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Abstract. A new technique to study spacelike hypersurfaces of constant mean

curvature in a spacetime which admits a timelike gradient conformal vector field is

introduced. As an application, the leaves of the natural spacelike foliation of such

spacetimes are characterized in some relevant cases. The global structure of this class

of spacetimes is analyzed and the relation with its well-known subfamily of Generalized

Robertson-Walker spacetimes is exposed in detail. Moreover, some known uniqueness

results for compact spacelike hypersurfaces of constant mean curvature in Generalized

Robertson-Walker spacetimes are widely extended. Finally, and as a consequence,

several Calabi-Bernstein problems are solved obtaining all the entire solutions on a

compact Riemannian manifold to the constant mean curvature spacelike hypersurface

equation, under natural geometric assumptions.
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1. Introduction

The notion of symmetry is clearly basic in Physics. In General Relativity, symmetry

is usually based on the assumption of the existence of a one-parameter group of

transformations generated by a Killing or, more generally, conformal vector field. In

fact, an usual simplification for the search of exact solutions to the Einstein equation

is to assume the existence a priori of such an infinitesimal symmetry (see [9, 11] for

instance). A complete general approach to symmetries in General Relativity can be

found in [22] (see also [10] and references therein). Although it is not always assumed
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the same causal character for the infinitesimal symmetry, the timelike choice is natural,

since the integral curves of such a timelike infinitesimal symmetry provide a privileged

class of observers or test particles in the spacetime. Moreover, this choice is supported

by very well-known examples of exact solutions.

A spacetime M admitting a timelike Killing vector field is called stationary.

It can be easily seen that if a spacetime M has a timelike conformal vector field,

then it is globally conformal to a stationary spacetime. This is a reason to call M

conformally stationary (CS). Clearly, a CS spacetime is time orientable. In general, the

orthogonal distribution defined by a timelike conformal vector field K in a spacetime

is not integrable. If the 1-form metrically equivalent to the vector field is closed,

or equivalently, if K is locally the gradient of some function, then this distribution

is integrable and provides the spacetime with a distinguished foliation by spacelike

hypersurfaces. The presence of such a vector field is not enough to prevent the existence

of closed nonspacelike curves, i.e., CS spacetimes fail to be causal, in general. However,

if the timelike vector field K is globally the gradient of some smooth function (K is then

called a gradient vector field) then the (clearly noncompact) spacetime admits a global

time function. Therefore, it is stably causal [14], i.e., there is a fine C0 neighborhood

of the original metric of the spacetime such that any of its Lorentzian metrics is causal

[6]. The existence of a gradient conformal vector field in a spacetime has been used to

study certain cosmological models [19] and plays a relevant role for vacuum and perfect

fluid spacetimes (see [9]). Along this paper, a spacetime M with a timelike gradient

conformal vector field will be called gradient conformally stationary (GCS) spacetime.

An interesting subclass of GCS spacetimes is the family of Generalized Robertson-

Walker (GRW) spacetimes. A GRW spacetime is a warped product, with base a

negatively defined line, fiber a general Riemannian manifold and arbitrary warping

function. Note that, in this definition the fiber is not assumed to be of constant

sectional curvature, in general. When this assumption holds and the dimension of the

spacetime is 3, the GRW spacetime is a (classical) Robertson-Walker spacetime. Thus,

GRW spacetimes widely extend Robertson-Walker spacetimes, and they include, for

instance, the Einstein-de Sitter spacetime, Friedmann cosmological models, the static

Einstein spacetime and the de Sitter spacetime. Observe that conformal changes of the

metric of a GRW spacetime, with a conformal factor which only depends on universal

time, produce new GRW spacetimes. Moreover, small deformations of the metric on

the fiber of Robertson-Walker spacetimes also fit into the class of GRW spacetimes.

Thus, a GRW spacetime is not necessarily spatially homogeneous, as in the classical

cosmological models. Recall that spatial homogeneity seems appropriate just as a rough

approach to consider the universe in the large. However, in order to consider it in a

more accurate scale, this assumption is not realistic. Thus, GRW spacetimes could be

suitable spacetimes to model universes with inhomogeneous spacelike geometry [18].

Spacelike hypersurfaces of constant mean curvature (CMC) in a spacetime are

critical points of the area functional under a suitable volume constraint [5, 8]. Such

hypersurfaces play an important role in General Relativity, since they can be used as



CMC Hypersurfaces in GCS Spacetimes 3

initial hypersurfaces where the constraint equations can be split into a linear system

and a nonlinear elliptic equation (see [7] and references therein). A summary of other

reasons justifying the study of CMC spacelike hypersurfaces can be found in [16]. In

previous papers, [1, 2], CMC spacelike hypersurfaces in spatially closed GRW spacetimes

were studied. The main tools were several Minkowski-type integral formulas, and some

curvature assumptions on the ambient spacetime were needed. Later, with the same

approach, compact CMC spacelike hypersurfaces were studied in CS spacetimes, [3].

With a very different starting point, the classical Bochner technique, several results

in [1] were extended, changing the compactness of the spacelike hypersurface by the

existence of a local maximum of a distinguished function [15]. Along the previous

papers, the family of slices (i.e., the level hypersurfaces of the global time function) of

a GRW spacetime was widely characterized. More recently, [4], it was proved that in a

GRW spacetime with warping function f such that − log f is convex, the only compact

CMC spacelike hypersurfaces are the slices. The authors used a different technique and

they needed no curvature assumption.

The main aim of this paper is to introduce a new technique to study CMC spacelike

hypersurfaces in GCS spacetimes and to give new uniqueness results for compact

CMC spacelike hypersurfaces in these ambient spacetimes, both in the parametric and

nonparametric cases. Its content is organized as follows. In Section 3, several results on

the global structure of GCS spacetimes are given. Since the orthogonal distribution to

the timelike conformal vector field is integrable, the leaves of the foliation are spacelike

hypersurfaces. In this setting, our first result gives a characterization of the spacetimes

which can be globally split as a GRW spacetime (Theorem 3.1).

A Lorentzian manifold (M, ḡ) admits a global decomposition as a GRW

spacetime if and only if it is a GCS spacetime with a timelike gradient conformal

vector field, K, such that the flow of its normalized vector field, Z, is well

defined and onto in a domain I × L, for some interval I ⊆ R and some leaf,

L, of the orthogonal foliation FK to K.

When the leaves of the foliation are compact, we can state Theorem 3.4.

Let (M, ḡ) be a GCS spacetime and let K be a timelike gradient conformal

vector field on M . Suppose that the leaves of FK are compact. Then (M, ḡ)

admits a global decomposition as a GRW spacetime.

The role of any potential function of the timelike gradient conformal vector field is

studied in Section 4. The results obtained are used in Section 5. On each compact

spacelike hypersurface of the spacetime, we consider the restriction of a potential

function. This function is constant if and only if the hypersurface is a leaf of the

orthogonal foliation FK . Our technique allows us to obtain new results under very few

assumptions. First, when the GCS spacetime is static, we can state, Corollary 5.3.

The only compact CMC spacelike hypersurfaces in a GCS spacetime whose

timelike gradient conformal vector field, K, is Killing, are the totally geodesic

leaves of the foliation FK.
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On the other hand, if the timelike gradient conformal vector field is homothetic, we

can characterize the compact CMC spacelike hypersurfaces of the spacetime, Corollary

5.7.

Let (M, ḡ) be a GCS spacetime with a timelike gradient homothetic vector field

K. The only compact CMC spacelike hypersurfaces in M on which the length

of K is constant are the leaves of the foliation FK.

Recall that if Z is the reference frame obtained from a timelike conformal

vector field K on an (n + 1)-dimensional spacetime, its divergence satisfies div(Z) =

nρ/
√
−ḡ(K,K), where ρ is the function such that LK ḡ = 2ρḡ. In consequence, if

ρ > 0, then div(Z) > 0, and so, the observers in Z are, on average, spreading

apart. If ρ < 0, then div(Z) < 0 and, consequently, the observers in Z come

together. Let γ be an observer in Z and assume (ρ/
√
−ḡ(K,K)) ◦ γ is decreasing.

In this case, the existence of t0 such that (ρ/
√
−ḡ(K,K))(γ(t0)) < 0, implies that

(ρ/
√
−ḡ(K,K))(γ(t)) < (ρ/

√
−ḡ(K,K))(γ(t0)) < 0, for all t > t0. Thus, the

assumption that the divergence is negative for at least one proper time t0 seem to

be relevant when analyzing a contracting universe towards a black hole (Theorem 5.9).

Let (M, ḡ) be a GCS spacetime and let K be a timelike gradient conformal

vector field on M . If (log
√
−ḡ(K,K)(γ(t)))′′ ≤ 0 holds for each integral

curve γ of Z, then the only compact CMC spacelike hypersurfaces in M are

the leaves of the foliation FK, which are totally umbilical with mean curvature

H = −ρ√
−ḡ(K,K)

.

In particular, our uniqueness results apply to compact CMC spacelike hypersurfaces

in GRW spacetimes. We characterize the slices as the only compact CMC spacelike

hypersurfaces in those spacetimes, under certain assumption on the warping function

and without imposing any condition on the fiber (Corollary 5.10). As previously said,

this result was obtained in [4], with a different technique which only works for GRW

spacetimes. Let us remark that the same problem was before studied in [1], using

Minkowski-type integral techniques, but assuming more restrictive curvature conditions.

In Section 6, we consider as setting an Einstein GRW spacetime. We extend and

improve the uniqueness results on compact CMC spacelike hypersurfaces obtained in

[2]. Theorems 6.1 and 6.2 close completely the open problems in the subject. Finally, in

Section 7, we deal with several Calabi-Bernstein type problems on compact Riemannian

manifolds (Theorems 7.2, 7.3).

Let (F, g) be a compact Riemannian manifold whose Ricci curvature is a non

positive constant c. Let H be a real constant and let f : R −→ R+ be one of the

functions in the cases from two to six of the table in Section 6. The only entire

solutions u ∈ C∞(F ), u(F ) ⊂ I, to the CMC spacelike hypersurface equation

(E) are the constant functions u = u0 such that −f ′(u0)/f(u0) = H.
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Let (F, g) be a compact Riemannian manifold with positive constant Ricci

curvature c, and let f be the function defined by

f(t) = aebt +
cn

4ac̄(n− 1)
e−bt,

where c̄ and a are positive constants and b =
√

c̄
n

. Let H be a real number.

Then

i) If H ∈ R\]− b, b[, there exists no solution to the CMC spacelike hypersurface

equation (E).

ii) If H ∈]−b, b[ and u ∈ C∞(F ), u(F ) ⊂ I, is a solution to the CMC spacelike

hypersurface equation (E), then

1

2b
log

(
cn(b+H)

4a2c̄(n− 1)(b−H)

)
∈ u(F ).

2. Preliminaries

A vector field K on a Lorentzian manifold (M, ḡ) is called conformal if the Lie derivative

of ḡ with respect to K satisfies

LK ḡ = 2ρḡ, (1)

where ρ is a (smooth) function. When ρ =constant, the vector field is called homothetic

and if, in particular, ρ = 0 then K is called Killing. The existence of a (nontrivial)

conformal vector field is a symmetry assumption for the metric tensor ḡ. In Relativity

this assumption has been widely used to obtain exact solutions of the Einstein equation.

Of course, a conformal vector field does not have a fixed causal character, but for

spacetimes it is natural to assume that K is timelike. In such a case the integral curves

of

Z =
1√

−ḡ(K,K)
K (2)

provide a family of privileged observers in spacetime. From now on we will denote the

length of K,
√
−ḡ(K,K), with the letter h.

For a given vector field K on M , let ω be the 1-form on M which is ḡ-equivalent to

K, i.e., ω(X) := ḡ(K,X) for any X ∈ X(M). When ω is closed, then it is locally exact

or equivalently, K is locally a gradient. Such a K is called closed and each smooth

function φ, defined on an open subset U of M such that K = ∇φ on U is called a

potential function of K on U , ∇ being the gradient on (M, ḡ). If we have K = ∇φ
globally, then K is called a gradient vector field and φ is a potential function of K. In

this case, if M̄ es connected, then any other potential function of K is φ + d, where

d ∈ R.

Let (M, ḡ) be a GCS spacetime and K a timelike gradient conformal vector field.

It is not difficult to show

∇XK = ρX (3)
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for any X ∈ X(M), ∇ being the Levi-Civita connection of M .

A direct computation from the previous formula gives us the following expression

of ρ

ρ =
K(h)

h
= Z(h), (4)

Z being the unit timelike vector field given in (2). From which we get that

∇ZZ = 0. (5)

On the other hand, the global Frobenius theorem guarantees the existence of a

n-foliation FK on M , such that K is normal to its leaves. It is not difficult to see that

the length of K, h, as well as the function ρ are constant on each leaf of FK . Using (3)

and the fact that h is constant, we deduce

∇YZ =
ρ

h
Y (6)

for any vector field Y such that ḡ(Y,K) = 0. And so,

LZ ḡ(X, Y ) = 2
ρ

h
ḡ(X, Y ) (7)

for any vector fields X, Y such that ḡ(X,Z) = ḡ(Y, Z) = 0. Combining (5) and (6), we

get LZω
′ = 0, where ω′ is the 1-form on M which is ḡ-equivalent to Z. Consequently,

any (local) flow of Z maps homothetically leaves of FK on leaves of FK , being each leaf

totally umbilical with constant mean curvature

H =
−ρ
h
, (8)

where H = −(1/n)traceA, A being the shape operator associated to −Z.

3. Global structure of GCS spacetimes and characterization of GRW

spacetimes

In this section we study the structure of GCS spacetimes. We will see that they are

a natural extension of the GRW spacetimes. This assertion is reaffirmed by the first

theorem of the section, which is a characterization of the spacetimes that admit a global

decomposition as a GRW spacetime.

First, let us notice some general facts about GCS spacetimes. The setting is the

same one as in the preliminaries.

Any GCS spacetime is stably causal. This follows from the fact that each global

potential function ofK is a smooth global time function, see [6, p. 64] (we are considering

the time-orientation given by −K). Even more, global potential functions of K are

constant along the leaves of FK .

From (6) it can be easily deduced that Z is irrotational, i.e., dω′(X, Y ) = 0 for any

X, Y orthogonal to Z. Therefore, if K is Killing, the GCS spacetime is static.
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Let f be a positive smooth function defined on an open interval I of R and let

(F, g) be a n-dimensional (n ≥ 2) Riemannian manifold. Consider I × F endowed with

the Lorentzian metric

〈 , 〉 = −π∗I (dt2) + f(πI)
2π∗F (g), (9)

where πI and π
F

denote the projections onto I and F , respectively. The Lorentzian

manifold (I × F, 〈 , 〉) is a warped product in the sense of [17, p. 204], with base

(I,−dt2), fiber (F, g) and warping function f . Following [1] we will refer to (I×F, 〈 , 〉)
as a Generalized Robertson-Walker (GRW) spacetime.

The vector field K = f(πI)∂t is timelike and satisfies (3) with ρ = f ′(πI), thus K

is a timelike gradient conformal vector field with φ = −Pf ◦ πI , where Pf is a primitive

function of f . Therefore, GRW spacetimes lie in the family of GCS spacetimes. Locally,

the converse is also true: i.e., for each point of a GCS spacetime there exists an open

neighborhood which is isometric to a GRW spacetime, see [13, 21]. Indeed, the family

of semi-Riemannian manifolds shown in [20, Sec. 3], whose members are called local

warped product manifolds, contains a wide subfamily of GCS spacetimes constructed

on certain fiber bundles over 1-dimensional basis.

Even more, if (M, ḡ) is a GCS spacetime with timelike gradient conformal vector

field K, we know that the normalized vector field Z is a timelike unit vector field

that is spatially conformal, (7). From (5) and (6) it is easy to check that it is also

closed and ∇divZ is proportional to Z. Using these facts, we arrive to the following

characterization.

Theorem 3.1 A Lorentzian manifold (M, ḡ) admits a global decomposition as a GRW

spacetime if and only if it is a GCS spacetime with a timelike gradient conformal vector

field, K, such that the flow of its normalized vector field, Z, is well defined and onto in

a domain I × L, for some interval I ⊆ R and some leaf of the orthogonal foliation to

K, L.

Proof. We know that the necessary condition is true. Let us focus on the converse. It

is clear that if we assume that Z is complete, from [12, Cor. 2.3, Rem. 2.4] and [17,

Prop. 7.7], the flow of Z

ϕ :
(
R× Lp,−dt2 + f 2(t)ḡ|Lp

)
−→M

is a normal Lorentzian covering for all p ∈ M , where f(t) = exp

(∫ t

0

divZ(ϕs(p))

n
ds

)
and Lp is the leaf of FZ through p. Even more, M is isometric to the quotient of R×Lp
by the group of deck transformations of ϕ.

Observe that the proofs of [12, Cor. 2.3, Rem. 2.4] remain true when Z is not

complete, but its flow is well defined and onto in a domain I × L, for some interval

I ⊆ R and some leaf L of the orthogonal foliation to K, FK .

The only remaining detail is proving that the group of deck transformations of ϕ is

trivial. This can be directly deduced from the following two facts. Any global potential
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function of K is a smooth global time function, and therefore is strictly decreasing on

any integral curve of Z. Any global potential function of K is constant along the leaves

of FK .

�
Our result extend [21, Th. 2.1], which was stated in the simply connected case. As

well as [12, Th. 3.2].

Remark 3.2 Notice that all the computations in the preliminaries remain true when

(M, ḡ) is a CS spacetime and K is closed. Those spaces are also static when K is

Killing. Even more, any CS spacetime with K closed is locally a GRW spacetime. But

it fails to be globally a GCS spacetime. For instance, the Misner cylinder spacetime

(S1×R, ḡ = −(dθ⊗ds+ds⊗dθ)) admits a timelike parallel vector field K = ∂θ+∂s which

is not globally a gradient, because the Misner cylinder is not causal. From Theorem 3.1

we know that in order to get a global splitting, we need K to be globally a gradient. If

we only ask K to be closed, we get that the spacetime is isometric to the quotient of

I × L by the group of deck transformations of ϕ, where L is a leaf of FK and ϕ is the

flow of Z.

Remark 3.3 The class of GCS spacetimes is bigger than the class of GRW spacetimes.

For instance, any open subset of a GRW spacetime is a GCS spacetime but clearly it

does not inherit the warped product structure, in general. Let us point out that the

techniques previously used in [1, 2, 4] to obtain uniqueness results for CMC spacelike

hypersurfaces in GRW spacetimes, do not work for general GCS spacetimes.

Notice that the assumption on the flow of Z trivially holds when Z is complete.

We will see that this assumption also holds when the leaves of FK are compact.

Consider a GCS spacetime, K a timelike gradient conformal vector field and let

ϕ : D −→M be the maximal local flow of the normalized vector field Z. If we suppose

that the leaves of FK are compact, then ϕt : Lp −→ Lϕt(p) is onto for any p ∈ M and

any t such that ϕt is well defined, and therefore, a diffeomorphism. Moreover, we are

going to see that ϕ is well defined in a domain I × L, I being an interval (a, b) and L
being a leaf of FK .

Suppose that I is the maximal interval where ϕ : I×L −→M is defined, let us see

that I is also the maximal definition interval of each integral curve with initial value on

L. Assume that there exists p0 ∈ L such that ϕ(t, p0) is defined in (a, b + ε). Consider

the leaf Lϕ(b,p0) and take δ > 0 such that (−δ, δ) × Lϕ(b,p0) ⊂ D. Now, if p ∈ L is an

arbitrary point, we can define the flow extension

ϕ̄(t, p) =


ϕ(t, p) if a < t < b

ϕ

(
t− b+

δ

2
, ϕ

(
b− δ

2
, p

))
if b− δ < t < b+ δ.

We have arrived to a contradiction.
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On the other hand, the set ϕ(I×L) is open in M . Consider q 6∈ ϕ(I×L), then if we

take the maximal interval J where ϕ : J ×Lq −→ is defined, ϕ(J ×Lq)∩ϕ(I ×L) = ∅.
In consequence ϕ(I × L) = M . Thanks to Theorem 3.1, we get the following result.

Theorem 3.4 Let (M, ḡ) be a GCS spacetime and let K be a timelike gradient

conformal vector field on M . Suppose that the leaves of FK are compact. Then (M, ḡ)

admits a global decomposition as a GRW spacetime.

4. Set up

Consider a (connected) spacelike hypersurface x : S −→M in a GCS spacetime (M, ḡ)

of dimension n + 1. Let us denote by g the induced metric on S (when M is a GRW

spacetime, we will agree to represent both ḡ and g by the same symbol as the one used

in (9)) and by φS := φ ◦x the restriction of a potential function φ of K on S. Note that

φS is constant if and only if Kp is orthogonal to S, for all p ∈ S.

The time orientability of M allows us to consider N ∈ X⊥(S) as the only, globally

defined, unit timelike normal vector field on S in the same time-orientation of −K, i.e.,

such that ḡ(K,N) > 0 holds on all S. Thus, for Z defined in (2), the wrong-way Schwarz

inequality (see [17, Prop. 5.30], for instance) gives ḡ(N,Z) ≥ 1 and the equality holds

at a point p if and only if N(p) = −Z(p). Recall that, when M is a GRW spacetime, a

spacelike hypersurface is called a slice if N = −∂t everywhere on S, i.e., t := πI ◦ x is a

constant or equivalently φS is constant.

Put KT := K + ḡ(K,N)N , the tangential component of K along x. It is easy to

see

∇φS = KT , (10)

where ∇ denotes the gradient operator of g. A standard computation allows us to write

∆φS = nρ+ nHḡ(K,N), (11)

where H denotes the mean curvature of S with respect to N and ∆ the Laplacian of

the induced metric (compare with [3, (2.1)]).

5. Mean curvature of a compact spacelike hypersurface in a GCS spacetime

Proposition 5.1 (Compare with [3, Prop. 2.1]) In a GCS spacetime, there is no

compact spacelike hypersurface whose mean curvature function H satisfies Hρ > 0.

Proof. If S is such a spacelike hypersurface, from (11) the function φ must be constant

and S is a leaf of the foliation FK with H = 0, which is a contradiction. �
We know that a GCS spacetime with a Killing gradient vector field is a static

spacetime. For those static GCS spacetimes we have the following two results.
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Proposition 5.2 In a GCS spacetime such that its timelike gradient conformal vector

field, K, is Killing, the only compact spacelike hypersurfaces whose mean curvature

function is signed (≤ 0 or ≥ 0) are the totally geodesic leaves of the foliation FK.

In particular, there is no compact spacelike hypersurface with strictly positive or

strictly negative mean curvature. And so, we get the following result for CMC spacelike

hypersurfaces.

Corollary 5.3 The only compact CMC spacelike hypersurfaces in a GCS spacetime

whose timelike gradient conformal vector field, K, is Killing, are the totally geodesic

leaves of the foliation FK.

We come back to the general case in which K is a timelike gradient conformal

vector field. And we consider the function h : S −→ R defined by h := h|S. From the

wrong-way Schwarz inequality [17, Prop. 5.30] we have ḡ(K,N) ≥ h, everywhere on

S. This inequality together with (11) provides the following wide extension of [1, Prop.

4.2].

Theorem 5.4 Let S be a compact CMC spacelike hypersurface in a GCS spacetime.

Let p0 and p0 be two points of S where φS attains local minimum and local maximum

values, respectively. The mean curvature H of S must satisfy

−ρ(p0)

h(p0)
≤ H ≤ −ρ(p0)

h(p0)
(12)

Proof. Note that KT (p0) = KT (p0) = 0 from (10), and, as consequence, we get the

equality ḡ(K,N) = h at the points p0 and p0. On the other hand, from (11) we have

ρ(p0) + h(p0)H ≥ 0 and ρ(p0) + h(p0)H ≤ 0,

which give the announced inequalities. �

Corollary 5.5 Let S be a compact CMC spacelike hypersurface in a GCS spacetime.

If ρ ≤ 0 (resp. ρ ≥ 0) on S, then the mean curvature H of S satisfies H ≥ 0 (resp.

H ≤ 0).

In the particular case in which h is constant, from (4) we get that K is Killing, and

so

Corollary 5.6 The only compact CMC spacelike hypersurfaces in a GCS spacetime

whose timelike gradient conformal vector field, K, has constant length, are the totally

geodesic leaves of the foliation FK.

Finally, if we only ask h to be constant on a compact CMC spacelike hypersurface

we get.

Corollary 5.7 Let (M, ḡ) be a GCS spacetime with a timelike gradient homothetic

vector field K. The only compact CMC spacelike hypersurfaces in M on which the

length of K is constant are the leaves of the foliation FK.
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Proof. Let S be a compact CMC spacelike hypersurface. Again from Theorem 5.4, we

have

H = −ρ
h
.

Now, from (11) we get ∆φS ≥ 0, and, therefore, φS must be constant. �

Remark 5.8 In a more general setting, under the same assumptions as in Theorem

5.4, if the function − ρ
h

on S attains its minimum (resp. maximum) at the point where

φS attains a local maximum (resp. a local minimum), then S is necessarily a leaf of the

foliation FK . In order to prove this assertion, note that we have H = −ρ
h

on S from

(12). Formula (11) reduces then to

∆φS
h

= nH( ḡ(Z,N)− 1 ).

Hence, the function φS is either subharmonic or superharmonic on a compact

Riemannian manifold, and thus it must be constant.

Next, we will see that the technical assumption on the critical points of φS and −ρ
h

in the previous remark, follow from a reasonable geometric assumption.

Let (M, ḡ) be a GCS spacetime, let K be a timelike gradient conformal vector field

on M and let Z be its normalized vector field.

Consider p ∈M and an integral curve γ(t) = ϕ(t, p) of Z passing through p. Note

that we have
d

dt

(
ρ(γ(t))

h(γ(t))

)
= (log h(γ(t)))′′ ,

from (4). Therefore, if we suppose that the function ρ
h

is decreasing on γ, then

(log h(γ(t)))′′ ≤ 0.

On the other hand, φ is a global time function. Therefore, φ is strictly decreasing

along any integral curve of Z.

Thus, we can state,

Theorem 5.9 Let (M, ḡ) be a GCS spacetime and let K be a timelike gradient

conformal vector field on M . Suppose that (log h(γ(t)))′′ ≤ 0 for each integral curve γ

of the normalized vector field Z, then the only compact CMC spacelike hypersurfaces are

the leaves of the foliation FK, which are totally umbilical with mean curvature H = −ρ
h

.

Proof. It is enough to see that the function − ρ
h |S attains its maximum (resp. minimum)

at a local minimum (resp. maximum) of the function φS and, then, we apply Remark

5.8.

Let q0 ∈ S such that −ρ
h

(q0) is maximum on S. Consider the closed set

Q0 =

{
q ∈ S /

−ρ
h

(q) =
−ρ
h

(q0)

}
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and let q0 ∈ Q0 such that φS(q0) is the minimum of φS on the compact set Q0. We are

going to proof that q0 is a local minimum of φS. Indeed, observe that ∇φS(q0) = 0.

Otherwise, S is transverse to the leaf Lq0 . Assume that q0 is not a local minimum of

φS. Take an open neighborhood, U(q0), where the local flow ϕ(t, p) is well defined. The

function φ(ϕ(t, p)) is strictly decreasing on t, for each fixed p ∈ U , and it is constant

on each leaf of FK . The function −ρ
h

(ϕ(t, p)) is increasing on t, for each fixed p ∈ U ,

and constant on each leaf of FK . From those facts and the choice of q̄0, we arrive to a

contradiction. An analogous reasoning asserts that q0 must be a local minimum of φS.

�
In particular, we widely extend [4, Th. 1] (and consequently [1, Theors. 5.1, 5.2]).

Corollary 5.10 In a GRW spacetime M whose warping function satisfies (log f)′′ ≤ 0,

the only compact CMC spacelike hypersurfaces are the slices.

Example 5.11 As an easy application, consider the family of GRW spacetimes Ma,b,

a ∈ R+, b ∈ R \ {0}, with base R, warping function f(t) = aebt and arbitrary fiber.

Clearly (log f)′′ = 0 holds. Therefore, if S is a compact CMC spacelike hypersurface in

Ma,b, then S is a slice with mean curvature H = −b.

Remark 5.12 Let M be a GRW spacetime, whose warping function satisfies (log f)′′ ≥
0. As a consequence of the Theorem 5.4, if S is a compact CMC spacelike hypersurface

in M with mean curvature H, then

−f ′(t(p0))

f(t(p0))
≤ H ≤ −f

′(t(p0))

f(t(p0))
.

Observe that maxφ(t(S)) = max −f
′(t(S))

f(t(S))
and minφ(t(S)) = min −f

′(t(S))
f(t(S))

. This may be

interpreted as that the mean curvature of the hypersurface is bounded by the minimum

and maximum values of the mean curvatures of the slices intersecting S.

Proposition 5.13 In a GRW spacetime M such that (log f)′′ ≤ 0 and f ′ ≤ 0 (resp.

f ′ > 0), there exists no compact CMC spacelike hypersurface in M such that its mean

curvature satisfies H < 0 (resp. H > 0).

Proof. Otherwise, from Theorem 5.4 there are points p0, p
0 ∈ S such that

H(p0) ≤ −f
′(t(p0))

f(t(p0))
≤ −f

′(t(p0))

f(t(p0))
≤ H(p0)

�

Proposition 5.14 Let M be a GRW spacetime whose warping function satisfies

(log f)′′ ≤ 0. If the mean curvature function H of a compact spacelike hypersurface

S in M satisfies H < 0 or H > 0, then S does not intersect any maximal slice.

Proof. From the inequality in the proof of the previous result, it follows that f ′ has no

zero on S. �
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6. CMC spacelike hypersurfaces in a Einstein GRW spacetime

In this section we deal with GRW spacetimes which are Einstein, i.e., its Ricci tensor

is proportional to its metric. If M has base I, fiber F and warping function f , it is

well-know that M is Einstein with Ric = c̄ 〈 , 〉, if and only if (F, g) has constant Ricci

curvature c and f satisfies the following differential equations

f ′′

f
=
c̄

n
and

c̄(n− 1)

n
=
c+ (n− 1)(f ′)2

f 2
(13)

Moreover, M has constant sectional curvature C̄ if and only if F has constant

sectional curvature C (that is, M is a classical Robertson-Walker spacetime) and f

satisfies (13) with c = (n− 1)C and c̄ = nC̄.

All the positive solutions to (13) were given in [2] and collected in the following

table (in each case, the interval of definition I of f is the maximal one where f is

positive.)

TABLE

1 c̄ > 0 c > 0 f(t) = aebt + cn
4ac̄(n−1)

e−bt, a > 0, b =
√
c̄/n

2 c̄ > 0 c = 0 f(t) = aeεbt, a > 0, ε = ±1, b =
√
c̄/n

3 c̄ > 0 c < 0 f(t) = aebt + cn
4ac̄(n−1)

e−bt a 6= 0, b =
√
c̄/n

4 c̄ = 0 c = 0 f(t) = a, a > 0

5 c̄ = 0 c < 0 f(t) = ε
√

−c
(n−1)

t+ a, ε = ±1

6 c̄ < 0 c < 0 f(t) = a1 cos(bt) + a2 sin(bt), a2
1 + a2

2 = cn/c̄(n− 1), b =
√
− c̄
n

Note that, from (13), we have

(n− 1)(log f)′′ =
c

f 2
.

Therefore, as a direct application of Corollary 5.10, we get the following wide extension

on [2, Cor. 5],

Theorem 6.1 Every compact CMC spacelike hypersurface in an Einstein GRW

spacetime, whose fiber has Ricci curvature c ≤ 0 (cases 2 to 6 of previous table), must

be a slice.

Now we will deal with the remaining case in the table. Consider a GRW spacetime

M , with fiber a Riemannian manifold with constant positive Ricci curvature c, (F, g),

and warping function f : R −→ R+ given by

f(t) = aebt +
cn

4ac̄(n− 1)
e−bt,
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where c̄ and a are positive constants and b =
√

c̄
n
. In this case, (log f)′′(t) = c

(n−1)f2(t)
>

0 and we know from Remark 5.12, that any compact CMC spacelike hypersurface S in

M with mean curvature H satisfies

−f ′(t(p0))

f(t(p0))
≤ H ≤ −f

′(t(p0))

f(t(p0))

where p0 = max t(S) and p0 = min t(S).

Since, we have
f ′(t)

f(t)
= b

(
1− 2cn

4a2c(n− 1)e2bt + cn

)
,

we get

−b ≤ f ′(t)

f(t)
≤ b,

and we are now in position to state the following result,

Theorem 6.2 Let M be a GRW spacetime whose fiber is a Riemannian manifold with

constant positive Ricci curvature c and warping function f : R −→ R+ given by

f(t) = aebt +
cn

4ac̄(n− 1)
e−bt,

where c̄ and a are positive constants, and b =
√

c̄
n

. There is no compact CMC spacelike

hypersurface in M with mean curvature H ≥ b or H ≤ −b. Even more, any compact

CMC spacelike hypersurface in M with mean curvature H ∈]− b, b[, intersects the only

slice in M with mean curvature H.

Remark 6.3 In the setting of the previous result, the only slice with mean curvature

H is the one given by t = 1
2b

log
(

cn(b+H)
4a2c̄(n−1)(b−H)

)
.

Remark 6.4 For the De Sitter spacetime, I = R, F = §n (the unit n-sphere), and

f(t) = cosh t, it is well-know that there exists a compact CMC spacelike hypersurface

with mean curvature H2 ≤ 1, which is not a slice. Therefore, Theorem 6.2 is the best

possible result in this direction for the case 1 of the table.

7. Calabi-Bernstein’s type results

An important family of spacelike hypersurfaces in a GRW spacetime are the spacelike

graphs. Recall that any spacelike hypersurface is locally a spacelike graph, globally

under additional assumptions [1, Sect. 3]. Let us briefly recall the notion of spacelike

graph. Consider a GRW spacetime (M, ḡ), with fiber a Riemannian manifold (F, g) and

warping function f : I −→ R+. Let u ∈ C∞(F ) be a function such that u(F ) ⊂ I.

Consider the graph of u in M

Fu := {(u(p), p) : p ∈ F} ⊂M.



CMC Hypersurfaces in GCS Spacetimes 15

The metric induced by (9) on Fu is written on F as follows

gu = −du2 + f(u)2g, (14)

where f(u) := f ◦ u. Therefore, Fu is spacelike if and only if | Du |< f(u) everywhere

on F , where Du denotes the gradient of u with respect to g. The unit timelike normal

vector field to Fu in the same time orientation of −∂t is

N =
−f(u)√

f(u)2 − |Du|2

(
∂t +

1

f(u)2
Du

)
.

It is not difficult to see that Fu is spacelike and has constant mean curvature H (relative

to N) if and only if u satisfies

div

(
Du

f(u)
√
f(u)2− | Du |2

)
= −nH − f ′(u)√

f(u)2− | Du |2

(
n+
| Du |2

f(u)2

)
(E.1)

| Du |< f(u), (E.2)

where div denotes the divergence operator of (F, g), f(u) := f ◦ u and f ′(u) := f ′ ◦ u.

Equation (E) is elliptic and it is the Euler-Lagrange equation of a relevant variational

problem, see [3, 8]. In fact, let (F, g) be a (connected) compact Riemannian manifold,

with dimension n ≥ 2 and let f be a positive smooth function defined on an open

interval I of R. Consider the class of smooth real valued functions u on F such that

u(F ) ⊂ I and | Du |< f(u) on all F . Over this class, consider the functional

A(u) :=

∫
F

f(u)n−1
√
f(u)2− | Du |2 dVg, (15)

where dVg is the canonical measure given by g. The Euler-Lagrange equation for critical

points of this functional, under the constraint∫
F

(∫ u

t0

f(t)ndt

)
dVg = constant, (16)

is precisely (E). Notice that A(u), given in (15), is the n-area of (F, gu) and (16) is

a volume constraint for the graph. Therefore, u is a critical point of (15) under the

constraint (16) if and only if Fu has constant mean curvature H. Equation (E) is then

called the constant mean curvature equation for spacelike graphs in M .

We end this paper with uniqueness and non-existence results for the equation (E).

The following two theorems widely extend the results [1, Th. 5.9] and [2, Th. 7],

respectively.

Theorem 7.1 Let (F, g) be a compact Riemannian manifold and let f : I −→ R+ be a

smooth function such that (log f)′′ ≤ 0. If H is a real constant, the only entire solutions

u ∈ C∞(F ), u(F ) ⊂ I, to the CMC spacelike hypersurface equation (E) are the constant

functions u = u0 such that −f ′(u0)
f(u0)

= H.
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Theorem 7.2 Let (F, g) be a compact Riemannian manifold whose Ricci curvature is

a non positive constant c. Let H be a real constant and let f : R −→ R+ be one of the

functions in the cases from two to six of the previous table. The only entire solutions

u ∈ C∞(F ), u(F ) ⊂ I, to the constant mean curvature differential equation (E) are the

constant functions u = u0 such that −f ′(u0)
f(u0)

= H.

Finally for the remaining case in the previous table, we get,

Theorem 7.3 Let (F, g) be a compact Riemannian manifold with positive constant

Ricci curvature c, and let f be the function defined by

f(t) = aebt +
cn

4ac̄(n− 1)
e−bt,

where c̄ and a are positive constants and b =
√

c̄
n

. Let H be a real number. Then

i) If H ∈ R\] − b, b[, there exists no solution to the CMC spacelike hypersurface

equation (E).

ii) If H ∈] − b, b[ and u ∈ C∞(F ), u(F ) ⊂ I, is a solution to the CMC spacelike

hypersurface equation (E), then

1

2b
log

(
cn(b+H)

4a2c̄(n− 1)(b−H)

)
∈ u(F ).
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