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Abstract
Atom interferometers allow the measurement of the acceleration of freely falling atoms with

respect to an experimental platform at rest on Earth’s surface. Such experiments have been used
to test the universality of free fall by comparing the acceleration of the atoms to that of a classical
freely falling object. In a recent paper, Müller, Peters and Chu [A precision measurement of the
gravitational redshift by the interference of matter waves, Nature 463, 926-929 (2010)] argued that
atom interferometers also provide a very accurate test of the gravitational redshift (or universality of
clock rates). Considering the atom as a clock operating at the Compton frequency associated with
the rest mass, they claimed that the interferometer measures the gravitational redshift between the
atom-clocks in the two paths of the interferometer at different values of gravitational potentials.
In the present paper we analyze this claim in the frame of general relativity and of different
alternative theories. We show that the difference of “Compton phases” between the two paths of
the interferometer is actually zero in a large class of theories, including general relativity, all metric
theories of gravity, most non-metric theories and most theoretical frameworks used to interpret the
violations of the equivalence principle. Therefore, in most plausible theoretical frameworks, there
is no redshift effect and atom interferometers only test the universality of free fall. We also show
that frameworks in which atom interferometers would test the redshift pose serious problems, such
as (i) violation of the Schiff conjecture, (ii) violation of the Feynman path integral formulation
of quantum mechanics and of the principle of least action for matter waves, (iii) violation of
energy conservation, and more generally (iv) violation of the particle-wave duality in quantum
mechanics. Standard quantum mechanics is no longer valid in such frameworks, so that a consistent
interpretation of the experiment would require an alternative formulation of quantum mechanics.
As such an alternative has not been proposed to date, we conclude that the interpretation of atom
interferometers as testing the gravitational redshift at the Compton frequency is unsound.
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I. INTRODUCTION

A. Motivation

General relativity (GR) has historically been underpinned by distinct types of experi-
mental measurements, which have tested the geometric nature of the theory as well as the
specific field equations of GR. In particular, the four “classical tests” are still carried out to-
day with continuously improving accuracy. The first one is the observation of the perihelion
advance of planets, for example Mercury, which had been known by Le Verrier in 1845, and
explained by general relativity in 1915 (see [1] for a review). The second is the bending of
light by the Sun, which was predicted by general relativity and first measured by Eddington
in 1919 during a solar eclipse [2]. Another test is the relativistic time delay of radio waves
grazing the Sun during their round trip to Mercury and which was computed and measured
by Shapiro in 1964 [3].

The gravitational redshift, also considered as a “classical test”, is actually a test of one
facet of the equivalence principle. The weak equivalence principle has been verified with
high precision using torsion balances [4–6] and the Lunar laser ranging [7]. The gravitational
redshift was predicted by Einstein but not observed for a long time [2]. It became observable
with the advent of high precision quantum spectroscopy and was first measured in 1960 by
Pound and Rebka [8] (see also [9]), who used gamma ray spectroscopy of the radiation
emitted and absorbed by 57Fe nuclei. The emitter and absorber were placed at the top and
bottom of a 22.5 m high tower at Harvard and the frequency difference predicted by GR was
measured with about 1% uncertainty. Since then, the initial prediction of a gravitational
redshift of solar spectral lines emitted at the Sun’s surface has also been measured [10].

In a test of the gravitational redshift using clocks, one checks that the clock rates are
universal — i.e. the relative rates depend only on the difference of gravitational potentials (as
determined by the trajectories of massive test bodies) but not on the nature and internal
structure of the clocks. In 1976 a hydrogen-maser clock was launched on a rocket to an
altitude of 10, 000 km and its frequency compared to a similar clock on ground. This yielded a
test of the gravitational redshift with about 10−4 accuracy [11]. The European Space Agency
will fly in 2013 on the International Space Station the Atomic Clock Ensemble in Space
(ACES), including a highly stable laser-cooled atomic clock, which will test (in addition to
many other applications in fundamental physics and metrology) the gravitational redshift
to a precision of about 10−6 [12]. The gravitational redshift is also tested in null redshift
experiments in which the rates of different clocks (based on different physical processes or
different atoms) are compared to each other [13, 14].

Quite generally in a modern context, tests of GR measure the difference between the
predictions of GR and of some generalized alternative theory or theoretical framework (see
[15] for a review). For example, GR may be compared to alternative metric theories of
gravitation such as the Jordan-Brans-Dicke scalar-tensor theory [16, 17]. The metric theories
may also be compared with non-metric theories of gravity such as the Belinfante-Swihart
theory [18]. It has to be kept in mind that the classification and inter-comparison of different
tests have then to be defined with respect to the framework used.

In the following we will investigate, whether a gravimeter (or accelerometer) based on
atom interferometry, can test the gravitational redshift. Atom interferometers allow one
to measure the acceleration of atoms falling in the gravitational field of the Earth (with
respect to the experimental platform at rest on Earth). The beam-splitter for atom waves
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is realized through the interaction of atoms with laser beams resonant with a hyperfine
atomic transition. It is known [19–26] that the main contribution to the phase shift in
atom interferometers comes from the phase imprinted on the matter wave by the beam
splitters. Following earlier suggestions by Bordé [19], the first gravimeter based on atom
interferometry was realized by Kasevich and Chu [20]. Before that, the first gravimeter
based on neutron interferometry had been realized by Colella, Overhauser and Werner [28]
(see [29] for a review).

Atom interferometers have reached high sensitivities in the measurement of the gravi-
tational acceleration [30, 31] and rotational acceleration through the Sagnac effect [32–34].
This yields very important tests of the weak equivalence principle or universality of free fall
(UFF) when comparing the free fall of atoms with that of classical macroscopic matter (in
practice a nearby freely falling corner cube whose trajectory is monitored by lasers). The
relative precision of such tests of the UFF is currently 7× 10−9, using Cs [30, 35] or Rb [31]
atoms. Although it remains less sensitive than tests using macroscopic bodies of different
composition which have reached a precision of 2 × 10−13 [6, 7], this UFF test is interesting
as it is the most sensitive one comparing the free fall of quantum objects (namely Cæsium
atoms) with that of a classical test mass (the corner cube).

B. Overview

In a recent paper, Müller, Peters and Chu [35] (hereafter abbreviated as MPC) proposed a
new interpretation of atom interferometry experiments as testing the gravitational redshift,
that is also the universality of clock rates (UCR), with a precision 7× 10−9, which is several
orders of magnitude better than the best present [11] and near future [12] clock tests.

The main argument of MPC (see also the more detailed papers [36, 37]) is based on an
analogy between atom interferometry experiments and classical clock experiments. The idea
of clock experiments is to synchronize a pair of clocks when they are located closely to one
another, and move them to different elevations in a gravitational field. The gravitational
redshift will decrease the oscillation frequency of the lower clock relative to the higher one,
yielding a measurable phase shift between them. There are two methods for measuring
the effect. Either we bring the clocks back together and compare the number of elapsed
oscillations, or we measure the redshift by means of continuous exchanges of electromagnetic
signals between the two clocks. In both methods one has to monitor carefully the trajectories
of the two clocks. For example, in the second method one has to remove the Doppler shifts
necessarily appearing in the exchanges of electromagnetic signals.

In the first method, the phase difference between the two clocks when they are recombined
together, can be written as a difference of integrals over proper time,

∆ϕclock = ω

[∫

I

dτ −
∫

II

dτ

]
≡ ω

∮
dτ . (1.1)

The two clocks have identical proper frequency ω. We denote by I and II the two paths (with
say I being at a higher altitude, i.e. a lower gravitational potential) and use the notation∮

dτ to mean the difference of proper times between the two paths, assumed to form a close
contour. The integrals in (1.1) are evaluated along the paths of the clocks, and we may use
the Schwarzschild metric to obtain an explicit expression of the measured phase shift in the
gravitational field of the Earth.
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It is indeed true that the phase shift measured by an atom interferometer contains a
contribution which is similar to the clock phase shift (1.1). In this analogy, the role of the
clock’s proper frequency is played by the atom’s (de Broglie-)Compton frequency [38]

ωC =
mc2

~
, (1.2)

where m denotes the rest mass of the atom. However the phase shift includes also another
contribution ∆ϕ` coming from the interaction of the laser light used in the beam-splitting
process with the atoms. Thus,

∆ϕ = ωC

∮
dτ + ∆ϕ` . (1.3)

Here we are assuming that the two paths close up at the entry and exit of the interferometer;
otherwise, additional terms have to be added to (1.3). The first term in (1.3) is proportional
to the atom’s mass through the Compton frequency and represents the difference of Compton
phases along the two classical paths. In contrast, the second term ∆ϕ` does not depend on
the mass of the atoms.

At first sight, the first term in Eq. (1.3) could be used for a test of the gravitational
redshift, in analogy with classical clock experiments, cf. Eq. (1.1), and the precision of the
test could be very good, because the Compton frequency of the Cæsium atom is very high,
ωC ≈ 2π×3.0×1025 Hz. However, as shown in a previous brief reply [39],1 this re-interpretion
of the atom interferometer as testing the UCR is fundamentally incorrect.

The clear-cut argument showing that the atom interferometer does not measure the red-
shift is that the “atom-clock” contribution, i.e. the first term in (1.3), is in fact zero for a
closed total path [21, 23, 25, 26]. Thus only the second term ∆ϕ` remains in Eq. (1.3). The
final phase shift,

∆ϕ = ∆ϕ` = k g T 2 , (1.4)

depends on the wavevector k of the lasers, on the interrogation time T and on the local
gravity g, but is independent of the Compton frequency (1.2).

In the present paper, we expand our previous brief reply and address in detail the involved
issues. As we shall detail below, the first term in (1.3) vanishes in GR and in all metric
theories of gravity, and in a large class of non-metric test theories which emcompasses
most theoretical frameworks used to interpret the violations of the different facets of the
equivalence principle [15].

The key point about the result (1.4) is a consistent calculation of the two paths in
the atom interferometer and of the phases along these paths, both derived from the same
classical action, using in a standard way the principle of least action. At the deepest level,
the principle of least action and its use in atom interferometry comes from the Feynman
path integral formulation of quantum mechanics or equivalently the Schrödinger equation
[21].

We will see in the following that the argument of MPC (developed in the initial paper [35])
implies a violation of the principle of least action. The significance and the sensitivity of atom
interferometry should then be evaluated in the framework of an alternative theory because

1 See also [40] for MPC’s answer to our reply.
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it is not consistent to calculate, as MPC do in [35],2 the dephasing of the interferometer by
using the Feynman approach with two different Lagrangians. Instead, a different approach
for the description of atom interferometers has to be developed for dealing with the violation
of fundamental principles of quantum mechanics.

These investigations lie at the interface between quantum mechanics and gravitational
theories. One could wonder whether it is possible to provide clear answers to the question
asked in the title of this paper. We shall see below that a number of clear-cut statements
and definite conclusions will be obtained, provided the theoretical frameworks are specified
clearly and unambiguously. To this aim, we shall consider two general alternative theoretical
frameworks.

The first framework, which we call the “modified Lagrangian formalism”, consists of a
deformation of the Lagrangian of GR [15, 41, 42]. Such a modified Lagrangian formalism
is at the basis of the usual interpretation of the various tests of the equivalence principle,
including the tests of the UCR and the UFF, in a way consistent with Schiff’s conjecture
[44], the principle of least action and the basic principles of quantum mechanics. Within
this general formalism UCR and UFF tests are related (violation of one implies violation of
the other) with the quantitative relationship depending on the formalism used. As we will
show, in such theories the atom interferometer phase shift arising from the free evolution
of the atoms is rigorously zero and thus the Compton frequency plays no role. Instead, the
measured phase shift comes from the laser interactions and measures the free fall of the
atoms using the laser as a “ruler”. In that sense the atom interferometers test UFF, and
indeed appear as such in the more recent publication of MPC [37].3

In the second framework, which we call the “multiple Lagrangian formalism”, the mo-
tion of test particles (atoms or macroscopic bodies) obeys the standard GR Lagrangian in
a gravitational field, whereas the phase of the corresponding matter waves obeys a different
Lagrangian. The MPC analysis in [35] belongs to this framework which raises extremely
difficult problems. It violates the Feynman path integral method which is at the basis of the
computation of the quantum phase shift, as well as the Schiff conjecture. In particular, the
phase shift is derived in a manner which is not consistent with standard quantum mechanics.
This derivation would thus require the development of a mathematically sound theory allow-
ing one to go beyond standard quantum mechanics. It is only after this development that
the interpretation of atom interferometry experiments as testing the gravitational redshift
could be attributed an unambiguous meaning.

At this point, we also want to mention other crucial differences between atom inter-
ferometry and clock experiments. In clock experiments the trajectories of the clocks are
continuously controlled for instance by continuous exchange of electromagnetic signals. In
atom interferometry in contrast, the trajectories of the atoms are not measured indepen-

2 See “Methods” in [35], where they consider two scenarios. The first one clearly states that the trajectories
are not modified whilst the atomic phases are. The second uses g′ for the trajectories and g(1 + β) for
the phases, which again corresponds to two different Lagrangians.

3 In [37] atom interferometer tests set limits on the same parameter combination as classical UFF tests,
namely β1 +ξbind

1 −β2−ξbind
2 ([37], p. 4), where the subscripts refer to test masses 1 and 2 (e.g. 1 =Cs and

2 =falling corner cube in [30] whilst 1 =Ti and 2 =Be in [6]), and ξbind refers to the nuclear binding energy
of the test masses. On the other hand UCR tests in [37] set limits on either β1 − ξtrans

2 or ξtrans
1 − ξtrans

2

([37], p. 3), where ξtrans is related to the atomic transition of the atom used in the clock and not to its
nuclear binding energy.
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dently but theoretically derived from the Lagrangian and initial conditions. Furthermore, we
expect that it is impossible to determine independently the trajectories of the wave packets
without destroying the interference pattern at the exit of the interferometer.4

Another important difference lies in the very notion of a clock. Atomic clocks use the
extremely stable energy difference between two internal states. By varying the frequency
of an interrogation signal (e.g. microwave or optical), one obtains a resonant signal when
the frequency is tuned to the frequency of the atomic transition. In their re-interpretation,
MPC view the entire atom as a clock ticking at the Compton frequency associated with
its rest mass. But the “atom-clock” is not a real clock in the previous sense, since it does
not deliver a physical signal at Compton frequency, as also recently emphasized in the same
context in Ref. [43].

The plan of this paper is as follows. In Sec. II we discuss the prediction of GR, em-
phasizing its foundations in Secs. IIA and IIB, and standard interpretation in Sec. II C.
In Sec. III we investigate the alternative multiple Lagrangian formalism (Sec. IIIA) and
modified Lagrangian formalism (Sec. III B). Our conclusions are summarized in Sec. IV.
The case of neutron interferometry is briefly discussed in Appendix A. We provide some
estimate of the influence of high-order gravity gradients in Appendix B.

II. GRAVIMETRY USING ATOM INTERFEROMETERS

A. Path integral formalism

Theoretical tools for atom optics and interferometry have been extensively developed
[21, 23–27]. Since atom interferometers are close to the classical regime (S � ~), a path
integral approach is very appropriate since it reduces to a calculation of integrals along
classical paths for Lagrangians which are at most quadratic in position and velocity. The
path integral approach to matter wave interferometry is developed in detail in Ref. [21].
Equivalent results have been obtained using non-relativistic or relativistic wave equations of
quantum mechanics (see e.g. Ref. [23] for a review). Here we only recall the points relevant
to our discussion. We denote by K(zb, tb; za, ta) the quantum propagator, that provides the
wavefunction of the atom at point (zb, tb) given the wavefunction at any initial point (za, ta),

ψ(zb, tb) =

∫
dza K(zb, tb; za, ta)ψ(za, ta) , (2.1)

where the integration is over all initial positions za at the given time ta. In Feynman’s
formulation the propagator is a sum over all possible paths Γ connecting (za, ta) to (zb, tb),

K(zb, tb; za, ta) =

∫
DzΓ(t) e

i
~ SΓ , (2.2)

4 Note also that the phase shift (1.1) for clocks is valid in any gravitational field, with any gravity gradients,
since it is simply the proper time elapsed along the trajectories of the clocks in a gravitational field. By
contrast, the phase shift (1.3) is known only for quadratic Lagrangians (see Sec. II A) and cannot be
applied in a gravitational field with large gravity gradients, or more generally with any Lagrangian that
is of higher order.
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where DzΓ(t) is the integration measure over the path zΓ(t), which is such that zΓ(ta) = za

and zΓ(tb) = zb. The phase factor is computed from the action along each path given by

SΓ(zb, tb; za, ta) =

∫ tb

ta

dt L [zΓ(t), żΓ(t)] . (2.3)

It can be shown [21] that in the case where the Lagrangian is at most quadratic in positions
z and velocities ż, i.e. is of the general type

L [z, ż] = a(t) ż2 + b(t) żz + c(t) z2 + d(t) ż + e(t) z + f(t) , (2.4)

where a(t), b(t), c(t), d(t), e(t) and f(t) denote some arbitrary functions of time t, the
propagator takes the simple form

K(zb, tb; za, ta) = F (tb, ta) e
i
~ Scl(zb,tb;za,ta) . (2.5)

Here the function F depends on times ta, tb but not on positions za, zb, which is no longer
the case when the Lagrangian is more than quadratic [21]. We denote by Scl the classical
action

Scl(zb, tb; za, ta) =

∫ tb

ta

dt L [zcl, żcl] , (2.6)

where the integral extends over the classical path zcl(t) satisfying the Lagrange equation

d

dt

(
∂L

∂żcl

)
=

∂L

∂zcl
, (2.7)

with boundary conditions zcl(ta) = za and zcl(tb) = zb. One can show that the wave func-
tion deduced from (2.1) and (2.5) obeys the Schrödinger equation corresponding to the
Hamiltonian H deduced from the Lagrangian L.

Next the result (2.5) is used to obtain the final wavefunction (2.1) in the case where the
initial state ψ(za, ta) is a plane wave, i.e.

ψ(za, ta) =
1√
2π~

e
i
~ (p0za−E0ta) . (2.8)

Denoting by z0 the initial position at time ta such that the initial momentum of the classical
path starting from (z0, ta) equals the momentum p0 of the initial plane wave, we obtain

ψ(zb, tb) = G(tb, ta)ψ(z0, ta) e
i
~ Scl(zb,tb;z0,ta) . (2.9)

The function G is another function depending only on times ta and tb. The result (2.9) is
at the basis of the computation of the phase shift in atom interferometers. We shall from
now on change our notation z0 back into za so that (2.9) applies to say the half upper path
between (za, ta) and (zb, tb) of the interferometer depicted in Fig. 1. We emphasize at this
point that this formula is valid only for quadratic Lagrangians of the form (2.4). For more
general Lagrangians, the function G a priori depends on the positions za and zb, and the
simple formula (2.9) is a priori incorrect.

Evidently, any attempt like the one proposed by MPC in [35] to integrate the classical
action (2.6) over a path which is different from the classical path, i.e. which does not obey the
Lagrange equation (2.7) or is solution of a Lagrange equation with a different Lagrangian,
will violate the fundamental Feynman path integral formulation of quantum mechanics.
The wave function (2.9) is then no longer a solution of the Schrödinger equation and it
becomes inconsistent to use it for the calculation of the phase difference. This inconsistency
is inherent to the class of formalisms investigated in Sec. IIIA, and, as we shall see, is the
only way to substantiate the claim made by MPC.
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FIG. 1: Space-time trajectories followed by the atoms in the interferometer. Laser pulses occur at
times ta, tb = tc and td, separated by time intervals T and T ′. The two-photon Raman transitions
are between two hyperfine levels g and g′ of the ground state of an alkali atom.

B. Computation of the phase shift

The atomic gravimeter is described in detail in [19, 20, 22, 30] and the general theory of
such gravito-inertial devices can be found, for example, in [21, 23, 24]. The schematic view
of the atom interferometer showing the two interferometer paths I and II is given by Fig. 1.
Here we recall only the main points relevant to our discussion (see the detailed description
of the experimental setup in Ref. [30]).

The Cæsium (or some alkali) atoms are optically cooled and launched in a vertical foun-
tain geometry. They are prepared in a hyperfine ground state g. A sequence of vertical
laser pulses resonant with a g → g′ hyperfine transition is applied to the atoms during their
ballistic (i.e. free fall) flight. In the actual experiments the atoms undergo a two-photon
Raman transition where the two Raman laser beams are counter-propagating. This results
in a recoil velocity of the atoms, with the effective wave vector transferred to the atoms
being k = kA +kB, where A and B refer to the counter-propagating lasers (see e.g. [21, 22]).
A first pulse at time ta splits the atoms into a coherent superposition of hyperfine states
gg′ with the photon recoil velocity yielding a spatial separation of the two wave packets. A
time interval T later (we denote T = tb − ta = tc − ta; see Fig. 1) the two wave packets
are redirected toward each other by a second laser pulse thereby exchanging the internal
states g and g′. Finally a time interval T ′ later (with T ′ = td − tb = td − tc) the atomic
beams recombine and a third pulse is applied. After this pulse the interference pattern in
the ground and excited states is measured.

The calculation of the phase shift ∆ϕ of the atomic interferometer in the presence of
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a gravitational field was done in Refs. [19–21] and proceeds in several steps. The first
contribution to the phase shift comes from the free propagation of the atoms in the two
paths. Using the result (2.9) of the path integral formalism, and the fact that the function
G therein depends on times ta, tb but not on positions za, zb, we see that this contribution is
equal to the difference of classical actions in the two paths,

∆ϕS =
∆Scl

~
. (2.10)

To compute it one calculates the classical trajectories of the wave packets in the two arms
using the equations of motion of massive test bodies deduced from the classical Lagrangian
and the known boundary conditions (position and momenta) of the wave packets. In the
case of the general quadratic Lagrangian (2.4) the equations of motion read

d

dt

[
2a(t)ż

]
=

[
2c(t) − ḃ(t)

]
z + e(t) − ḋ(t) . (2.11)

Following Fig. 1 we denote by z1(t) and z3(t) the classical trajectories between the laser
interactions in the upper path I, and by z2(t) and z4(t) the trajectories in the lower path
II. The boundary conditions in positions appropriate to the closed-path interferometer of
Fig. 1 are (for simplicity we set ta = 0)

z1(0) = z2(0) , (2.12a)

z1(T ) = z3(T ) , (2.12b)

z2(T ) = z4(T ) , (2.12c)

z3(T + T ′) = z4(T + T ′) . (2.12d)

The boundary conditions in velocities are determined by the recoils induced from the inter-
actions with the lasers. Actually once we have imposed the boundary conditions (2.12), and
in particular that the interferometer closes at some time T + T ′, only the recoils due to the
second pulse at the intermediate time T are needed for this calculation. These are given by

ż1(T ) − ż3(T ) = +
~k
m
, (2.13a)

ż2(T ) − ż4(T ) = −~k
m
, (2.13b)

where k = kA+kB is the effective wave vector transferred by the lasers to the atoms. Second,
one calculates the difference in the classical action integrals along the two paths,

∆Scl =

∫ T

0

(
L[z1, ż1] − L[z2, ż2]

)
dt+

∫ T+T ′

T

(
L[z3, ż3] − L[z4, ż4]

)
dt + ∆Sgg′ , (2.14)

where the Lagrangian L(z, ż) is given by (2.4), and the integrals are carried out along the
classical paths calculated in the first step. We have taken into account the changes in energy
between the hyperfine ground states g and g′ of the atoms in each path. These energies will
cancel out from the two paths provided that T ′ is equal to T , which will be true for a
Lagrangian in which we neglect gravity gradients. In the more general case T ′ will differ
from T and there is an extra contribution in (2.14) given by

∆Sgg′ = ~ωgg′(T − T ′) , (2.15)
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where we denote the internal energy change by Eg′ − Eg = ~ωgg′.
We now prove (see e.g. [21, 23]) that the two action integrals in (2.14) cancel each other in

the case of a quadratic Lagrangian of the general form (2.4). This follows from the fact that
the difference between the Lagrangians L[z1(t), ż1(t)] and L[z2(t), ż2(t)], which are evaluated
at the same time t but on two different trajectories z1(t) and z2(t), is a total time-derivative
when the Lagrangians are “on-shell”, i.e. when the two trajectories z1(t) and z2(t) satisfy
the equations of motion (2.11). Namely, we find5

L[z1, ż1] − L[z2, ż2] =
d

dt

[
(z1 − z2)

(
a(t)(ż1 + ż2) +

1

2
b(t)(z1 + z2) + d(t)

)]
. (2.16)

Since the difference of Lagrangians is a total time derivative the difference of action func-
tionals in (2.14) can be immediately integrated. Using the continuity conditions at the
interaction points with the lasers (2.12), and then using the recoils due to the intermediate
laser pulse at time T given by (2.13), yields

∆Scl − ∆Sgg′ = a(T )
[
z1(T ) − z2(T )

][
ż1(T ) + ż2(T ) − ż3(T ) − ż4(T )

]
= 0 . (2.17)

Therefore for all quadratic Lagrangians the difference of classical actions in the interferom-
eter, and therefore the phase shift due to the free propagation of the atoms, reduces to the
contribution of the change of internal states g and g′, thus6

∆ϕS = ωgg′(T − T ′) . (2.18)

When the interferometer is symmetric, i.e. T = T ′ which will be the case when we neglect
gravity gradients, we get exactly zero. Equations (2.17) or (2.18) constitute the central
theorem to be used for the discussion in the present paper.

In the second step, one calculates the difference in the light phases ∆ϕ` at the three
interactions with lasers. These are obtained using the paths calculated in the first step
and the equations of light propagation, with the light acting as a “ruler” that measures the
motion of the atoms. For the interferometer described in Fig. 1 the phase difference from
light interactions is given by

∆ϕ` = −φ(za, 0) + φ(zb, T ) + φ(zc, T ) − φ(zd, T + T ′) . (2.19)

Here φ denotes the phase of the laser light as seen by the atom, i.e. φ(z, t) = kz − ωt− φ0

where k, ω and φ0 are the wave vector, the frequency and the phase of the laser in the frame
of the laboratory. The phase of the laser is evaluated at the interaction points shown in
Fig. 1. Finally the total phase shift measured in the atom interferometer is the sum of the
two contributions

∆ϕ = ωgg′(T − T ′) + ∆ϕ` , (2.20)

5 To prove this we consider the first contribution a(ż2
1 − ż2

2) in the difference L1 − L2 and re-express it
thanks to an integration by parts as a(ż2

1 − ż2
2) = d

dt [a(z1 − z2)(ż1 + ż2)] − (z1 − z2) d
dt [a(ż1 + ż2)]. The

second term is then simplified by means of the sum of the equations of motion (2.11) written for z = z1

and z = z2. In addition we also integrate by parts the second and fourth contributions to L1 − L2 as
b(ż1z1 − ż2z2) = d

dt [
1
2b(z2

1 − z2
2)] − 1

2 ḃ(z2
1 − z2

2) and d(ż1 − ż2) = d
dt [d(z1 − z2)] − ḋ(z1 − z2). Summing up

the results we obtain (2.16).
6 Rigorously, in this equation the time interval should be a proper time interval.
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depending only on the internal states g and g′, and the light phases which measure the free
fall trajectories of the atoms.

Here we have assumed that the two paths I and II close up at the entry and exit of
the interferometer (see Fig. 1). For the more general case where the paths are not closed,
one finds that ∆ϕS is no longer zero, but that ∆ϕS is exactly cancelled by additional
terms corresponding to the phase difference of the wave packets at different positions at
the interferometer entry and exit [23] (except for the very small terms due to the energy
difference ~ωgg′).

Expression (2.18) shows that, depending on the particular geometry of the interferometer,
one can obtain a sensitivity to the frequency difference ωgg′ of the two internal states. In
that sense the interferometer can be viewed as a clock. In fact, atomic clocks are a particular
kind of interferometer which has been designed to have a strong sensitivity to ωgg′ [23, 24].
A simple example is an interferometer with only two pulses separated by a time T . In that
case one uses either a microwave field or Raman transitions with two co-propagating laser
beams so that k = kA − kB. Then the photon recoil becomes negligibly small and the two
paths are separated spatially at t = T by much less than the coherence length of the atoms,
allowing them to interfere. The total phase shift is then given by

∆ϕ = ωgg′T + ∆ϕ` . (2.21)

As mentioned above, all other terms in ∆ϕS are exactly cancelled by corresponding terms
arising from the non-closure of the paths. The laser phase shift is to leading order

∆ϕ` = −ωT . (2.22)

One therefore observes interference fringes when varying the frequency of the laser or mi-
crowave field, known as Ramsey fringes. That allows locking the laser frequency to the
atomic transition frequency ωgg′, which constitutes an atomic clock. We note that the inter-
ference of the two interferometer arms is required for the operation of the clock, each arm
individually cannot be considered as a clock.

If one wanted to use such interferometers (clocks) for a gravitational redshift test one
would need two of them placed in different gravitational potentials (e.g. [11, 12]). But, of
course such clocks do not run at the Compton frequency but at ωgg′, and thus the corre-
sponding redshift test is not at the Compton frequency. For that to be the case one would
need interferometers with the internal energy (mass) difference of the particles on the two
paths ~ωgg′ = mc2. Such a matter-antimatter interferometer is orders of magnitude beyond
present day technology.

C. Prediction from general relativity

As a specific example, let us consider the prediction from GR, which has been extensively
treated in Ref. [23]; here we only present a very basic analysis sufficient for our purposes.
The appropriate Lagrangian is derived to sufficient accuracy using the Schwarzschild metric
generated by the Earth,

LGR(z, ż) = −mc2 dτ

dt
= −mc2 +

GMm

r⊕
−mgz +

1

2
mż2 + O

(
1

c2

)
, (2.23)

11



where dτ =
√
−gµνdxµdxν/c2 is the proper time, r⊕ is the Earth’s radius, g = GM/r2

⊕ is
the Newtonian gravitational acceleration, G is Newton’s gravitational constant, M is the
mass of the Earth, m the mass of the atom, c the speed of light in vacuum, z is defined by
r = r⊕ + z with r the radial coordinate, and O(1/c2) denotes a post-Newtonian correction.
For simplicity we restrict ourselves to only radial motion, which is sufficient for the arguments
presented in this paper. We also neglect systematically the post-Newtonian correction and
no longer indicate the remainder term O(1/c2).

The equations of motion are deduced from (2.23) using the principle of least action or
the Euler-Lagrange equations, and read evidently z̈ = −g. Then, when integrating (2.23)
along the resulting paths, and calculating the difference as defined by (2.14) one finds

∆ϕS = 0 . (2.24)

Since the Lagrangian (2.23) is quadratic, this is a particular case of the general result
(2.17). Furthermore, in the simple case of a Lagrangian which is linear in z we find that
the interferometer is symmetrical, i.e. the interrogation times are equal, T = T ′. Thus the
effect due to the difference of internal energies Eg′ − Eg is zero in this case.

Evaluating the light phases at the different interaction points one finds easily that (see
[21–23, 30] for details)

∆ϕ` = k g T 2 , (2.25)

where k is the effective wave vector of the lasers (i.e. k = kA + kB where the subscripts A
and B refer to the counter-propagating laser beams [22]), and T is the time interval between
the laser pulses (see Fig. 1). As a result the total phase shift calculated in GR is

∆ϕ = k g T 2 . (2.26)

This shows that the atom interferometer is a gravimeter or accelerometer. The phase shift
(2.26) arises entirely from the interactions with the lasers and the fact that the atoms are
falling with respect to the laboratory in which the experiment is performed. It is thus
proportional to the acceleration g of atoms with respect to the experimental platform which
holds the optical and laser elements. With k and T known from auxiliary measurements,
one deduces the component of g along the direction of k. If the whole instrument was put
into a freely falling laboratory, the measured signal ∆ϕ would vanish.7

The signal (2.26) is actually the same as in the measurement of the free fall of a macro-
scopic object (corner cube) using lasers. Therefore atomic interferometers can be used for
testing the universality of free fall between the atoms and some macroscopic objects. The
precision on the test of the UFF between Cæsium atoms and classical objects such as the
corner cube is currently 7 × 10−9 [30, 31, 35].

We have stressed that integrating the Lagrangian along the classical paths only provides
the correct phase shift when the Lagrangian is at most quadratic in position and velocity
[21]. For higher order Lagrangians the full path integrals need to be evaluated. Thus,
one might be tempted to use atom interferometry tests to search for redshift effects arising
from third and higher order terms in the Lagrangian, but as already mentioned and shown
explicitly in e.g. [21] such an approach is incorrect, as the full Feynman integral is required.8

7 The result is identical for the phase shift in neutron interferometers under the influence of gravity, as
shown in Appendix A.

8 If one nonetheless calculates the phase shift for a higher-order Lagrangian by integrating only along the
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III. TESTING THE GRAVITATIONAL REDSHIFT?

We now address the question of the significance of tests of the gravitational redshift by
atom interferometers as described by MPC [35] within the frameworks of different classes of
alternative theories or models. Depending on the underlying theory, the Lagrangian will be
different, so the equations of motion providing the paths will be different, and the relation
between the action integral and the phase shift [cf. Eq. (2.10)] may also be different. In
addition we may have to model differently the propagation of light, so the resulting calculated
phase shift might also differ. The comparison of the calculated and measured phase shifts
then allows to discriminate between different candidate theories. We shall see that the
significance of the tests depends on the alternative model we consider.

A. Multiple Lagrangian framework

In this formalism the atom interferometry experiment could be viewed as testing the
gravitational redshift or the universality of clock rates (UCR), and it is the formalism used by
MPC in [35]. More precisely, this corresponds to the first scenario of MPC (see “Methods”,
bottom of first column), where they calculate the phase shift by integrating the Lagrangian
with g(1 + β) along the trajectories calculated with the standard value of g.9

Within this multiple Lagrangian framework we derive the interferometer phase shift
(putting on a more rigorous basis the computation of MPC) and then we show that this
framework raises a number of unacceptable issues related to fundamental principles of quan-
tum mechanics.

The framework is motivated by a search for a possible violation of the local position
invariance (LPI) aspect of the Einstein equivalence principle, while supposing that the re-
maining aspects of the equivalence principle, namely the local Lorentz invariance (LLI) and
the weak equivalence principle (WEP), are valid. Thus, in the first place, this framework
violates the Schiff conjecture [44]. (See Ref. [15] for a thorough discussion on the different
parts of the Einstein equivalence principle and the Schiff conjecture.)

If WEP is valid we can consider the local freely falling frames associated with test bodies,
which fall with the universal acceleration g in a gravitational field. In these frames classical
clocks will measure a proper time dτ which is proportional, because LLI is valid, to the
special-relativistic Minkowskian interval ds. However, because LPI is violated, we allow for a
dependence on the position of the measured rate. Specifically we introduce a proportionality
factor f(Φ) between dτ and ds built from some anomalous field Φ associated with gravity
and depending on position. In an arbitrary frame this means that the proper time dτ
measured by clocks is proportional to the metric interval ds and given by

dτ = f(Φ) ds = f(Φ)
√

−gµνdxµdxν/c2 . (3.1)

classical path, a non zero result is obtained. In Appendix B we estimate the order of magnitude of
the effect of including cubic terms in the Lagrangian of GR, which correspond to second-order gravity
gradients.

9 In the second scenario, MPC still integrate the Lagrangian with g(1 + β) but use g′ different from g for
the trajectories without explaining clearly how to calculate g′.

13



But because WEP is valid the motion of test bodies is unaffected and obtained from the
usual variational principle associated with the metric interval ds, i.e. δ

∫
ds = 0.

Consider a classical redshift experiment. One observes at point z1 the light coming from
a particular atomic transition occuring at point z0. The points z1 and z0 are at rest in a
stationary gravitational field g. The relative difference between the frequency of the light
coming from point z0 and observed at point z1, with respect to the frequency of the light
emitted by the same atomic transition but occuring at point z1, is

Z ≡ ∆τ1
∆τ0

− 1 =
f(Φ1)

f(Φ0)

√
−g00(z1)√
−g00(z0)

− 1 , (3.2)

where Φ1 = Φ(z1) and Φ0 = Φ(z0). It is convenient to introduce a coefficient ζ linking the
gradient of the anomalous field to the local gravitational acceleration by g = ζ dΦ/dz (see
[15] for more details). Expanding to first order in ∆z = z1 − z0 we can write

f = f0

[
1 + β

g∆z

c2

]
, (3.3)

where we have defined

β =
c2f ′

0

ζ f0

, (3.4)

with f0 and f ′
0 denoting f and df/dΦ evaluated at the value Φ(z0). Inserting then (3.3)

into (3.2) we find that the parameter β defined in this way measures a possible anomalous
deviation from the standard prediction for the redshift, i.e.

Z = (1 + β)
g∆z

c2
, (3.5)

and we know that β has been tested by redshift experiments with the accuracy 10−4 [11].
Usually the parameter measuring redshift violations is denoted α but here it is important

to adopt the different notation β used by MPC. Indeed one should recall that the meaning of
parameters α or β depends on the theoretical framework in use. The result (3.5) corresponds
to our particular formalism, the multiple Lagrangian formalism, and should be contrasted
with a similar result (3.19) we shall obtain below in the context of the modified Lagrangian
formalism in Sec. III B. In particular we notice that the parameter β in Eq. (3.5) may or
may not be “universal”, i.e. depending on the nature and internal structure of the clock,

in contrast with the parameter α
(a)
X in Eq. (3.19) which depends on the type of atom (a)

constituting the clock and on some type of internal energy X violating LPI. In the present
formalism we do not need to specify if β is universal or not because WEP is valid so we
can always test the value of β by measuring g from the free-fall of test bodies (as proposed
by MPC). This is different in the modified Lagrangian formalism of Sec. III B where any

universal contribution to α
(a)
X is unobservable since it can always be absorbed into a re-

definition of g.
Let us now apply this formalism to atom interferometry, viewing the atoms in the two

paths of the interferometer as classical clocks ticking at the Compton frequency ωC. In this
case z1 is a generic position of the atom on one of the paths (see Fig. 1) and z0 denotes an
origin located between the paths. Following the analogy with classical clocks discussed in
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Sec. I B of the Introduction, we can write the phase difference between the two “atom-clocks”
for a closed interferometer as10

∆ϕS = ωC

∮
dτ = ωC

∮ [
1 + β

g∆z

c2

]
ds . (3.6)

On the other hand the trajectories of the atoms are the usual geodesics of space-time, such
that δ

∫
ds = 0. As we have proved in Sec. II B, in the case of a quadratic Lagrangian and

a symmetric closed interferometer, the integral of ds is zero, so one is left with

∆ϕS = ωC

∮
βgz

c2
ds . (3.7)

At the dominant order we can approximate ds by the coordinate time dt and a short calcu-
lation shows that the phase shift is non zero but given by

∆ϕS = β k g T 2 . (3.8)

Adding the term due to the interaction with lasers which is standard (because WEP is valid)
and given by (2.25), we obtain the total phase shift

∆ϕ = ∆ϕS + ∆ϕ` = (1 + β) k g T 2 , (3.9)

where β takes the same meaning as the redshift violation parameter entering (3.5).
Comparing the predictions (3.5) and (3.9) we conclude that within this formalism atom-

interferometric gravity measurements would test the gravitational redshift, and would im-
prove existing limits on this measurement by four orders of magnitude, as claimed by MPC.

However, let us now critically examine the implications and meaning of this formalism,
and show that it raises a number of difficult fundamental problems. We refer to this for-
malism (or class of alternative theories) as a multiple Lagrangian framework because for
these theories the trajectories of massive bodies (classical particles or classical paths of
wave packets) obey a Lagrangian which is different from the Lagrangian used to compute
the proper time of clocks or the phase shift of matter waves. Since WEP is valid the
motion of massive classical particles obeys the standard Lagrangian of general relativity,
Lparticle = LGR = −mc2ds/dt, i.e. to first order

Lparticle = −mc2 +
GMm

r⊕
−mg z +

1

2
mż2 . (3.10)

On the other hand the action integral we have used for the computation of the phase shift
of the quantum matter wave is calculated from a different Lagrangian given by

Lwave =
(
1 + β

g z

c2

)
Lparticle . (3.11)

We first note that this Lagrangian is not quadratic, and, neglecting higher-order corrections,
we recover the Lagrangian used by MPC [35], i.e.

Lwave = −mc2 +
GMm

r⊕
− (1 + β)mg z +

1

2
mż2 , (3.12)

10 As is clear from e.g. (3.1), the constant f0 can be absorbed into a rescaling of the coordinates by posing
xµ

new = f0 xµ
old. Henceforth we set this constant to f0 = 1.
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where the parameter β that measures the deviation from GR (i.e. β = 0 in GR) enters as a
correction in the atom’s gravitational potential energy.

The most important problem is that it is inconsistent to use a different Lagrangian (or
metric) for the calculation of the trajectories and for the phases of the atoms or clocks. More
precisely, it supposes that the fundamental Feynman path integral formulation of quantum
mechanics, which is at the basis of the derivation of the phase shift in an atom interferometer
(see Sec. IIA), has to be altered in the presence of a gravitational field or could be wrong.11

Physically it amounts to making the distinction between the atoms when calculating their
trajectories and the same atoms when calculating their phases, which is inconsistent as it is
the same fundamental matter field in both cases. Even more, the basis for writing Eq. (3.6)
for the derivation of the atom interferometry phase shifts (as does MPC) is unjustified
because the Feynman formalism is violated. To remain coherent some alternative formalism
for the atomic phase shift calculations (presumably modifying quantum mechanics) should
be developed and used. More generally the multiple Lagrangian formalism supposes that
the duality between particles and waves in quantum mechanics gets somehow violated in a
gravitational field.

The above violation of the “particle-wave duality”, implied by the multiple Lagrangian
formalism, is very different from a violation of the equivalence principle in the ordinary
sense. In this formalism a single physical object, the atom, is assumed to be described
by two different Lagrangians, Lwave applying to its phase shift, and Lparticle applying to its
trajectory. By contrast, in tests of the equivalence principle, one looks for the modification
of the free fall trajectories or clock rates as a function of composition or clock type. Thus,
different bodies or clocks are described by different Lagrangians, but of course for any
single type of body we always have Lwave = Lparticle. The pertinent test-bed for equivalence
principle violations is the modified Lagrangian formalism reviewed in Sec. III B, which does
not imply any particle-wave duality violation.

The second problem of theories in the multiple Lagrangian formalism and of the inter-
pretation of MPC is the violation of Schiff’s conjecture [44]. Indeed, we have assumed in
this Section that the LPI aspect of the equivalence principle is violated but that for instance
the WEP aspect remains satisfied. In a complete and self-consistent theory of gravitation
one expects that the three aspects of the Einstein equivalence principle (WEP, LLI and
LPI) are sufficiently entangled together by the mathematical formalism of the theory that
it is impossible to violate one without violating all of them. The Schiff conjecture has been
proved using general arguments based upon the assumption of energy conservation [41, 42].
A contrario, we expect that violating the conjecture leads to some breakdown of energy

11 In the case of atom gravimeters using Bloch oscillation [45, 46], also interpreted as redshift tests by MPC,
the atoms are “trapped” in optical dipole traps, and the Bloch oscillation frequencies are interpreted as
interference of two matter waves at Compton frequency, without using the Feynman formalism. However,
this interpretation is plagued with the same difficulties. The Bloch oscillation frequency is obtained from
the Schrödinger equation with the Hamiltonian including a gravitational term. We first note that adding
or not the rest-mass energy to that Hamiltonian does not modify the derived Bloch frequency, hence the
Compton frequency of the atoms plays no role. Second, to obtain the result of MPC one needs to use
a different gravitational term in the Hamiltonian when calculating the states and energies providing the
Bloch frequency or when calculating the motion of the atoms in the same gravitational field. This is akin
to the multiple Lagrangian framework with the same difficulties and inconsistencies.
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conservation. In the present case this translates into postulating two Lagrangians for the
same physical object. Explicit theories that are logically and mathematically consistent but
still violate Schiff’s conjecture are very uncommon (see [15] and references therein).12

In conclusion the multiple Lagrangian formalism violates the Feynman path integral
formulation of quantum mechanics, the principle of least action and energy conservation,
and Schiff’s conjecture. Unfortunately, the claim made by MPC [35] that atom gravimeters
measure the gravitational redshift can only be substantiated within this formalism.

B. Modified Lagrangian framework

In this Section we review and adapt for our purpose the important “modified Lagrangian
framework”, which is a powerful formalism for analyzing tests of the various facets of the
Einstein equivalence principle (EEP). This formalism allows deviations from GR and metric
theories of gravity, with violations of the UFF and UCR, and permits a coherent analysis
of atom interferometry experiments. But it does not suffer from the shortcomings of the
multiple Lagrangian framework. The formalism describes the Newtonian limit of a large
class of non-metric theories, in a way consistent with Schiff’s conjecture and fundamental
principles of quantum mechanics.

Within this general formalism there is no fundamental distinction between UFF and
UCR tests, as violation of one implies violation of the other (Schiff’s conjecture), thus
testing one implies testing the other. Depending on the theory used, different experiments
test different parameters or parameter combinations at differing accuracies, so they may be
complementary or redundant depending on the context. As we shall see, in such theories the
mass of the atoms cancels out when computing the phase shift of the atom interferometer,
and thus the atom’s Compton frequency is irrelevant. In that sense atom interferometers test
UFF (and are indeed interpreted that way in the more recent work [37]), but are insensitive
to a test of UCR at the Compton frequency.

This class of theories is defined by a single Lagrangian, that is however different from the
GR Lagrangian (2.23). In particular, the coupling between gravitation and different types
of mass-energy is generically not universal [48]. This leads to modifications of the gravita-
tional redshift and also, more generally, to violations of the weak equivalence principle or
universality of free fall, the local Lorentz invariance and the local position invariance. But
it does not imply a violation of the principle of least action nor of energy conservation, as it
is based on a single Lagrangian and, of particular interest here, the Feynman path integral
formulation of quantum mechanics remains valid. Most alternative theories commonly con-
sidered belong to this class which encompasses a large number of models and frameworks
(see e.g. [15, 48] and references therein). It includes for example most non-metric theories
(e.g. the Belinfante-Swihart theory [18]), some models motivated by string theory [49] and
brane scenarios, some general parameterized frameworks such as the energy conservation
formalism [41, 42] (see also [50]), the THεµ formalism and its variants [51, 52], and the
Lorentz violating standard model extension (SME) [53, 54] used in [37].

The modified Lagrangian formalism is a physical framework in which the violation of EEP

12 Ni [47] has proposed a possible counterexample of Schiff’s conjecture. As it is based on a modified
Lagrangian, it falls in the category of theories investigated in Sec. III B, for which atom interferometry
does not test the redshift.
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originates from the anomalous behaviour of some particular type of energy in a gravitational
field. For our purposes it is sufficient to use a strongly simplified “toy” Lagrangian chosen
as a particular case within the “energy conservation formalism” of Nordtvedt and Haugan
[41, 42] (see [15] for a review). To keep in line with MPC we choose an expression similar
to the Lagrangian of GR given by (2.23), namely

Lmodified = −m(z) c2 +
GMm(z)

r⊕
−m(z) g z +

1

2
m(z) ż2 . (3.13)

We postulate that for the body or atom under consideration the mass m depends on the
position z through a violation of the LPI subprinciple of EEP. This is modelled by assuming
that a particular internal energy of the atom EX behaves anomalously in the presence of
the gravitational field, where X refers to the type of interaction involved (electromagnetic,
nuclear, spin-spin, spin-orbit, etc). In the general case EX could depend on both the position
z and velocity ż of the atom [42], but here we consider only a dependence on z to model the
violation of the LPI. Separating out EX(z) from the other forms of energies EY composing
the atom and which are supposed to behave normally, we write

m(z) = m +
1

c2

[
EX(z) +

∑

Y 6=X

EY

]
. (3.14)

Here m denotes the sum of the rest masses of the particles constituting the atom, and m
and all EY ’s are constant. The violation of LPI is modelled in the simplest way by assuming
that at the leading order

EX(z) = EX + β
(a)
X mg z , (3.15)

where β
(a)
X denotes a dimensionless parameter characterizing the violation of LPI and de-

pending on the particular type of mass-energy or interaction under consideration, e.g. β
(a)
X

would be different for the electromagnetic or the nuclear interactions, with possible varia-
tions as a function of spin or the other internal properties of the atom, here labelled by the

superscript (a). Thus β
(a)
X would depend not only on the type of internal energy X but also

on the type of atom (a). Defining now the “normal” contribution to the total mass,

m0 = m+
∑

Y

EY

c2
, (3.16)

and replacing m(z) by its explicit expression into the Lagrangian (3.13) we obtain

Lmodified = −m0 c
2 +

GMm0

r⊕
−

(
1 + β

(a)
X

)
m0 g z +

1

2
m0 ż

2 , (3.17)

in which we have neglected some higher-order relativistic terms. A major difference with

the Lagrangian (3.12) of the previous Section is that the coefficient β
(a)
X is not universal but

depends on the internal structure of the atom.
Before discussing the atom interferometry experiment, let us recall the results for tra-

ditional free fall and redshift experiments. By varying (3.17) we obtain the equations of
motion of the atom as

z̈ = −
(
1 + β

(a)
X

)
g , (3.18)
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which shows that the trajectory of the atom is affected by the violation of LPI and is

not universal. In fact we see that β
(a)
X measures the non-universality of the ratio between

the atom’s passive gravitational mass and inertial mass. Thus, in the modified Lagrangian

framework the violation of LPI implies a violation of WEP and the UFF, and β
(a)
X appears to

be the UFF-violating parameter. This is a classic example [41, 42] of the validity of Schiff’s
conjecture, namely that it is impossible to violate LPI (or LLI) without also violating WEP.

The violation of LPI is best reflected in classical redshift experiments with clocks which
can be analysed using a cyclic gedanken experiment based on energy conservation [15, 41, 42].
The result for the frequency shift in a Pound-Rebka type experiment is

Z =
(
1 + α

(a)
X

) g∆z

c2
, (3.19)

where the redshift violating (or UCR violating) parameter α
(a)
X is again non-universal. As

such it has to be carefully distinguished from the redshift violation parameter β appearing
in Eq. (3.5) of the previous Section [see also the discussion after (3.5)]. The important point,
proven in Refs. [15, 41, 42], is that within the framework of the modified Lagrangian (3.17),

the UCR violating parameter α
(a)
X is related in a precise way to the UFF-violating parameter

β
(a)
X , namely (see e.g. Eqs. (6) and (7) in [41])

β
(a)
X = α

(a)
X

EX

mc2
. (3.20)

Therefore tests of UCR and UFF are not independent, and we can compare their different
qualitative meaning. Since for typical energies involved we shall have EX � mc2 this means
that βX � αX .13 For a given set of UFF and UCR tests their relative merit is given by
Eq. (3.20) and is dependent on the model used, i.e. the type of anomalous energy EX and
its dependence on the used materials or atoms.14

For example, let us assume a model in which all types of electromagnetic energy are
coupled in a non-universal way, i.e. βEM 6= 0 (with all other forms of energies behaving
normally), and where the clock transition is purely electromagnetic. The UFF test between
two materials (a) and (b), both containing electromagnetic energy, is carried out with an

uncertainty of |β(a)
EM − β

(b)
EM| ' |βEM| . 10−13 [6, 7]. On the other hand the UCR test for a

clock of type (a) based on an electromagnetic transition, is carried out with an uncertainty of

|α(a)
EM| ' |αEM| . 10−4 [11]. For macroscopic test bodies the nuclear electromagnetic binding

energy contributes typically to about EEM/(mc
2) ' 10−3 of the total mass [41], so we may

have |βEM| ' 10−3 |αEM|, which yields for the UFF test a limit of about |αEM| . 10−10. This
is still a much more stringent limit than the UCR test |αEM| . 10−4. So in such a model
UFF tests are significantly more sensitive than UCR tests.

However, that result depends on the particular model used. If we assume another model
in which the nuclear spin plays a role leading to a non-universal coupling of atomic hyperfine

13 We denote by βX and αX some typical values of the parameters β
(a)
X and α

(a)
X for different bodies (a).

14 Imposing that UFF and UCR tests be quantitatively equivalent, requires that the EEP-violating “internal”
energy EX be the total mass, so that EX = m c2. But then α = β is a universal parameter which can
be re-absorbed into the definition of g. To obtain an effect in this case one needs to invoke the multiple
Lagrangian formalism of Sec. III A.
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energies, i.e. βHF 6= 0 (with other forms of energies and properties of the atom behaving
normally), the result is different. The precise mechanism is unknown, but one could imagine
an abnormal coupling of nuclear spin to gravity, but with the standard coupling of the
electromagnetic nuclear binding energy, which is spin independent, still satisfied. Atomic
hyperfine energies are of order 10−24 J (corresponding to GHz transition frequencies) which
for typical atomic masses leads to ĒHF/(m̄c

2) ' 10−16. As a consequence UFF tests set a
limit of only |αHF| . 103 while UCR tests using hyperfine transitions (e.g. H-masers [11])
set a limit of about |αHF| . 10−4. The conclusion is therefore radically different in this
model where UCR tests perform orders of magnitude better than UFF tests.

To summarize, the two types of tests, UFF and UCR, are complementary in the modified
Lagrangian framework, and need to be pursued with equal vigor, because depending on the
model used either one of the tests can prove significantly more sensitive than the other.
A corollary is that usual tests of UCR do not need a violation of Schiff’s conjecture to
be meaningfully interpreted. They can perfectly be contrasted with UFF tests within a
formalism satisfying the Schiff conjecture.

Let us now consider the application to atom interferometry. In the experiment of Refs. [30,
35] the “atom-clock” that accumulates a phase is of identical composition to the falling

object (the same atom), hence one has to consistently use the same value of β
(a)
X when

calculating the trajectories and the phase difference using the Lagrangian (3.17) inserted
into (2.14). It is then easy to show that ∆ϕS = 0 with the above Lagrangian [21–23]. The
vanishing of ∆ϕS in this case is a general property of all quadratic Lagrangians and comes
from consistently using the same Lagrangian for the calculation of the trajectories and the
phase shift, as shown in Sec. II B above. It is related to the cancellation between the special
relativistic effect [last term in (3.17)] and the gravitational potential energy [third term in
(3.17)], discussed in more detail below.

Then the total phase shift of the atom interferometer is again given by the light interac-
tions only, which are obtained from the phases at the interaction points evaluated using the
trajectory given by (3.17). From Eq. (2.25) one then obtains

∆ϕ = ∆ϕ` =
(
1 + β

(a)
X

)
k g T 2 . (3.21)

We first note that in this class of theories the Compton frequency plays no role, as ∆ϕS = 0.
Indeed the mass term −m0c

2 in the Lagrangian (3.17) cancels out and could be ignored.

Second, we note that although β
(a)
X appears in the final phase shift, this is entirely related to

the light phase shift coming from the trajectory of the atoms, and thus is a measurement of

the effective free fall acceleration (1 + β
(a)
X )g of the atoms, which is given by Eq. (3.18). In

Refs. [30, 35] the resulting phase shift is compared to k g̃ T 2 where g̃ is the measured free fall

acceleration of a falling macroscopic corner cube, i.e. g̃ =
[
1 + β

(corner cube)
X

]
g, also deduced

from Eq. (3.18). In this class of theories the experiment is thus a test of the universality of
free fall, as it measures the differential gravitational acceleration of two test masses (Cæsium
atom and corner cube) of different internal composition, with precision

∣∣∣β(Cs)
X − β

(corner cube)
X

∣∣∣ . 7 × 10−9 , (3.22)

for any kind of internal energy X. Note that this expression is equivalent to the one obtained
by MPC in their recent paper [37] (p. 4), but different from the one obtained in the same
paper (p. 3) for UCR tests (see also a footnote in Sec. I B).
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As already mentioned the vanishing of ∆ϕS and thus the non-sensitivity to the gravita-
tional redshift in the “atom-clock” phase is related to the cancellation between the special
relativistic term and the gravitational term when integrating along the trajectories. More
generally, the underlying fundamental point here is that for a measurement of the grav-
itational redshift one wants to determine the non-zero effect of the gravitational redshift
term [third term in (2.23) or (3.17)] on the clock phase (atom or classical) independently
of the effect of the special relativistic term [fourth term in (2.23) or (3.17)] and of possible
other phase shifts (e.g. the light phase ∆ϕ`). This is generally done by using independent
measurements that provide the knowledge of the trajectories of the clocks z(t) and their
velocities ż(t). One uses that knowledge to subtract the time dilation and light phase shifts
from the overall measured shift ∆ϕ. The remaining gravitational redshift term can then be
compared to the GR prediction.

As an example, in the Pound-Rebka experiment [8, 9] the two clocks were fixed to the
Earth’s surface at the top and bottom of the tower, which imposes z(t) = const and ż(t) = 0.
As a result the first-order Doppler shift was zero (implying ∆ϕ` = 0) and the special rel-
ativistic term in the action phase shift also.15 The measured frequency or phase difference
was then entirely due to the gravitational term and could be compared to the GR prediction,
clearly favoring GR. In modern rocket or satellite experiments [11, 12] the trajectories of the
clocks are measured independently using radio and/or laser ranging which allows calculation
and correction of the special relativistic and light phase-shifts, and thus an unambiguous
measurement of the gravitational redshift. In contrast, in the atom-interferometry exper-
iment the trajectories are not measured independently but theoretically derived from the
Lagrangian and initial conditions, thus making a “pure” measurement of the gravitational
term impossible. One might even argue that in such an experiment the independent de-
termination of the wave packet trajectories (e.g. by high resolution imagery) would be
impossible as it would destroy the interference at the interferometer exit according to one
of the fundamental tenets of quantum mechanics.

IV. CONCLUSION

We have shown that it was possible to provide answers to the question asked in the
title of this article provided that the alternative theory or theoretical framework is carefully
specified. To this aim, after having proved in Sec. II that within GR atom interferometers
are insensitive to the gravitational redshift, we have considered two classes of alternative
theories to GR.

The first class of models is based on a modified Lagrangian (see Sec. III B). In this
class one finds most alternative approaches that postulate a non-universal coupling between
gravity and other fields of the standard model of particle physics or its extensions (see
e.g. [48, 51–54]), including some versions of string theory, brane scenarios, parameterized
frameworks, etc. This class of models is consistent with Schiff’s conjecture and represents
the most natural framework for analyzing and comparing the various consequences of the
violation of the equivalence principle. In this class of models, tests of the universality of free
fall (UFF) and of the universality of clock rates (UCR) are related, with the quantitative

15 Actually, in the real experiment the measured signal is given by a first-order Doppler shift which is applied
to compensate for the gravitational redshift.
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relationship depending on the particular theory used, and the corresponding nuclear and
atomic models. We have shown that in this class of models the free propagation phase shift
∆ϕS = 0 and therefore the Compton frequency plays no role; the interferometer cannot
be viewed as measuring the cumulated phase-difference of the “Compton-clocks”. Instead
the final phase difference is given by the light interactions and thus measures the free fall
acceleration of the atoms compared to the free fall acceleration of a corner cube of different
composition, akin to classical UFF tests. The atom gravimeter experiments are thus tests of
the weak equivalence principle or universality of free fall at the 7× 10−9 accuracy level, see
Eq. (3.22). As such they are less accurate than other UFF tests [6, 7] but still interesting as
they are the best tests of this kind which compare the free fall of quantum objects to that
of classical test masses.

The second class of models relies on multiple Lagrangians (Sec. IIIA). Within this class,
the atom interferometry experiment can be seen as a test of the gravitational redshift, in
line with the claims of MPC [35], but at the expense of extreme conceptual difficulties: the
basic principles of quantum mechanics, such as the Feynman path integral formulation and
Schrödinger’s equation, are affected, as well as energy conservation and the Schiff conjecture.
This is because two Lagrangians are used in this class of models, one for the trajectory of the
atoms and another one for the phase of the associated matter field. In addition, these models
pose a fundamental problem for calculating phases in atom interferometry tests, since the
standard formula for phase shifts is based on principles of quantum mechanics which are
violated in this class of alternative theories.

We conclude that the general statement of MPC according to which the atom interfer-
ometer measures or tests the gravitational redshift at the Compton frequency is incorrect.
Instead, the interpretation of the experiment needs to be considered in the light of alterna-
tive theories or frameworks. Although one can consider particular alternative frameworks in
which the statement of MPC could make sense, such frameworks raise unacceptable concep-
tual problems which are not at the moment treated in a satisfactory manner. In particular,
they break the fundamental principles of quantum mechanics which are used for calculating
matter wave phases. In most common and plausible theoretical frameworks the atom inter-
ferometry experiment tests the universality of free fall with the Compton frequency being
irrelevant.

Note added : After completion of the present work, several independent analysis have
appeared [43, 55] supporting our views and consistent with our conclusions.
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APPENDIX A: PHASE SHIFT IN NEUTRON INTERFEROMETRY

In this Appendix we show that the phase shift induced by gravity in neutron interferome-
ters is given by an expression similar to that in atom interferometry. In consistency with the
analogy between neutron and atom interferometry pointed out in Ref. [56], the gravitational
phase shift is independent of the Compton frequency also for the neutrons.

Neutron interferometers have been first used for the measurement of the gravitational ac-
celeration in 1975 [28]. A neutron beam is Bragg scattered by three silicon crystal planes and
forms an interferometer as shown in Fig. 2. The phase shift at the exit of the interferometer
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is given in Ref. [28] to leading order as

∆ϕ =
λdBM

2 d2 g

π~2
tan θ sinφ , (A1)

where λdB and M are the neutron de Broglie wavelength and mass respectively. Using
the definition of the de Broglie wavelength 2π~/λdB = Mv, where v is the velocity of the
neutrons, Eq. (A1) can be rearranged to

∆ϕ =
4πg

λdB
T 2 sin θ cos θ sin φ , (A2)

with T ≡ L/v. The well known Bragg condition for the scattering at the crystal planes is

λdB = 2a sin θ , (A3)

with a the atomic spacing in the crystal lattice. Substituting Eq. (A3) into Eq. (A2) one
easily obtains

∆ϕ = klatt g T
2 cos θ sinφ = klatt · g T 2 , (A4)

where klatt cos θ sin φ = (2π/a) cos θ sinφ is the projection of the lattice wave vector klatt

onto the direction of the gravitational field g.
We note that Eq. (A4) is formally identical to Eq. (2.26) with the lattice wave vector

playing the role of the laser wave vector. In both cases, the expression for the phase shift is
independent of the mass of the atoms (neutrons) or the associated Compton frequency. In
both cases, the interferometer is to be understood as measuring the free fall of the atoms
(neutrons) using the laser (crystal lattice) as a “ruler”.

APPENDIX B: EFFECT OF HIGH-ORDER GRAVITY GRADIENTS

As we have seen, for any quadratic Lagrangian the difference of classical actions (2.14)
is zero or reduces to the contribution of internal energies. In this Appendix, although this
has already been presented in much greater detail in Ref. [27], we estimate the magnitude
of the effect of including cubic terms in the Lagrangian of GR, due to second-order gravity
gradients, i.e.

LGR(z, ż) = −mc2 +
GMm

r⊕
+mg

[
−z +

z2

r⊕
− z3

r2
⊕

]
+

1

2
mż2 . (B1)

For such cubic Lagrangian we expect that the difference of classical actions will no longer
be zero. On dimensional grounds we expect that the result should then be given by16

∆ϕS =
∆Scl

~
= C k g T 2

(
~ k T
m r⊕

)2

+ ∆ϕgg′ , (B2)

where C denotes some global coefficient of the order of one. By integrating the Lagrangian
(B1) along the classical paths one obtains C = 1/4. We note that for the Lagrangian (B1)

16 To (B2) we should also add the contribution of ∆ϕ`.
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the interferometer closes up only when we adjust the time T ′ to a value that is different
from T . So the interferometer is no longer symmetric and there is a contribution coming
from the difference of internal energies gg′ of the atoms, given by

∆ϕgg′ = ωgg′
gT 3

r⊕
. (B3)

The first term in (B2) gives a non zero contribution which could be interpreted as a
redshift effect by analogy with classical clock experiments. However, we insist that in order
to compute correctly the phase shift one would have to revisit the derivation made in Sec. IIA
for the case of cubic and higher-order Lagrangians. If we assume that at least the order of
magnitude given by the first term in (B2) is correct, the effect is extremely small. With
~k/m ' 3 mm/s, T ' 0.1 s and r⊕ = 6400 km, it gives a relative correction to the main effect
(i.e. ∆ϕ` = kgT 2) of the order of 2 × 10−21, much too small to be measured in the atom
interferometry experiments [30, 31, 35] whose current precision is about 7×10−9. Therefore
we conclude that the redshift effect in atom interferometry, if it exists at all, is very small
and currently undetectable.
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