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Abstract 

Classifications of atmospheric circulation patterns are useful tools to improve the 

description of the climate of a given region and the analysis of meteorological 

situations. In particular, weather patterns (WP) classifications could be used to improve 

the description of spatial heavy rainfall. Here, a bottom up approach, previously used to 

build WP classification in France, is applied for the definition of a WP classification 

useful for the description of Austrian heavy rainfall. The optimal spatial extent and the 

optimal position of the geopotential fields to be taken into account for a WP 

classification is studied. The proposed WP classification is shown to be coherent with 

the general knowledge on synoptic situations responsible for heavy rainfall over 

Austria. Moreover, the classification has good performances in term of heavy rainfall 

spatial description compared to 152 COST 733 classifications defined in the same 

region. In particular, we show that the choice of spatial extent of the geopotential fields, 

their position and their characteristics is relevant for capturing physical information on 

synoptic situations responsible for heavy rainfall and that it can improve weather pattern 

classification performances. 
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1. Introduction 

The classification of atmospheric circulation and weather patterns is used in climate and 

meteorology researches since the beginning of these sciences, see El-Kadi and Smithson 

(1992), Yarnal et al. (2001), Huth et al. (2008) and Philipp et al. (2010) for reviews. 

The aim of these classifications is to define a limited number of typical synoptic 

meteorological situations for a given region. For instance, Kaufmann and Weber (1996) 

defined a classification over the Alpine region aiming at describing the typical Alps 

wind fields. In general, a circulation pattern classification is based only on geopotential 

fields; while a weather pattern (WP) classification is based on one or more geopotential 

fields and some other relevant meteorological variables. Here, we focus on weather 

pattern classification developed for heavy rainfall spatial explanation. This type of 

rainfall based weather pattern classification is able to provide information on heavy 

rainfall spatial distribution using geopotential information. Indeed, Littmann (2000) 

shows that geopotential fields can provide significant information on heavy rainfall 

events. Boé and Terray (2008) proposed a weather pattern classification to explain 

winter rainfall fields in France, while Romero et al. (1999), Trigo and DaCamara (2000) 

and Martínez et al. (2008) classifications were focused on rainfall description in 

Western Mediterranean region. Garavaglia et al. (2010) proposed a weather pattern 

classification on France for the estimation of heavy rainfall quantiles based on a 

compound distribution. These classification methodologies follow a “bottom-up 

approach”: the “bottom” part consists of the definition of a given number of classes 

based on daily rainfall fields over a given region which are then linked to geopotential 

information in the “up” parts. Note that one of the main objective of these 
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classifications is to be more focused on “where does it rain” information rather than on 

“how much does it rain” information. An important motivation for using this type of 

classification is that the bottom-up approach, consisting in linking the rainfall 

information to the geopotential fields, could a priori be very interesting for the 

exploration of future climate scenarios, giving the fact that global circulation models are 

known to give more robust information on large scale features like geopotential than on 

small spatial scale phenomena like rainfall (Räisänen 2007). 

Traditionally, the geopotential height fields used in weather patterns classification are 

centered on the region for which the classification is done. Moreover, the spatial 

coverage of geopotential height fields is chosen depending on the available data and on 

the spatial extent of the region to be covered. However, the “optimal” classification 

could a priori be defined on a geopotential field not centered on the region. We argue 

that the spatial extent, the position and the characteristics of geopotential height fields 

used to classify weather patterns on a given region are important choices when defining 

a classification. 

The general aim of the paper is thus to introduce a weather pattern classification useful 

for the description of Austrian heavy rainfall spatial distribution. The classification is 

based on a bottom up approach. The classification process is improved via the definition 

of an optimization procedure for the choice of the geopotential information considered. 

A specific aim of the paper is thus to show that the optimization procedure is relevant 

for capturing physical information on synoptic situations responsible for heavy rainfall 

and that it can improve weather pattern classification performances. 

The optimization is based on the weather pattern classification methodology introduced 

by Garavaglia et al. (2010) for France, including methodological choices that are 
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inherited of previous works on quantitative precipitation forecasting, using the analogue 

method (Guilbaud and Obled 1998, Obled et al. 2002 and Bontron 2004). Note that the 

geopotential grid used in the analogue method results from tests of different locations, 

sizes and characteristics (Obled et al. 2002). This methodology was shown to be useful 

for the definition of a rainfall compound distribution in France (Garavaglia et al. 2010) 

and was also applied to other domains (e.g. by Brigode et al. (2012) over British 

Columbia). All methodological hypotheses are listed and verified in the present study. 

The proposed optimization procedure consists in finding the size, the location and the 

characteristics of the geopotential fields that better explain the spatial distribution of the 

rainfall on a given region. The definition of a weather pattern classification over Austria 

is then presented. Several classifications were developed in the past for modeling 

rainfall over this region (Ehrendorfer 1987, Matulla et al. 2003, Seibert et al. 2006).  

Recently, numerous weather pattern classifications have been defined over the region 

within the COST 733 action (Harmonisation and Applications of Weather Types 

Classifications for European Regions, http://cost733.met.no/about_cost733.htm). The 

COST 733 action main objective is to “achieve a general numerical method for 

assessing, comparing and classifying weather situations in Europe, scalable to any 

European (sub)region with time scales between 12h and 3 days and spatial scales of 200 

to 2000 km, applicable for a number of applications”. The performances of the proposed 

classification are thus compared to the performances of COST 733 classifications. 

The method used for the weather pattern classification is summarized in section 2. The 

rainfall and geopotential data used in the study are described in section 3, while in 

section 4 the results of the optimization for the definition of Austrian weather patterns 

are presented and discussed. Finally, some conclusions are drawn in section 5. 

http://cost733.met.no/about_cost733.htm
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2. Methodology 

As introduced in the previous section, a rainfall days classification is first generated as 

the “bottom” steps. This classification is then linked to different geopotential 

informations implementing the “up” steps.  

2.1 THE BOTTOM PART OF THE CLASSIFICATION: GENERATING ONE RAINFALL 

CLASSIFICATION 

This first part of the classification process is the “bottom” part, only dealing with 

rainfall information. The main objective of this part is to identify a limited number of 

typical rainfall classes characterized by similar heavy rainfall spatial patterns.  

The first step consists of the selection of a “rainy days” sub-population. Suppose that a 

meteorological dataset is available and is composed of n rainfall series observed on a 

given region at daily resolution. Each day j is thus characterized by a rainfall vector of 

size n. The rainy days can be selected using an average rain depth threshold (for 

example, all the days with more than 5 mm of spatial average precipitation are 

considered as rainy days) or using a fixed proportion of all the observed days (for 

example, the 20% days with the highest rain depth are then considered as rainy days). 

The need of a classification more focused on “where does it rain” information than on 

“how much does it rain” information is fulfilled by the use of the “shapes” of the 

rainfall fields. These rainy day shapes, named Rj, are defined in a rainy days space of 

dimension n and obtained with the normalization of each rainy day rainfall field by each 

day average precipitation depth. 

In a second step, a Hierarchical Ascendant Classification (HAC) is performed on the Rj 

vectors previously identified. The classes are generated using the Ward method (1963), 
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which chooses iteratively the grouping presenting the minimum intra-class inertia 

(Cheng and Wallace 1993). The final number of rainfall classes (NRC, which contains all 

the rainfall classes and one non-rainy class) is determined by looking at the intra-class 

inertia evolution as a function of the number of classes. Finally, the NRC rainfall classes 

gather days characterized by rainfall fields with similar spatial distribution. 

2.3 THE FIRST “UP” STEPS: OPTIMIZATION OF THE GEOPOTENTIAL INFORMATION 

USED 

The “up” steps consist now in moving into the geopotential height space and finding 

optimal geopotential information explaining the rainfall generating processes coming 

from the synoptic scale.  

First, the rainfall classes and the non-rainy class centroids are projected onto the 

geopotential height space. Like for the rainfall fields, geopotential field shapes are used 

and are thus previously estimated with the normalization of each geopotential field by 

each day average geopotential height. Each day j is thus characterized by a geopotential 

field vector Gj
m
, where m indicates the dimension of the geopotential field space. The 

centroid of the rainfall class A is defined as the mean geopotential field vector of the nA 

days composing the class, named GA
m
 in the defined geopotential space. 

[1] 
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The geopotential height space can be composed of different geopotential fields at 

different heights (e.g. 500 hPa, 700 hPa, 1000 hPa, etc.) and recorded at different times 

(e.g. 0h, 12h, 24h, etc.) on several geographic locations (i.e. different grid points). For 

example, the geopotential height space of day j can be described by a vector Gj
1000

, 

composed of 2 different height fields estimated on 500 grid points. The geopotential 
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space used by Garavaglia et al. (2010) is characterized by a vector G
440

, because the 

geopotential space is defined at 2 heights (700 hPa and 1000 hPa), for 2 times per day 

(0h and 24h) and on 110 points grid covering a spatial extent of around 10
6
 km². Note 

that a Principal Component Analysis (PCA) of each potential space is implemented in 

order to reduce the number of dimensions of this space to 10. All the optimization 

procedure tends to find the optimal geopotential field space m onto which the rainfall 

class centroids are projected.  

2.4 THE FINAL “UP” STEPS: RE-ATTRIBUTION OF EACH DAY TO ONE WEATHER 

PATTERN 

The last classification step consists in re-attributing each day (considered as rainy or 

not) to a given weather pattern in estimating the Euclidian distances between the 

considered day and the class centroids. The considered day is then attributed to the 

weather pattern witch is the closest one. Note that some “no-rainy days” can thus be 

considered as members of a rainy weather pattern if they are closer of a rainy weather 

pattern centroid in the considered geopotential space.  

Finally, our classification is no more driven by the prior rainfall information but by the 

geopotential field information. Finding rainfall data set with good spatial and temporal 

coverage and good data quality over a specific area is harder than geopotential 

information. Thus, classifications can be easily extended using only other geopotential 

data set, like NOAA 20
th

 Century Reanalysis (6-hourly geopotential height fields from 

1871 to 2011, Compo et al. 2011) or EMULATE reanalyses (daily mean sea-level 

pressure reconstructions over Europe for the period 1850-2003, Ansell et al. 2006). 
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2.5 CRAMÉR-VON-MISES TEST FOR CLASSIFICATION EVALUATION 

Numerous criteria exist for evaluating classification performance. The Cramér-von 

Mises test (Anderson 1962), named Cramér further, is typically used as a “basic” tool to 

check the discriminating power of a weather pattern classification in terms of rain/no 

rain occurrence (Bárdossy et al. 1995, Stehlik and Bárdossy 2003, Bliefernicht and 

Bárdossy 2007, Garavaglia et al. 2010). The Cramér coefficient can be estimated for 

each available rainfall series with a contingency table, constructed with the considered 

weather pattern classification (vector with one weather pattern for each day) and a 

vector of rain/no rain occurrence (vector with, for each day, either 0 if the rain average 

is null or 1 if rainfall is observed). Thus, the Cramér performances of each classification 

and each rainfall series are estimated as follows: 

[2] 
dn

Cramér
2

  

where 2  is  the result of a classical dependence 2  test between the weather pattern 

classification and the rain/no rain occurrence vector and nd is the number of classified 

days. This score ranges between 0 (no dependence between the classification and the 

observed rain/no rain occurrence) and 1 (absolute dependence). To focus on heavy 

precipitation, the Cramér coefficient can be estimated on a sub-sample population of 

heavy rainfall composed of the days with a precipitation amount greater than a given 

threshold. The performances of each weather pattern classification produced are thus 

evaluated using this type of score qualifying their discriminating power in terms of 

rain/no rain occurrence. Figure 1 presents an example of the evaluation of one 

hypothetical classification in three classes with the Cramér test. The considered 

classification is thus compared with a rain/no-rain vector generated from the observed 
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rainfall record studied. A threshold T can then be fixed in order to test the 

discriminating power of the classification in terms of heavy rainfall. 

 

FIGURE 1. Example of Cramér performances (a) and of Cramér performances focused 

on heavy rainfall (over threshold T) (b) obtained by three classes: classes 1 and 2 

regroups rainfall days coming from two different situations and class 3 regroups the 

non-rainy days. 
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3. Data 

The two archives used in this study are (i) information on rainfall fields (needed for the 

identification of Austrian rainfall classes) and (ii) information on the synoptic scale 

(required for the projection of these classes onto the geopotential height space). Weather 

pattern classifications defined in the COST action 733 are finally used for analyzing 

weather pattern classification performances. 

3.1 RAINFALL FIELDS 

The Austrian daily rainfall field is obtained from the European Climate Assessment and 

Data (ECA&D) re-analyses data set (Haylock et al. 2008) providing daily precipitation 

amounts (calculated as the sum of rainfall at 18 UT of the current day and rainfall at 06 

UT of the next day) with a resolution of 0.5° x 0.5° for the period 1950 to 2008. A sub-

domain of 300 000 km² is extracted to cover the Austrian territory (from 9.25°E to 

17.25°E, and from 46.25°N to 49.25°N) and consists thus of 119 rainfall re-analysis 

series. This grid is shown with red points in Figure 2. 

3.2 GEOPOTENTIAL FIELDS 

The geopotential height space is characterized by daily geopotential height fields at 700 

and 1000 hPa. These fields, provided by the National Center for Environmental 

Prediction (NCEP) and National Center for Atmospheric Research (NCAR) reanalysis 

(Kalnay et al. 1996), are defined on a 2.5° resolution grid for 247 points in Western 

Europe, at 00 UT and at 24 UT. Thus, each day is described by four geopotential fields 

defined on 247 points. The NCEP-NCAR grid is shown with black points in Figure 2. 
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FIGURE 2. Map of the available data of geopotential height (NCEP-NCAR reanalysis, 

plotted with black points) and of rainfall data (ECA&D reanalysis, plotted with red 

points) used in the present study. 

 

 

3.3 COST733 WEATHER PATTERN CLASSIFICATIONS 

Numerous weather pattern classifications have been defined within COST 733 action 

and are available and could be downloaded on the COST 733 wiki website 

(http://geo23.geo.uni-augsburg.de/cost733wiki/). 76 COST 733 classifications defined 

http://geo23.geo.uni-augsburg.de/cost733wiki/
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two at a time on the domains D06 (Alps, 3° to 20° E and 41° to 52° N) and D07 

(Central Europe, 3° to 26° E and 43° to 58° N) have been extracted in order to compare 

these classifications and the Austrian weather pattern classification defined here with a 

“bottom-up” approach. Note that these classifications have been defined with different 

methodologies and are characterized by different number of weather patterns (from 7 to 

13 classes for the D06 domain and from 8 to 13 for the D07 domain). 
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4. Results 

4.1 THE “BOTTOM” STEPS: HIERARCHICAL ASCENDANT CLASSIFICATION OF THE 

RAINY DAYS 

In this section, some first illustrations of the “bottom” steps, which results in the 

definition of one Austrian rainfall classification, are presented. Following the steps 

depicted in the section 2, we defined a rainy day as a day with a total rainfall amount 

greater than the 80
th

 percentile of the total population. 

The number of rainfall classes, and consequently the number of weather patterns, is here 

chosen by looking at the intra-class inertia evolution in the dendrogram as a function of 

the number of classes (Figure 3). Each difference D1 is estimated as the absolute value 

of the difference between the intra-class inertia estimated for n+1 rainfall classes and 

the inertia estimated for n classes. The intra-class inertia evolution suggests the choice 

of 4 rainfall classes and 1 non-rainy class. Note that, to ensure a significant number of 

observations in each class and define a simple operational classification, we should 

consider a parsimonious number of classes (typically fewer than 10 classes). For 

instance, in the “French classification” described in Garavaglia et al. (2010), this 

number is thereby fixed to 8 classes (7 rainy classes and 1 non-rainy class). Moreover, 

the previous works on Austrian rainfall classification result in a number of classes never 

higher than 7 (Matulla et al. 2003, Seibert et al. 2006). 
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FIGURE 3. Dendrogram obtained from HAC of Austrian rainy days. (b) Intra-class 

inertia evolution. (c) 1-order differences of intra-class inertia evolution. The red boxes 

highlight the 4 rainfall classes identified, red points highlight the intra-class inertia of 

these 4 rainfall classes. 

 

 

The choice of 5 classes (4 rainy classes and 1 non-rainy class) is also comforted by the 

visual analysis of the rainfall fields characterizing the 5 classes and reported in Figure 4. 

Indeed, we can observe that class 1 is characterized by a rainfall spatial distribution 

centred in the North Western part of Austria, in the North Eastern for class 2, in the 

South –East for class 3, in the South West for class 4; the class 5 is the non-rainy class. 
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FIGURE 4. Ratio between the mean precipitation amount of each Austrian rainfall 

classes and the general mean precipitation amount (considering all rainfall classes) 
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4.2 ON THE “UP” PART OPTIMIZATION (GEOPOTENTIAL FIELDS POSITION AND SPATIAL 

EXTENT) 

In this section, we search the optimal geopotential space in terms of classification 

general performances. Following Garavaglia et al. (2010), we first defined the 

geopotential space as constituted by 4 geopotential height fields for each day: the 700 

hPa and 1000 hPa fields at 0h and at 24h. Three different sizes of geopotential height 

grid are chosen. The first one is of size 3.0x10
6
 km² as used for the French weather 

patterns classification and further named “Size 1” (S1). A second size of approximately 

0.6x10
6
 km² is chosen to entirely cover the Austrian territory, named “Size 2” (S2). The 

last one is of size around 0.9x10
6
 km², named “Size 3”, (S3), which is a compromise 

between S1 and S2. 403 different classifications of weather types are generated, by 

moving the location of the centre of grids characterised by these three different spatial 

extents over Europe. Considering the spatial extent of the data set used in this study, the 

S1 center grid can thus be positioned in 88 locations, S2 in 165 and S3 in 150. The 5 

rainfall classes are projected onto each different geopotential space of dimension 216 

(54 geopotential measure points x 2 heights x 2 measure hours), 60 (15 geopotential 

measure points x 2 heights x 2 measure hours), and 80 (20 geopotential measure points 

x 2 heights x 2 measure hours), respectively, resulting in different weather pattern 

classifications. The performances of each weather pattern classification are evaluated by 

the Cramér test estimated over the whole rainy days population (named Cramér0 

hereafter) and over the heavy rainfall sub-sample exceeding a threshold, as depicted in 

section 2. This threshold T is chosen here as 20 mm. This choice is coherent with the 

previous results of Seibert et al. (2006) who used the mean precipitation 98
th

 percentile 

of 7 rainfall regions in Austria as a criterion for selecting “heavy precipitation days” and 
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found a threshold around 20 mm/d. This “heavy Cramér” coefficient is further named 

“Cramér20 coefficient”. Figure 5 presents the Cramér0 and the Cramér20 coefficients for 

each grid of geopotential heights (from S1 to S3 from top to bottom) and for each 

position of the grid. Thus, each colored point represents the barycentre of one grid and 

the colors correspond to the mean Cramér performances obtained on all the Austrian 

rainfall reanalyzes considered (blue points). Finally, the black box represents for each 

grid size and for each coefficient the location of the best geopotential height spatial 

extent. 
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FIGURE 5. Cramér0 (left column) and Cramér20 (right column) coefficients for different 

positions of the geopotential height field barycentre used in weather pattern definition, 

for three spatial extents of the fields (from top to bottom S1 to S3). The spatial extent of 

the optimal position is reported on each map with a black box 
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First, note that the geopotential grids centered on Austria are not the best grids in terms 

of Cramér0 and Cramér20, for all three sizes. The best performances are obtained for 

grids located in the South and in the West of Austria. Then, the West-East flux appears 

to have a major role in the Austrian rainfall processes. Thus, the more the geopotential 

grid centre moves away latitudinally from Austria the poorer the performances are in 

terms of rain/no-rain occurrence. On the contrary, a geopotential grid with very distant 

longitudinal locations offers some reasonable performances in terms of rain/no rain 

occurrence. For the S1 size for example, a classification based on a geopotential grid 

distant approximately from only 200 km North of Vienna (centered near Dresden) offers 

a Cramér0 coefficient lower than 0.30 whereas an other classification based on a grid 

distant from more than 4000 km (centered off the Bretagne coast and thus 20 times 

more distant than the precedent one), is characterized by a Cramér0 coefficient greater 

than 0.40. This tendency is more clearly observable for the S2 grid, with a clear 

latitudinal threshold of both Cramér coefficients: grid center locations over 55°N and 

under 37.5°N lead to weather pattern classifications with poor performances in terms of 

Austria rain/no rain occurrence. These results are coherent with those of previous 

studies focusing on Austrian heavy precipitations. Ehrendorfer (1987) stated that an 

important part of heavy rainfall events in Austria is due to West and South-West 

circulations. Moreover, Matulla et al. (2003) showed that the back trajectories for heavy 

precipitation days in Austria are coming mostly from West and South-West, like the 

dramatic Elba flood in 2002. It is important to note that Eastern or Northern circulations 

can equally generate heavy rainfalls. Nevertheless, the best quantity of heavy rainfall 

information in Austria is obtained when looking at the South-West geopotential height 

fields.  
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The Cramér0 and Cramér20 performance differences between the optimal grids of each 

size are non significant (greater than 0.45 for the Cramér0 and greater than 0.14 for the 

Cramér20) and we do not use these scores for the choice of the optimal grid. In order to 

cover a larger area and maximizing the potential geopotential information of our 

classification, we choose as optimal one a S1 grid (around 3x10
6
 km²). The optimal grid 

is approximately centered on the Western Alps and thus not centering on the Austrian 

region (first line and first column black box of Figure 5). 

4.3 WHICH GEOPOTENTIAL INFORMATION TO BE USED IN OUR WEATHER-PATTERN 

CLASSIFICATION? 

In this section, we analyze the influence of the choice of the geopotential information 

used in our “up” steps on the classification performances. Note that we fixed in the 

precedent optimization procedure the geopotential space as constituted by 4 

geopotential height shape fields for each day: the 700 hPa and 1000 hPa fields at 0h and 

at 24h, following Garavaglia et al. (2010) methodology. We used now one grid size (S3 

size) and we projected for each location the 5 rainfall classes onto geopotential spaces 

with different characteristics: using the shapes or the absolute values of the fields, using 

fields at 700 hPa, 1000 hPa or both, and using geopotential fields at 0h, or 0h and 24h. 

Figure 6 presents the Cramér0 (first column) and Cramér20 (second column) 

performances obtained for the 150 locations of S3 grid, using 5 different geopotential 

spaces for the 5 rainfall class projections.  
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FIGURE 6. Cram´er0 (a) and Cram´er20 (b) performances obtained for 88 S1 grids by 

projecting the 5 rainfall classes onto different geopotential spaces: (A) absolute values 

of 700 and 1000 hPa geopotential height fields at 0h and 24h, (B) 1000 hPa geopotential 

height shapes fields at 0h and 24h, (C) 700 hPa geopotential height shapes fields at 0h 

and 24h, (D) 700 and 1000 hPa geopotential height shapes fields at 0h and (E) 700 and 

1000 hPa geopotential height shapes fields at 0h and 24h. The boxplots are constructed 

with the percentiles 0.10, 0.25, 0.50, 0.75 and 0.90 

 

 

The first main result is that the two Cramér coefficients present the same “evolution 

tendencies”. Thus, Cramér0 and Cramér20 performances are clearly higher when shapes 

of geopotential height fields are considered (boxplots E) than when absolute 

geopotential fields are used (boxplots A). Similarly, using geopotential height fields at 

700 and at 1000 hPa (boxplots E) add significant rainfall information compared to using 

geopotential height fields at 700 (boxplots C) or at 1000 hPa (boxplots B). Finally, the 

classifications considering a geopotential height data couple (0h and 24h, boxplots E) 

perform better than those considering a single geopotential height field for each day (0h, 
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boxplots D). These results are coherent with the findings of Obled et al. (2002) and 

Bontron (2004) in a precipitation forecasting context and validate the general 

applicability of the methodology used in Garavaglia et al. (2010). 

4.3 FINAL AUSTRIAN WEATHER PATTERN CLASSIFICATION ILLUSTRATION 

In this section, we illustrate the final Austrian weather pattern classification defined 

with the “optimal geopotential space”: 4 geopotential shape fields (700 and 1000 hPa at 

0h and 24h) defined on an area of 3x10
6
 km² centred on the Western Alps. 

Figure 7 presents the mean geopotential heights (1000 hPa at 0h) and ratio between the 

mean precipitation amount and the general precipitation amount (considering all WP) 

for each of the 5 Austrian weather patterns. 
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FIGURE 7. Mean geopotential heights (1000 hPa at 0h) and Ratio between the mean 

precipitation amount of each Austrian weather pattern and the general mean 

precipitation amount(considering all weather patterns) for each of the 5 Austrian 

weather patterns. The black boxes represent the “optimal” geopotentiel space used for 

the “up” part of the classification 

 

 

The general patterns observed on the Austrian territory with the 5 rainfall classes are 

also identified at a larger scale with the 5 weather patterns, characterized by rainfall 

spatial distribution centred in the North Western part of Western Europe for WP1, in the 
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Eastern for WP2, in the South Eastern for WP3, in the South Western for WP4 and the 

WP5 is the anticyclonic weather pattern. Logically, the spatial distribution of each 

weather pattern is no more concentred on the Austrian area, due to the Austrian rainfall 

classes projection into a larger geopotential space. Moreover, rainfall classes were 

identified on a rainy days sub-sample while weather patterns are constructed attributing 

each day to a weather pattern, anticyclonic or not. Thus, weather patterns can contained 

days with no rain observed on Austria and rainy days on the Northern part of Austria 

can have the same type of atmospheric circulation that a rainy day in the central part of 

Germany. 

The evolution of each 5 clusters occurrence frequency, from the 5 original rainfall 

classes to the 5 final weather patterns, is presented in the Table 1. 

 

TABLE 1. Evolution of the classes occurrence percentages from the five original 

rainfall classes to the five final WPs. 

 Rainfall classes Weather patterns 

Class 1 5% 9% 

Class 2 7% 15% 

Class 3 4% 4% 

Class 4 4% 18% 

Class 5 (non-rainy) 80% 54% 

 

Note that the number of days attributed to the anticyclonic weather pattern (WP5) is 

lower than the number of days of the “non-rainy” class (RC5), meaning that several 

Austrian non-rainy days are classified into the different non-anticyclonic weather 
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patterns. At the same time, the frequencies of occurrence of each weather pattern are 

higher. This tendency has a limited impact on the desired discriminating power of our 

classification: the rainy days characterized by heavy rainfall in a particular area are 

always regrouped in the same class.  

The Austrian weather patterns classification has been checked on a particular region in 

the North of Austria, the Kamp catchment at Zwettl in Niederösterreich. This catchment 

was particulary studied after the August 2002 extraordinary floods which happened in 

this region (Komma et al. 2007, Merz and Blöschl 2008). The spatial rainfall record 

observed on this catchment (from 1976 to 2006) contains significant heavy rainy days, 

like events in August 2002 which lead to major floods of the Kamp river. Thus, we have 

tested the classification on this rainfall record and provided interesting results (not 

shown here): the major rainfall records (containing August 2002 and other summer 

events: 52 mm the 06/08/1985, 115 mm the 07/08/2002, 81 mm the 12/08/2002, etc.) 

are regrouped in one particular weather pattern, the WP2. Moreover, observed synoptic 

situations of these particular events showed similarities with the mean synoptic situation 

of the WP2, characterized by a continental depression. The Austrian weather pattern 

classification can thus provide interesting perspectives for heavy rainfall estimation on 

this particular catchment as for other ones. 

Our final Austrian weather pattern classification is based on rainfall classes identified 

on Austrian rainy days but is at the end only driven by a geopotential height fields 

information at a larger scale. This classification can be daily updated by using 

geopotential height reanalyse dataset. 
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4.4 PERFORMANCES OF WEATHER PATTERN CLASSIFICATIONS 

The performances of the proposed weather pattern classification (named further 

“Austrian bottom-up classification”) is compared in terms of Cramér20 score on the 

Austrian daily rainfall re-analyses used in this study, to the performances of 76 COST 

733 classifications. Each of the 76 COST classifications are defined on two spatial 

domains: D06 (Alps, 3° to 20° E and 41° to 52° N) and D07 (Central Europe, 3° to 26° 

E and 43° to 58° N). Figure 8 presents (a) the spatial extent of the Austrian bottom-up 

classification domain (red color) and the two COST 733 classifications domains (black 

color for the D06 and blue color for the D07) and (b) Cramér20 score for each of the 157 

classifications (76 COST 733 classifications * 2 spatial domains + 1 Final Austrian 

bottom-up classification + 4 bottom-up classifications with different geopotential 

information used in the “up” steps of the classification). 
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FIGURE 8. (a) Spatial extents of the two COST 733 domains (D06 in black and D07 in 

blue) and of the optimal geopotential heights information used for defining Austrian 

bottom-up classification (red). (b) Cramér20 performances obtained by the 152 COST 

733 classifications (76 D06 classifications in black and 76 D07 classifications in blue) 

by the Austrian bottom-up classification (red) and by using different geopotential height 

information for defining Austrian weather patterns (orange lines). 

 

 

For each classification, the Cramér20 score plotted in Figure 8 (b) is estimated as the 

average Cramér20 score estimated on the 119 Austrian ECA&D re-analyses points. 

Performances of the Austrian bottom-up classification are similar to the best performing 

COST 733 D06 (Alps) classifications in terms of Cramér20 and are better than all the 

COST 733 D07 (Central Europe) classifications. Finally, the final Austrian bottom-up 

classification performs better than the bottom-up classifications using less geopotential 

information, showing that considering geopotential height fields shapes at both 700 and 

1000 hPa and at 0h and 24h improves significantly the classification performances.  
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5. Conclusions 

In this paper, a parsimonious (only 5 classes) and discriminating (contrasted classes in 

terms of rainfall and geopotential fields) Austrian weather pattern classification, useful 

for spatial heavy rainfall description is proposed. The 5 classes are originated from 

rainfall information but the final classification is only driven by a geopotential height 

fields information (grid of around 3x10
6
 km², centred on the Western Alps). Updating 

the classification is then easy to perform by using long geopotential height reanalyse 

dataset or future geopotential height fields from General Circulation Models, which are 

more robust data sources than punctual (in time and space) rainfall record informations. 

This type of classification can lead to different applications, as extreme flood estimation 

on a particular catchment (using weather pattern classification as a sub-sample tool for 

the characterization of the rainfall risk, SCHADEX (Paquet et al. 2006) approach) or 

characterization of future climatic evolution (using weather pattern classification as an 

evaluation tool of the future climate model predictions). Moreover, we investigated the 

optimal spatial extent, the position and the characteristics of the geopotential fields to be 

taken into account for a rainfall based weather pattern classification. We show that the 

choice of the spatial extent and the position of the centre of the geopotential heights is 

an important issue. It is possible that the optimal geopotential field is not centred on the 

studied region and potentially do not exactly cover the studied region. The 

performances of the weather pattern classification using optimized geopotential height 

spatial extent and size are shown to be good in comparison with COST 733 weather 

pattern classifications where the geopotential height field is fixed a priori as two 

different domains. Moreover, the location of the optimal geopotential fields can be 
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explained from the physical and climatic phenomena leading to heavy rainfall. In 

addition to the identification of the “optimal” weather pattern classification, this 

approach allows the general comprehension of the synoptic processes involved in the 

precipitation over the studied region. 
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