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Abstract

We discuss that entropy can be assigned to local domains for quantum fields
only if we relate it to two domains nested in one another such that the entropy
includes a surface effect depending on the distance of the two domains. We give
upper and lower limits for the corresponding expressions, based on assumptions
on the nuclearity of the quantum field and on the existence of a scaling limit. We
apply these estimates to local domains in flat space and in de Sitter space. We show
that in both cases the total system is in a pure state with vanishing entropy, but
also, that the entropy of domains with vanishing size tends to 0. For quantum fields
on a black hole we consider the Schwarzschild space time and its extension to the
Kruskal space time. The quantum field on the Schwarzschild space time has infinite
entropy, even if we regularize over the horizon. Nevertheless for domains in the
Schwarzschild space time the entropy tends to 0, if the size tends to 0. If however
we consider domains that include the total Schwarzschild domain the entropy is
always ∞.
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1 Introduction

In [1] it is argued that a black hole has to have some entropy. In [2] it is shown that a quan-
tum field on a Schwarzschild space time is in a temperature state where the temperature
is determined by the size of the black hole. This inspired [3] to look for natural connec-
tions between gravitational forces and temperature as consequence of quantum theory.
On the other hand it was argued [4] that the Hawking temperature is just an analogue
to the Bisognano-Wichmann theorem [10] arising from mathematical equivalences and
therefore is an effect related to an observer who in the Bisognano-Wichmann situation
is an accelerated observer moving in the Rindler wedge and his acceleration determines
the temperature. For the de Sitter space the observer moves in the wedge and observes
a temperature depending on the curvature of the metric as well as on his acceleration
[6] [7]. In the case of a black hole it is an observer following the time evolution of the
Schwarzschild time. Altogether the temperature interpretation depends on the observer
and so does the notion of an entropy, if we rely on its definition from thermodynamics.

In this note we take the conservative view point that entropy is just a property of
a state and does not refer to any dynamics or any observer. We consider the state of
a quantum field over a curved space, so that the quantum field itself cannot influence
the geometry. We are interested in the entropy of this state restricted to some local
domains and its dependence on the choice of the local domain. Already here problems
arise and we have to choose the local domain carefully to ensure that the entropy is not
necessarily infinite. To be more precise we are unable to fully characterize permitted local
domains and as a consequence are also unable to give explicit numbers. However we are
able to give upper limits on the entropy, where we need the assumption of nuclearity
[5], and also lower limits, where we demand that the system admits a scaling law [8].
Both assumptions are satisfied for free fields and are taken to be necessary properties
of physically meaningful theories. These upper and lower limits are strong enough to
find qualitative differences between the entropy of local domains in flat space, in de
Sitter space and in the Schwarzschild-Kruskal space time. In all these three situations
our analysis is based on the existence of a local Killing vector field and the corresponding
analyticity properties of the Wightman functions.. However it will also become clear
that its existence is only a useful tool in the mathematical analysis that enables explicit
calculations but suggests that the relevant behaviour will also hold in a more general
context.

The main observations are the following: Given two local domains one included in the
other with some distance between the boundaries, then it is possible to find a subalgebra
containing all the observables corresponding to the smaller domain but still belonging to
the observables of the larger domain in such a way, that the entropy of this algebra is
finite. Its value increases with the size of the smaller domain but also with its inverse
distance to the larger domain tending to infinity if the distance tends to 0. However it
is possible to let the size of the smaller domain tend to zero together with the distance,
where the distance has to be scaled appropriately. If we are in flat space we can arrange
the scaling in such a way, that in the limit the entropy tends to 0. The same holds if we
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are in de Sitter space. It also holds if we are in Schwarzschild space outside of the horizon.
If however our local domain contains the black hole then we have to become careful in
applying the scaling law. With an appropriate definition for the algebra corresponding
to an arbitrary small neighborhood of the black hole its entropy becomes infinite.

Another question concerns how the entropy depends on the size of the smaller domain,
when we keep the distance of the larger domain fixed. Here we can find a qualitative
behaviour that distinguishes between flat space and curved space. The entropy of a finite
domain depends on one hand on the size of the domain, on the other hand on the size
of the boundary. In flat space the dominating term is the surface effect. In de Sitter
space the lack of a global time evolution that corresponds to a Killing vector field only
admits weaker estimates on the upper and lower limit of the entropy, and this is reflected
on a dependence on the size of the domain.The entropy is far from being monotonically
increasing with the size of the domain due to the interplay of its dependence on the size of
the boundary but it becomes maximal when the domain approaches halfspace. A similar
behaviour can be found in Schwarzschild space, when we consider domains outside of the
horizon.

The paper is organized as follows: first we collect the relevant results obtained in flat
space. Here we present also the necessary concepts as nuclearity and split property. These
properties are known to be satisfied for quasifree quantum fields on flat space, and it is
a reasonable assumption that they hold also for interacting quantum fields and also on
curved space. We will argue that the essential features guaranteeing the finiteness of the
entropy do not change or can find a replacement that is as powerful if we consider quantum
fields in curved space away from singularities. We will consider first the similarities and
changes in de Sitter space where we have a Killing horizon but no singularity. The main
tool in our analysis will be the application of the modular theory offered by the existence
of a Killing vector field. Finally we will apply the methods to Schwarzschild space time
and its extension to Kruskal space time. Here the existence of a singularity is the cause
that we can assign an entropy to the black hole.

2 Facts in flat space

The algebra of quantum fields [9] can be considered to be built by Wightman fields W (f)
where f(x) are functions over R4. Local subalgebras AΛ with Λ some compact domain in
R4 are built by W (f) with supp(f) ⊂ Λ. A special example is the algebra on the Rindler
wedge ΛR where

ΛR = {x ∈ R4; x1 ≥ 0, x1 < |x0|} (1)

The vacuum state over the quantum field reduced to the Rindler wedge is a temperature
state with respect to the Lorenz boost

τ(s) =




cosh s sinh s 0 0
sinh s cosh s 0 0

0 0 1 0
0 0 0 1


 (2)
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at temperature 2π [10]. Under the assumption of a scaling law where the limit of the
Wightman functions

lim
λ→0

λ2ω(λx1, ...λxn) = ω0(x1, ..xn) (3)

exists and corresponds again to a quantum field theory that we may even expect to
be massless then [8] has shown that the vacuum state over the causal completion of a
compact domain in R3, e.g. a double cone, is again a state constructed over a cyclic and
separating vector and therefore a temperature state with respect to its modular evolution,
and that further this modular evolution has the same spectral properties as the generator
of the boost. But if the modular evolution has continuous spectrum then necessarily the
algebra is of type III1 and the entropy of any state over such an algebra is ∞.

In order to find a qualitative expression to the fact that in physically reasonable
systems the phase space over a finite domain should again be essentially finite with its
size limited by its energy [5] formulated the nuclearity condition: We assume that we can
express

e−βHA|Ω >=
∑

n

φn(A)|Ψn > ∀A ∈ AΛ (4)

with ||Ψn|| normalized vectors and φn(A) linear functionals over AΛ, depending on β.
Nuclearity holds with respect to some nuclearity norm that e.g is defined as

νp(Λ, β) = inf[
∑

n

|φn|p]1/p (5)

if this norm is finite. The infimum in(5) is taken over all possible {φn, Ψn}. Variations in
the norm are possible and can be adjusted to the special demands, especially we can also
consider νln defined with respect to xlnx.

For free massless theories this nuclearity index ν (for various choices of the index p)
was estimated in [12] by

νp(Λr, β) ≤ cpe
r/β, r < β (6)

where Λr is the causal completion of a ball of radius r in R3. Of course we have to keep
in mind that the fact that a quantum field allows finite nuclearity indices is an additional
assumption and should not be taken for granted.

Based on the assumption of nuclearity [11] showed that for A ∈ AΛ1 and B ∈ AΛC
2

with a distance d(Λ1, Λ
C
2 ) = infx∈Λ1,y∈ΛC

2
||x − y|| the vacuum state satisfies

ω(AB) =
∑

φ1,k(A)φ2,k(B). (7)

Here φ1,k are linear functionals on AΛ1 and φ2,k linear functionals on AΛC
2

implemented
by Ψn as they entered in the estimation of the nuclearity index. If we fix |φ2k| = 1 then
they satisfy ∑

k

|φ1,k|p < cpνp(Λ1, d(Λ1, Λ2)) (8)

for all choices of the norm, including the one given by xlnx. Notice that the parameter
β that in the definition was related to the Hamiltonian has been shown to be essentially
linearly related to the distance [11].
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Based on this fact it can be shown, that it is possible to find algebras that are local
but also have finite entropy. We start with an inclusion AΛ1 ⊂ AΛ2 where ΛC

2 is the causal
complement to Λ2 and d(Λ1, Λ

C
2 ) > 0. Then it is possible to construct some algebra N

such that
AΛ1 ⊂ N ⊂ AΛ2 (9)

and N is a type I algebra in such a way that the vacuum state restricted to N can
be expressed by a density matrix belonging to N . The algebra N is not unique, however
relating the construction of the algebra to the decomposition (7) the nuclearity index gives
a bound on the entropy [13],[15]. To assign a well defined entropy to the inclusion Λ1 ⊂ Λ2

there are several possibilities. One strategy was followed in [13]: Though S(AΛ1) = ∞
( we will surpress that the entropy depends on the state since all our considerations
concentrate on the vacuum state or on a well defined state for curved space time )and
also the entanglement of formation E(AΛ1) = ∞ (considered with respect to AΛ2 and
expressing the quantum correlations between the domain Λ1 and its causal complement
in Λ2 ) the difference [14]

HAΛ2
(AΛ1) = sup

∑
∑

λiωi=ω

λiS(ω|ωi)AΛ1
(10)

(the supremum is taken over all possible decompositions of ω into states ωi in AΛ2) stays
finite under the appropriate definition of the nuclearity index ν (5) with respect to the
norm given by −∑

n |Φn| ln |Φn| as it enters in all entropy expressions.
An alternative is to consider the usual expression for the entropy S(ρ) = −Trρ ln ρ

and define
S(Λ1, Λ2) = inf

AΛ1
⊂N⊂AΛ2

S(N ) ≥ HAΛ2
(AΛ1) (11)

However it is not clear that this optimization already defines a unique algebra N . The
results in [15] give an upper bound for some explicitly constructed algebra N that is
sufficient for our purpose.

The available estimates permit to consider

lim
Λ1→R3

lim
Λ2→R3

HAΛ2
(AΛ1) = lim

Λ1→R3
lim

Λ2→R3
S(Λ1, Λ2) = 0 (12)

in agreement with the fact that the vacuum is the ground state for the quantum field
and therefore pure [13]. But the same estimates also allow to consider

lim
Λ1⊂Λ2→0

HAΛ2
(AΛ1) = lim

Λ1⊂Λ2→0
S(Λ1, Λ2) = 0 (13)

where we have to specify how the larger domain tends to 0 in comparison to the smaller
domain. This specification can be done on the basis of the nuclearity condition that
provides an upper limit. However estimates to obtain bounds on the nuclearity index
are rather rough and we expect they can be improved. This belief is supported by the
behaviour of the lower limit.



5

Here we use the relative entropy

S(ω ⊗ ω|ω)AΛ1
⊗A′

Λ2
. (14)

That this expression makes sense is based on the fact that AΛ1∪ΛC
2

= AΛ1⊗A′
Λ2

due to the
results in [11]. The relative entropy is monotonically increasing in AΛ1 and in A′

Λ2
, there-

fore monotonically decreasing in AΛ2. Especially the relative entropy is monotonically
increasing with the algebra so that

S(ω ⊗ ω|ω)AΛ1
⊗A′

Λ2
≤ S(ω ⊗ ω|ω)N⊗N ′ = S(N ) + S(N ′) − S(N ⊗N ′) = 2S(N ) (15)

provided N is a factor. Otherwise there is the inequality for type I algebras

S(N ) ≤ S(ω ⊗ ω|ω)N∨N ′ ≤ 2S(N ) (16)

where the left side becomes an equality if N is abelian. From this view point, combined
with the results in [15] (15) can be read that the nuclearity index gives an upper bound
on the relative entropy or that the relative entropy gives a lower bound for the nuclearity
index.

The algebras AΛ1 and A′
Λ2

are type III algebras. Therefore the relative entropy cannot
be expressed in terms of density matrices but instead we can use the Kosaki-formula [16]

S(ω|φ)A = sup
∫

[
ω(1)

1 + t
− ω(y∗(t)y(t)) − 1

t
φ(x(t)x∗(t))]

dt

t
(17)

where the supremum is taken over x(t) ∈ A and y(t) = 1 − x(t) as operator valued step
functions. Especially for states ω, φ we have the general inequality

S(ω|φ) ≥ 1

2
||ω − φ||2.

Therefore the entropy can only tend to 0 if we choose Λ2 sufficiently large with respect to
Λ1 so that ω nearly factorizes. We concentrate on shrinking balls. The nuclearity index
(6) tends to 1 as long as β >> r, but still β → 0 is possible so that

S(Λr, Λβ) → 0. (18)

Next we are interested how S(Λr, Λr+β) depends on r, β, i.e. how far the entropy is a
volume effect and how far it is a surface effect. The upper limit was discussed in [13],
but the estimates are rather rough. We rely more on the lower limit that is based on
an analysis of (17). The motivation comes from the additivity of the relative entropy for
tensor products. This additivity is however a bit hidden in (17).

Having chosen some x(t) for (17) we can optimize its size in the Kosaki formula with

inf
f(t)

[ω((1 − f(t)x(1 − f(t)x∗) + φ(x∗xf 2(t)]/t
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which is attained for

f(t) =
t(ω(x) + ω(x∗))

2(φ(x∗x) + tω(xx∗))
(19)

This gives a contribution

∫
[
ω(1)

t + 1
− ω(1) +

tω(x + x∗)2

2(φ(x+x) + tω(xx∗))2
− tω(x + x∗))2

4(φ(x+x) + tω(xx∗))
]
dt

t
= (20)

=
∫

[
ω(x + x∗)2

4(φ(x∗x) + tω(xx∗))
− 1

1 + t
]dt

For large t the main contribution comes from

ω(x + x∗)2

4tω(xx∗)
− 1

t

which can only be positive if x = 1. Large contributions to the relative entropy can only
be obtained for small t where we can obtain

ω(x + x∗)2

φ(x∗x)
>> c (21)

Scaling cannot increase this value. But we can recover the additivity behaviour of the
relative entropy for tensor products ω = ⊗ωi and φ = ⊗φi if we choose x =

∑n
i xi with

ωi(xi + x∗
i )

2 − φi(x
∗
i xi) = c and also φi(xi) = 0 for the individual contributions so that

ω(
∑n

i (xi + x∗
i ))

2

4φ(
∑n

i x∗
i

∑n
i xi)

= c2n (22)

If we do not work with tensor products the same scaling behaviour remains as long as
φ(

∑
i,j xixj) does not contribute as n2, as it happens if the state nearly factorizes with

increasing |i − j|.
If we therefore consider a ball or a similar domain and divide it into cells then the

cells inside the ball will nearly factorize with the cells outside the ball and the main
contribution will come from the cells at the boundary coupled to the corresponding cell
outside but close. Therefore the entropy apart from a negligible contribution from the
volume will essentially scale like its surface with a parameter depending on β−2.

3 Estimates in de Sitter space

We consider the de Sitter space as subspace of a five dimensional space satisfying x2
1+x2

2+
x2

3+x2
4−x2

0 = R2. On this space we have Killing vector fields L0,i = x0∂i−xi∂0 very similar
to the boost in the Rindler wedge of flat space. Like the boosts they do not represent global
time evolution, and as the boost they give rise to a horizon:{x1 = |x0|, x2

2 +x2
3 +x2

4 = R2}.
We consider a quantum field on de Sitter space with the condition that its state is

invariant under the full de Sitter group and that in the scaling limit it reduces to a free



7

massless theory [6]. Then the state is a temperature state with respect to the Killing
vector field L0,i with temperature 1/2πR. The Killing flow can be most easily expressed
if we change to the coordinates

x0 = (R2 − x2
2 − x2

3 − x2
4)

1/2 sinh t, x1 = (R2 − x2
2 − x2

3 − x2
4)

1/2 cosh t, x2, x3, x4 (23)

where it corresponds to the shift in t. We observe that the domain

W = {t, x2, x3, x4; x1 ≥ 0} (24)

is invariant under the Killing flow and corresponds to the Rindler wedge. Reduced to AW
the state is a temperature state with respect to L0,1. Extending the state to the whole
algebra we can use the modular conjugation:

JA|Ω >= e−H/2A∗|Ω >= JAJ |Ω > (25)

where A belongs to AW and JAJ belongs to A′
W , H implements the boost (i.e. the

modular evolution ) on AW and J is the modular conjugation that maps AW into A′
W .

If we consider operators A = ΠkW (fk(x)) we can express the effect of the boost as
eiHtAe−iHt = ΠkW (fk(Ltx)). We know that the Wightman functions defining the state
are analytic with respect to the Killing parameter. We apply this analyticity to Ltx and
consider

sinh t → sinh(t + iπ), y cosh t → y cosh(t + iπ)

For t = 0 we obtain W = {x > 0, t} → {x < 0, t} so that the wedge is mapped into its
causal complement. The algebras on the two wedges generate the whole algebra. Therefore
our state is pure and the algebra satisfies Haag duality.

We are interested in the entropy of algebras over local domains. For these local do-
mains we choose local domains in R4 with t = 0 and their causal completion. Again the
scaling law implies that the state on these algebras is a KMS state with respect to a
modular automorphism whose generator has the same spectrum as the Killing generator
and therefore the algebra is type III and has infinite entropy. Again we consider the re-
placement AΛ1 ⊂ N ⊂ AΛ2. In order to obtain an upper bound the nuclearity condition
of [5] cannot be used because a global time like vector field is never a Killing vector field
and therefore does not define a unitary group resp. a hamiltonian. However for Minkowski
space [8] has shown that the nuclearity condition guarantees that for an inclusion Λ1 ⊂ Λ2

we can consider the modular evolution implemented by eiH2twith respect to AΛ2 and can
obtain a nuclear bound for the set

e−λH2A|Ω >, A ∈ AΛ1 , ||A|| = 1, 0 < λ < 1/2. (26)

The restriction on λ stems from the fact that differently to the Hamiltonian in full flat
space H2 is not bounded from below and we can only be sure that A|Ω > belongs to
the domain of e−λH2 for 0 ≤ λ < 1/2. Otherwise the definition of the nuclearity index
follows the definition (5). The optimal value for the nuclearity bound is obtained for
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λ = 1/4. Further from the order relation between the modular operators (the forms of
the corresponding modular operators are defined on increasing domains) it follows that
ν(Λ2) is decreasing with increasing Λ2. If Λ2 approaches Λ1 then the nuclearity bound
diverges.

The nuclearity bound in Minkowski space was introduced as a measure on something
that replaces the size of the phase space in classical mechanics. Giving such an inter-
pretation to a nuclearity bound for inclusions might be done on the basis of a scaling
at a point far away from the horizon, where modular automorphism, boost and time
evolution nearly coincide in first order in the appropriate scaling. However this is not
very convincing. Its relation to entanglement might give some insight: since the nuclear-
ity index decreases with increasing Λ2 this implies that also the entanglement with Λ1

and the causal complement of Λ2 though existing gets smaller. Thus the entanglement
between AΛ and A′

Λ is concentrated on the boundary as a consequence of the nuclearity
condition.

For the de Sitter space we can consider the inclusion of a small local domain into
a wedge that we choose such that the local domain is sufficiently separated from the
boundary. Then we can use the Killing vector field to examine whether nuclearity holds.
We assume that this is satisfied. For free fields modifications of the estimates in [12] are
possible. Now take two domains that are causally independent. They will stay causally
independent when one domain is moved by the Killing flow for a sufficiently small interval.
Therefore as in [13] the methods of [11] can be generalized to guarantee that also the
nuclearity condition with respect to a general inclusion Λ1 ⊂ Λ2 holds. As in Minkowski
space also in de Sitter space we can find a type I algebra AΛ1 ⊂ N ⊂ AΛ2 with S(N ) < ∞.

The construction of the quantum field is based on the scaling law. Therefore again

lim
Λ1⊂Λ2→0

inf
AΛ1

⊂N⊂AΛ2

S(N ) = 0 (27)

with the same conditions on the distance as in Minkowski space. Similarly

lim
Λ2→deSitterspace

HAΛ2
(AΛ1) = 0 ∀Λ1

Since HAΛ2
is monotonically decreasing and obtained as a supremum, we get this result

as a consequence that the state is pure.
It remains to look for a difference between the behaviour in Minkowski space and in

de Sitter space. In Minkowski space we have argued that the entropy of a local domain
depends essentially on its surface. The argument was based on the lower estimate where
we assumed that only operators at the boundary contribute to (17) whereas for operators
concentrated inside of the domain the nuclearity (6) index can be regarded with respect
to the boundary, i.e. with large β in (4). Now we can only estimate the nuclearity with
respect to the boost and for limited values of β. We examine again which contributions we
have to expect in (17). We divide our local domain into cells. The cells at the boundary
will contribute similarly as in Minkowski space being sensitive to the distance of the outer
domain. For the cell inside of the local domain we can only use the nuclearity bound up
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to λ < 1/2. For an operator A in such a cell we will find some JAJ in the other wedge
such that

< Ω|JAJA|Ω >=< Ω|A∗e−HW/2A|Ω >6= | < Ω|A|Ω > |2. (28)

How much it differs determines how much it can contribute to the relative entropy. Of
course the definition of the local entropy is done without referring to a wedge. Obviously
we have to choose the wedge such that ||(e−HW/2A − A)|Ω > || is minimal. This means,
that the horizon of W should be far away. This can be achieved in flat space, but not in
de Sitter space.

As a consequence the state does not cluster approximately and therefore we can use
such A for a contribution in (17) as indicated in(22). Therefore the entropy of a local
domain will also depend on its size and not only on its surface. Notice however, that
tacitly we assumed that N belongs to the wedge which gives a limit on the including
algebra. If the including algebra approaches the total algebra again the entropy of the
smaller algebra will vanish. Notice however keeping the algebras small the amount of the
entropy will depend on R and will decrease with R, in correspondence to the observation
in flat space, that the boost far away from the horizon has to be scaled to estimate the
local domain.

4 Schwarzschild-Kruskal space time

We consider quantum fields on the Schwarzschild space time

g =
1

1 − r/r0
dr2 + r2(dθ2 + sin2θdφ2) − (1 − r/r0)dt2 (29)

together with its extension to the Kruskal space time with the coordinates

u = (
r

r0
− 1)1/2er/2r0Ch

t

2r0
v = (

r

r0
− 1)1/2er/2r0Sh

t

2r0
(30)

with

g =
4r3

0

r
e−r/r0(du2 − dv2) + r2(dθ2 + sin2θdφ2) (31)

where now u, v ∈ R, u2 − v2 > −1 and the domain u2 − v2 > 0 corresponds to the
Schwarzschild domain.

We concentrate on a free quantum field over the Schwarzschild -Kruskal space time.
According to our description with respect to the local structure we consider the algebra
to be built by Weyl operators W (f) (now not Wightman fields but their exponent so that
W (f) are bounded operators) with supp(f) ⊂ Λ satisfying the commutation relations

W (f1)W (f2) = e−σ(f1 ,f2)W (f1 + f2) (32)

where σ(f1, f2) = −σ(f2, f1) is a symplectic form

σ(f, g) =
∫

f1(x)G(x, x′)f2(x
′)dΩxdΩx′ (33)
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where
(−∂µgµν√−g∂ν + m2√−g)G(x, x′) = (34)

√
−g(−2x + m2)G(x, x′) =

√
−g(−2x′ + m2)G(x, x′) = 0

with G(x, x′) = −G(x′, x) and G(x, x′) = 0 if x and x′ are relatively spacelike and
normalized such that they reflect the commutation relations. With

h1(x) =
∫

f(x′)G(x, x′)dΩx′, h2 =
∫

f(x′)∂µG(x, x′)dΩx′ (35)

h1, h2 can serve as the initial data determining uniquely W (f) in accordance to the
equivalence relation W (f1) = W (f2) if σ(f1, f3) = σ(f2, f3) ∀f3. According to [2] we
choose the state so that for the free quantum field it is a quasifree state satisfying for the
two point function the conditions formulated in [17]

w(2)(x1, x2) =
α

s
+ β ln |s| + γ (36)

where α, β, γ are smooth functions of x, x′ and s is the square of the geodesic distance.
Notice that this state has been constructed as a global state on the Kruskal space time
and therefore we have left the Schwarzschild domain.

Based on (30) in the Schwarzschild domain we have again the same analyticity
properties as in the Rindler wedge in Minkowski space or in the wedge in de Sitter
space. We have the time evolution, that is now a Killing flow and therefore imple-
mented by a unitary one parameter group. With its extension into the complex plane
we can map the Schwarzschild domain u > 0, u2 − v2 > 0 into the causal complement
u < 0, u2 > v2. Therefore again the state is a temperature state with temperature
T = 1/4πr0 in the Schwarzschild domain with respect to the time evolution. Considered
as a state over the whole Kruskal space time the state is pure and satisfies Haag duality
A′

Λ = AΛC with ΛC the causal complement to Λ. Notice that the causal complement to
{u > 0, u2 − v2 > 0} ∪ {v > 0, 0 < v2 − u2 < 1} is empty. Therefore the quantum field
considered as acting on the physical space with r ≥ 0 is again in a pure state.

In the Schwarzschild domain we can apply the same considerations as in de Sitter
space. Due to the scaling law that now is a consequence of (36) local algebras with
compact Λ have modular operators with continuous spectrum, are type III and have
infinite entropy. Due to the decrease properties of the two point function we can find
algebras containing AΛ, remaining localized but with finite entropy. Again as in de Sitter
space the entropy will not only scale with the surface but due to the fact that the state is
a temperature state we have again to apply (28) telling us that also an operator far away
from the horizon is quantum mechanically correlated to an operator in the commutant.
Therefore the entropy of a local domain will contain a term depending on the size of
the domain, not only on its boundary. From this view point we can observe the effect
of the Hawking temperature even if we are far away from the horizon and therefore the
Hawking temperature is not only an analogue to the temperature with respect to the
boost in Rindler space, since now the temperature is given by the time evolution and not
by a boost and therefore no scaling is necessary.
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Our main interest however concerns the behaviour on the horizon and inside of the
horizon. First we ask whether again the entropy of a point vanishes. In flat space we argued
with the scaling law. This scaling law is evident for our free field described by (32) and
(33). We consider functions f with finite support. With scaling f(x0 + x) → f(x0 + λx)
their support shrinks with λ → ∞. This scaling can be absorbed in the integration dΩx

and in the Green function G(x, x′). In this sense we obtain some fλ(x0 + x) that is close
to λ3cf(x0 + λx) where c depends on the point x0 around which we scale. The weight
of f is irrelevant for our description, only its support characterizes whether the Weyl-
operator belongs to the local domain. Therefore as in flat space we can conclude that it is
possible to arrange the scaling in such a way that the local domain shrinks and so does its
surrounding, though with a slightly different scaling that demands a relatively increasing
distance if we approach the singularity. The entropy with respect to this inclusion tends
to zero, also inside the horizon. Of course we have to stay away from the singularity
u2 − v2 = −1.

Concentrating on the horizon we can argue that every local region that is sufficiently
smeared out and stays away from the singularity r = 0 has an entropy determined by its
size respectively the size of its surface. This holds also for a covering of the horizon, so
that for such a covering the entropy is proportional to r2

0.
Our main interest however is the behaviour of the local entropy inside of the

Schwarzschild radius or inside of an arbitrary small neighborhood of the black hole. We
consider as physically relevant domains those that lie in the future of the Schwarzschild
space time, i.e. the domain {u2 − v2 > −1, v > 0}. If we consider the local algebra AΛ

with Λ the causal completion of the domain {δ < r < ε, θ, φ} that we interpret as in-
cluded into the total space as {u = 0, (1 − δ)2 > v > (1 − ε)2, θ, φ} this domain shrinks
and if we rely on the scaling law the entropy tends to zero if we scale δ together with ε
in such a way that the boundary remains sufficiently large. However the choice of this
domain is rather artificial and of no relevance for any observation. We can go back to
flat space to recall, why the choice of double cones was taken to be the natural basic
description. The starting point is the assumption that the observables are essentially lo-
cated in 3-dimensional space and that these observables form a von Neumann algebra.
Observables located in domains that are space like separated commute with one another.
Therefore the von Neumann algebra is obtained as A′′

Λ, the double commutant of the
original algebra, and this justifies the choice of causally closed domains. If however we
choose domains in the Kruskal domain including 0 < r < r1 < r0 and compare with a
domain r1 < r < r0 the corresponding observables will not commute, since the points are
not space like any more.

The other observation in flat space uses Haag duality: If we evaluate the entropy for
some inclusion Λ1 ⊂ Λ2 i.e. via

S(Λ1, Λ2) = inf
AΛ1

⊂N⊂AΛ2

S(N ) (37)

then the fact that we are in a pure state implies S(N ) = S(N ′) so that

S(Λ1, Λ2) = S(ΛC
2 , ΛC

1 ). (38)
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As a consequence the entropy of the causal complement of a finite domain is finite.
However the entropy of the wedge is infinite, even when we consider not the wedge itself
but any algebra containing the wedge and belonging to a shifted wedge, again based
on the estimates (28). According to our construction Haag duality is also satisfied for
the Kruskal-Schwarzschild metric, i.e. the quantum field is in a pure state. Instead of
evaluating S(A0≤r<r1) we can evaluate S(Ar1<r<∞), i.e. we consider as relevant what
can be observed in the total domain that just stays away from the singularity. Next we
recall that in flat space a diamond can be considered to be the causal completion of
small diamonds covering a spatial cut of the large diamond. In this spirit we construct
the complement of a neighborhood of the black hole. We specify which algebra we take
for Ar1<r<∞ = A>r1 : A possible choice is Ar1<r<∞ = (A′′

r1<r<r0,u=0 ∨ Ar0<r<∞)′′ where
A′′

r1<r<r0,u=0 is a diamond in the region {v > 0, v2 − u2 > 0}.Its commutant is not
A′′

0<r<r1,u=0 but the von Neumann algebra is located over an infinitely extended domain
in {u2 − v2 > 0, u < 0}. Therefore, based on the Kosaki formula, most of the local
subalgebras of the Schwarzschild algebra (Ar0<r<∞)′′ = AS will contribute to the relative
entropy and will make it infinite. Therefore

S(A>r2,A>r1) = ∞, 0 < r1 < r2 (39)

With our identificationAr<r1 = A′
>r1

this gives an infinite entropy to the black hole. No-
tice however, that in these considerations the horizon r = r0 is not of special significance.

We have to admit that these arguments do not offer a way to assign an entropy to
the black hole that scales like r2

0 with a scaling factor that is justified by the smearing
of the surface that should be chosen of the size of the Planck length. However such a
behaviour cannot be extracted from the model, because on one hand an infinite region
is in a temperature state and has therefore infinite entropy, whereas we assume that the
total system is in a pure state, so that also the complement of this region has infinite
entropy. This discrepancy with the usual arguments might be the result that our quantum
field was constructed on a fixed background without the possibility that the gravitational
field can react on the quantum field whereas in the usual approach the entropy is obtained
by the possibility of an energy exchange and entropy exchange of the black hole with the
quantum field. Imagine several quantum fields corresponding to different non interacting
particle species, built over the gravitational field. For such a model the local entropies
are additive, and therefore necessarily our entropies are model dependent. Therefore any
scaling parameter cannot be model independent. Notice that the gravitational constant
disappeared in the calculations and only r0 appears. If we express r0 given by the mass
of the black hole and the gravitational constant we can scale these parameters keeping
r0 fixed. That the quantum field cannot effect the gravitational background corresponds
that we take the gravitational constant to be 0 together with the mass of the black hole
M being ∞ whereas r0 is kept constant. This would be in agreement with the fact that
the entropy does not scale with r0 but with M . Our considerations were determined by
the analyticity properties of the quantum field together with Haag duality. Of course the
assumption to be in a pure state was essential. Another question is whether the precise
form of the state in the Schwarzschild region was essential or if it is possible to reduce
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the entropy in the Schwarzschild region by appropriate correlations between the horizon
and infinity without violating the regularity conditions at the horizon.

5 Conclusion

The fact that we can assign a temperature to the state of quantum fields over a curved
background has to refer to an automorphism group on the algebra. This can be done
only in special cases in such a way, that we can give a geometrical interpretation to the
automorphism group. These cases include the boost in the Rindler wedge, the boosts in
the wedges of de Sitter space and time evolution in Schwarzschild space time.

In contrast a local entropy, now without interpretation with respect to thermody-
namics but considered as property of a state, can be defined under some mild restrictions
for inclusions of local algebras. Also this local entropy shows different behaviour on a
qualitative level, reflecting the properties of the underlying quantum field. In all cases
the entropy vanishes for shrinking regular domains. In flat space the entropy is mainly
determined by the surface of the domain, reflecting the entanglement of domains that is
concentrated on the surface. This contribution remains unchanged also in gravitational
fields. In the Sitter space the temperature that we can assign to the wedge induces that
the entropy of local domains scales roughly also with their volume. The same is true for
Schwarzschild space time. From this view point the temperature is more than an analogue
to the Rindler wedge, where the temperature is observed by an accelerated observer and
the temperature is only determined by the acceleration. In addition we have to extend
the quantum field over the Schwarzschild space time if we want to keep Haag duality, i.e.
to consider a pure state. The obvious extension is the extension to Kruskal space. Here
the origin corresponds to a singularity. We give an interpretation to the quantum field
around this singularity as the complement, i.e. commutant to the algebra outside the
singularity. With this interpretation the algebra around the origin has infinite entropy
without the possibility to regularize it by smearing.
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