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The phase diagram of the penetrable square-well fluid is investigated through Monte Carlo
simulations of various nature. This model was proposed as the simplest possibility of combin-
ing bounded repulsions at short scale and short-range attractions. We prove that the model
is thermodynamically stable for sufficiently low values of the penetrability parameter, and in
this case the system behaves similarly to the square-well model. For larger penetration, there
exists an intermediate region where the system is metastable, with well defined fluid-fluid and
fluid-solid transitions, at finite size, but eventually becomes unstable in the thermodynamic
limit. We characterize the unstable non-extensive phase appearing at high penetrability, where
the system collapses into an isolated blob of a few clusters of many ovelapping particles each.

Keywords: Penetrable square-well model; thermodynamic stability; phase diagram; Monte
Carlo simulations; Gibbs ensemble

1. Introduction

Unlike simple fluids, complex fluids are typically characterized by a significant
reduction in the number of degrees of freedom, in view of the hierarchy of different
length and energy scales involved. As a result, coarse-grained potentials accounting
for effective interactions between a pair of the complex fluid units adopt analytical
forms that are often quite different from those considered paradigmatic for simple
fluids [1].

An important example of this class of potentials is given by those bounded at
small separations, thus indicating the possibility of a partial (or even total) in-
terpenetration. This possibility, completely unphysical in the framework of simple
fluids, becomes on the contrary very realistic in the context of complex fluids.
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While the true two-body interactions always include a hard-core part, accounting
for the fact that energies close to contact raise several orders of magnitude, effec-
tive interactions obtained upon averaging microscopical degrees of freedom may or
may not present this feature, depending on the considered particular system.

Interesting examples with no hard-core part are given by polymer solutions,
where effective polymer-polymer interactions can be argued to be of the Gaussian
form [2–4], and star polymers and dendrimers where the so-called penetrable sphere
(PS) model is frequently employed [5–7].

In spite of their markedly different phase behaviors [7], both these effective in-
teractions have the common attributes of being bounded at zero separation and
lacking an attractive part. The latter feature, however, appears to be particularly
limiting in view of the several sources of attractive interactions typical of polymer
solution, such as, for instance, depletion forces [4], that are typically accounted
through simple attractive square-well (SW) tails.

A tentative of combining both the penetrability at small separation and the
attraction at slighty larger scale, led to the introduction of the penetrable square-
well (PSW) potential [8–12]. This can be obtained either by starting from the
PS model and adding an attractive well, or by starting from the SW model and
reducing the infinite repulsive energy to a finite one. In this way, the model is
characterized by two length scales (the soft core and the width of the well) and
by two energy scales, the height εr of the repulsive barrier and the depth εa of the
attractive well.

The ratio εa/εr, hereafter simply referred to as “penetrability”, is a measure of
the accessibility of the repulsive barrier and, as we shall see, plays a very important
role in the equilibrium properties of the fluid. When εa/εr = 0, the PSW model
reduces to the PS model (if kBT/εr = finite, where T is the temperature) or to the
SW model (if kBT/εa = finite). In the latter case, the model exhibits a fluid-fluid
phase transition for any width of the attractive square well [13–17], this transition
becoming metastable against the formation of the solid for a sufficiently narrow
well [17]. As penetrability εa/εr increases, different particles tend to interpenetrate
more and more because this becomes energetically favorable (the precise degree
depending on the εa/εr ratio). As a result, the total energy may grow boundlessly
to negative values and the system can no longer be thermodynamically stable. The
next question to be addressed is whether this instability occurs for any infinitesi-
mally small value εa/εr > 0 or, conversely, whether there exists a particular value
where the transition from stable to unstable regime occurs.

As early as the late sixties, the concept of a well-behaving thermodynamic limit
was translated into a simple rule, known as Ruelle’s criterion [18, 19], for the suffi-
cient condition for a system to be stable. In a previous paper [8], we have discussed
the validity of Ruelle’s criterion for the one-dimensional PSW case and found that,
indeed, there is a well-defined value of penetrability εa/εr, that depends upon the
range of the attractive tail, below which the system is definitely stable. Within this
region, the phase behavior of the fluid is very similar to that of the SW fluid coun-
terpart. More recently [20], we have tackled the same issue in the three-dimensional
fluid. Here we build upon this work by presenting a detailed Monte Carlo study
of the phase diagram for different values of penetrability and well width. In this
case the PSW fluid is proven to satisfy Ruelle’s criterion below a well-defined value
of penetrability that is essentially related to the number of interacting particles
for a specific range of attractive interaction. For higher values of penetrability,
we find an intermediate region where, although the system is thermodynamically
unstable (non-extensive) in the limit N → ∞, it displays a “normal” behavior,
with both fluid-fluid and fluid-solid transitions, for finite number of particles N .
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The actual limit of this intermediate region depends critically upon the considered
temperatures, densities, and size of the system. Here the phase diagram is similar
to that of the SW counterpart, although the details of the critical lines and point
location depend upon the actual penetrability value. For even higher penetrability,
the system becomes unstable at any studied value of N and the fluid evolves into
clusters of overlapping particles arranged into an ordered phase at high concentra-
tion, with a phenomenology reminiscent of that displayed by the PS model, but
with non-extensive properties.

The remaining of the paper is organized as follows. In Section 2 we define the
PSW model and in Section 3 we set the conditions for Ruelle’s criterion to be valid.
The behavior of the system outside those conditions is studied in Section 4, where
we also determine the fluid-fluid coexistence curves for the PSW model just below
the threshold line found before; in Section 5 we determine the instability line, in
the temperature-density plane, separating the metastable normal phase from the
unstable blob phase. Section 6 is devoted to the fluid-solid transition and in Section
7 we draw some conclusive remarks and perspectives.

2. The Penetrable Square-Well model

The PSW model is defined by the following pair potential

φ(r) =





εr , r ≤ σ ,
−εa , σ < r ≤ σ + ∆ ,
0 , r > σ + ∆ ,

(1)

where εr and εa are two positive constants accounting for the repulsive and at-
tractive parts of the potential, respectively, ∆ is the width of the attractive square
well, and σ is diameter of the repulsive core.

As discussed above, this model encompasses both the possibility of a partial
interpenetration, with an energy cost typical of the soft-matter interactions given
by εr, and a short-range attraction typical of both simple and complex fluids given
by εa. Both descriptions can be clearly recovered as limiting cases of the PSW
potential: For εr → ∞ it reduces to the SW model, while for ∆ = 0 or εa = 0
one recovers the PS model [21, 22]. Figure 1 displays the characteristics of the
PSW potential (c), along with the two particular cases, SW (a) and PS (b). The
interplay between the two energy scales εr and εa gives rise to a number of rather
unusual and peculiar features that are the main topic of this paper.

In order to put the PSW model in perspective, let us briefly summarize the main
features of the SW and PS potentials.

The SW model has a standard phase diagram typical of a simple fluid, with a
fluid-fluid and a fluid-solid transitions in the intermediate range between the triple
and the critical points in the temperature-density plane. The fluid-fluid transition
becomes metastable, against crystallization, if the width of the well goes below a
certain value that has been estimated to be ∆ ≈ 0.25σ [17].

The PS fluid, on the other hand, does not display any fluid-fluid coexistence, in
view of the lack of any attractive interactions. The fluid-solid transition is, however,
possible and highly unconventional with the formation of multiple occupancy crys-
tals coupled with possible reentrant melting in the presence of a smoother repulsive
interaction, such as a Gaussian form [7, 23].

The PSW fluid combines features belonging to both limiting cases within a very
subtle interplay between the repulsive and attractive energy scale that affects its
thermodynamic stability [8–10].
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Figure 1. Sketch of the PSW potential used in the present work (c). This potential interpolates between
the SW potential (a) and of the PS potential (b). In the SW case (a), spherical particles have a perfect steric
hindrance of size σ (the particle diameter) and attractive interactions of range σ +∆ highlighted as a halo
in the picture. In the PS case (b), nearest-neighbor particles can partially interpenetrate, with some energy
cost εr, but have no attractive tail. In the PSW there is both the possibility of partial interpenetration
(with cost εr) and short-range SW attraction (with energy gain εa).

3. Ruelle’s stability criterion

The issue of thermodynamic stability has a long and venerable history, dating back
to the late sixties [18], and it is nicely summarized in Ruelle’s textbook that is a
standard reference for this problem [19].

A system is defined to be (Ruelle) thermodynamically stable [18, 19] if there
exists a positive number B, such that for the total potential energy ΦN for a
system of N particles it holds

ΦN ≥ −NB. (2)

The physical rationale behind this mathematical statement is that the ratio
−ΦN/N cannot grow unboundly as N increases if the system is to be well be-
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having, but must converge to a well defined limit. This is usually referred to as
Ruelle’s stability criterion.

Consider the PSW fluid. As density increases and temperature decreases, par-
ticles tend to lump together into clusters (“blobs”) as they pay some energetic
price set by εr but they gain a (typically larger) advantage due to the attraction
εa. Therefore, as the ratio εa/εr increases, one might expect to reach an unstable
regime with very few clusters including a large number of significantly overlapping
particles, so that ΦN is no longer proportional to N .

The ratio εa/εr (“penetrability”) plays in PSW fluids a very important role, as we
shall see in the following sections. In Ref. [10] we proved that the one-dimensional
(1D) PSW fluid satisfies Ruelle’s criterion if εa/εr ≤ 1/2(` + 1), where ` is the
integer part of ∆/σ. In this case, we are then guaranteed to have a well defined
equilibrium state.

Here we show that this result can be extended to a three-dimensional (3D) PSW
fluid in that Ruelle’s criterion is satisfied if εa/εr ≤ 1/f∆, where f∆ is the maximum
number of non-overlapping particles that can be geometrically arranged around a
given one within a distance between σ and σ + ∆. Of course, f∆ depends on the
width of the attractive interaction ∆. For ∆/σ <

√
2 − 1, for instance, one has

f∆ = 12, corresponding to a HCP closed packed configuration. In the following, we
will use a generic d-dimensional notation and consider d = 3 at the end.

The total potential energy of a PSW fluid formed by particles at positions
r1, . . . , rN can be written in general as

ΦN (r1, . . . , rN ) =
1
2

N∑

i=1

N∑

j 6=i

φ (|ri − rj |) (3)

Consider now such a configuration where particles are distributed in M clusters
along each direction, each made of s perfectly overlapped particles, and with differ-
ent clusters arranged in the close-packed configuration. In the Appendix we prove
that indeed this is the lowest possible energy configuration in the two-dimensional
(2D) case.

The total number of particles is N = Mds. As clusters are in a close-packed con-
figuration, particles of a given cluster interact attractively with all the particles of
those f∆ clusters within a distance smaller than σ+∆. Consequently, the potential
energy has the form

ΦN (M) =
1
2
Mds (s− 1) εr − Md

2
[f∆ − b∆(M)] s2εa. (4)

The first term represents the repulsive energy between all possible pairs of particles
in a given s-cluster, while the second term represents the attractive energy between
clusters. Here b∆(M) accounts for a reduction of the actual number of clusters
interacting attractively, due to boundary effects. This quantity clearly depends
upon the chosen value of ∆/σ but we can infer the following general properties

b∆(1) = f∆, b∆(M > 2) < f∆, lim
M→∞

b∆(M) = 0. (5)

In the 1D (with ∆/σ < 1) and 2D (with ∆/σ <
√

3 − 1) cases, ΦN (M) is given
by Eqs. (A1) and (A8), respectively, so that b∆(M) = 2M−1 (1D) and b∆(M) =
2(4M−1−M−2) (2D). In general, b∆(M) must be a positive definite polynomial of
degree d in M−1 with no independent term, its form becoming more complicated
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as d increases. However, we need not specify the actual form of b∆(M) for our
argument, but only the properties given in Eq. (5).

Eliminating s = N/Md in favor of M in Eq. (4) one easily gets

ΦN (M)
N

= −εr

2
+

N

2
εaM

−dF (M), (6)

where we have introduced the function

F (M) ≡ b∆(M)−
(

f∆ − εr

εa

)
. (7)

Note that F (M) is independent of N . If εa/εr < 1/f∆, F (M) is positive definite and
so ΦN/N has a lower bound (−εr/2) and the system is stable in the thermodynamic
limit. Let us suppose now that εa/εr > 1/f∆. In that case, F (1) = εr/εa > 0 but
limM→∞ F (M) = −(f∆ − εr/εa) < 0. Therefore, there must exist a certain finite
value M = M0 such that F (M) < 0 for M > M0. In the 1D (with ∆/σ < 1) and
2D (with ∆/σ <

√
3− 1) cases the values of M0 can be explicitly computed:

M0 =
(

1− εr

2εa

)−1

, (d = 1), (8)

M0 =
2 +

√
1 + εr/2εa

3

(
1− εr

6εa

)−1

, (d = 2). (9)

In general, it is reasonable to expect that M0 ∼ (1− εr/f∆εa)
−1. Regardless of the

precise value of M0, we have that limN→∞[−ΦN (M)]/N = ∞ for M > M0 and
thus the criterion (2) is violated.

This completes the proof that, if εa/εr < 1/f∆, the system is thermodynamically
stable as it satisfies Ruelle’s stability criterion, Eq. (2). Reciprocally, if εa/εr > 1/f∆

there exists a class of blob configurations violating Eq. (2). In those configurations
the N particles are concentrated on a finite (i.e., independent of N) number of clus-
ters, each with a number of particles proportional to N . For large N the potential
energy scales with N2 and thus the system exhibits non-extensive properties.

In three dimensions, f∆ = 12, 18, and 42 if ∆/σ <
√

2−1,
√

2−1 < ∆/σ <
√

3−1,
and

√
3− 1 < ∆/σ < 1, respectively, and so the threshold values are εa/εr = 1/12,

1/18, and 1/42, respectively. There might (and do) exist local configurations with
higher coordination numbers, but only those filling the whole space have to be
considered in the thermodynamic limit.

In general, Ruelle’s criterion (2) is a sufficient but not necessary condition for
thermodynamic stability. Therefore, in principle, if εa/εr > 1/f∆ the system may or
may not be stable, depending on the physical state (density ρ and temperature T ).
However, compelling arguments discussed in Ref. [19] show that the PSW system
with εa/εr > 1/f∆ is indeed unstable (i.e., non-extensive) in the thermodynamic
limit for any ρ and T . Notwithstanding this, even if εa/εr > 1/f∆, the system may
exhibit “normal” (i.e., extensive) properties at finite N , provided the temperature
is sufficiently high and/or the density is sufficiently low. It is therefore interesting to
investigate this regime with the specific goals of (i) defining the stability boundary
(if any) and (ii) outlining the fate of the SW-like fluid-fluid and fluid-solid lines
as penetrability increases. This will be discussed in the next section, starting from
the fluid-fluid coexistence lines.
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4. Effect of penetrability on the fluid-fluid coexistence

We have performed an extensive analysis of the fluid-fluid phase transition of the
three-dimensional PSW fluid by Gibbs Ensemble Monte Carlo (GEMC) simula-
tions [24–28]. In all cases we have started with the SW fluid (εa/εr = 0) and
gradually increased penetrability εa/εr until disappearance of the transition. Fol-
lowing standard prescriptions [24–28], we construct the fluid-fluid coexistence lines
using two systems (the gas and the liquid) that can exchange both volume and
particles in such a way that the total volume V and the total number of parti-
cles N are fixed and the pressure and chemical potential coincide in both systems.
N = 512 particles were used. By denoting with Li and Vi (i = v, l) the respective
sizes and volumes of the vapor and liquid boxes, we used 2N particle random dis-
placements of magnitude 0.15Li, N/10 random volume changes of magnitude 0.1
in ln[Vi/(V − Vi)], and N particle swaps between the gas and the liquid boxes, on
average per cycle.

Our code fully reproduces the results of Vega et al. [14] for the SW fluid, as
further discussed below. Figure 2 depicts some representative examples of the effect
of penetrability on the SW results at different well widths ∆/σ. As ∆/σ increases,
the upper limit set by Ruelle’s stability condition εa/εr ≤ 1/f∆ decreases, and lower
penetrability values εa/εr have to be used to ensure the existence of the transition
line. In Fig. 2, values εa/εr = 1/6, 1/8, 1/11 were used for ∆/σ = 0.25, 0.5, 1,
respectively. Figure 2 also includes an estimate of the critical points for the PSW
fluid obtained from the law of rectilinear diameters, as discussed in Ref. [14], that
is

ρl + ρv

2
= ρc + A(Tc − T ) , (10)

where ρl (ρv) is the density of the liquid (vapor) phase, ρc the critical density
and Tc the critical temperature. Furthermore, the temperature dependence of the
density difference of the coexisting phases is fitted to the following scaling form

ρl − ρg = B(Tc − T )β , (11)

where the critical exponent for the three-dimensional Ising model β = 0.32 was
used to match the universal fluctuations. Amplitudes A and B where determined
from the fit.

A detailed collection of the results corresponding to Fig. 2(a), (b), and (c) is
reported in Table 1.

Note that seemingly stable transition curves are found in all representative cases
depicted in Fig. 2, thus suggesting a “normal” fluid behavior for the finite-size sys-
tem studied. Increasing penetrability εa/εr at fixed ∆/σ progressively destabilize
the transition, until a threshold value (εa/εr)th is reached where no fluid-fluid tran-
sition is observed. Upon changing ∆/σ, one can then draw a line of this values in the
εa/εr and ∆/σ plane. This is depicted in Fig. 3, where the instability line (εa/εr)th
is found to decrease as ∆/σ increases, thus gradually reducing the region where the
fluid-fluid transition can be observed, as expected. The shadowed stepwise region
identifies the thermodynamically stable region, as guaranteed by Ruelle’s crite-
rion εa/εr ≤ 1/f∆ discussed above. Note that points (∆/σ = 0.25, εa/εr = 1/6),
(∆/σ = 0.5, εa/εr = 1/8), and (∆/σ = 1, εa/εr = 1/11), corresponding to the
values used in Fig. 2 and highlighted by circles, lie in the 1/f∆ ≤ εa/εr ≤ (εa/εr)th
region, that is, outside the stable range guaranteed by Ruelle’s criterion.
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Figure 2. Fluid-fluid coexistence lines for different well widths ∆/σ and penetrabilities εa/εr. The SW
results are those by Vega et al. [14] for the same value of ∆/σ. Circles and boxes represent the estimated
critical points for the PSW and the SW fluids, respectively, and the dotted lines represent the coexistence
curves for the PSW case. (a) ∆/σ = 0.25 and εa/εr = 1/6; (b) ∆/σ = 0.5 and εa/εr = 1/8; (c) ∆/σ = 1
and εa/εr = 1/11.
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∆/σ = 0.25, εa/εr = 1/6
kBT/εa ρvσ

3 ρlσ
3 uv/εa ul/εa µv − kBT lnΛ3 µl − kBT lnΛ3

0.66 0.0377(6) 0.5634(6) −0.343(8) −3.441(13) −2.410(7) −2.51(12)
0.70 0.0724(15) 0.5256(15) −0.614(16) −3.100(13) −2.253(5) −2.27(6)
0.73 0.1093(45) 0.4805(42) −0.862(38) −2.920(45) −2.157(12) −2.29(8)
0.75 0.1684(95) 0.4368(95) −1.204(67) −2.682(27) −2.211(8) −2.01(2)

∆/σ = 0.5, εa/εr = 1/8
kBT/εa ρvσ

3 ρlσ
3 uv/εa ul/εa µv − kBT lnΛ3 µl − kBT lnΛ3

1.00 0.0194(4) 0.5900(7) −0.254(7) −4.687(9) −4.19(2) −4.16(5)
1.05 0.0319(5) 0.5841(17) −0.400(9) −4.603(14) −4.00(1) −4.01(3)
1.10 0.0529(8) 0.5557(8) −0.651(14) −4.365(6) −3.832(6) −3.83(4)
1.15 0.0799(15) 0.5173(17) −0.934(18) −4.087(15) −3.726(7) −3.76(4)
1.20 0.1342(37) 0.4728(40) −1.464(40) −3.777(26) −3.642(6) −3.64(2)

∆/σ = 1.0, εa/εr = 1/11
kBT/εa ρvσ

3 ρlσ
3 uv/εa ul/εa µv − kBT lnΛ3 µl − kBT lnΛ3

2.35 0.0327(4) 0.5920(11) −0.693(8) −8.931(12) −8.90(2) −8.87(6)
2.45 0.0476(5) 0.5593(16) −1.004(11) −8.439(21) −8.66(1) −8.61(3)
2.50 0.0577(8) 0.5844(12) −1.201(17) −8.653(17) −8.54(2) −8.59(5)
2.54 0.0670(12) 0.5511(37) −1.377(25) −8.231(42) −8.48(2) −8.51(2)
2.58 0.0769(9) 0.5361(19) −1.556(20) −8.030(22) −8.41(1) −8.38(3)

Table 1. Vapor-liquid coexistence data from GEMC of N = 512 PSW particles with ∆/σ = 0.25 and εa/εr = 1/6

(top table), ∆/σ = 0.5 and εa/εr = 1/8 (central table) and ∆/σ = 1.0 and εa/εr = 1/11 (bottom table).

We used 107 MC steps. T , ρi, ui, µi are, respectively, the temperature, the density, the internal energy per

particle, and the chemical potential of the vapor (i = v) or liquid (i = l) phase (Λ being the thermal de Broglie

wavelength). Numbers in parentheses correspond to the error on the last digits. The estimated critical points

are kBTc/εa = 0.762 and ρcσ3 = 0.307.(top table), kBTc/εa = 1.241 and ρcσ3 = 0.307 (central table) and

kBTc/εa = 2.803 and ρcσ3 = 0.292 (bottom table)

5. Stable, unstable, and metastable phases

Interestingly, in Ruelle’s textbook [19], the three-dimensional PSW model corre-
sponding to point (∆/σ = 1, εa/εr = 1/11) is exploited as an example of “catas-
trophic” fluid (see especially Fig. 4 and proposition 3.2.2 both in Ref. [19]). This is
clearly because this state point lies outside the stable region identified by Ruelle’s
criterion, as discussed. As already remarked, however, this criterion does not neces-
sarily imply that outside this region the system has to be unstable, but only that it
is “likely” to be so. There are then two possibilities. First, that in the intermediate
region 1/f∆ ≤ εa/εr ≤ (εa/εr)th the system is indeed stable in the thermodynamic
limit, a case that is not covered by Ruelle’s criterion. Numerical results reported
in Figs. 2 and 3 appear to support this possibility. The second possibility is that,
even in this region, the system is strictly unstable, in the thermodynamic limit,
but it appears to be a “normal” fluid when considered at finite N . This possibility
cannot be ruled out by any simulation at finite N , and would be more plausible as
hinted by Ruelle’s arguments.

In order to illustrate the fact that, at finite N , the system in the intermediate
region 1/f∆ ≤ εa/εr ≤ (εa/εr)th behaves as a normal fluid, in Fig. 4 we show two
representative snapshots of the gas and the liquid phases at the point (∆/σ =
0.5, εa/εr = 1/8) that lies just below the (εa/εr)th line (see Fig. 3). In both the gas
and the liquid phases, the structure of the fluid presents the typical features of a
standard SW fluid, with no significant overlap among different particles.

On the other hand, we have observed that above the threshold line (εa/εr)th
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Figure 3. Plot of penetrability εa/εr as a function of ∆/σ. The displayed (εa/εr)th line separates the
parameter region where the PSW model, with N = 512, admits a fluid-fluid phase transition (below this
line) from that where it does not. The shadowed stepwise line highlights the region (εa/εr ≤ 1/12 for

∆/σ <
√

2 − 1, εa/εr ≤ 1/18 for
√

2 − 1 < ∆/σ <
√

3 − 1, and εa/εr ≤ 1/42 for
√

3 − 1 < ∆/σ < 1)
where the model is guaranteed to be thermodynamically stable for any thermodynamic state by Ruelle’s
criterion. The SW model falls on the εa/εr = 0 axis (with finite kBT/εa). The vertical dashed arrow points
to the SW value ∆/σ . 0.25 below which the fluid-fluid transition becomes metastable against the freezing
transition [17]. The circles are the points chosen for the calculation of the coexistence lines (Figs. 2 and
9), while the crosses are the points chosen for the determination of the boundary phases discussed in Figs.
5 and 6.

of Fig. 3, at a temperature close to the critical temperature of the corresponding
SW system, the GEMC simulation evolves towards an empty box and a collapsed
configuration in the liquid box.

The second scenario described above can be supported or disproved by a finite-
size study of the N -dependence of the transition, as described below.

Assume that at any finite N , the absolute minimum of the internal energy corre-
sponds to the “collapsed” non-extensive configurations, referred to as “blob phase”
in the following. As discussed in section 3, the internal energy of these configura-
tions scales with N2 for large N . However, the system presumably also includes a
large number of “normal” configurations with an internal energy that scales linearly
with N . This will be referred to as “normal phase”.

There is then an energy gap between the total energy associated with the nor-
mal and the collapsed configurations with an energy ratio of order N . For finite
N and sufficiently high temperature, the Boltzmann statistical factor e−ΦN/kBT of
the collapsed configurations (in spite of the gap) might be not sufficiently large to
compensate for the fact that the volume in phase space corresponding to normal
configurations has a much larger measure (and hence entropy) than that corre-
sponding to collapsed configurations. As a consequence, the physical properties
look like normal and one observes a normal phase. Normal configurations have a
higher internal energy but also may have a larger entropy. If N is sufficiently small
and/or T is high enough, normal configurations might then have a smaller free
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Figure 4. Two GEMC simulation snapshots (N = 512) at ∆/σ = 0.5, εa/εr = 1/8 (below the threshold
value) and kBT/εa = 1.20. The one on the top panel corresponds to the gas phase (ρvσ3 = 0.1342), and
the one on the bottom to the liquid phase (ρlσ

3 = 0.4728).

energy than collapsed configurations. On the other hand, the situation is reversed
at larger N and finite temperature, where the statistical weight (i.e., the inter-
play between the Boltzmann factor and the measure of the phase space volume) of
the collapsed configurations becomes comparable to (or even larger than) that of
the normal configurations and physical properties become anomalous. This effect
could be avoided only if T grows (roughly proportional to N) as N increases, since
entropy increases more slowly with N than ΦN .

In a PSW fluid above the stable region (εa/εr > 1/f∆), we have then to discrim-
inate whether the system is truly stable in the thermodynamic limit N →∞, or it
is metastable, evolving into an unstable blob phase at a given value of N depending
on temperature and density.

In order to shed some more light into this dual metastable/unstable scenario,
we performed NVT Monte Carlo simulations using N = 512 particles initially
distributed uniformly within the simulation box (“regular” initial condition). We
carefully monitored the total potential energy of the fluid during the simulation
and found that, at any given density, there exists a certain temperature Tins(ρ),
such that the system behaves normally after 107N single particle moves (normal
phase) if T > Tins and collapses to a few clusters of overlapped particles (blob
phase) for T < Tins.

This is shown in Fig. 5 for ∆/σ = 0.5 and two different penetrability values:
εa/εr = 1/4 (upper dashed line) and εa/εr = 1/7 (lower solid line). The first
value lies deeply in the instability region above the threshold (εa/εr)th value of
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Figure 5. Regions of the phase diagram where the PSW fluid, with ∆/σ = 0.5 and two different values of
εa/εr, is expected to exhibit a normal phase (above the instability line) or a blob phase (below the instability
line) for N = 512 particles. Note that the instability line corresponding to the higher penetrability case
(εa/εr = 1/4, dashed line) lies above the one corresponding to the lower penetrability (εa/εr = 1/7, solid
line). The two insets depict representative snapshots of respective typical configurations.

Fig. 3, while the second is sitting right on its top, for this value ∆/σ = 0.5 of the
well width. Also depicted are two snapshots of two representative configurations
found under these conditions. While the particles in the normal phase, T > Tins,
are arranged in a disordered configuration that spans the whole box (see upper
snapshot of Fig. 5), one can clearly see that for T < Tins a “blob” structure has
nucleated around a certain point within the simulation box with a few droplets of
several particles each (see lower snapshot of Fig. 5).

The three fluid-fluid coexistence phase diagrams displayed in Fig. 2 are then rep-
resentative of a metastable normal phase that persists, for a given N , up to (εa/εr)th
as long as the corresponding critical point (ρc, Tc) is such that Tc > Tins(ρc), as in
the cases reported in Fig. 2. Below this instability line, the fluid becomes unstable
at any density and a blob phase, where a few large clusters nucleate around certain
points and occupy only a part of the simulation, is found. The number of clusters
decreases (and the number of particles per cluster increases) as one moves away
from the boundary line found in Fig. 5 towards lower temperatures. Here a cluster
is defined topologically as follows. Two particles belong to the same cluster if there
is a path connecting them, where we are allowed to move on a path going from one
particle to another if the centers of the two particles are at a distance less than σ.

These results, while not definitive, are strongly suggestive of the fact that even
the normal phase is in fact metastable and becomes eventually unstable in the
N → ∞ limit This can be further supported by a finite size scaling analysis at
increasing N , as reported in Fig. 6 in the higher penetrability (and hence most
demanding) case εa/εr = 1/4. In obtaining these results, we used NVT simulations
with 1010 single particle moves in all cases.

As expected, the instability temperature line Tins(ρ) moves to higher values as N
increases, at fixed density ρσ3, from N = 100 to N = 2000, and the normal phase
region significantly shrinks accordingly, being expected to vanish in the thermody-
namic limit N →∞.

As said before, in all the above computations we started with a regular initial
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Figure 6. Size dependence of the instability line of Fig. 5 for the system εa/εr = 1/4 and ∆/σ = 0.5.

condition having all particles randomly distributed in the entire available simula-
tion box. Under these circumstances, for T < Tins (where all particles are confined
into a blob of a few clusters) a large number of MC steps is required in order to find
the true equilibrium distribution. On the other hand, if we have a clustered config-
uration to start with, a much higher “melting” temperature Tins, above which one
recovers a normal phase, is expected. This “hysteresis” effect is indeed observed,
as detailed below.

For εa/εr = 1/7, ∆/σ = 0.5, and ρσ3 = 1.0 the normal-to-blob transition occurs
upon cooling at kBT/εa ≈ 2.75. Inserting the obtained configuration back in the
MC simulation as an initial condition, and increasing the temperature, we find the
blob phase to persist up to much higher temperatures kBT/εa ≈ 4. The hysteresis
is also found to be strongly size dependent. With the same system εa/εr = 1/7,
∆/σ = 0.5, but for ρσ3 = 0.6, we found the blob-to-normal melting temperatures
to be kBT/εa = 2–3 for N = 256, kBT/εa = 4–5 for N = 512, and kBT/εa = 6-7
for N = 1024. Analogously, in the state εa/εr = 1/4, ∆/σ = 0.5, and ρσ3 = 0.3, the
results are kBT/εa = 2.1–2.2, kBT/εa = 3.7–3.8, kBT/εa = 9.0–9.1, and kBT/εa =
31–32 for N = 100, N = 200, N = 512, and N = 2000, respectively.

In the interpretation of the size dependence of the hysteresis in the melting, one
should also consider the fact that the blob occupies only part of the simulation box
and therefore a surface term has a rather high impact on the melting temperature.

Additional insights on the sudden structural change occurring on the fluid upon
crossing the threshold line (εa/εr)th can be obtained by considering the radial
distribution function (RDF) g(r) [29] on two state points above and below this
line. We consider a state point at ∆/σ = 0.5, kBT/εa = 1.20, and ρσ3 = 0.7 and
evaluate the RDF at εa/εr = 1/8 (slightly below the threshold line, see Fig. 3) and
at εa/εr = 1/7. The latter case is sitting right on the top of the threshold line,
according to Fig. 3. The results are depicted in Fig. 7.
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Figure 7. Radial distribution function for the PSW model at ∆/σ = 0.5, kBT/εa = 1.20, and ρσ3 = 0.7
for two different values of the penetrability parameter εa/εr: εa/εr = 1/8 (lying below the threshold line
given in Fig. 3) and εa/εr = 1/7 (that is on the top of it). The g(r) axis is in a log scale.

Drastic changes in the structural properties of the PSW liquid are clearly no-
ticeable. While in the normal phase (εa/εr = 1/8) the RDF presents the typical
features of a standard fluid for a soft-potential and, in particular, converges to
unity, in the blob phase (εa/εr = 1/7), the RDF presents a huge peak (note the
log-scale) at r = 0 and decays to zero after the first few peaks, a behavior that is
suggestive of clustering and confinement of the system. The amplitude of the first
maximum in the structure factor grows past the value of 2.85, which is typically
reckoned for an indication for a freezing occurring in the system, according to Ref.
[30].

As a further characterization of the structural ordering of the system, we have
also investigated a set of rotationally invariant local order indicators that have
been often exploited to quantify order in crystalline solids, liquids, and colloidal
gels [29]:

Ql =

√√√√ 4π

2l + 1

l∑

m=−l

∣∣Q̄lm

∣∣2 , (12)

where Q̄lm is defined as

Q̄lm =
∑Nc

i=1 Nb(i)q̄lm(i)∑Nc

i=1 Nb(i)
, (13)
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εa/εr = 1/4
ρσ3 kBT/εa Nc Q6 u/εa

0.1 1.0 13 0.04 -60
0.2 1.5 24 0.10 -57
0.3 1.7 115 0.03 -21
0.4 1.9 132 0.05 -19
0.5 2.1 116 0.05 -18
0.6 2.4 98 0.07 -19
0.7 2.6 84 0.04 -18
0.8 2.9 98 0.11 -19
0.9 3.2 74 0.09 -22
1.0 3.6 67 0.05 -23

εa/εr = 1/7
ρσ3 kBT/εa Nc Q6 u/εa

0.1 1.0 51 0.12 -25
0.2 1.0 39 0.06 -37
0.3 1.0 41 0.05 -37
0.4 1.0 42 0.07 -33
0.5 1.1 50 0.29 -24
0.6 1.0 38 0.07 -36
0.7 1.7 55 0.05 -22
0.8 2.1 58 0.11 -22
0.9 2.4 60 0.06 -21
1.0 2.8 62 0.06 -21

Table 2. Number of clusters, Q6 parameter, and internal energy per particle for the non-extensive phases found

in the case ∆/σ = 0.5 and εa/εr = 1/4 (top table) and εa/εr = 1/7 (bottom table), just below the curves of

Fig. 5. The parameter Q6 was calculated on the final equilibrated particle configuration only, with a neighbor

distance of 1.5σ in all cases.

where Nc is the number of clusters and

q̄lm (i) =
1

Nb (i)

Nb(i)∑

j=1

Ylm (r̂ij) . (14)

Here Nb(i) is the set of bonded neighbors of the i-th cluster, the unit vector r̂ij

specifies the orientation of the bond between clusters i and j, and Ylm(r̂ij) are the
corresponding spherical harmonics.

A particularly useful probe of the possible crystal structure of the system is a
value of Q6 close to unity (see Appendix A of Ref. [29]). Results for Q6 from the
PSW model are reported in Table 2 for the two values of penetrability considered
in Fig. 5 (εa/εr = 1/4 and εa/εr = 1/7). In order to compute Q6, the center
of mass of each cluster (as topologically defined before) is identified. Then, the
cutoff distance for the nearest-neighbors “bonds” is selected to be approximately
equal to the second minimum of g(r) (r ≈ 1.5σ). As detailed in Table 2, we find
0.03 ≤ Q6 ≤ 0.1 for εa/εr = 1/4 (top table) and 0.05 ≤ Q6 ≤ 0.12 for εa/εr = 1/7
(bottom table), depending on the considered values of temperature and density.
These values have been computed with N = 512 particles but an increase up to
N = 1024 yields only a slight increase of Q6. Besides Q6, in Table 2 we report
other properties of the blob phases found with ∆/σ = 0.5 and εa/εr = 1/4 and
εa/εr = 1/7, such as the number of clusters and the internal energy per particle
u/εa. We observe that the number of clusters is rather constant (typically 40–60) for
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penetrability εa/εr = 1/7. For the higher penetrability εa/εr = 1/4 the number of
clusters is generally larger, as expected, but is quite sensitive to the specific density
and temperature values. As for the internal energy per particle, we observe that
its magnitude is always more than four times larger than the kinetic contribution
3
2kBT .

No conclusive pattern appears from the analysis of results of Table 2, as there
seems to be no well-defined behavior in any of the probes as functions of temper-
ature and density, and this irregular behavior can be also checked by an explicit
observation of the corresponding snapshots. Nonetheless, these results give no in-
dications of the formation of any regular structure.

The final conclusion of the analysis of the fluid-fluid phase diagram region of the
PSW model is that the system is strictly thermodynamically stable for εa/εr <
1/f∆ and strictly thermodynamically unstable above it, as dictated by Ruelle’s
stability criterion. However, if εa/εr > 1/f∆ there exists an intermediate region
where the system looks stable for finite N and becomes increasingly unstable upon
approaching the thermodynamic limit.

The next question we would like to address is whether this scenario persists in the
fluid-solid transition, where already the PS model displays novel and interesting
features. This is discussed in the next section.

6. The fluid-solid transition

It is instructive to contrast the expected phase diagram for the SW model with
that of the PSW model.

Consider the SW system with a width ∆/σ = 0.5 that is a well-studied interme-
diate case where both a fluid-fluid and a fluid-solid transition have been observed
[17]. The corresponding schematic phase diagram is displayed in Fig. 8 (top panel),
where the critical point is (kBTc/εa = 1.23, ρcσ

3 = 0.309) in the temperature-
density plane, and its triple point is (kBTt/εa = 0.508, Ptσ

3/εa = 0.00003) in the
temperature-pressure plane, with ρlσ

3 = 0.835 and ρsσ
3 = 1.28 [17]. In Ref. [17] no

solid stable phase was found for temperatures above the triple point, meaning that
the melting curve in the pressure-temperature phase diagram is nearly vertical (see
Fig. 8, top panel). Motivated by previous findings in the fluid-fluid phase diagram,
we consider the PSW model with ∆/σ = 0.5 and two different penetrability values
εa/εr = 1/15 and εa/εr = 1/8 in the intermediate region 1/f∆ ≤ εa/εr ≤ (εa/εr)th
(see Fig. 3), where one expects a normal behavior for finite N , but with different
details depending on the chosen penetrability. In the present case, the first chosen
value (εa/εr = 1/15) lies very close the boundary (εa/εr = 1/f∆) of the stability
region predicted by Ruelle’s criterion, whereas the second chosen value lies, quite
on the contrary, close to the threshold curve (εa/εr)th.

We have studied the system by isothermal-isobaric (NPT) MC simulations, with
a typical run consisting of 108 MC steps (particle or volume moves) with an equi-
libration time of 107 steps. We considered N = 108 particles and adjusted the
particle moves to have acceptance ratios of approximately 0.5 and volume changes
to have acceptance ratios of approximately 0.1. Note that the typical relaxation
time in the solid region is an order of magnitude higher than that of the liquid
region.

Consider the case εa/εr = 1/8 first. The result for the isotherm kBT/εa = 1 is
reported in Fig. 9, this temperature being smaller than the critical one kBTc/εa =
1.241. From this figure we can clearly see the jumps in the density corresponding
to the gas-liquid coexistence region and to the liquid-solid coexistence region. On
the basis of the obtained results, we can foresee a phase diagram of the PSW
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Figure 8. Schematic phase diagram of the SW fluid for ∆/σ = 0.5 (top panel) and phase diagram of the
PSW fluid for ∆/σ = 0.5 and εa/εr = 1/8 (bottom panel).

system for this particular value of penetrability to be the one sketched in Fig. 8
(bottom panel). In particular, the melting curve has a positive slope in the pressure-
temperature phase diagram, unlike the almost vertical slope of the SW counterpart,
as discussed. This implies that penetrability allows for a “softening” of the liquid-
solid transition, so the liquid and the solid can coexist at a temperature higher
than the triple one without the need of a huge increase of pressure.

Next we also consider a fluid with εa/εr = 1/15, just outside the Ruelle stability
region, at the same temperature as before. The results are also reported in Fig. 8
and show no indications of a stable solid in the considered range of pressures, in
agreement with the fact that at this very low value of penetrability the behavior
of the system is very close to the SW counterpart.

A specific interesting peculiarity of the PSW system in the intermediate region
1/f∆ ≤ εa/εr ≤ (εa/εr)th of Fig. 3 is a lack of full consistency with known thermo-
dynamic relations. In this case, in fact, unlike the SW counterpart, we were unable
to trace the coexistence curve between the liquid and the solid using Kofke’s method
[31, 32], which is equivalent to the numerical integration of the Clausius–Clapeyron
equation

(
d ln P

dβ

)

c

= − ∆h

βP∆v
, β ≡ 1

kBT
, (15)

with ∆h = hl−hs and ∆v = vl−vs, where hi and vi denote, respectively, the molar
enthalpy and volume of phase i (i = l for the liquid phase and i = s for the solid
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Figure 9. Isotherm kBT/εa = 1 for the PSW system with ∆/σ = 0.5 and εa/εr = 1/8 and εa/εr = 1/15,
as obtained from NPT MC simulations with N = 108 particles. The pressure axis is in logarithmic scale.
Three views of the same snapshot of the centers of mass of the clusters in the solid are shown on the
right-hand side.

phase); the subscript c indicates that the derivative is taken along the coexistence
line. Once a single point on the coexistence curve between the two phases is known
one can use a trapezoid integration scheme [32] to integrate Eq. (15).

In our calculation, we have selected a penetrability εa/εr = 1/8 and the isotherm
of Fig. 8, kBT/εa = 1, as a reference point. The coexistence pressure at that
temperature is Pσ3/εa ≈ 0.475 and the molar volume jump is ∆v/σ3 ≈ 1/0.775−
1/1.313 ≈ 0.529. We have then calculated the molar enthalpy in the NPT ensemble
by computing 〈PV + U〉/N (where U is the total internal energy of the system)
with the result ∆h/εa ≈ −5.042 − (−7.593) = 2.551. Choosing a spacing in β of
−0.05/εa we get from Eq. (15) a predicted coexistence pressure Pσ3/εa ≈ 0.789 at
kBT/εa = 1/0.95 ' 1.053. Instead, however, at the latter temperature we found
the coexistence pressure between 0.5 and 0.6. Despite this quantitative discrepancy,
Eq. (15) is useful to understand that the relatively mild slope of the PSW liquid-
solid coexistence line in the pressure-temperature phase diagram is essentially due
to the fact that the internal energies of the coexisting liquid and solid phases are
not too disparate.

A close inspection of several snapshots of the obtained solid phase suggests that,
in the intermediate penetrability case, the obtained crystal is made of clusters of
overlapping particles located at the sites of a regular crystal lattice with Q6 ≈ 0.35
[29] and a triclinic structure characterized by a unit cell of sides a = b = c = σ and
angles α = β = π/3 and γ = cos−1(1/4) (see three views of a common snapshot in
Fig. 9).

It is worth stressing that the additional degree of penetrability, not present in
the SW counterpart, is responsible for the coexistence of the liquid and the solid at
not excessively large pressures. Clearly, we cannot rule out the possibility of other
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additional solid-solid coexistence regions at higher pressures.

7. Conclusions

In this paper, we have studied the phase diagram of the three-dimensional PSW
model. This model combines penetrability, a feature typical of effective potential
in complex fluids, with a square-well attractive tail, accounting for typical effective
attractive interactions that are ubiquitous in soft matter. It can then be regarded
as the simplest possible model smoothly interpolating between PS (εa/εr → 0,
kBT/εr = finite) and SW (εa/εr → 0, kBT/εa = finite) fluids, as one changes
penetrability εa/εr and temperature.

We have proved that the model is thermodynamically stable when εa/εr < 1/f∆,
as it satisfies Ruelle’s stability criterion [19]. Above this value, the fluid is, strictly
speaking, unstable in the thermodynamic limit, exhibiting non-extensive proper-
ties. For finite N , however, it displays a rather rich and interesting phenomenology.
In particular, there exists an intermediate region 1/f∆ ≤ εa/εr ≤ (εa/εr)th in the
penetrability-width plane (see Fig. 3) where the fluid displays normal or anomalous
behavior depending on the considered temperatures and densities. For sufficiently
large temperatures (T > Tins(ρ)) the fluid presents a metastable normal behavior
with (apparently) stable liquid-liquid and liquid-solid transitions, provided the rel-
ative critical temperatures are above the instability line T = Tins. In this case, we
have studied the effect of penetrability on the fluid-fluid transition (see Fig. 2) close
to the threshold line (εa/εr)th and found that in general the transition has a higher
critical temperature than the SW counterpart. We have attributed this result to
the additional degree of freedom given by penetrability that tends to oppose the
formation of a crystal until a sufficient large density is achieved.

Below the instability line Tins(ρ), however, different particles tend to overlap into
a few isolated clusters (blobs) confined in a small portion of the available volume
and the total energy does no longer scale linearly with the number of particles N .
As a consequence, the fluid becomes thermodynamically unstable and its properties
very anomalous (Fig. 5). The metastable region shrinks as either εa/εr or N increase
(Fig. 6).

Above the threshold line (εa/εr)th (see Fig. 3) the fluid-fluid coexistence disap-
pears, since in this case Tins is too high to allow any phase-separation (for a given
N).

An additional interesting feature of the metastable/unstable dualism is included
in the hysteresis dependence on the initial condition. When the initial configura-
tion is an unstable one (i.e., a blob) the system melts back to a normal phase at
temperatures that are in generally significantly higher than those where the transi-
tion normal-to-blob is achieved upon cooling. We have attributed this behavior to
the small statistical weight of the blob configuration in the Boltzmann sampling,
in spite of its significantly larger energetic contribution.

We have also studied the fluid-solid transition in the intermediate metastable
region 1/f∆ ≤ εa/εr ≤ (εa/εr)th. We find that the solid density typically increases
with respect to the corresponding SW case, due to the formation of clusters of
overlapping particles in the crystal sites, as expected on physical grounds. The
melting curve is found to have a relatively smooth positive slope, unlike the SW
counterpart, and this anomalous behavior is also reflected in the thermodynamic
inconsistency present in the Clausius–Clapeyron thermodynamic equation, thus
confirming the metastable character of the phase. When penetrability is sufficiently
low to be close to the Ruelle stable region, the system behaves as the corresponding
SW system.
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Figure A1. Sketch of a configuration with m = 4 rows and M = 6 clusters per row.

One might rightfully wonder whether the finite N metastable phase presented
here should have any experimental consequence at all. We believe the answer to be
positive. Imagine to be able to craft, through a clever chemical synthesis process,
a fluid that may be described by an effective interaction of the PSW form. Our
work has then set the boundary for observing a very intriguing normal-to-collapsed
phase by either tuning the temperature/density parameters, or by increasing the
number of particles in the fluid. In this case, it is the finite N state, rather than
the true thermodynamic limit N →∞, the relevant one.
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Appendix A. Ruelle’s stability criterion in d = 2

Let us consider the two-dimensional PSW model characterized by εa/εr and ∆/σ <√
3−1. The latter condition implies that in a hexagonal close-packed configuration

a particle can interact attractively only with its nearest neighbors, so that f∆ = 6.
Given the number of particles N , we want to get the configuration with the

minimum potential energy ΦN . We assume that such a configuration belongs to
the class of configurations described by m rows, each row made of M clusters,
each cluster made of s perfectly overlapped particles. The centers of two adjacent
clusters (in the same row or in adjacent rows) are separated a distance σ. The total
number of particles is N = mMs. Figure A1 shows a sketch of a configuration with
m = 4 rows and M = 6 clusters per row. The potential energy of an individual
row is the same as that of the one-dimensional case [8], namely

Φrow = Ms
s− 1

2
εr − (M − 1) s2εa. (A1)

The first term accounts for the repulsive energy between all possible pairs of par-
ticles in a given s-cluster, while the second term accounts for attractions that are
limited to nearest neighbors if ∆/σ <

√
3 − 1 in d = 2. The potential energy of
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the whole system is mΦrow plus the attractive energy of nearest-neighbor clusters
sitting on adjacent rows (and taking into account the special case of boundary
rows). The result is

ΦN (m, s) = m

[
Ms

s− 1
2

εr − (M − 1) s2εa

]
− (m− 1) [1 + 2(M − 1)] s2εa

= N
s− 1

2
εr −

[
3m− 2

m
N − (2m− 1)s

]
sεa. (A2)

For a given number of rows m, the value of s that minimizes ΦN (m, s) is found to
be

s∗(m) = N
3m− 2

2m(2m− 1)

[
1− m

2(3m− 2)
εr

εa

]
, (A3)

which is meaningful only if εa/εr > m/2(3m − 2) > 1/6. Otherwise, s∗(m) = 1.
Therefore, the corresponding minimum value is

Φ∗N (m) ≡ ΦN (m, s∗(m))

= −N

2
εr





1 + N (3m−2)2

2m2(2m−1)
εa

εr

[
1− m

2(3m−2)
εr

εa

]2
, εa

εr
> m

2(3m−2) ,

2
(

3m−2
m − 2m−1

N

)
εa

εr
, εa

εr
< m

2(3m−2) .
(A4)

Let us first suppose that εa/εr < 1/6. In that case, εa/εr < m/2(3m−2) regardless
of the value of m ≥ 1 and, according to Eq. (A4), the minimization of Φ∗N (m) is
achieved with m = M = N1/2. As a consequence, Ruelle’s stability criterion (2) is
satisfied in the thermodynamic limit with B = 3εa.

Let us now minimize Φ∗N (m) with respect to m if εa/εr > m/2(3m − 2). This
yields the quadratic equation (6− εr/εa)m2 − 12m + 4 = 0, whose solution is

m∗∗ =
2

3−
√

3 + εr/εa

. (A5)

The condition εa/εr > m∗∗/2(3m∗∗ − 2) is easily seen to be equivalent to the
condition εa/εr > 1/6. Therefore, the absolute minimum of the potential energy in
that case is

Φ∗∗N ≡ Φ∗N (m∗∗)

= −N

2
εr

[
1 +

N

8
εa

εr

(
3−

√
3 + εr/εa

)3 (
1 +

√
3 + εr/εa

)]
. (A6)

The corresponding value of s∗ is

s∗∗ ≡ s∗(m∗∗)

=
N

4

(
3−

√
3 + εr/εa

)2
. (A7)

Comparison between Eqs. (A5) and (A7) shows that N = m2∗∗s∗∗, i.e., the num-
ber of clusters per row equals the number of rows, M∗∗ = m∗∗, as might have
anticipated by symmetry arguments.
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Equation (A6) shows that, if εa/εr > 1/6, limN→∞(−Φ∗∗N )/N = ∞ and thus
Ruelle’s stability condition (2) is not fulfilled.

We could have restricted to a symmetric arrangement from the very beginning,
i.e., m = M and N = M2s, in which case Eq. (A2) yields

ΦN (M, s = N/M2) = M2s
s− 1

2
εr −

(
3M2 − 4M + 1

)
s2εa

=
N

2

(
N

M2
− 1

)
εr −

(
3M2 − 4M + 1

) N2

M4
εa. (A8)

The minimum value (if εa/εr > 1/6) corresponds to the value M = m∗∗ given by
Eq. (A5), as expected.
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