xε,β0,µ0 gives rise to a unique solution F̃N (t) = (f̃
(s)
N (t))1≤s≤N in Xε,β,µ to the BBGKY hierar-

chy (6.0.1) in the Boltzmann-Grad scaling Nεd−1 = 1. It satisfies the following bound:

|‖F̃N |‖ε,β,µ ≤ C‖F̃N (0)‖ε,β0,µ0 .

This is a uniform existence result, in the sense that the existence time T does not depend on the

number of particles N, which of course is crucial in the perspective of the limit N → ∞. Note that

actually the only assumption made is on bounds on the initial family of marginals.

For fixed ε > 0, the uniqueness statement in Theorem 2 allows to define a maximal existence time T∗(ε).

However we expect sup
ε>0

T∗(ε) to be attained at ε = 0, which precludes the definition of a maximal

existence time for the ε-dependent family of hierarchies. We can however give a uniform bound from

below for an existence time in Theorem 2: the following result is a corollary of the proof of Theorem 2,

its proof is provided at the end of Section 6.2.

Corollary 6.1.2. — Given β0 > 0, µ0 ∈ R, for some constant Cd > 0, given

(6.1.4) T := Cde
µ0(1 + 2β

d/2
0 )−1 max

β∈[0,β0]
βe−β(β0 − β)d

then for all 0 < ε ≤ ε0, the solution to the BBGKY hierarchy with data F̃N (0) =
(
f̃

(s)
N (0)

)
s∈N∗

belonging to Xε,β0,µ0
is defined on [0, T ].

Remark 6.1.3. — For d≪ β0, there holds max
β∈[0,β0]

βe−β(β0 − β)d = βd
0

(
1 + o(1)

)
, hence an existence

time of the order of eµ0β
d/2
0 .

A similar existence result as Theorem 2 can be obtained for the Boltzmann hiearchy.

Theorem 3 (Existence for the Boltzmann hiearchy). — Let β0 > 0 and µ0 ∈ R be given. Then

with the same notation as Theorem 2, any family of initial marginals F (0) =
(
f (s)(0)

)
1≤s

∈ X0,β0,µ0

gives rise to a unique solution F (t) = (f (s)(t))1≤s in X0,β,µ to the Boltzmann hierarchy (6.0.2). It

satisfies the following bound:

|‖F |‖0,β,µ ≤ C‖F (0)‖0,β0,µ0
.

The proof of Theorems 2 and 3 is typical of analytical-type results, such as the classical Cauchy-

Kowalevskaya theorem. We follow here Ukai’s approach [40], which turns out to be remarkably short

and self-contained; the different approach of Nirenberg [32] and Nishida [33] would allow for direct

use of the loss estimate (5.3.2). Let us give the main steps of the proof: we start by noting that the

conservation of energy for the s-particle flow is reflected in identities

(6.1.5)
|Hs(t)gs|ε,s,β = |gs|ε,s,β and ‖H(t)GN‖ε,β,µ = ‖GN‖ε,β,µ ,

|Ss(t)g0,s|0,s,β = |gs|0,s,β and ‖S(t)G0‖0,β,µ = ‖G0‖0,β,µ ,

for all β > 0, µ ∈ R, gs ∈ Xε,s,β , g0,s ∈ X0,s,β , GN = (gs)1≤s≤N ∈ Xε,β,µ, G0 = (g0,s)1≤s ∈ X0,β,µ,

and all t ≥ 0. Next assume that there is a constant c < 1 such that for ε0 small enough (depending

on c, β0, µ0, λ and T ) there holds the bound

(6.1.6) ∀ 0 < ε ≤ ε0 ,
∣∣∣
∥∥∥
∫ t

0

H(t− t′)CNGN (t′) dt′
∣∣∣
∥∥∥

ε,β,µ
≤ c |‖GN |‖ε,β,µ .
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This estimate is the object of Lemma 6.2.2 below. Under (6.1.6), the linear operator

L : GN ∈ Xε,β,µ 7→
(
t 7→ GN (t) −

∫ t

0

H(t− t′)CNGN (t′) dt′
)

∈ Xε,β,µ

is is linear continuous from Xε,β,µ to itself with norm strictly smaller than one. In particular, it

is invertible in the Banach algebra L(Xε,β,µ). Next given F̃N (0) ∈ Xε,β0,µ0
, by conservation of en-

ergy (6.1.5), inclusions (5.2.4) and decay of t 7→ β0 − λt and t 7→ µ0 − λt, there holds
(
t 7→ H(t)F̃N (0)

)
∈ Xε,β,µ .

Hence, there exists a unique solution F̃N ∈ Xε,β,µ to LF̃N = H(·)F̃N (0), an equation which is equiva-

lent to (6.0.1).

The reasoning is identical for Theorem 3, replacing (6.1.6) by

(6.1.7)
∣∣∣
∥∥∥
∫ t

0

S(t− t′)C0G(t′) dt′
∣∣∣
∥∥∥

0,β,µ
≤ c |‖G|‖0,β,µ .

The next section is devoted to the proof of (6.1.6) and (6.1.7).

6.2. Continuity estimates

As explained in the previous paragraph, we need to prove (6.1.6), and its counterpart (6.1.7) for the

Boltzmann operators. Let us first prove a continuity estimate based on Proposition 5.3.1.

Lemma 6.2.1. — Under the assumptions of Theorem 2, there holds the bound, for 0 ≤ t ≤ T,

(6.2.8) es(µ0−λt)
∣∣∣
∫ t

0

Hs(t− t′)Cs,s+1gs+1(t
′) dt′

∣∣∣
ε,s,β0−λt

≤ c̄(β0, µ0, λ, T )|‖GN |‖ε,β,µ ,

for all GN = (gs+1)1≤s≤N ∈ Xε,β,µ, with c̄(β0, µ0, λ, T ) computed explicitly in (6.2.14) below.

Proof. — Let us define

(6.2.9) βλ
0 (t) := β0 − λt and µλ

0 (t) := µ0 − λt ,

so that β = βλ
0 (T ) and µ = µλ

0 (T ). By conservation of energy (6.1.5), there holds the bound

∣∣∣
∫ t

0

H(t− t′)Cs,s+1gs+1(t
′) dt′

∣∣∣
ε,s,βλ

0 (t)
≤ sup

Zs∈R2ds

∫ t

0

eβλ
0 (t)Eε(Zs)

∣∣Cs,s+1gs+1(t
′, Zs)

∣∣ dt′ .

Estimate (5.3.1) from Proposition 5.3.1 gives

eβλ
0 (t)Eε(Zs)

∣∣Cs,s+1gs+1(t
′, Zs)

∣∣

≤ Cde
κd(2π/βλ

0 (t′))d/2|gs+1(t
′)|ε,s+1,βλ

0 (t′)

(
s(βλ

0 (t′))−d/2 +
∑

1≤i≤s

|vi|
)
eλ(t′−t)Eε(Zs) .

By definition of norms ‖ · ‖ε,β,µ and |‖ · |‖ε,β,µ we have

(6.2.10)
|gs+1(t

′)|ε,s+1,βλ
0 (t′) ≤ e−(s+1)µλ

0 (t′)‖GN (t′)‖ε,βλ
0 (t′),µλ

0 (t′)

≤ e−(s+1)µλ
0 (t′)|‖GN |‖ε,β,µ .
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The above bounds yield, since βλ
0 and µλ

0 are nonincreasing,

(6.2.11)

esµλ
0 (t)
∣∣∣
∫ t

0

H(t− t′)Cs,s+1gs+1(t
′) dt′

∣∣∣
ε,s,βλ

0 (t)

≤ |‖GN |‖ε,β,µCde
κd−µλ

0 (T )(2π/βλ
0 (T ))d/2 sup

Zs∈R2ds

∫ t

0

C(t′, t, Zs) dt
′ ,

where, for t′ ≤ t,

(6.2.12) C(t′, t, Zs) :=
(
s(βλ

0 (t′))−d/2 +
∑

1≤i≤s

|vi|
)
eλ(t′−t)(s+Eε(Zs)) .

Since

(6.2.13) sup
Zs∈R2ds

∫ t

0

C(t′, t, Zs) dt
′ ≤ Cd

λ

(
1 +

1

(βλ
0 (T ))d/2

)
,

there holds finally

esµλ
0 (t)
∣∣∣
∫ t

0

H(t− t′)Cs,s+1gs+1(t
′) dt′

∣∣∣
ε,s,βλ

0 (t)
≤ c̄(β0, µ0, λ, T )|‖GN |‖ε,β,µ ,

where, with a possible change of the constant Cd,

(6.2.14) c̄(β0, µ0, λ, T ) := Cde
−µλ

0 (T ) 1

λ(βλ
0 (T ))d/2

(
1 +

1

(βλ
0 (T ))d/2

)
.

The result follows.

In the next lemma, the definition (6.2.14) of c̄ provides directly (6.1.6).

Lemma 6.2.2. — Under the assumptions of Theorem 2, and for ε0 small enough (depending

on β0, µ0, λ and T ) there holds the bound, for 0 ≤ t ≤ T,

(6.2.15) ∀ 0 < ε ≤ ε0 ,
∥∥∥
∫ t

0

H(t− t′)CNGN (t′) dt′
∥∥∥

ε,β0−λt,µ0−λt
≤ 2c̄(β0, µ0, λ, T )|‖GN |‖ε,β,µ ,

for all GN = (gs)1≤s≤N ∈ Xε,β,µ, , where c̄ is defined in (6.2.14).

Proof. — We follow closely the proof of Lemma 6.2.1. The difference is that here we take into account

higher-order collision operators Cs,s+m, with m ≥ 2.

Using notation (6.2.9), Estimate (5.3.1) from Proposition 5.3.1 gives

eβλ
0 (t)Eε(Zs)

∣∣Cs,s+mgs+m(t′, Zs)
∣∣

≤ εm−1Cde
mκd(2π/βλ

0 (t′))md/2|gs+m(t′)|ε,s+m,βλ
0 (t′)

(
s(βλ

0 (t′))−d/2 +
∑

1≤i≤s

|vi|
)
eλ(t′−t)Eε(Zs) .

Using also (6.2.10) with s+ 1 replaced by s+m, we get

(6.2.16)

∥∥∥
∫ t

0

H(t− t′)CNGN (t′) dt′
∥∥∥

ε,βλ
0 (t),µλ

0 (t)

≤ |‖GN |‖ε,β,µ

( ∑

1≤m≤N−s

Cm

)
sup

Zs∈R2ds

∫ t

0

C(t, t′, Zs) dt
′ ,

where Cm := Cdε
m−1em(κd−µλ

0 (T ))(2π/βλ
0 (T ))md/2, and C is defined in (6.2.12) and satisfies (6.2.13).

Under the assumption that

(6.2.17) ε0e
κd−µλ

0 (T )(2π/βλ
0 (T ))d/2 < 1/2 ,
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we find

(6.2.18)
∑

1≤m≤N−s

Cm ≤ 2Cde
−µλ

0 (T )(βλ
0 (T ))−d/2 .

The upper bounds in (6.2.13) and (6.2.18) are independent of s, and their product is equal

to 2c̄(β0, µ0, λ, T ). Taking the supremum in s in (6.2.16) then yields (6.2.15).

The proof of the corresponding result (6.1.7) for the Boltzmann hiearchy is identical to the first part

of the proof of Proposition 8.1.1, since the estimates for C0
s,s+1 and Cs,s+1 are essentially identical

(compare estimate (5.3.1) from Proposition 5.3.1 with estimate (5.4.2) from Proposition 5.4.1).

Proof of Corollary 6.1.2. — Given T, we are looking for λ > 0 and ε0 > 0 such that (6.2.17) holds

and, say

(6.2.19) Cd(2 + (β0 − λT )−d/2
)
e−µ0+λT (β0 − λT )−d/2 =

λ

3
·

Indeed, if such a λ exists, we can then define ε0 = (1/3)e−κd+µ0−λT (2π/(β0 − λT ))−d/2, and (6.2.17)

holds. With β = λT ∈ (0, β0), condition (6.2.19) becomes

T = Cde
µ0βe−β (β0 − β)d

1 + 2(β0 − β)d/2

≥ Cde
µ0(1 + 2β

d/2
0 )−1βe−β(β0 − β)d ,

and (6.1.4) follows.

In particular, given an existence time T for the BBGKY hierarchy, in the sense of Theorem 2, then T

is an existence time for the Boltzmann hierarchy (6.0.2).

6.3. Some remarks on the strategy of proof

The key in the proof of (6.1.6) is not to apply Minkowski’s integral inequality, which would indeed

lead here to
∥∥∥
∫ t

0

H(t− t′)CNGN (t′) dt′
∥∥∥

ε,βλ
0 (t),µλ

0 (t)
≤
∫ t

0

‖CNGN (t′)
∥∥∥

ε,βλ
0 (t),µλ

0 (t)
dt′ ,

by (6.1.5), and then to a divergent integral of the type
∥∥∥
∫ t

0

H(t− t′)CNGN (t′) dt′
∥∥∥

ε,βλ
0 (t),µλ

0 (t)
≤ C

(
βλ

0 (T ), µλ
0 (T )

) ∫ t

0

( 1

βλ
0 (t′) − βλ

0 (t)
+

1

µλ
0 (t′) − µλ

0 (t)

)
dt′ .

The difference is that by Minkowski the upper bound appears as the time integral of a supremum in s,

while in the proof of Lemma 6.2.2, and hence of (6.1.6), the upper bound is a supremum in s of a time

integral.

As pointed out in Section 6.1, other proofs of Theorems 2 and 3 can be devised, using tools inspired by

the proof of the Cauchy-Kowalevskaya theorem: we recall for instance the approaches of [32] and [33],

as well as [31] and [27].





CHAPTER 7

ADMISSIBLE INITIAL DATA AND MAIN RESULT

We state here our main result, describing convergence of mild solutions to the BBGKY hierarchy (6.0.1)

to mild solutions of the Boltzmann hierarchy (6.0.2). This result implies in particular Theorem 1 stated

in the Introduction. Existence and uniqueness results for both hierarchies were previously given in

Chapter 5, as Theorem 2 page 40 and Theorem 3 page 40.

The first part of this chapter is devoted to a precise description of Boltzmann initial data which are

admissible, i.e., which give rise to solutions for which the convergence result holds. This involves

discussing the notion of “quasi-independence” mentioned in the Introduction, via a conditioning of the

initial data. Then we state Theorem 4 and sketch the main steps of its proof.

7.1. Quasi-independence

In this paragraph we discuss the notion of “quasi-independent” initial data. We first define admissible

Boltzmann initial data, meaning data which can be attained from BBGKY initial data (meaning

bounded families of truncated marginals) by a limiting procedure, and then show how to “condition”

the initial BBGKY initial data so as to converge towards admissible Boltzmann initial data. Finally

we characterize admissible Boltzmann initial data.

7.1.1. Admissible Boltzmann data. — Let us define admissible Boltzmann initial data.

Definition 7.1.1 (Admissible Boltzmann data). — Admissible Boltzmann data are defined as

families F0 = (f
(s)
0 )s≥1, with each f

(s)
0 nonnegative, integrable and continuous over Ωs, such that

(7.1.1)

∫

R2d

f
(s+1)
0 (Zs, zs+1) dzs+1 = f

(s)
0 (Zs) ,

and which are limits of BBGKY initial data F̃0,N = (f̃
(s)
0,N )1≤s≤N ∈ Xε,β0,µ0

in the following sense: it

is assumed that

(7.1.2) sup
N≥1

‖F̃0,N‖ε,β0,µ0
<∞ , for some β0 > 0 , µ0 ∈ R , as Nεd−1 ≡ 1 ,

(7.1.3) and f̃
(s)
0,N (Zs) =

∫

R2d(N−s)

11Ds
N

(XN )f̃
(N)
0,N (ZN )dZ(s+1,N) , 1 ≤ s < N ,
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and that the following convergence holds:

(7.1.4) f̃
(s)
0,N −→ f

(s)
0 , for each s , as N → ∞ with Nεd−1 ≡ 1 , locally uniformly in Ωs .

In this section we shall prove the following result.

Proposition 7.1.1. — The set of admissible Boltzmann data, in the sense of Definition 7.1.1, is the

set of families of marginals F0 as in (7.1.1) satisfying a uniform bound ‖F0‖0,β0,µ0 <∞.

7.1.2. Conditioning. — We first consider “chaotic” configurations, corresponding to tensorized

initial measures, or initial densities which are products of one-particle distributions:

(7.1.5) f⊗s
0 (Zs) =

∏

1≤i≤s

f0(zi) , 1 ≤ s ≤ N ,

where f0 is nonnegative, normalized, and belongs to some X0,1,β0 space (see Definition 5.2.1 page 34):

(7.1.6) f0 ≥ 0 ,

∫

R2d

f0(z)dz = 1 , f0 ∈ X0,1,β0
for some β0 > 0 .

An important observation is that for (f⊗s
0 )1≤s≤N defined by (7.1.5), with f0 satisfying (7.1.6), there

holds in general sup
N≥1

‖(f⊗s
0 )1≤s≤N‖ε,β,µ = +∞, for all β > 0, µ ∈ R. Indeed, the correction in the

Hamiltonian due to the potential Φε produces errors of size O(1) in s-particle configuration subdomains

such that |xi − xj | ≤ ε. These subdomains are not asymptotically small, even in the thermodynamical

limit Nεd−1 ≡ 1.

This calls for cancelling out the contribution of the potential, by consideration of

(7.1.7) f⊗N
0,N (ZN ) := exp

(
− β0

∑

1≤i<j≤N

Φε(xi − xj)
) ∏

1≤i≤N

f0(zi) , ZN ∈ ΩN .

With this definition, there holds the identity

(7.1.8)
∣∣f⊗N

0,N

∣∣
ε,N,β0

= |f0|N0,N,β0
,

where the norms | · |ε,N,β0
and | · |0,N,β0

are defined page 33. Indeed, using the notation for the

Hamiltonian introduced in Section 5.2 page 33, there holds

|f⊗N
0,N |ε,N,β0

= sup
Zs∈R2ds

eβ0Eε(ZN )e−β0Eε(XN ,0)
∏

1≤s≤N

|f0(zi)| = sup
ZN∈R2dN

∏

1≤i≤N

eβ0|vi|
2/2|f0(zi)| ,

and the last term in the right-hand side above is equal to |f0|N0,N,β0
.

The property of normalization is then preserved by introduction of the partition function

(7.1.9) ZN :=

∫

R2dN

f⊗N
0,N (ZN ) dZN , 1 ≤ s ≤ N ,

and the definition of conditioned datum built on f0 as Z−1
N f⊗N

0,N . This operation is called conditioning

on energy surfaces, and is a classical tool in statistical mechanics (see [18, 29, 30] for instance).

The partition function defined in (7.1.9) satisfies the next result, which will be useful in the following.

Lemma 7.1.2. — Given f0 satisfying (7.1.6), there holds for 1 ≤ s ≤ N the bound

1 ≤ Z−1
N ZN−s ≤

(
1 − εκd|f0|L∞L1

)−s
,

in the scaling Nεd−1 ≡ 1, where |f0|L∞L1 denotes the L∞(Rd
x, L

1(Rd
v)) norm of f0, and κd denotes

the volume of the unit ball in Rd.
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Proof. — From the trivial lower bound

exp (−β0Φε(xi − xj)) ≥ 11|xi−xj |>ε ,

we deduce the lower bound

Zs+1 ≥
∫

R2d(s+1)

exp
(
− β0Eε(Xs, 0)

)( s∏

i=1

11|xi−xs+1|>ε

)
f
⊗(s+1)
0 (Zs+1) dZ(1,s+1) ,

with Eε(Xs, 0) =
∑

1≤i<j≤s

Φε(xi −xj), in accordance with the definition of the Hamiltonian (5.2.2). By

Fubini, we have
∫

R2d(s+1)

exp
(
− β0Eε(Xs, 0)

)( ∏

1≤i≤s

11|xi−xs+1|>ε

)
f
⊗(s+1)
0 (Zs+1) dZ(1,s+1)

=

∫

R2ds



∫

R2d

( ∏

1≤i≤s

11|xi−xs+1|>ε

)
f0(zs+1)dzs+1


 f⊗s

0,N (Zs)dZ(1,s) .

Since ∫

R2d

( ∏

1≤i≤s

11|xi−xs+1|>ε

)
f0(zs+1)dzs+1 ≥ |f0|L1 − κdsε

d|f0|L∞L1 ,

we deduce from the above, by nonnegativity of f⊗s
0,N , the lower bound

Zs+1 ≥ Zs

(
|f0|L1 − κdsε

d|f0|L∞L1

)
,

implying by induction

ZN ≥ ZN−s

N−1∏

j=N−s

(1 − jεdκd|f0|L∞L1) ≥ ZN−s

(
1 − εκd|f0|L∞L1

)s
,

where we used s ≤ N and the scaling Nεd−1 ≡ 1. That proves the lemma.

7.1.3. Characterization of admissible Boltzmann initial data. — The aim of this paragaph

is to prove Proposition 7.1.1.

Let us start by proving the following statement, which provides examples of admissible Boltzmann

initial data, in terms of tensor products.

Proposition 7.1.2. — Given f0 satisfying (7.1.6), define f⊗N
0,N as in (7.1.7), and let f

(N)
0,N be a con-

ditioned datum built on f0 :

(7.1.10) f
(N)
0,N := Z−1

N f⊗N
0,N .

Then, families (f̃
(s)
0,N )1≤s≤N of truncated marginals of f

(N)
0,N , as defined in (7.1.3), satisfy (7.1.2) for

any µ0 such that eµ0 |f0|0,β0
< 1. Moreover the data F0 = (f⊗s

0 )s≥1 is admissible Boltzmann initial

data associated with F̃0,N = (f̃
(s)
0,N )1≤s≤N .

Proof. — In a first step, we prove that untruncated marginals F0,N :=
(
f

(s)
0,N

)
s≤N

satisfy uniform

bounds. In a second step, we prove that untruncated marginals converge uniformly in Ωs towards f⊗s
0,N .

We finally prove that truncated marginals converge as well.
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First step. The trivial bound

exp
(
− β0

∑

i≤s,s+1≤j

Φε(xi − xj)
)
≤ 1

yields, using notation (7.1.7),

f
(s)
0,N (Zs) ≤ Z−1

N f⊗s
0,N (Zs)

∫

R2d(N−s)

exp
(
− β0

∑

s+1≤i<j≤N

Φε(xi − xj)
) ∏

s+1≤i≤N

f0(zi) dZ(s+1,N) .

By symmetry,

(7.1.11)

∫

R2d(N−s)

exp
(
− β0

∑

s+1≤i<j≤N

Φε(xi − xj)
) ∏

s+1≤i≤N

f0(zi) dZ(s+1,N) = ZN−s ,

and this gives

f
(s)
0,N ≤ Z−1

N ZN−sf
⊗s
0,N

≤
(
1 − εκd|f0|L∞L1

)−s
f⊗s
0,N ,

the second inequality by Lemma 7.1.2.

By 2x+ ln(1 − x) ≥ 0 for x ∈ [0, 1/2], there holds

(7.1.12) (1 − εκd|f0|L∞L1)−s ≤ e2sεκd|f0|L∞L1 , if 2εκd|f0|L∞L1 < 1 ,

so that for N larger than some N0 (equivalently, for ε small enough),

esµ0
∣∣f (s)

0,N

∣∣
ε,β0

≤ es(µ0+2εκd|f0|L∞L1 )
∣∣f⊗s

0,N

∣∣
ε,β0

=
(
eµ0+2εκd|f0|L∞L1 |f0|0,β0

)s

,

the equality by (7.1.8). Given µ0 such that eµ0 |f0|0,β0 < 1, for N larger than some N1, which we may

assume to be larger than N0, there holds eµ0+2εκd|f0|L∞L1 |f0|0,β0
< 1. The above then implies

sup
N≥N1

‖F0,N‖ε,β0,µ0
≤ sup

N≥N1

sup
1≤s≤N

(
eµ0+2εκd|f0|L∞L1 |f0|0,β0

)s

<∞ ,

which of course implies the uniform bound sup
N≥1

‖F0,N‖ε,β0,µ0
<∞.

Second step. We compute for s ≤ N :

f
(s)
0,N = Z−1

N f⊗s
0,N

∫

R2d(N−s)

exp
(
−

∑

s+1≤i<j≤N

β0Φε(xi − xj) −
∑

i≤s≤s+1≤j

β0Φε(xi − xj)
)

×
∏

s+1≤i≤N

f0(zi) dZ(s+1,N) ,

and deduce, by the symmetry property (7.1.11),

(7.1.13) f
(s)
0,N = Z−1

N f⊗s
0,N

(
ZN−s −Z♭

(s+1,N)

)

with the notation

Z♭
(s+1,N) =

∫

R2d(N−s)

(
1 − exp

(
−

∑

i≤s≤s+1≤j

β0Φε(xi − xj)
))

× exp
(
−

∑

s+1≤i<j≤N

β0Φε(xi − xj)
) ∏

s+1≤i≤N

f0(zi) dZ(s+1,N) ,

so that Z♭
(s+1,N) is a function of Xs.
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From there, the difference f⊗s
0,N − f

(s)
0,N decomposes as a sum:

(7.1.14) f⊗s
0,N − f

(s)
0,N =

(
1 −Z−1

N ZN−s

)
f⊗s
0,N + Z−1

N Z♭
(s+1,N)f

⊗s
0,N .

By Lemma 7.1.2, there holds 1−Z−1
N ZN−s → 0 as N → ∞, for fixed s. Since f⊗s

ε is uniformly bounded

in Ωs, this implies that the first term in the right-hand side of (7.1.14) tends to 0 as N → ∞, uniformly

in Ωs. Besides, by 0 ≤ 1 − exp
(
− β0

∑

i≤s,s+1≤j

Φε(xi − xj)
)
≤

∑

1≤i≤s
s+1≤j≤N

11|xi−xj |<ε , we bound

Z♭
(s+1,N) ≤

∑

1≤i≤s

∫

R2d(N−s)

( ∑

s+1≤j≤N

11|xi−xj |<ε

)

× exp
(
−

∑

s+1≤i<j≤N

β0Φε(xi − xj)
) ∏

s+1≤i≤N

f0(zi) dZ(s+1,N) .

Given 1 ≤ i ≤ s, there holds by symmetry and Fubini,
∫

R2d(N−s)

( ∑

s+1≤j≤N

11|xi−xj |<ε

)
exp

(
−

∑

s+1≤i<j≤N

β0Φε(xi − xj)
) ∏

s+1≤i≤N

f0(zi) dZ(s+1,N)

≤ (N − s)

∫

R2d

11|xi−xs+1|<εf0(zs+1)dzs+1

×
∫

R2d(N−s−1)

exp
(
−

∑

s+2≤i<j≤N

β0Φε(xi − xj)
) ∏

s+2≤i≤N

f0(zi) dZ(s+2,N)

= (N − s)

∫

R2d

11|xi−xs+1|<εf0(zs+1)dzs+1 × ZN−s−1 ,

so that

(7.1.15) Z♭
(s+1,N) ≤ s(N − s)εdκd|f0|L∞L1ZN−s−1 ,

where |f0|L∞L1 denotes the L∞(Rd
x, L

1(Rd
v)) norm of f0. By Lemma 7.1.2, we obtain

Z−1
N Z♭

(s+1,N) ≤ εsκd|f0|L∞L1

(
1 − εκd|f0|L∞L1

)−(s+1)
,

and the upper bound tends to 0 as N → ∞, for fixed s. This implies convergence to 0, uniformly in Ωs,

of the second term in the right-hand side of (7.1.14).

We thus proved the uniform convergence f
(s)
0,N − f⊗s

0,N → 0 in Ωs. Since exp(βEε(Zs)) → 1 locally

uniformly in Ωs (not uniformly in Ωs), the convergence f⊗s
0,N → f⊗s

0 holds locally uniformly in Ωs. We

conclude that f
(s)
0,N converges locally uniformly to tensor products f⊗s

0 in Ωs.

Third step. The bound (7.1.2) is a direct consequence of the corresponding bound for F0,N , proved

in the first step, since 0 ≤ f̃
(s)
0,N ≤ f

(s)
0,N . The fact that the truncated marginals converge is due to the

Lemma 7.1.3, stated and proved below.

By the normalization condition in (7.1.6), the tensor products are marginals:
∫

R2d

f
⊗(s+1)
0 (Zs, zs+1)dzs+1 = f⊗s

0 (Zs)

∫

R2d

f0(zs+1)dzs+1 = f⊗s
0 (Zs) .

This verifies (7.1.1), and concludes the proof.
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Lemma 7.1.3. — Given F̃0,N = (f̃
(s)
0,N )1≤s≤N satisfying (7.1.2) and (7.1.3) from Definition 7.1.1,

with associated family F0,N = (f
(s)
0,N )1≤s≤N of untruncated marginals:

(7.1.16) f
(s)
0,N (Zs) =

∫

R2d(N−s)

f
(N)
0,N (ZN )dZ(s+1,N) , 1 ≤ s < N , Zs ∈ Ωs , f̃

(N)
0,N = f

(N)
0,N ,

there holds the convergence

f
(s)
0,N − f̃

(s)
0,N −→ 0 , for fixed s ≥ 1 , as N → ∞ with Nεd−1 ≡ 1 , uniformly in Ωs .

Proof. — We apply identity (5.1.1) from Lemma 5.1.1 to f
(N)
0,N , and obtain after integration in the

velocity variables

(7.1.17) f
(s)
0,N (Zs) − f̃

(s)
0,N (Zs) =

N−s∑

m=1

Cm
N−s

∫

∆m(Xs)×Rdm

f̃
(s+m)
0,N (Zs+m)dZ(s+1,s+m) .

Then, denoting C0 = sup
M≥1

‖F0,M‖ε,β0,µ0
, a finite number by assumption, from

f
(s+m)
0,N (Zs+m) ≤ exp

(
− µ0(s+m) − β0Eε(Zs+m)

)
C0

≤ exp
(
− µ0(s+m) − (β0/2)

∑

1≤i≤s

|vi|2
)
C0 ,

we deduce, first by integrating the velocity gaussians and then by using the cluster bound (5.1.2) in

Lemma 5.1.1 with ζ = ε−d, the bound
∫

∆m(Xs)×Rdm

f
(s+m)
0,N (Zs+m)dZ(s+1,s+m) ≤ (2π/β0)

md/2e−µ0(s+m)C0

∫

∆m(Xs)

dX(s+1,s+m)

≤ m!(2π/β0)
md/2εmde(κd−µ0)(s+m)C0 .

If 2εeκd−µ0(2π/β0)
d/2 < 1, then

N−s∑

m=1

Cm
N−sm!(2π/β0)

md/2εmde(κd−µ0)(s+m) ≤
∑

m≥1

(
2εeκd−µ0(2π/β0)

d/2
)m −→ 0

as ε→ 0, implying f
(s)
0,N − f̃

(s)
0,N −→ 0 for fixed s, uniformly in Ωs.

Remark 7.1.4. — We can reproduce the above proof in the case of a time-dependent family of bounded

marginals, i.e., FN ∈ Xε,β,µ, with sup
N≥1

|‖FN |‖ε,β,µ < ∞, with the notation of Definition 6.1.1. This

gives uniform convergence to zero, in time t ∈ [0, T ] and in space Xs ∈ Ωs, of the difference between

truncated and untruncated marginals: f̃
(s)
N − f

(s)
N → 0.

We now give the generalization of Proposition 7.1.2 that will be useful in the proof of Proposition 7.1.1.

Let P = P(Ω1) be the set of continuous densities of probability in Ω1 :

(7.1.18) P =
{
h ∈ C0(Ω1;R) , h ≥ 0 ,

∫

R2d

h(z)dz = 1
}
.

Let π be a probability measure on P, such that, for some β0 > 0 and some µ0 ∈ R,

(7.1.19) suppπ ⊂
{
h ∈ P , |h|0,β0 ≤ e−µ0

}
.

Next we define

(7.1.20) π(s) :=

∫

P

h⊗sdπ(h) .
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In the case that π = δf0
, then (7.1.20) reduces to the tensor product (7.1.5)-(7.1.6). We let

h⊗s
N := exp

(
− β0

∑

1≤i<j≤s

Φε(xi − xj)
)
h⊗s , 2 ≤ s ≤ N , h⊗1

N = h ∈ P ,

generalizing (7.1.7), and

(7.1.21) ZN :=

∫

R2dN

h⊗N
N (ZN ) dZN , h ∈ P ,

generalizing (7.1.9).

The following result is an obvious generalization of Lemma 7.1.2.

Lemma 7.1.5. — Given π satisfying (7.1.19) and h ∈ suppπ, the family of partition functions Zs

defined in (7.1.21) satisfies for 1 ≤ s ≤ N the bound

1 ≤ Z−1
N ZN−s ≤

(
1 − εCde

−µ0β
−1/2
0

)−s
,

where Cd depends only on d.

The next statement generalizes Proposition 7.1.2. Its proof is an immediate extension of the proof of

Proposition 7.1.2 thanks to the dominated convergence theorem, using the obvious bound h⊗s
N ≤ e−sµ0 .

Proposition 7.1.3. — Given π satisfying (7.1.19), let

(7.1.22) π
(N)
N :=

∫

P

Z−1
N h⊗N

N dπ(h) .

Then, families (π
(s)
N )1≤s≤N of truncated marginals of π

(N)
N , as defined in (7.1.3), satisfy

(7.1.23) sup
N≥1

‖(π(s)
N )1≤s≤N‖ε,β0,µ′

0
≤ 1

for any µ′
0 < µ0, with β0 and µ0 from (7.1.19). The data (π(s))s≥1, with π(s) defined in (7.1.20), is

admissible Boltzmann initial data associated with that family.

By Proposition 7.1.2, tensor products (f⊗s
0 )s≥1, with f0 satisfying (7.1.6), are admissible Boltzmann

data. More generally, by Proposition 7.1.3, the convex hull of the set of tensor products, in the sense

of (7.1.19)-(7.1.20), is included in the set of admissible Boltzmann data. We finally show the converse:

all admissible Boltzmann data belong to the convex hull of tensor products.

We first remark that given a Boltzmann datum F0, and an associated BBGKY datum F0,N , there

holds

(7.1.24) ‖F0‖0,β0,µ0
<∞ ,

with β0 and µ0 as in (7.1.2).

Indeed, let C0 = sup
N≥1

‖F0,N‖ε,β0,µ0
< ∞. Given s and Zs ∈ Ωs, for ε small enough, Φε(xi − xj) = 0.

Besides, by (7.1.4) there holds the pointwise convergence f
(s)
0,N (Zs) → f

(s)
0 (Zs). Hence taking the

limit ε→ 0 in the left-hand side of the inequality esµ0+β0Eε(Zs)|f (s)
0,N (Zs)| ≤ C0, we find (7.1.24).

The Hewitt-Savage theorem reveals the specific role played by tensor products: the set of families F0 =

(f
(s)
0 )s≥1 of marginals (7.1.1) satisfying the uniform bound (7.1.24) is the convex hull of tensorized

initial data, as described in the following statement.
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Proposition 7.1.4. — Given F0 = (f
(s)
0 )s≥1 a family of marginals (7.1.1) satisfying the uniform

bound (7.1.24) with constants β0 > 0 and µ0 ∈ R, there exists a probability measure π over the set P
of continuous densities of probability over Ω1, defined in (7.1.18), with

(7.1.25) suppπ ⊂
{
g ∈ P, |g|0,β0 ≤ e−µ0

}
,

such that the following representation holds:

(7.1.26) f
(s)
0 =

∫

P

g⊗sdπ(g) , s ≥ 1 .

Proof. — Given a family F0 satisfying (7.1.1)-(7.1.24), the existence of π satisfying (7.1.26) is granted

by the Hewitt-Savage theorem [23]. The goal is then to prove the inclusion (7.1.25). Assume by

contradiction that, for some α > 0,

(7.1.27) π(Aα) = κα > 0 , where Aα :=
{
g ∈ P(R2d), |g|0,1,β0

≥ e−µ0 + α
}
.

We then have by (7.1.26)

f
(s)
0 ≥

∫

Aα

g⊗sdπ(g),

hence by f
(s)
0 ≤ e−sµ0‖F0‖0,β0,µ0

, we infer that ‖F0‖0,β0,µ0
≥ κα(1 + αeµ0)s, which cannot hold for

some α > 0 and all s, since 1 + αeµ0 > 1. Hence (7.1.27) does not hold, which proves the result.

Proof of Proposition 7.1.1. — We already observed in (7.1.24) that admissible Boltzmann data are

bounded families of marginals. Conversely, given a bounded family of marginals F0, by Proposi-

tion 7.1.4 representation (7.1.26) holds. Then, by Proposition 7.1.3, F0 is an admissible Boltzmann

datum. This proves Proposition 7.1.1.

Combining Propositions 7.1.1 and 7.1.4, we see that all admissible Boltzmann data are built on tensor

products, in the sense that given an admissible Boltzmann datum, representation (7.1.26) holds for

some π satisfying (7.1.25).

7.2. Main result: Convergence of the BBGKY hierarchy to the Boltzmann hierarchy

7.2.1. Statement of the result. —

Our main result is a weak convergence result, in the sense of convergence of observables, or averages

with respect to the momentum variables. Moreover, since the marginals are defined in Ωs, we must

also eliminate, in the convergence, the diagonals in physical space. Let us give a precise definition of

the convergence we shall be considering.

Definition 7.2.1 (Convergence). — Given a sequence (hs
N )1≤s≤N of functions hs

N ∈ C0(Ωs;R),

a sequence (hs)s≥1 of functions hs ∈ C0(Ωs;R), we say that (hs
N ) converges on average and locally

uniformly outside the diagonals to (hs), and we denote

(hs
N )1≤s≤N

∼−→ (hs)1≤s ,

when for any fixed s, any test function ϕs ∈ C∞
c (Rds;R), there holds

Iϕs

(
hs

N − hs
)(
Xs) :=

∫

Rds

ϕs(Vs)
(
hs

N − hs
)
(Zs)dVs −→ 0 , as N → ∞ ,

locally uniformly in
{
Xs ∈ Rds, xi 6= xj for i 6= j

}
.
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With regard to spatial variables, this notion of convergence is similar to the convergence in the sense

of Chacon.

We remark that local uniform convergence in Ωs implies convergence in the sense of Definition 7.2.1:

Lemma 7.2.2. — Given (f
(s)
N )1≤s≤N a bounded sequence in Xε,β,µ with the notation of Defini-

tion 6.1.1, if f
(s)
N → f (s) for fixed s, uniformly in t ∈ [0, T ] and locally uniformly in Ωs, then

f
(s)
N

∼−→ f (s), uniformly in t ∈ [0, T ].

Proof. — Let Ks be compact in
{
Xs ∈ Rds, xi 6= xj for i 6= j

}
. There holds

∣∣Iϕs

(
f

(s)
N − f (s)

)
(Xs)

∣∣ ≤ ‖ϕs‖L1(Rd) sup
Vs∈supp ϕs

∣∣(f (s)
N − f (s)

)
(Xs, Vs)

∣∣ .

The set Ks × suppϕs is compact in Ωs. Hence the above upper bound converges to 0 as N → ∞,

uniformly in [0, T ] ×Ks.

We can now state our main result:

Theorem 4 (Convergence). — Given a potential that satisfies Assumption 1.2.1 stated page 3,

given F0 admissible Boltzmann datum associated with a family (F̃0,N )N≥1 of BBGKY data, denot-

ing F̃N the unique mild solution to the BBGKY hierarchy (4.5.2) with initial datum F̃0,N , given by

Theorem 2, and F the unique mild solution to the Boltzmann hierarchy (6.0.2) with initial datum F0,

given by Theorem 3, there holds the convergence

F̃N
∼−→ F ,

uniformly on [0, T ], for any common existence time T > 0.

In particular, if the initial data F̃0,N is asymptotically tensorized, meaning that F0 = (f
(s)
0 )s≥1

with f
(s)
0 (t, Zs) =

s∏

i=1

f0(t, zi) then the first marginal f
(1)
N converges to the solution f of the Boltz-

mann equation (1.3.1) with initial data f0.

Solutions to the Boltzmann hierarchy issued from tensorized initial data are themselves tensorized. For

such data, the Boltzmann hierarchy then reduces to the nonlinear Boltzmann equation (1.3.1), and

Theorem 4 describes an asymptotic form of propagation of chaos, in the sense that an initial property

of independence is propagated in time, in the thermodynamical limit. This corresponds to Theorem 1

stated in the Introduction.

The results in this chapter imply the following Corollary to Theorem 4.

Corollary 7.2.3. — Let F0 be a family of marginals (7.1.1) satisfying the uniform bound (7.1.24),

and F be the solution to the Boltzmann hiearchy issued from F0, as given in Theorem 3. There exists a

family of solutions F̃N to the BBGKY hierarchy and FN an associated family of untruncated marginals,

such that

F̃N
∼−→ F and FN

∼−→ F ,

uniformly on [0, T ], for any common existence time T.
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Proof. — By Proposition 7.1.1, the family F0 is an admissible Boltzmann datum. Denoting F̃0,N

an associated BBGKY datum, let T > 0 be an existence time for the BBGKY hierarchy F̃N with

datum F̃0,N , given by Theorem 2. By Theorem 4 the convergence Iϕs

(
f̃

(s)
N −f (s)

)
→ 0 holds uniformly

in [0, T ] and locally uniformly in Ωs.

Then, by Lemma 7.1.3 and Remark 7.1.4, there holds f
(s)
N −f̃ (s)

N → 0, for fixed s, uniformly in [0, T ]×Ωs.

By Lemma 7.2.2, this implies Iϕs

(
f

(s)
N − f̃

(s)
N

)
→ 0, uniformly in [0, T ] and locally uniformly in Ωs.

We conclude that f
(s)
N

∼−→ f (s), uniformly in [0, T ].

7.2.2. About the proof of Theorem 4: outline of chapters 8, 9 and 10. —

The formal derivation presented in Chapter 2 (in the case of hard spheres, but which could easily be

adapted to our case) fails because of a number of incorrect arguments:

– Since mild solutions to the BBGKY hierarchy are defined by the Duhamel formula (4.5.2) where the

solution itself occurs in the source term, we need some precise information on the convergence to

take limits directly in (4.5.2).

– The irreversibility inherent to the Boltzmann hierarchy appears in the limiting process as an arbitrary

choice of the time direction (encoded in the distinction between pre-collisional and post-collisional

particles), and more precisely as an arbitrary choice of the initial time, which is the only time for

which one has a complete information on the family of marginals F0,N . This specificity of the initial

time does not appear clearly in (4.5.2).

– The heuristic argument which allows to neglect pathological trajectories requires to be quantified.

These are

– either trajectories for which the reduced dynamics with s-particles does not coincide with the

free transport (Hs 6= Ss),

– or trajectories for which some of the (localized) interactions involve at least three particles (so

that the scattering described in Chapter 3 does not apply).

Indeed we have more or less to repeat the operation infinitely many times, since mild solutions are

defined by a loop process.

– Because of the conditioning by the energy Eε(ZN ), the initial data are not so smooth. The operations

such as infinitesimal translations on the arguments require therefore a careful treatment.

To overcome the two first difficulties, the idea is to start from the iterated Duhamel formula, which

allows to express any marginal f̃
(s)
N (t, Zs) in terms of the initial data F̃0,N . By successive integrations

in time, we have indeed the following representation of f̃
(s)
N :

(7.2.1)
f̃

(s)
N (t) =

∞∑

n=0

∑

Mn

∫ t

0

∫ t1

0

. . .

∫ tn−1

0

Hs(t− t1)Cs,s+m1Hs+m1(t1 − t2)Cs+m1,s+m2 . . .

. . .Hs+mn
(tn)f̃

(s+mn)
N (0) dtn . . . dt1

where by convention f̃
(j)
N (0) ≡ 0 for j > N , and the sum over Mn := (m1, . . . ,mn) is restricted to the

range 1 ≤ mi+1 ≤ N − s−mi with m0 := 0.

Using a dominated convergence argument, we shall first reduce (in Chapter 8) to the study of a

functional

– which involves only the superdiagonal part of the collision operator (i.e. terms of the type Cj,j+1),

– defined as a finite sum of terms (independent of N),

– where the energies of the particles are assumed to be bounded,
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– and where the collision times are supposed to be well separated (namely |tj − tj+1| ≥ δ).

The reason for the two last assumptions is essentially technical, and will appear more clearly in the

next step.

The heart of the proof, in Chapter 9, is then to prove the term by term convergence, dealing with

pathological trajectories. Let us recall that each collision term is defined as an integral with respect

to positions and velocities. The main idea consists then in proving that we cannot build pathological

trajectories if we exclude at each step a small domain of integration. The explicit construction of this

“bad set” lies on

– a very simple geometrical lemma which ensures that two particles of size ε will not collide in the

future provided that their relative velocity does not belong to a small subset of Rd (see Lemma 9.1.3),

– scattering estimates which tell us how these properties of the transport are modified when a particle

is deviated by a collision (see Lemma 9.1.4).

This construction, which is the technical part of the proof, will be detailed in Chapter 9. The conclusion

of the convergence proof is presented in Chapter 10.





CHAPTER 8

REDUCTIONS VIA DOMINATED CONVERGENCE

The goal of this chapter is to use dominated convergence arguments to reduce the proof of Theorem 4

to the term-by-term convergence of some functionals involving a finite (uniformly bounded) number of

marginals (Sections 8.1 and 8.2). In order to further simplify the convergence analysis, we shall modify

these functionals by eliminating some small domains of integration in phase space corresponding to

pathological dynamics, namely large energies in Section 8.3 and clusters of collision times in Section 8.4.

We consider therefore families of initial data: Boltzmann initial data F0 = (f
(s)
0 )s∈N such that

‖|F0‖|0,β0,µ0
= sup

s∈N

sup
Zs

(
exp(β0E(Zs) + µ0s)f

(s)
0 (Zs)

)
< +∞

and for each N , BBGKY initial data F̃N,0 = (f̃
(s)
N,0)1≤s≤N such that

sup
N

‖|F̃N,0‖|ε,β0,µ0 = sup
N

sup
s≤N

sup
Zs

(
exp(β0Eε(Zs) + µ0s)f̃

(s)
N,0(Zs)

)
< +∞ .

We then associate the respective unique mild solutions (constructed in Theorems 2 and 3 in Chapter 6)

of the hierarchies

f (s)(t) = Ss(t)f
(s)
0 +

∫ t

0

Ss(t− τ)C0
s,s+1f

(s+m)(τ) dτ

and

(8.0.1) f̃
(s)
N (t) = Hs(t)f̃

(s)
N,0 +

N−s∑

m=1

∫ t

0

Hs(t− τ)Cs,s+mf̃
(s+m)
N (τ) dτ .

In terms of the initial datum, they can be rewritten

f (s)(t) =

∞∑

n=0

∫ t

0

∫ t1

0

. . .

∫ tn−1

0

Ss(t− t1)C0
s,s+1Ss+1(t1 − t2)C0

s+1,s+2 . . .

. . .Ss+n(tn)f (s+mn)(0) dtn . . . dt1

and

f̃
(s)
N (t) =

∞∑

n=0

∑

m1,...,mn

∫ t

0

∫ t1

0

. . .

∫ tn−1

0

Hs(t− t1)Cs,s+m1
Hs+m1

(t1 − t2)Cs+m1,s+m2
. . .

. . .Hs+mn
(tn)f̃

(s+mn)
N (0) dtn . . . dt1 .

The observables we are interested in therefore involve infinite sums

– because of multiple collisions in the BBGKY hierarchy, i.e. of collision terms Cs,s+m where m is not

uniformly bounded,
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– and because there may be infinitely many collision times (n is unbounded).

8.1. Reduction to first-order collision terms for the BBGKY hierarchy

We will first prove that the estimates obtained in Chapters 5 and 6 enable us to reduce the study of

the BBGKY hierarchy to the equation

(8.1.2) g̃
(s)
N (t, Zs) = Hs(t)f̃

(s)
N (0, Zs) +

∫ t

0

Hs(t− τ)Cs,s+1g̃
(s+1)
N (τ, Zs) dτ , 1 ≤ s ≤ N − 1 .

Estimate (5.3.1) in Proposition 5.3.1 shows indeed that higher-order collisions are negligible in the

Boltzmann-Grad limit. For the solution to the BBGKY hierarchy, this translates as follows.

Proposition 8.1.1. — Let β0 > 0 and µ0 be given. Then with the same notation as Theorem 2, in the

Boltzmann-Grad scaling Nεd−1 ≡ 1, any family of initial marginals F̃N (0) =
(
f̃

(s)
N (0)

)
1≤s≤N

∈ Xε,β0,µ0

gives rise to a unique solution G̃N ∈ Xλ,T
ε,β0,µ0

of (8.1.2) and there holds the bound

‖G̃N‖
X

λ,T
ε,β0,µ0

≤ C‖F̃N (0)‖ε,β0,µ0
.

Besides, the solution G̃N to the modified hierarchy (8.1.2) is asymptotically close to the solution F̃N

to the BBGKY hierarchy (6.0.1):

(8.1.3) ‖G̃N − F̃N‖
X

λ,T
ε,β0,µ0

≤ εC̃‖F̃N (0)‖ε,β0,µ0

for some C̃ > 0.

In particular, given an existence time T for the BBGKY hierarchy, in the sense of Theorem 2, then T

is an existence time for the modified hierarchy (8.1.2), in the sense of Proposition 8.1.1.

Proof. — From Lemma 6.2.1, we deduce the existence and uniqueness result for (8.1.2), and the bound

for G̃N , in the same way that Lemma 6.2.2 implies Theorem 2. Notice that an existence time for the

BBGKY hierarchy is an existence time for the modified hierarchy, since the bound (6.2.8) is better

than (6.1.6).

We turn to the proof of (8.1.3). There holds

‖G̃N − F̃N‖
X

λ,T
ε,β0,µ0

≤
∥∥∥
∫ t

0

(
Hs(t− t′)Cs,s+1(g̃

(s+1)
N − f̃

(s+1)
N )(t′)

)

1≤s≤N
dt′
∥∥∥
X

λ,T
ε,β0,µ0

+
∥∥∥
∫ t

0

(
Hs(t− t′)

∑

2≤m≤N−s

Cs,s+mf
(s+m)
N (t′)

)

1≤s≤N
dt′
∥∥∥
X

λ,T
ε,β0,µ0

.

With (6.2.8), this implies

‖G̃N − F̃N‖
X

λ,T
ε,β0,µ0

≤ c0

∥∥∥
∫ t

0

(
Hs(t− t′)

∑

2≤m≤N−s

Cs,s+mf
(s+m)
N (t′)

)

1≤s≤N
dt′
∥∥∥
X

λ,T
ε,β0,µ0

,

with c0 :=
(
1 − c̄(β0, µ0, λ, T )

)−1
, which is indeed strictly positive by assumption. We conclude as in

the proof of Lemma 6.2.2.

From now on we therefore shall concentrate on equation (8.1.2) instead of (8.0.1).
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8.2. Reduction to a finite number of collision times

By successive integrations in time of (8.1.2), we get a representation of g̃
(s)
N in terms of the initial

datum f̃
(s+n)
N,0 , for all n such that s+ n ≤ N :

(8.2.1)
g̃
(s)
N (t) =

∞∑

n=0

∫ t

0

∫ t1

0

. . .

∫ tn−1

0

Hs(t− t1)Cs,s+1Hs+1(t1 − t2)Cs+1,s+2 . . .

. . .Hs+n(tn)f̃
(s+n)
N (0) dtn . . . dt1

where by convention f̃
(j)
N,0 ≡ 0 for j > N.

Similarly, for mild solutions to the Boltzmann hierarchy, we have

(8.2.2)
f (s)(t) =

∞∑

n=0

∫ t

0

∫ t1

0

. . .

∫ tn−1

0

Ss(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2 . . .

. . .Ss+n(tn)f
(s+n)
0 (0) dtn . . . dt1 .

Due to the uniform bounds derived in Chapter 6, the dominated convergence theorem implies that it

is enough to consider finite sums

(8.2.3)

g̃
(s,n)
N (t) =

n∑

k=0

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Hs(t− t1)Cs,s+1Hs+1(t1 − t2)Cs+1,s+2 . . .

. . .Hs+k(tk)f̃
(s+k)
N (0) dtk . . . dt1

f (s,n)(t) =

n∑

k=0

∫ t

0

∫ t1

0

. . .

∫ tn−1

0

Ss(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2 . . .

. . .Ss+k(tk)f
(s+k)
0 (0) dtk . . . dt1

and therefore to study the term-by-term convergence (for any fixed k), as expressed by the following

statement.

Proposition 8.2.1. — The following estimates

∣∣∣g̃(s)
N (t) − g̃

(s,n)
N (t)

∣∣∣ ≤ C

(
2

3

)n

‖F̃N,0‖ε,β0,µ0e
sµ(T ) ,

∣∣∣f (s)(t) − f (s,n)(t)
∣∣∣ ≤ C

(
2

3

)n

‖F0‖0,β0,µ0
esµ(T )

hold uniformly in Zs, N and t ≤ T , in the Boltzmann-Grad scaling Nεd−1 = 1.

Proof. — Using the continuity estimate (6.1.6) together with the condition (6.2.19) on λ, we get

(8.2.4)
∥∥∥
∫ t

0

H(t− t′)CNGN (t′) dt′
∥∥∥

ε,β0−λt,µ0−λt
≤ 2

3
‖GN‖

X
λ,T
ε,β0,µ0

.

We then deduce that

(8.2.5)

es(µ0−λt)
∥∥∥

∞∑

k=n+1

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Hs(t− t1)Cs,s+1Hs+1(t1 − t2)Cs+1,s+2 . . .

. . .Hs+k(tk)f̃
(s+k)
N (0) dtk . . . dt1

∥∥∥
L∞

≤ C

(
2

3

)n

‖GN‖
X

λ,T
ε,β0,µ0
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Combining this estimate together with the uniform bound on ‖GN‖
X

λ,T
ε,β0,µ0

leads to the first statement

in Proposition 8.2.1.

The second statement is established exactly in an analogous way, using estimate (5.4.2) together with

the uniform bound obtained in Theorem 3.

From now on we therefore consider the approximate observables :

(8.2.6) Is,n(t)(Xs) :=

∫
ϕs(Vs)g̃

(s,n)
N (t, Zs)dVs , and I0

s,n(t)(Xs) :=

∫
ϕs(Vs)f

(s,n)(t, Zs)dVs .

8.3. Energy truncation

Recall the definitions of the Hamiltonians given in (5.2.2) and (5.2.3):

Eε(Zs) :=
∑

1≤i≤s

|vi|2
2

+
∑

1≤i<k≤s

Φε(xi − xk) with Φε(x) := Φ
(x
ε

)
, and E0(Zs) :=

∑

1≤i≤s

|vi|2
2

·

We introduce a parameter R > 0 and define

(8.3.1)

g̃
(s,n)
N,R (t) =

n∑

k=0

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Hs(t− t1)Cs,s+1Hs+1(t1 − t2)Cs+1,s+2 . . .

. . .Hs+k(tk)11|Eε(Zs+k)|≤R2 f̃
(s+k)
N (0) dtk . . . dt1 ,

f
(s,n)
R (t) =

n∑

k=0

∫ t

0

∫ t1

0

. . .

∫ tn−1

0

Ss(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2 . . .

. . .Ss+k(tk)11|E0(Zs+k)|≤R2f
(s+k)
0 (0) dtk . . . dt1

and the corresponding observables

(8.3.2) IR
s,n(t)(Xs) :=

∫
ϕs(Vs)g̃

(s,n)
N,R (t, Zs)dVs , and I0

s,n(t)(Xs) :=

∫
ϕs(Vs)f

(s,n)
R dVs .

Using the bounds derived in Chapters 5 and 6 we find easily that Is,n(t)− IR
s,n(t) and I0

s,n(t)− I0,R
s,n (t)

can be made arbitrarily small when R is large. More precisely the following result holds.

Proposition 8.3.1. — There are some nonnegative constants C,C ′ depending only on (s, n, t) such

that

‖Is,n(t, J,M) − IR
s,n(t, J,M)‖L∞(Rds) ≤ C‖ϕ‖L∞(Rds)e

−C′R2‖|F̃N,0‖|ε,β0,µ0 ,

and

‖I0
s,n(t, J,M) − I0,R

s,n (t, J,M)‖L∞(Rds) ≤ C‖ϕ‖L∞(Rds)e
−C′R2‖|F0‖|0,β0,µ0

.

Proof. — Let β′
0 < β0 be such that β′

0 − λt > 0. The estimates in Chapter 6 show that

|Is,n(t)(Xs) − IR
s,n(t)(Xs)| ≤ Cn‖ϕ‖L∞(Rds) sup

τ≤t
sup
k≤n

∥∥∥11|Eε(Zs+k)|≥R2 f̃
(s+k)
N,0

∥∥∥
ε,s+k,β′

0−cτ

≤ C‖ϕs‖L∞(Rds)e
(β′

0−β0)R
2‖|F̃N (0)‖|β0,µ0

which proves the result, with C ′ ∼ β0 − ct. The argument is identical for I0
s,n(t) − I0,R

s,n (t).
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Remark 8.3.1. — It is useful to notice that the collision operators preserve the bound on high ener-

gies, in the sense that

Cs,s+111Eε(Zs+1)≤R2 ≡ 11Eε(Zs)≤R2 Cs,s+111Eε(Zs+1)≤R2

C0
s,s+111E(Zs+1)≤R2 ≡ 11E(Zs)≤R2 C0

s,s+111E(Zs+1)≤R2 .

8.4. Time separation

We choose another small parameter δ > 0 and further restrict the study to the case when ti− ti+1 ≥ δ.

That is, we define

Tn(t) :=
{
Tn = (t1, . . . , tn) / ti < ti−1 with tn+1 = 0 and t0 = t

}
,

Tn,δ(t) :=
{
Tn ∈ T / ti − ti+1 ≥ δ

}
,

and

(8.4.1)

IR,δ
s,n (t)(Xs) :=

∫
ϕs(Vs)

∫

Tn,δ(t)

Hs(t− t1)Cs,s+1Hs+1(t1 − t2)Cs+1,s+2

. . . Cs+n−1,s+nHs+n(tn − tn+1)11|Eε(Zs+n)|≤R2 f̃
(s+n)
N,0 dTndVs ,

I0,R,δ
s,n (t)(Xs) :=

∫
ϕs(Vs)

∫

Tn,δ(t)

Ss(t− t1)C0
s,s+1Ss+1(t1 − t2)C0

s+1,s+2

. . . C0
s+n−1,s+nSs+n(tn − tn+1)11|E0(Zs+n)|≤R2f

(s+n)
0 dTndVs .

Again applying the continuity bounds for the transport and collision operators, the error on the

functions IR
s,n(t) − IR,δ

s,n (t) and I0,R
s,n (t) − I0,R,δ

s,n (t) can be estimated as follows.

Proposition 8.4.1. — There is a constant C depending only on (s, n, t), such that

‖IR
s,n(t) − IR,δ

s,n (t)‖L∞(Rds) ≤ Cδ‖ϕ‖L∞(Rds)‖|F̃N,0‖|ε,β0,µ0

and

‖I0,R
s,n (t) − I0,R,δ

s,n (t)‖L∞(Rds) ≤ Cδ‖ϕ‖L∞(Rds)‖|F0‖|0,β0,µ0
.

8.5. Reformulation in terms of pseudo-trajectories

In the integrand of the collision operators Cs,s+1 defined in (4.4.4), we now distinguish between pre-

and post-collisional configurations, as we decompose

Cs,s+1 = C+
s,s+1 − C−

s,s+1

where

(8.5.1) C±
s,s+1f̃

(s+1) =
s∑

m=1

C±,m
s,s+1f̃

(s+1)
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the index m referring to the index of the interaction particle among the s “fixed” particles, with the

notation

(
C±,m

s,s+1f̃
(s+1)

)
(Zs) := (N − s)ε2

∫

S
d−1
1 ×Rd

(ν · (vs+1 − vm))±f̃
(s+1)(Zs, xm + εν, vs+1)

×
∏

1≤j≤s
j 6=m

11|xj−xs+1|≥ε dνdvs+1 ,

the index + corresponding to post-collisional configurations and the index − to pre-collisional config-

urations, according to terminology set out in Chapter 3.

In the same way we have to decompose the Boltzmann collision operators (5.4.1) into

C0
s,s+1 = C0,+

s,s+1 − C0,−
s,s+1 ,

where the index + corresponding to post-collisional configurations and the index − to pre-collisional

configurations. By definition of the collision cross-section in Chapter 3, we have

(
C0,−,m

s,s+1 f
(s+1)

)
(Zs) :=

∫

S
d−1
1 ×Rd

b(|vs+1 − vm|, ω)f (s+1)(Zs, xm, vs+1) dωdvs+1

=

∫

S
d−1
1 ×Rd

((vs+1 − vm) · ν)+f (s+1)(Zs, xm, vs+1) dνdvs+1 and

(
C0,+,m

s,s+1 f
(s+1)

)
(Zs) :=

∫

S
d−1
1 ×Rd

b(|vs+1 − vm|, ω)f (s+1)(z1, . . . , xm, v
∗
m, . . . , zs, xm, v

∗
s+1) dωdvs+1

=

∫

S
d−1
1 ×Rd

((vs+1 − vm) · ν)+f (s+1)(z1, . . . , xm, v
∗
m, . . . , zs, xm, v

∗
s+1) dνdvs+1 .

Performing the change of variables ν 7→ −ν in the integral defining C0,−,m
s,s+1 , we get similar formulas as

for the BBGKY collision operators.

The BBGKY and Boltzmann observables we are interested in (see the notation of Definition 7.2.1) can

therefore be decomposed as

(8.5.2)

IR,δ
s,n (t,Xs) =

∞∑

n=0

∑

J,M

( n∏

i=1

ji

)
IR,δ
s,n (t, J,M)(Xs) and

I0,R,δ
s,n (t,Xs) =

∞∑

n=0

∑

J,M

I0,R,δ
s,n (t, J,M)(Xs)

where the elementary functionals IR,δ
s,n (t, J,M) are defined by

(8.5.3)

IR,δ
s,n (t, J,M)(Xs) :=

∫
ϕs(Vs)

∫

Tn,δ(t)

Hs(t− t1)Cj1,m1

s,s+1Hs+1(t1 − t2)Cj2,m2

s+1,s+2

. . .Hs+n(tn − tn+1)11|Eε(Zs+n)|≤R2 f̃
(s+n)
N,0 dTndVs ,

I0,R,δ
s,n (t, J,M)(Xs) :=

∫
ϕs(Vs)

∫

Tn,δ(t)

Ss(t− t1)C0,j1,m1

s,s+1 Ss+1(t1 − t2)C0,j2,m2

s+1,s+2

. . .Ss+n(tn − tn+1)11|E0(Zs+n)|≤R2f
(s+n)
0 dTndVs ,

with

J := (j1, . . . , jn) ∈ {+,−}n and M := (m1, . . . ,mn) with mi ∈ {1, . . . , s+ i− 1} .
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Each one of the previous functionals IR,δ
s,n (t, J,M) and I0,R,δ

s,n (t, J,M) defined in (8.4.1) can be viewed as

the observable associated with some dynamics, which of course is not the actual dynamics in physical

space since

– the total number of particles is not conserved;

– the distribution does even not remain nonnegative because of the sign of loss collision operators.

This explains the terminology of “pseudo-trajectories” we choose to describe the process.

In this formulation, the characteristics associated with the operators Hs+i(ti−ti+1) and Ss+i(ti−ti+1)

are followed backwards in time between two consecutive times ti+1 and ti, and collision terms (associated

with Cs+i,s+i+1 and C0
s+i,s+i+1) are seen as source terms, in which, in the words of Lanford [31],

“additional particles” are “adjoined” to the marginal.

The main heuristic idea is that for the BBGKY hierarchy, in the time interval [ti+1, ti] between two

collisions Cs+i−1,s+i and Cs+i,s+i+1, the particles should not interact in general so trajectories should

correspond to the free flow Ss+i. On the other hand at a collision time ti, the two particles in interaction

may be subject to the scattering operator and thus their velocities are liable to change. This is depicted

in Figure 5.

Figure 5. Pseudo-trajectories

At this stage however, we still cannot study directly the convergence of IR,δ
s,n (t, J,M) − I0,R,δ

s,n (t, J,M)

since the transport operators Hk do not coincide everywhere with the free transport operators Sk,

which means – in terms of pseudo-trajectories – that there are recollisions. Note that, because the

interaction potential is compactly supported, recollisions happen only for characteristics such that

there exist i, j ∈ [1, k] with i 6= j, and τ > 0 such that

|(xi − τvi) − (xj − τvj)| ≤ ε .

We shall thus prove that these recollisions arise only for a few pathological pseudo-trajectories, which

can be eliminated by additional truncations of the domains of integration. This is the goal of the next

chapter.





CHAPTER 9

ELIMINATION OF RECOLLISIONS

We have seen in the previous chapter that the convergence of observables (stated in Theorem 4 in

Chapter 7) reduces to the convergence to zero of the functional IR,δ
s,n − I0,R,δ

s,n , defined in (8.4.1),

corresponding to dynamics

– involving only a finite number s+ n of particles,

– with bounded energies (at most R2),

– such that the n additional particles are adjoined through binary collisions,

– at times separated at least by δ.

Let us denote, for any constant c > 0, by Gk(c) the set of “good configurations” of k particles, separated

by at least c through backwards transport: that is the set of (Xk, Vk) ∈ Rdk ×Bk
R such that the image

of (Xk, Vk) by the backward free transport satisfies the separation condition

∀τ ≥ 0, ∀i 6= j, |xi − xj − τ(vi − vj)| ≥ c ,

in particular it is never collisional. We recall that Bk
R :=

{
Vk ∈ Rdk / |Vk| ≤ R

}
and in the following

we write BR := B1
R.

Our goal in the present chapter is to slightly modify (in a uniform way) the functionals IR,δ
s,n and I0,R,δ

s,n

in order for the corresponding BBGKY pseudo-trajectories to be decomposed as a succession of free

transport and binary collisions, without any recollision. Paragraph 9.1 is devoted to the statement and

the proof of a geometrical proposition showing how to eliminate bad sets in phase space so that for any

particle outside such bad sets, adjoined to a good configuration, the resulting configuration is again a

good configuration. This is applied to the Boltzmann and BBGKY hierarchies in Paragraph 9.2.

9.1. Elimination of bad sets in phase space leading to recollisions

9.1.1. Statement of the result. — In this section we momentarily forget the BBGKY and Boltz-

mann hierarchies, and focus on the study of pseudo-trajectories. More precisely our aim is to show

that “good configurations” are stable by adjunction of a collisional particle provided that the deflection

angle and the velocity of the additional particle do not belong to a small pathological set. Furthermore

the set to be excluded can be chosen in a uniform way with respect to the initial positions of the

particles in a small neighborhood of any fixed “good configuration”.
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Notation 9.1.1. — In all the sequel, given two parameters η1 and η2, we shall say that

η1 ≪ η2 if η1 ≤ Cη2

for some large constant C which does not depend on any parameter.

Proposition 9.1.1. — Let a, ε0, η ≪ 1 be such that

(9.1.1) a≪ ε0 ≪ ηδ .

Given Zk ∈ Gk(ε0), there is a subset Bk(Zk) of Sd−1
1 ×BR of small measure

(9.1.2)
∣∣Bk(Zk)

∣∣ ≤ C(R)ηd−1 + C(R,Φ, η)
( a
ε0

+
ε0
δ

)d−1

,

and such that good configurations close to Zk are stable by adjunction of a collisional particle close

to x̄k and not belonging to Bk(Zk), in the following sense.

Consider (ν, v) ∈ (Sd−1
1 ×BR) \ Bk(Zk) and let Zk be a configuration of k particles such that Vk = V k

and |Xk −Xk| ≤ a.

• If ν · (v − v̄k) < 0 then for all ε > 0 sufficiently small,

(9.1.3) ∀τ ≥ 0 ,

{
∀i 6= j ∈ [1, k] , |(xi − τ v̄i) − (xj − τ v̄j)| ≥ ε ,

∀j ∈ [1, k] , |(xk + εν − τv) − (xj − τ v̄j)| ≥ ε .

Moreover after the time δ, the k + 1 particles are in a good configuration:

(9.1.4) (Xk − δV k, V k, xk + εν − δv, v) ∈ Gk+1(ε0/2) .

• If ν · (v − v̄k) > 0 then define for j ∈ [1, k − 1]

(zε∗
k , zε∗) := σ−1

ε

(
zk, (xk + εν, v)

)
and zε∗

j := (xj − tεv̄j , v̄j) ,

where σε is the scattering operator as in Definition 3.2.1 and where tε denotes the scattering time

between zk and (xk + εν, v). Then for all ε > 0 sufficiently small,

(9.1.5) ∀τ ≥ 0 ,

{
∀i 6= j ∈ [1, k] , |(xε∗

i − τvε∗
i ) − (xε∗

j − τvε∗
j )| ≥ ε ,

∀j ∈ [1, k] , |(xε∗ − τvε∗) − (xε∗
j − τvε∗

j )| ≥ ε .

Moreover after the time δ, the k + 1 particles are in a good configuration:

(9.1.6)
(
Xε∗

k − (δ − tε)V
ε∗
k , V ε∗

k , xε∗ − (δ − tε)v
ε∗, vε∗

)
∈ Gk+1(ε0/2) .

The proof of the proposition may be found in Section 9.1.3. It relies on two elementary geometrical

lemmas, stated and proved in the next section. The first one describes the bad trajectories associated

to the (free) transport. The second one explains how they are modified by the scattering.

Remark 9.1.2. — For the sake of simplicity, we have assumed that the additional particle collides

with the particle k. Of course, a simple symmetry argument shows that an analogous statement holds

if the particle k + 1 is added close to any of the particles in Zk.

The proof of Proposition 9.1.1 shows that if Zk = Zk then the factor ε0/2 in (9.1.4) and (9.1.6) may be

replaced by ε0. The loss comes from the fact that the set to be excluded has to be chosen in a uniform

way with respect to the initial positions of the particles in a small neighborhood of X̄k.
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9.1.2. Two geometrical lemmas. — In this section we state and prove two geometrical lemmas

which though elementary, are the key to the proof of Proposition 9.1.1. Here and in the sequel, we

denote by K(y, ρ) the cylinder of axis y ∈ Rd and radius ρ > 0 and by Bρ(y) the ball centered at y of

radius ρ.

Lemma 9.1.3. — Given ā > 0 satisfying ε≪ ā≪ ε0, consider x̄1, x̄2 in Rd such that |x̄1− x̄2| ≥ ε0,

and v1 ∈ BR. Then for any x1 ∈ Bā(x̄1), any x2 ∈ Bā(x̄2) and any v2 ∈ BR, the following results

hold.

• If v1 − v2 /∈ K(x̄1 − x̄2, 6Rā/ε0), then

∀τ ≥ 0 , |(x1 − v1τ) − (x2 − v2τ)| > ε ;

• If v1 − v2 /∈ K(x̄1 − x̄2, 6Rε0/δ)

∀τ ≥ δ , |(x1 − v1τ) − (x2 − v2τ)| > ε0 .

Proof. — • Assume that there exists τ∗ such that

|(x1 − v1τ) − (x2 − v2τ)| ≤ ε .

Then, by the triangular inequality and provided that ε is sufficiently small,

|(x̄1 − x̄2) − τ∗(v1 − v2)| ≤ ε+ 2ā ≤ 3ā .

This means that (v1 − v2) belongs to the cone of vertex 0 based on the ball centered at x̄1 − x̄2 and of

radius 3ā, which is a cone of solid angle (3ā/|x̄1 − x̄2|)d−1 (since ā≪ ε0).

The intersection of this cone and of the sphere of radius 2R is obviously embedded in the cylinder of

axis x̄1 − x̄2 and radius 6Rā/ε0, which proves the first result.

• Similarly assume that there exists τ∗ ≥ δ such that

|(x1 − v1τ) − (x2 − v2τ)| ≤ ε0 .

Then, by the triangular inequality again,

|(x̄1 − x̄2) − τ∗(v1 − v2)| ≤ ε0 + 2ā ≤ 3ε0 .

In particular, for any unit vector n orthogonal to x̄0 − x̄,

τ∗|n · (v1 − v2)| = |n · ((x̄1 − x̄2) − τ∗(v1 − v2)) | ≤ 3ε0 .

This tells us exactly that v1 − v2 belongs to the cylinder of axis x̄1 − x̄2 and radius 3ε0/δ.

The lemma is proved.

The second geometrical lemma requires the use of notation coming from scattering theory, introduced

in Chapter 3: it states that if two points z1, z2 in R2d are in a post-collisional configuration and if v1
or v2 belong to a cylinder as in Lemma 9.1.3, then the pre-image z∗2 of z2 through the scattering

operator belongs to a small set of R2d.

Lemma 9.1.4. — Consider two parameters ρ ≪ R and η ≪ 1, and (y, w) ∈ Rd × BR. For any v1
in BR, define

N ∗(y, w, ρ)(v1) :=
{
(ν, v2) ∈ Sd−1

1 ×BR / (v2 − v1) · ν > η ,

v∗1 ∈ w +K(y, ρ) or v∗2 ∈ w +K(y, ρ)
}
,
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where (ν∗, v∗1 , v
∗
2) = σ−1

0 (ν, v1, v2) with the notations of Chapter 3. Then

|N ∗(y, w, ρ)(v1)| ≤ C(Φ, R, η)ρd−1

where the constant depends on Φ through the L∞ norm of the cross-section b defined in Chapter 3.

Proof. — Denote by r = |v1 − v2| = |v∗1 − v∗2 |, and by ω the deflection angle. The formula (3.2.2)

shows that, as ω varies in Sd−1
1 , v∗1 and v∗2 range over a sphere of diameter r.

The solid angle of the intersection of such a sphere with the cylinder w +K(y, ρ) is less than

Cd min

(
1,
(ρ
r

)d−1
)

which implies that

|{(ω, v2) / v∗1 ∈ w +K(y, ρ) or v∗2 ∈ w +K(y, ρ)}| ≤ Cd

∫
rd−1 min

(
1,
(ρ
r

)d−1
)
dr

≤ CdRρ
d−1

According to Chapter 3, the change of variables (ν, v1−v2) 7→ (ω, v1−v2) is a Lipschitz diffeomorphism

away from ν · (v1 − v2) = 0. We therefore get the expected estimate.

Remark 9.1.5. — Note that those two lemmas consist in eliminating sets in the velocity variables

and deflection angles only, and do not concern the position variables.

9.1.3. Proof of Proposition 9.1.1. — We fix a good configuration Zk ∈ Gk(ε0), and we consider

a configuration Zk ∈ R2dk, with the same velocities as Zk, and neighboring positions: |Xk −Xk| ≤ a.

In particular we notice that for all τ ≥ 0 and all i 6= j,

(9.1.7) |xi − xj − τ(v̄i − v̄j)| ≥ |x̄i − x̄j − τ(v̄i − v̄j)| − 2a ≥ ε0/2

since a≪ ε0. This implies that Zk ∈ Gk(ε0/2). Next we consider an additional particle (xk + εν, vk+1)

and we shall separate the analysis into two parts, depending on whether the situation is pre-collisional

(meaning ν · (vk+1 − v̄k) < 0) or post-collisional (meaning ν · (vk+1 − v̄k) > 0).

9.1.3.1. The pre-collisional case. — We assume that

ν · (vk+1 − v̄k) < 0 ,

meaning that (xk + εν, v) and zk form a pre-collisional pair. In particular we have for all times τ ≥ 0

and all ε > 0 ∣∣(xk + εν − vk+1τ
)
−
(
xk − v̄kτ

)∣∣ ≥ ε .

Furthermore up to excluding the ball Bη(v̄k) in the set of admissible vk+1, we may assume that

|vk+1 − v̄k| > η .

Under that assumption we have for all τ ≥ δ and all ε > 0 sufficiently small,
∣∣(xk + εν − vk+1τ

)
−
(
xk − v̄kτ

)∣∣ ≥ τ |vk+1 − v̄k| − ε

≥ δη − ε > ε0/2 .

Furthermore we know that Zk belongs to Gk(ε0/2) thanks to (9.1.7).

Now let j ∈ [1, k− 1] be given. According to Lemma 9.1.3, we find that for any vk+1 belonging to the

set BR \K(x̄j − x̄k, 6Ra/ε0 + 6Rε0/δ), we have

∀τ ≥ 0 , |(xk + εν − vk+1τ) − (xj − v̄jτ)| > ε ,
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and

∀τ ≥ δ , |(xk + εν − vk+1τ) − (xj − v̄jτ)| > ε0 .

Notice that
∣∣∣BR ∩K(x̄j − x̄k, 6Ra/ε0 + 6Rε0/δ)

∣∣∣ ≤ C(R)

(
a

ε0
+
ε0
δ

)d−1

.

Defining M−(Zk) :=
⋃

j≤k−1

K(x̄j − x̄k, 6Ra/ε0 + 6Rε0/δ) and

B−
k (Zk) := Sd−1

1 ×
(
Bη(v̄k) ∪M−(Zk)

)

we find that ∣∣∣B−
k (Zk)

∣∣∣ ≤ C(R)
(
ηd +

( a
ε0

)d−1
+
(ε0
δ

)d−1
)

and (9.1.3) and (9.1.4) hold as soon as (ν, vk+1) /∈ B−
k (Zk).

9.1.3.2. The post-collisional case. — We now assume that

ν · (vk+1 − v̄k) > 0 .

Next let us define

(9.1.8) C(Zk) :=
{

(ν, vk+1) ∈ Sd
1 ×BR , ν · (vk+1 − v̄k) ≤ η

}
,

which satisfies

|C(Zk)| ≤ C(R)ηd−1 .

Choosing (ν, vk+1) ∈ (Sd
1 × BR) \ C(Zk) ensures that the cross-section is well defined (see Defini-

tion 3.3.3), and that the scattering time tε is of order C(R, η)ε by Proposition 3.2.1.

Considering the formulas (3.2.2) expressing (zε∗
k , zε∗

k+1) in terms of
(
zk, (xk + εν, vk+1)

)
, we know that

(9.1.9) |xk − xε∗
k | ≤ ε+Rtε ≤ C(R, η)ε and |(xk + εν) − xε∗

k+1| ≤ ε+Rtε ≤ C(R, η)ε .

Note that due to (9.1.7), all particles xj with j ≤ k − 1 are at a distance at least ε0/2 − ε ≫ ε of the

particles xk and xk + εν. Since they have bounded velocities, they cannot enter the protection spheres

of these post-collisional particles during the interaction time tε, provided that ε is small enough:

Rtε ≪ ε0.

Since the dynamics of the particles j ≤ k−1 is not affected by the scattering, we get that Zε∗
k−1 belongs

to Gk−1(ε0/2):

(9.1.10) ∀τ ≥ 0 , ∀(i, j) ∈ [1, k − 1]2 with i 6= j , |xε∗
i − xε∗

j − τ(vε∗
i − vε∗

j )| ≥ ε0/2 .

The pair (zε∗
k , zε∗

k+1) is a pre-collisional pair by definition, so we know that for all τ ≥ 0,

|(xε∗
k − τvε∗

k ) − (xε∗
k+1 − τvε∗

k+1)| ≥ ε .

Moreover we have |vε∗
k − vε∗| = |v̄k − vk+1| > η, so as in the pre-collisional case above we have

∀τ ≥ δ , |xε∗
k − xε∗ − τ(vε∗

k − vε∗
k+1)| ≥ ηδ − ε ≥ ε0 ,

for ε sufficiently small, since ε0 ≪ ηδ.
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Next for j ≤ k− 1 we have for ε sufficiently small, recalling that the uniform, rectilinear motion of the

center of mass as described in (3.1.3),

|xε∗
j − x̄j | ≤ |xε∗

j − xj | + |xj − x̄j | ≤ Rtε + a ≤ 2a

|xε∗
k − x̄k| ≤

1

2
|xε∗

k − xε∗

k+1| +
1

2
|(xε∗

k + xε∗

k+1) − (xk + xk+1)| +
1

2
|(xk + xk+1) − 2x̄k|
≤ Rtε + ε+ a ≤ 2a

|xε∗
k+1 − x̄k| ≤

1

2
|xε∗

k − xε∗

k+1| +
1

2
|(xε∗

k + xε∗

k+1) − (xk + xk+1)| +
1

2
|(xk + xk+1) − 2x̄k|
≤ Rtε + ε+ a ≤ 2a .

By Lemma 9.1.3, provided vε∗
k and vε∗

k+1 do not belong to

v̄j +K(x̄j − x̄k, 12Ra/ε0 + 12Rε0/δ) ∩BR ,

we get since vε∗
j = v̄j ,

∀τ ≥ 0 , |xε∗
k − xε∗

j − τ(vε∗
k − vε∗

j )| ≥ ε ,

and |xε∗ − xε∗
j − τ(vε∗

k+1 − vε∗
j )| ≥ ε

as well as
∀τ ≥ δ/2 , |xε∗

k − xε∗
j − τ(vε∗

k − vε∗
j )| ≥ ε0/2 ,

and |xε∗ − xε∗
j − τ(vε∗

k+1 − vε∗
j )| ≥ ε0/2 .

N ∗(x̄j − x̄k, v̄j , ρ)(v1) :=
{
(ν, v2) ∈ Sd−1

1 ×BR / (v2 − v1) · ν > η ,

v∗1 ∈ w +K(y, ρ) or v∗2 ∈ w +K(y, ρ)
}

Lemma 9.1.4 bounds from the above the size of the set N ∗((x̄j − x̄k, v̄j , ρ) of all (ν, vk+1) ∈ (Sd
1×BR)\

C(Zk) such that vε∗
k or vε∗

k+1 belongs to v̄j +K(x̄j − x̄k, ρ). We let ρ = 12Ra/ε0 + 12Rε0/δ, and define

M+(Zk) :=
⋃

j≤k−1

N ∗(x̄j − x̄k, v̄j , ρ)

and

B+
k (Zk) := C(Zk) ∪

(
Sd−1

1 ×M+(Zk)
)
,

where the set C(Zk) is introduced in (9.1.8). By Lemma 9.1.4,
∣∣∣B+

k (Zk)
∣∣∣ ≤ C(R)ηd−1 + C(Φ, η, R)

( a
ε0

+
ε0
δ

)d−1

and (9.1.5) and (9.1.6) hold as soon as (ν, v) /∈ B+
k (Zk). The proposition is proved.

Note that, in order to prove that pathological sets have vanishing measure as ε → 0, we have to

choose η small enough, and then a and ε0 even smaller in order that (9.1.1) is satisfied and that (9.1.2)

is small. Note that, if we want to get a rate of convergence, we need to have more precise bounds on

the cross-section b in terms of the truncation parameters R and η.

9.2. Truncation of the Boltzmann and BBGKY pseudo-trajectories

In this paragraph we show that the previous geometrical result may be used to define approximate

Boltzmann and BBGKY observables, corresponding to non pathological pseudo-trajectories. We then

expect to be able to compare these approximate observables, which will be done in the next chapter.
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9.2.1. Initialization. — The first step consists in preparing the initial configuration Zs so that it

is a good configuration. We define

∆s(ε0) :=
{
Zs ∈ Rds ×Bs

R / inf
1≤ℓ<j≤s

|xℓ − xj | ≥ ε0

}
,

and we shall assume from now on that Zs belongs to ∆s(ε0). We also define for convenience

∆X
s (ε0) :=

{
Xs ∈ Rds / inf

1≤ℓ<j≤s
|xℓ − xj | ≥ ε0

}
.

Proposition 9.2.1. — For all Xs ∈ ∆X
s (ε0), there is a subset Ms(Xs) of Rds such that

∣∣Ms(Xs)
∣∣ ≤ C(R, s)

(( ε
ε0

)d−1

+
(ε0
δ

)d−1
)
,

and defining Ps :=
{
Zs ∈ ∆s(ε0) / Vs ∈ Ms(Xs)

}
, then

(9.2.11)
∀τ ≥ 0 , 11Ps

◦ Hs(τ) ≡ 11Ps
◦ Ss(τ)

∀τ ≥ δ , 11Ps
◦ Ss(τ) ≡ 11Ps

◦ Ss(τ) ◦ 11Gs(ε0) .

denoting abusively by 11A the operator of multiplication by the indicator of A.

Proof. — The proof is very similar to the arguments of the previous paragraph. For any Zs in ∆s(ε0),

we apply Lemma 9.1.3 which shows that outside a small measure set Ms(Xs) ⊂ Rds of veloci-

ties (v1, . . . , vs), with

|Ms(Xs)| ≤ C(R)C2
s

(
ε

ε0
+
ε0
δ

)d−1

,

the backward nonlinear flow is actually the free flow and the particles remain at a distance larger

than ε to one another for all times:

∀τ > 0, ∀ℓ 6= ℓ′ ∈ {1, . . . , s} , |(xℓ − vℓτ) − (xℓ′ − vℓ′τ)| > ε ,

and that

∀τ ≥ δ, ∀ℓ 6= ℓ′ ∈ {1, . . . , s} , |(xℓ − vℓτ) − (xℓ′ − vℓ′τ)| ≥ ε0 .

By construction, Ms(Xs) depends continuously on Xs. Therefore, defining Ps := {Zs ∈ ∆s(ε0) / Vs /∈
Ms(Xs)} gives the result.

9.2.2. Approximation of the Boltzmann functional. — We recall that we consider a family of

initial data F0 = (f
(s)
0 ) satisfying

‖|F0‖|0,β0,µ0
= sup

s∈N

sup
Zs

(
exp(β0E(Zs) + µ0s)f

(s)
0 (Zs)

)
< +∞

and after the reductions of Chapter 8, the observable we are interested in is the following:

(9.2.12)
I0,R,δ
s,n (t, J,M)(Xs) :=

∫
ϕs(Vs)

∫

Tn,δ(t)

Ss(t− t1)C0,j1,m1

s,s+1 Ss+1(t1 − t2)C0,j2,m2

s+1,s+2

. . .Ss+n(tn − tn+1)11|E0(Zs+n)|≤R2f
(s+n)
0 dTndVs ,
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By Proposition 9.2.1, up to an error term of order C(R)s2 (ε/ε0 + ε0/δ)
d−1

, we can assume that the

initial configuration Zs is a good configuration, meaning that

I0,R,δ
s,n (t, J,M)(Xs) =

∫

BR\Ms(Xs)

ϕs(Vs)

∫

Tn,δ(t)

Ss(t− t1)C0,j1,m1

s,s+1 Ss+1(t1 − t2)C0,j2,m2

s+1,s+2

. . . C0,jn,mn

s+n−1,s+nSs+n(tn − tn+1)11|E0(Zs+n)|≤R2f
(s+n)
0 dTndVs

+O
(
C(R)s2

(
ε

ε0
+
ε0
δ

)d−1 )
,

where

(
C0,−,m

s,s+1 f
(s+1)

)
(Zs) =

∫

S
d−1
1 ×Rd

((vs+1 − vm) · νs+1)−f
(s+1)(Zs, xm, vs+1) dνs+1dvs+1 and

(
C0,+,m

s,s+1 f
(s+1)

)
(Zs) =

∫

S
d−1
1 ×Rd

((vs+1 − vm) · νs+1)+f
(s+1)(z1, . . . , xm, v

∗
m, . . . , zs, xm, v

∗
s+1) dνs+1dvs+1 .

Now let us introduce some notation which we shall be using constantly from now on: given Zs ∈ ∆s(ε0),

we call Z0
s (τ) the position of the backward free flow initiated from Zs, at time t1 ≤ τ ≤ t. Then

given j1 ∈ {+,−}, m1 ∈ [1, s], a deflection angle ωs+1 and a velocity vs+1 we call Z0
s+1(τ) the

position at time t2 ≤ τ < t1 of the Boltzmann pseudo-trajectory initiated by the adjunction of the

particle (νs+1, vs+1) to the particle z0
m1

(t1) (which is simply free-flow in the pre-collisional case j1 = −,

and free-flow after scattering of particles z0
m1

(t1) and (νs+1, vs+1) in the post-collisional case j1 = +).

Similarly by induction given Zs ∈ ∆s(ε0), T, J and M we denote for each 1 ≤ k ≤ n by Z0
s+k(τ)

the position at time tk+1 ≤ τ < tk of the pseudo-trajectory initiated by the adjunction of the parti-

cle (νs+k, vs+k) to the particle z0
mk

(tk) (which is simply free-flow in the pre-collisional case jk = −,

and free-flow after scattering of particles z0
mk

(tk) and (νs+k, vs+k) in the post-collisional case jk = +).

Notice that τ 7→ Z0
s+k(τ) is pointwise right-continuous on [0, tk].

With this notation, the functional I0,R,δ
s,n may be reformulated as

I0,R,δ
s,n (t, J,M)(Xs) =

∫

BR\Ms(Xs)

dVsϕs(Vs)

∫

Tn,δ(t)

dTn

∫

S
d−1
1 ×BR

dνs+1dvs+1((vs+1 − v0
m1

(t1) · νs+1)+

. . .

∫

S
d−1
1 ×BR

dνs+ndvs+n((vs+n − v0
mn

(tn) · νs+n)+11E0(Z0
s+n(0))≤R2f

(s+n)
0 (Z0

s+n(0))

+O
(
C(R)s2

(
ε

ε0
+
ε0
δ

)d−1 )
.

Let a, ε0, η ≪ 1 be such that

a≪ ε0 ≪ ηδ .

According to Proposition 9.1.1, for any good configuration Zs+k−1 ∈ R2d(s+k−1), we can define a set

cBs+k−1(Zs+k−1) :=
(
Sd−1

1 ×BR

)
\ Bs+k−1(Zs+k−1) ,

such that good configurations Zs+k−1 = (Xs+k−1, V s+k−1) with |Xs+k−1 −Xs+k−1| ≤ Ca are stable

by adjunction of a collisional particle (νk+s, vk+s) ∈c B(
s+k−1Zs+k−1).

We further notice that thanks to Remark 9.1.2, if the adjoined pair (νs+k, vs+k) belongs to the

set cBs+k−1(Z
0
s+k−1(tk)) with Z0

s+k−1(tk) ∈ Gs+k−1(ε0), then Z0
s+k(tk+1) belongs to Gs+k(ε0).
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As a consequence we may define recursively the approximate Boltzmann functional

(9.2.13)

J0,R,δ
s,n (t, J,M)(Xs) =

∫

BR\Ms(Xs)

dVsϕs(Vs)

∫

Tn,δ(t)

dTn

∫

cBs(Z0
s (t1))

dνs+1dvs+1(vs+1 − v0
m1

(t1) · νs+1)j1

. . .

∫

cBs+n−1i(Z0
s+n−1(tn))

dνs+ndvs+n(vs+n − v0
mn

(tn) · νs+n)jn

× 11E0(Z0
s+n(0))≤R2f

(s+n)
0 (Z0

s+n(0)) .

The following result is an immediate consequence of Proposition 9.1.1

Proposition 9.2.2. — Let a, ε0, η ≪ 1 satisfying (9.1.1). Then,

∣∣∣11∆s(ε0)

(
I0,R,δ
s,n − J0,R,δ

s,n

)
(t, J,M)

∣∣∣ ≤ (s+ n)2
(
C(R)ηd−1 + C(R,Φ, η)

( a
ε0

+
ε0
δ

)d−1
)
‖|F0‖|0,β0,µ0 .

9.2.3. Approximation of the BBGKY functional. — We recall that after the reductions of

Chapter 8, the functional we are interested in is

IR,δ
s,n (t, J,M)(Xs) :=

∫
ϕs(Vs)

∫

Tn,δ(t)

Hs(t− t1)Cj1,m1

s,s+1Hs+1(t1 − t2)Cj2,m2

s+1,s+2

. . . Cjn,mn

s+n−1,s+nHs+n(tn − tn+1)11|Eε(Zs+n)|≤R2 f̃
(s+n)
N,0 dTndVs ,

where F̃N,0 = (f̃
(s)
N,0)1≤s≤N satisfies

‖|F̃N,0‖|ε,β0,µ0 = sup
s∈N

sup
Zs

(
exp(β0Eε(Zs) + µ0s)f̃

(s)
N,0(Zs)

)
< +∞ .

Thanks to Proposition 9.2.1, we have

IR,δ
s,n (t, J,M)(Xs) =

∫

BR\Ms(Xs)

ϕs(Vs)

∫

Tn,δ(t)

Ss(t− t1)11Gs(ε0)Cj1,m1

s,s+1Hs+1(t1 − t2)Cj2,m2

s+1,s+2

. . . Cjn,mn

s+n−1,s+nHs+n(tn − tn+1)11Eε(Zs+n(0))≤R2 f̃
(s+n)
N,0 dTndVs

+O
(
C(R)s2

(
ε

ε0
+
ε0
δ

)d−1 )
.

Then using the notation introduced in the previous paragraph for the Boltzmann pseudo-trajectory,

let us define the approximate functionals

JR,δ
s,n (t, J,M)(Xs) :=

∫

BR\Ms(Xs)

ϕs(Vs)

∫

Tn,δ(t)

Ss(t− t1)11Gs(ε0)C̃j1,m1

s,s+1Hs+1(t1 − t2)

. . . C̃jn,mn

s+n−1,s+nHs+n(tn − tn+1)11Eε(Zs+n(0))≤R2 f̃
(s+n)
0 dTndVs ,



74 CHAPTER 9. ELIMINATION OF RECOLLISIONS

where
(
C̃−,mk

s+k−1,s+kg
(s+k)

)
(Zs+k−1) := (N − s− k + 1)εd−1

∫

cBs+k−1(Z0
s+k−1(tk))

(νs+k · (vs+k − vmk
(tk)))−

×g(s+k)(·, xmk
(tk) + ενs+k, vs+k(tk))

∏

1≤j≤s+k−1
j 6=mk

11|(xj−xmk
)(tk)−ενs+k|≥ε dνs+kdvs+k

(
C̃+,mk

s+k−1,s+kg
(s+k)

)
(Zs+k−1) := (N − s− k + 1)εd−1

∫

cBs+k−1(Z0
s+k−1(tk))

(νs+k · (vs+k − vmk
(tk)))+

×g(s+k)(. . . , x∗mk
, v∗mk

, . . . , x∗s+k, v
∗
s+k)

∏

1≤j≤s+k−1
j 6=mk

11|(xj−xmk
)(tk)−ενs+k|≥ε dνs+kdvs+k .

denoting as previously by (x∗mk
, v∗mk

, x∗s+k, v
∗
s+k) the pre-image of (xmk

, vmk
(tk), xmk

(tk)+ενs+k, vs+k(tk))

by the scattering σε.

As in the Boltzmann case described above, the following result is an immediate consequence of Propo-

sition 9.1.1.

Proposition 9.2.3. — Let a, ε0, η ≪ 1 satisfying (9.1.1). Then, for ε sufficiently small,
∣∣∣11∆s(ε0)

(
IR,δ
s,n − JR,δ

s,n

)
(t, J,M)

∣∣∣ ≤ (s+ n)2
(
C(R)ηd−1 + C(R,Φ, η)

( a
ε0

+
ε0
δ

)d−1
)
‖|F̃N,0‖|ε,β0,µ0

.

The functional JR,δ
s,n can be written in terms of pseudo-trajectories, as in (9.2.13). Let us therefore

introduce some notation which we shall be using constantly from now on: given Zs ∈ ∆s(ε0), we

call Z0
s (τ) the position of the backward free flow initiated from Zs, at time t1 ≤ τ ≤ t. Then

given j1 ∈ {+,−}, m1 ∈ [1, s], an angle νs+1 (or equivalently a position xs+1 = x0
m1

(t1) + ενs+1) and

a velocity vs+1 we call Zε
s+1(τ) the position at time t2 ≤ τ < t1 of the BBGKY pseudo-trajectory

initiated by the adjunction of the particle zs+1 to the particle z0
m1

(t1).

Similarly by induction given Zs ∈ ∆s(ε0), T, J and M we denote for each 1 ≤ k ≤ n by Zε
s+k(τ) the

position at time tk+1 ≤ τ < tk of the BBGKY pseudo-trajectory initiated by the adjunction of the

particle zs+k to the particle zmk
(tk). We have

(9.2.14)

JR,δ
s,n (t, J,M)(Xs) =

(N − s)!

(N − s− n)!
εn(d−1)

∫

BR\Ms(Xs)

dVsϕs(Vs)

∫

Tn,δ(t)

dTn

∫

cBs(Z0
s (t1))

dνs+1dvs+1 (νs+1 · (vs+1 − vm1
(t1)))j1

∏

1≤j≤s
j 6=m1

11|(xj−xm1 )(t1)−ενs+1|≥ε

. . .

∫

cBjn
s+n−1(Z

0
s+n−1(tn))

dνs+ndvs+n (νs+n · (vs+n − vmn
(tn)))jn

×
∏

1≤j≤s+n−1
j 6=mn

11|(xj−xmn )(tn)−ενs+n|≥ε11Eε(Zs+n(0))≤R2 f̃
(s+n)
N,0 (Zε

s+n(0)) .

Thanks to Propositions 9.2.2 and 9.2.3 the proof of Theorem 4 reduces to the proof of the convergence

to zero of JR,δ
s,n − J0,R,δ

s,n . This is the object of the next chapter.



CHAPTER 10

CONVERGENCE PROOF

In this chapter we conclude the proof of Theorem 4 by proving that JR,δ
s,n − J0,R,δ

s,n goes to zero in the

Boltzmann-Grad limit, with the notation of the previous chapter, namely (9.2.13) and (9.2.14). The

main difficulty lies in the fact that in contrast to the Boltzmann situation, collisions in the BBGKY

configuration are not pointwise in space, nor in time. At each collision time tk a small error is therefore

introduced, which needs to be controled.

We recall that, as in the previous chapter, we consider dynamics

– involving only a finite number s+ n of particles,

– with bounded energies (at most R2 ≫ 1),

– such that the n additional particles are adjoined through binary collisions at times separated at least

by δ ≪ 1.

The additional truncation parameters a, ε0, η ≪ 1 satisfy (9.1.1).

10.1. Proximity of Boltzmann and BBGKY trajectories

This paragraph is devoted to the proof, by induction, that the BBGKY and Boltzmann pseudo-

trajectories remain close for all times, in particular that there is no recollision for the BBGKY dynamics.

We recall that the notation Z0
k(t) and Zk(t) were defined in Paragraphs 9.2.2 and 9.2.3 respectively.

Lemma 10.1.1. — Fix T ∈ Tn,δ(t), J , and M and given Zs in ∆s(ε0), consider for all i ∈ {1, . . . n},
an impact parameter νs+i and a velocity vs+i such that (νs+i, vs+i) /∈ Bs+i−1(Z

0
s+i−1(ti)). Then, for ε

sufficiently small, for all i ∈ [1, n], and all k ≤ s+ i,

(10.1.1) |xε
k(ti+1) − x0

k(ti+1)| ≤ Cεi and vk(ti+1) = v0
k(ti+1) ,

where the constant C depends only on η,R, δ.

Proof. — We proceed by induction on i, the index of the time variables ti+1 for 0 ≤ i ≤ n.

We first notice that by construction, Zs(t1) − Z0
s (t1) = 0, so (10.1.1) holds for i = 0. The initial

configuration being a good configuration, we indeed know that there is no possible recollision.

Now let i ∈ [1, n] be fixed, and assume that for all ℓ ≤ i

(10.1.2) ∀k ≤ s+ ℓ− 1, |xε
k(tℓ) − x0

k(tℓ)| ≤ Cε(ℓ− 1) and vk(tℓ) = v0
k(tℓ) .
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Let us prove that (10.1.2) holds for ℓ = i+ 1. We shall consider two cases depending on whether the

particle adjoined at time ti is pre-collisional or post-collisional.

• As usual, the case of pre-collisional velocities (vs+i, vmi
(ti)) at time ti is the most simple to handle.

We indeed have ∀τ ∈ [ti+1, ti]

∀k < s+ i , x0
k(τ) = x0

k(ti) + (τ − ti)v
0
k(ti) , v0

k(τ) = v0
k(ti) ,

x0
s+i(τ) = x0

mi
(ti) + (τ − ti)vs+i , v0

s+i(τ) = vs+i .

Now let us study the BBGKY trajectory. We recall that the particle is adjoined in such a way

that (νs+i, vs+i) belongs to cBs+i−1(Z
0
s+i−1(ti)). Provided that ε is sufficiently small, by the induction

assumption (10.1.2), we have

|Xε
s+i−1(ti) −X0

s+i−1(ti)| ≤ Cε(i− 1) ≤ a .

Since Z0
s+i−1(ti) belongs to Gs+i−1(ε0) (see Paragraph 9.2.2), we can apply Proposition 9.1.1 which

implies that backwards in time, there is free flow for Zε
s+i. In particular,

∀k < s+ i , xk(τ) = xk(ti) + (τ − ti)vk(ti) , vk(τ) = vk(ti) ,

xs+i(τ) = xmi
(ti) + ενs+i + (τ − ti)vs+i , vs+i(τ) = vs+i .

We therefore obtain

(10.1.3) ∀k ≤ s+ i , ∀τ ∈ [ti+1, ti] , vk(τ) − v0
k(τ) = vk(ti) − v0

k(ti) = 0 ,

and

(10.1.4) ∀k ≤ s+ i , ∀τ ∈ [ti+1, ti] , |xk(τ) − x0
k(τ)| ≤ Cε(i− 1) + ε .

• The case of post-collisional velocities is a little more complicated since there is a (small) time interval

during which interaction occurs.

Let us start by describing the Boltzmann flow. By definition of the post-collisional configuration, we

know that the following identifies hold:

∀ti+1 ≤ τ < ti ,





(v0
mi
, v0

s+i)(τ) = (v0∗
mi

(ti), v
∗
s+i) with (ν∗s+i, v

0∗
mi

(ti), v
∗
s+i) := σ−1

0 (νs+i, v
0
mi

(ti), vs+i)

x0
mi

(τ) = x0
mi

(ti) + (τ − ti)v
0∗
mi

(ti) , x
0
s+i(τ) = x0

s+i(ti) + (τ − ti)v
∗
s+i

∀j /∈ {mi, s+ 1} , v0
j (τ) = v0

j (ti) , x
0
j (τ) = x0

j (ti) + (τ − ti)v
0
j (ti) ,

where σ0 denotes the scattering operator defined in Definition 3.2.1 in Chapter 3.

First, by Proposition 9.1.1, we know that for j /∈ {mi, s+ i} and ∀τ ∈ [ti+1, ti],

xj(τ) = xj(ti) + (τ − ti)vj(ti) , vj(τ) = vj(ti) ,

so that by the induction assumption (10.1.2) we obtain

(10.1.5)
∀j /∈ {mi, s+ i} , ∀τ ∈ [ti+1, ti] , |xj(τ) − x0

j (τ)| = |xj(ti) − x0
j (ti)| ≤ Cε

and vj(τ) = v0
j (τ) .

We now have to focus on the pair (s + i,mi). According to Chapter 3, the relative velocity evolves

under the nonlinear dynamics on a time interval [ti − tε, ti] with tε ≤ C(η,R)ε (recalling that by

construction, the relative velocity |vs+i − vmi
(ti)| is bounded from above by R and from below by η,

and that the impact parameter is also bounded from below by η). Then, for all τ ∈ [ti+1, ti − tε],

(10.1.6) vs+i(τ) = v∗s+i = v0
s+i(τ) , vmi

(τ) = v∗mi
(ti) = v0∗

mi
(ti) = v0

mi
(τ) .
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In particular,

(10.1.7) vs+i(ti+1) = v0
s+i(ti+1) and vmi

(ti+1) = v0
mi

(ti+1) .

The conservation of total momentum as in Paragraph 9.1.3.2 shows that
∣∣∣
1

2
(xε

mi
(ti − tε) + xε

s+i(ti − tε)) −
1

2
(x0

mi
(ti − tε) + x0

s+i(ti − tε))
∣∣∣

=
∣∣∣
1

2
(xε

mi
(ti) + xε

s+i(ti) −
1

2
(x0

mi
(ti) + x0

s+i(ti))
∣∣∣

=
∣∣∣xε

s+i(ti) − x0
s+i(ti)

∣∣∣+
ε

2
≤ Cε(i− 1) +

ε

2
·

On the other hand, by definition of the scattering time tε,

|xε
mi

(ti − tε) − xε
s+i(ti − tε)| = ε ,

|x0
mi

(ti − tε) − x0
s+i(ti − tε)| = tε|v∗mi

− v∗s+i| ≤ C(η,R)ε .

We obtain finally

(10.1.8) |xε
mi

(ti − tε) − x0
mi

(ti − tε)| ≤ Cεi and |xε
s+i(ti − tε) − x0

s+i(ti − tε)| ≤ Cεi

provided that C is chosen sufficiently large (depending on R and η).

Now let us apply Proposition 9.1.1, which implies that for all τ ∈ [ti+1, ti − tε] the backward in time

evolution of the two particles xε
s+i(ti − tε) and xε

mi
(ti − tε), is that of free flow: we have therefore,

using (10.1.6),

xε
mi

(ti+1) − x0
mi

(ti+1) = xε
mi

(ti − tε) − x0
mi

(ti − tε) ,

xε
s+i(ti+1) − x0

s+i(ti+1) = xε
s+i(ti − tε) − x0

s+i(ti − tε) .

From (10.1.8) we therefore deduce that the induction assumption is satisfied at time step ti+1, and the

proposition is proved.

Note that, by construction,

Z0
s+n(0) ∈ Gs+n(ε0) ,

so that an obvious application of the triangular inequality leads to

Zε
s+n(0) ∈ Gs+n(ε0/2) .

Note also that the indicator functions are identically equal to 1 for good configurations. We therefore

have the following

Corollary 10.1.2. — Under the assumptions of Lemma 10.1.1, the functional JR,δ
s,n (t, J,M) defined

in (9.2.14) may be written as follows:

JR,δ
s,n (t, J,M)(Xs) =

(N − s)!

(N − s− n)!
εn(d−1)

∫

BR\Ms(Xs)

dVsϕs(Vs)

∫

Tn,δ(t)

dTn

∫

cBs(Z0
s (t1))

dνs+1dvs+1 (νs+1 · (vs+1 − vm1(t1)))j1

. . .

∫

cBs+n−1(Z0
s+n−1(tn))

dνs+ndvs+n (νs+n · (vs+n − vmn
(tn)))jn

× 11Eε(Zs+n(0))≤R211Zs+n(0)∈Gs+n(ε0/2)f̃
(s+n)
N,0 (Zε

s+n(0)) .
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10.2. End of the proof of Theorem 4

The end of the proof of Theorem 4 consists in estimating the error terms in JR,δ
s,n − J0,R,δ

s,n coming

essentially from the micro-translations described in the previous paragraph and from the initial data.

10.2.1. Error coming from the initial data. — Let us replace the initial data in JR,δ
s,n by that

of the Boltzmann hierarchy, defining:

J̃R,δ
s,n (t, J,M)(Xs) =

(N − s)!

(N − s− n)!
εn(d−1)

∫

BR\Ms(Xs)

dVsϕs(Vs)

∫

Tn,δ(t)

dTn

∫

cBs(Z0
s (t1))

dνs+1dvs+1 (νs+1 · (vs+1 − vm1(t1)))j1

. . .

∫

cBs+n−1(Z0
s+n−1(tn))

dνs+ndvs+n (νs+n · (vs+n − vmn
(tn)))jn

× 11E0(Zs+n(0))≤R211Zε
s+n(0)∈Gs+n(ε0/2)f

(s+n)
0 (Zs+n(0)) .

Lemma 10.2.1. — In the Boltzmann-Grad scaling Nεd−1 = 1,

∣∣11∆X
s (ε0)(J

R,δ
s,n −J̃R,δ

s,n )(t, J,M)(Xs)
∣∣ ≤ C

RdnTn

n!
‖ϕs‖L∞(Rds)

∥∥11∆s+n(ε0/2)(f̃
(s+n)
N,0 −f (s+n)

0 )
∥∥

L∞(R2d(s+n))

and in particular

|11∆X
s (ε0)(Ĩs,n − J̃s,n)(t, J,M)(Xs)| → 0 as ε→ 0 ,

uniformly in t ∈ [0, T ] and Xs ∈ Rds.

Proof. — We recall that by assumption, 11∆s+n(ε0/2)(f̃
(s+n)
N,0 − f

(s+n)
0 ) goes to zero uniformy in Zs+n.

By definition of the good sets Gk(c), the positions in the argument of f̃
(s+n)
N,0 − f

(s+n)
0 satisfy the

separation condition |xi − xj | ≥ ε0/2 for i 6= j :

11Gs+n(ε0/2)(f̃
(s+n)
N,0 − f

(s+n)
0 ) = 11Gs+n(ε0/2)11∆s+n(ε0/2)(f̃

(s+n)
N,0 − f

(s+n)
0 ) .

Furthermore, due to that separation condition,

Eε(Zs+n) = E0(Zs+n) =
1

2

s+n∑

i=1

|vi|2 .

So we can write

(JR,δ
s,n (t, J,M) − J̃R,δ

s,n (t, J,M))(Xs) =
(N − s)!

(N − s− n)!
εn(d−1)

∫

BR\Ms(Xs)

dVsϕs(Vs)

∫

Tn,δ(t)

dTn

∫

cBs(Z0
s (t1))

dνs+1dvs+1(νs+1 · (vs+1 − vm1
(t1)))j1

. . .

∫

cBs+n−1(Z0
s+n−1(tn))

dνs+ndvs+n (νs+n · (vs+n − vmn
(tn)))jn

× 11Eε(Zε
s+n(0))≤R211∆s+n(ε0/2)(f̃

(s+n)
N,0 − f

(s+n)
0 ) ,

and we find directly that
∣∣∣11∆X

s (ε0)(J
R,δ
s,n (t, J,M) − J̃R,δ

s,n (t, J,M))(Xs)
∣∣∣

≤ C
RdnTn

n!
‖ϕs‖L∞(Rds)

∥∥11∆s+n(ε0/2)(f̃
(s+n)
N,0 − f

(s+n)
0 )

∥∥
L∞(R2d(s+n))

.
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The result is proved.

10.2.2. Error coming from the prefactors in the collision operators. — As ε → 0 in the

Boltzmann-Grad scaling, we have

(N − s)!

(N − s− n)!
εn(d−1) → 1 .

Defining

(10.2.9)

J
R,δ

s,n (t, J,M)(Xs) =

∫

BR\Ms(Xs)

dVsϕs(Vs)

∫

Tn,δ(t)

dTn

∫

cBs(Z0
s (t1))

dνs+1dvs+1 (νs+1 · (vs+1 − vm1
(t1)))j1

. . .

∫

cBs+n−1(Z0
s+n−1(tn))

dνs+ndvs+n (νs+n · (vs+n − vmn
(tn)))jn

× 11E0(Zs+n(0))≤R211Zε
s+n(0)∈Gs+n(ε0/2)f

(s+n)
0 (Zs+n(0)) ,

we have the following obvious convergence.

Lemma 10.2.2. — In the Boltzmann-Grad scaling Nεd−1 = 1,

|11∆X
s

(J̃R,δ
s,n − J

R,δ

s,n )(t, J,M)(Xs)| ≤ C
s(s+ n)

N
‖ϕ‖L∞(Rds)‖|FN,0‖|0,β0,µ0

.

10.2.3. Conclusion. — We can now compare the definition (9.2.13) of J0,R,δ
s,n (t, J,M)

J0,R,δ
s,n (t, J,M)(Xs) =

∫

BR\Ms(Xs)

dVsϕs(Vs)

∫

Tn,δ(t)

dTn

∫

cBs(Z0
s (t1))

dνs+1dvs+1((vs+1 − v0
m1

(t1) · νs+1)j1

. . .

∫

cBs+n−1i(Z0
s+n−1(tn))

dνs+ndvs+n((vs+n − v0
mn

(tn) · νs+n)jn

11E0(Z0
s+n(0))≤R2f

(s+n)
0 (Z0

s+n(0)) .

and the formulation (10.2.9) for the approximate BBGKY hierarchy

J
R,δ

s,n (t, J,M)(Xs) =

∫

BR\Ms(Xs)

dVsϕs(Vs)

∫

Tn,δ(t)

dTn

∫

cBs(Z0
s (t1))

dνs+1dvs+1 (νs+1 · (vs+1 − vm1(t1)))j1

. . .

∫

cBs+n−1(Z0
s+n−1(tn))

dνs+ndvs+n (νs+n · (vs+n − vmn
(tn)))jn

× 11E0(Zs+n(0))≤R211Zε
s+n(0)∈Gs+n(ε0/2)f

(s+n)
0 (Zs+n(0)) .

Lemma 10.1.1 implies that at time 0 we have

|Xs+n(0) −X0
s+n(0)| ≤ C(R, η)nε , and Vs+n(0) = V 0

s+n(0) .

Provided that f
(s+n)
0 is continuous, we then obtain the expected convergence and this concludes the

proof of Theorem 4.
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Notice for instance that if f
(s+n)
0 is Lipschitz, then we have the following estimate.

Proposition 10.2.1. — In the Boltzmann-Grad scaling Nεd−1 = 1,

|11∆X
s (ε0)(I

0 − J)(t,Xs)| ≤ C(R, η)nε‖∇Xs+n
f

(s+n)
0 ‖L∞ ,

uniformly in t ∈ [0, T ] and Xs ∈ Rds.



CHAPTER 11

CONCLUDING REMARKS

11.1. On the convergence rate : the particular case of hard spheres

The method of proof described in this text gives actually a more precise statement regarding the con-

vergence then Theorem 4 : gathering all the estimates together, we indeed obtain a rate of convergence.

For general short-range potentials of interaction, this rate is not completely explicit since the constant

arising in Proposition 9.1.1 in the estimate of pathological sets depends on Φ, η and R through the

cross-section b.

This constant can be made explicit in particular cases, especially in the simple case of hard spheres

since the deflection angle ω and the normal ν coincide.

Note that all the arguments can be reproduced in this case once the dynamics for fixed N and ε is well-

defined (without multiple collisions - see Chapter 2). Moreover there are important simplifications :

– True marginals coincide with truncated marginals because of the non penetration condition. In

particular, there is no more need of cluster expansions, which simplifies a little bit the existence

proof, and Proposition 8.1.1 is no more relevant.

– The scattering operator is completely explicit since ω = ν in formulas (3.2.2). In particular the

cross-section

b(v1 − v2, ω) = ((v1 − v2) · ω)+ .

As mentioned above, this enables us to get a constant C(R, η,Φ) = Cd in Lemma 9.1.4 that depends

only on the dimension d. Since we use Lemma 9.1.4 with ρ = 12Ra/ε0 + 12Rε0/δ in the proof of

Proposition 9.1.1, this gives an error

C0R
d

(
ηd−1 +

(
a

ε0
+
ε0
δ

)d−1
)

with ηδ >> ε0 .

Note that we can choose η = C ε0

δ for C sufficiently large.

– Collisions are pointwise and instantaneous tε ≡ 0, which makes the proof of Lemma 10.1.1 on the

divergence of trajectories very easy. Indeed, the distance between the BBGKY and Boltzmann

pseudo-trajectories increases at most of ε at each collision!

Let us then gather all the estimates together. We assume for the sake of simplicity that we start from

an almost factorized initial data, i.e. a BBGKY initial data obtained from a tensor product by the

conditioning process described in Chapter 7.
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From the arguments of Proposition 8.2.1, 8.3.1 and 8.4.1, we find a first error term

e1 ≤ C0

((
2

3

)n

esµ(t) + e−C′R2

+ nδ

)
,

where C0 depends only on the L∞ norm of f0. Then, from Proposition 9.1.1, we obtain as discussed

above the error term

e2 ≤ C0R
d

(
a

ε0
+
ε0
δ

)d−1

.

Finally, we have to take into account the error coming from the initial data, estimated in Chapter 7

and Lemma 10.2.1:

e3 ≤ C0
RdnTn

n!
(s+ n)ε ,

the error coming from the prefactors of the collision operators

e4 ≤ C0s(s+ n)ε2

and the error coming from the divergence of trajectories, which can be estimated if f0 is Lipschitz as

follows

e5 ≤ C‖f0‖W 1,∞

RdnTn

n!
(s+ n)ε .

Therefore, choosing

n ∼ C1| log ε|, R2 ∼ C2| log ε|
for some sufficiently large constants C1 and C2, and

δ = ε(d−1)/(d+1), ε0 = εd/(d+1)

we find that the total error is smaller than Cεα for any α < (d− 1)/(d+ 1).

11.2. On the time of validity of Theorems 2 and 4

Let us first note that, for any fixed N , the BBGKY hierarchy has a global solution since it is equivalent

to the Liouville equation in the phase space of dimension 2Nd, which is nothing else than a linear

transport equation. The fact that we obtain a finite life span is therefore due to the functional

spaces Xε,β,µ we consider. Belonging to such a functional space requires indeed a strong control on

the high order correlations. The estimates we have written show actually (see Corollary 6.1.2) that

the time of validity of Theorem 2 depends on µ0, which measures the logarithmic growth of the initial

marginals (that is the size of f0 for factorized initial data).

An important point is that the time of convergence is exactly the time of existence. By definition of

the functional spaces, we are indeed in a situation where the high order correlations can be neglected

(see Proposition 7.2.1), so that we only have to study the dynamics of a finite system of particles. The

term-by-term convergence relies then on geometrical properties of the transport in the whole space,

which do not introduce any restriction on the time of convergence.

A natural question is therefore to know whether or not it is possible to increase the time of existence

and thus the time of convergence. The interpretation we have of the iterated Duhamel formula in terms

of pseudo-trajectories, for which at each time step a new particle (independent from all the others)

is added and interacts with one of the previous ones, shows that one cannot hope to prove by this
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method a convergence theorem for larger times than a fraction of the time at which each particle has

undergone one collision.

The first trivial remark is that after N − 1 iterations, independence does not hold any longer. Indeed,

representing each collision by a strap between the two involved particles, we see that

– either there is a chain connecting all the particles,

– or there are closed subchains, corresponding to pathological dynamics involving recollisions.

It is actually known (see for instance [6]) that after cN time steps with 1/2 < c < 1, there is a change

of phase and the appearance of a “giant component” in the set of N particles, meaning a set of α(c)N

particles, with α(c) → 1 as c → 1 which have interacted either directly, or indirectly through other

particles, so independence does not hold anymore, after N/2 time steps.

In other words this means that, starting from such a system of N particles, we can expect to increase

the time of convergence (and thus the time of existence) only if we can prove that, after a short time,

particles go at infinity in different directions, and thus do not encounter each other any more, i.e. the

dynamics reduces to free transport.

If we want to establish the validity of the Boltzmann equation for longer times, we have therefore to

start with systems of particles which contain much more particles, but with the same average density

(in order that the collision cross-section remains bounded). The difficulties are then to prove that

– the density of particles remains locally bounded, so that the asymptotics is still governed by the

Boltzmann-Grad scaling;

– the spatial dispersion creates some mixing mechanism, which implies that particles entering a colli-

sion are always independent.

Note that a simple way to get rid of the first problem is to consider periodic distributions of particles.

In that case, the challenge is to understand how the dispersion associated to free transport could help

for the propagation of chaos, which implies more or less to study the spatial decay of correlations.

11.3. More general potentials

A first natural extension to this work concerns the case of a compactly supported, repulsive potential,

but no longer satisfying (1.2.1) of Assumption 1.2.1. As explained in Chapter 3, that assumption

guarantees that the cross section is well defined everywhere, since the deflection angle is a one-to-one

function of the impact parameter. If that is no longer satisfied, then one expects that additional

decompositions are necessary, and resummation procedures need to be justified (see [36]).

From a physical point of view it would be more interesting to study the case of long-range potentials.

Then the cross section actually becomes singular, so a different notion of limit must be considered,

possibly in the spirit of Alexandre and Villani [3]. One intermediate step, as in [15], would be to

extend this work to the case when the support of the potential goes to infinity with the number of

particles. Then one could try truncating the long-range potential and showing that the tail of the

potential has very little effect in the convergence.

Note that in the case when grazing collisions become predominant, then the Boltzmann equation

should be replaced by the Landau equation, whose derivation is essentially open; a first result in that

direction was obtained very recently by A. Bobylev, M. Pulvirenti and C. Saffirio in [4], where a time

zero convergence result is established.
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11.4. Other boundary conditions

As it stands, our analysis is restricted to the whole space (namely XN ∈ RdN ). It is indeed important

that free flow corresponds to straight lines (see in particular Lemmas 9.1.3 and 9.1.4 as well more

generally as the analysis of pathological trajectories in Chapter 9).

It would be very interesting to generalize this work to more general geometries. A first step in that

direction would be to study the case of periodic flows in XN . The geometric lemmas must be adapted

to that framework, and in particular it appears that a finite life span must a priori be given before the

surgery of the collision integrals may be performed. The case of a general domain is again much more

complicated, and results from the theory of billiards would probably need to be used.
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NOTATION INDEX

Bs
R, ball of radius R centered at zero in Rds,

page 17

BR(x), ball of radius R centered at x in Rd,
page 32

BR, ball of radius R centered at zero in Rd,
page 17

Bk(Zk) a small set of angles and velocities of a par-
ticle adjoined to Zk (or a neighboring configura-
tion), leading to pathological trajectories, page 66

b, cross-section, page 20

CN , BBGKY hierarchy collision operator, page 29

C0, Boltzmann hierarchy collision operator,
page 29

Cs,s+m, BBGKY collision operator involvingm ad-
ditional particles, page 28

C0
s,s+1, Boltzmann collision operator, page 37

Ds
N , artificial set on which the dynamics takes

place, page 22

Ds(t), s-particle flow for hard spheres, page 10

∆m(Xs), m-particle cluster based on Xs, page 26

∆s, set of well separated initial configurations,
page 71

∆X
s , set of well separated initial positions, page 71

dσi,j
N , surface measure on Σs

N (i, j), page 24

dσ, surface measure on Sε(xi), page 27

dXi,j , d(j− i+ 1)-dimensional Lebesgue measure,
page 22

dZi,j , 2d(j− i+1)-dimensional Lebesgue measure,
page 22

E(Xs, Xn), ε-closure of Xs in XN , page 26

E<i0,j0>(Xs, Xn), ε-closure of Xs in XN with a
weak link at (i0, j0), page 26

Eε(Zs), s-particle Hamiltonian, page 34

E0(Zs), s-particle free Hamiltonian, page 34

f
(s)
N , marginal of order s of the N -particle distri-

bution function, page 21

f̃
(s)
N , truncated marginal of order s of the N -

particle distribution function, page 22

f (s), marginal of order s associated with the Boltz-
mann hierarchy, page 39

Φε, rescaled potential, page 34

Gk, set of good configurations of k particles,
page 65

Hs(t), s-particle flow, page 28

H(t), BBGKY hierarchy flow, page 29

Iϕ, observable (average with respect to momentum
variables), page 52

K(y, η), cylinder of axis y and radius η, page 67
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κd, volume of the unit ball in Rd, page 31

νi,j , direction of xi − xj , page 24

Ms(Xs), good set of initial velocities associated
with well separated positions, page 71

ρ∗, distance of minimal approach, page 15

Ss(t), s-particle free flow, page 29

Sd−1
1 , unit sphere in Rd, page 14

Sε(xi), sphere in Rd of radius ε, centered at xi,
page 27

σε, scattering operator, page 16

σ0, Boltzmann scattering operator, page 16

Σs
N (i, j), boundary of the artificial set Ds

N , page 24

tε = ετ∗, nonlinear interaction time, page 15

Tn(t), set of collision times, page 61

Tn,δ(t), set of well-separated collision times,
page 61

Xε,s,β function space for the BBGKY marginals,
page 34

Xε,β,µ function space for the BBGKY hierarchy,
page 34

Xε,β,µ function space for the uniform existence to
the BBGKY hierarchy, page 39

X0,β,µ function space for the Boltzmann hierarchy,
page 34

ω, direction of the apse line, page 16

ΩN , phase space for the Liouville equatoin,
page 21

ZN , partition function, page 46

| · |ε,s,β norm for the BBGKY marginal of order s,
page 33

| · |0,s,β norm for the Boltzmann marginal of or-
der s, page 33

‖·‖ε,β,µ norm for the BBGKY hierarchy, page 34

‖·‖0,β,µ norm for the Boltzmann hierarchy, page 34

|‖ · |‖ε,β,µ, norm in Xε,β,µ, page 39


