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WEAK TRANSPORT INEQUALITIES AND APPLICATIONS TO

EXPONENTIAL INEQUALITIES AND ORACLE INEQUALITIES

OLIVIER WINTENBERGER

Abstract. We introduce weak transport costs that are weakened forms of
the transport costs defined by Marton in [26]. We obtain new weak transport
inequalities for non products measures similar than those obtained by Samson
in [32] but valid also for other metrics than the Hamming distance. Many ex-
amples are provided to show that the euclidian norm is an appropriate metric
for many classical time series. The dual form of the weak transport inequalities
yield new exponential inequalities and extensions to the dependent case of the
classical result of Talagrand [33] for convex functions that are Lipschitz con-
tinuous. Expressing the concentration properties of the ordinary least square
estimator as a conditional mass transport problem, we derive from the weak
transport inequalities new oracle inequalities with fast rates of convergence.
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1. Introduction

Since the seminal work of Marton [24], transport inequalities efficiently yield
dimension free concentration inequalities. Using a duality argument, Bobkov and
Gotze [6] even proved that transport inequalities are equivalent to some concen-
tration inequalities. Our references on the subject are the monograph of Villani
[36] and the survey of Gozlan and Leonard [16]. Transport inequalities appear as
a nice alternative to the classical modified log-Sobolev approach of Massart [28]
for obtaining dimension free concentration inequalities useful in mathematical sta-
tistics. More specifically, dimension free concentration inequalities are used to get
oracle inequalities with fast rates of convergence. This article develop new kinds
of transport inequalities, new exponential inequalities and new oracle inequalities
with fast rates of convergence.

In the case of product measures, the classical modified log-Sobolev approach de-
veloped by Massart in [28] leads to optimal dimension free concentration inequalities
of Bernstein’s type. However, for non product measures, such inequalities do not
hold in their optimal form in many situations. The reason is the following: in the
bounded iid case, Bernstein’s inequality yields gaussian behavior for deviations less
than a bound depending on the essential supremum. In many bounded dependent
cases, their exists a unique regeneration scheme of iid cycles with random length.
The Bernstein inequality yields gaussian behavior for small deviations less than a
bound depending on the essential supremum and also on the concentration prop-
erties of the random length, see Bertail and Clémencon [5]. It is a drawback for
statistical applications where the variance term, which is essential, is perturbed by
the concentration properties of the random length. It leads, to an additional term,
at least logarithmic, which cannot be removed, see Adamcsak [1]. To bypass this
problem, many authors assumed contractions conditions on the conditional mea-
sure, see Marton [25] for the total variation metric, Lezaud [23] under a spectral
gap condition for the kernel of a Markov chain. For symmetric Markov process, this
second condition is more general and it is also necessary for Bernstein’s inequality,
see Guillin et al. [17].

Many classical models in time series analysis do not satisfy such conditions. For-
tunately, the classical Bernstein’s inequality also holds for non contraction condi-
tions but under γ̃-weakly dependent conditions, closely related with uniform mixing
conditions, see Samson [32]. This result yields fast convergence rates of order n−1 in
oracle inequalities (comparable to those in the iid case) in a dependent setting, see
[2]. However, this approach relies on the maximal coupling properties of the Ham-
ming distance and cannot be extended to other metrics, see [11]. For other metrics,
non optimal couplings are used by Marton [27] and Djellout et al. [12] to extend
classical dimension free transport inequalities T2(C) in a dependent context. If the
"constant" C in the transport inequality is sufficiently close to the variance term
then Bernstein’s inequality is recovered and fast convergence rates are achieved,
see Joulin and Ollivier [19]. Otherwise, the statistical convergence rates are lower
than n−1 because a tradeoff must be done between the estimate of the variance
and the accuracy of coupling schemes that are not dimension free, see Winten-
berger [37] for details. The fast rates of convergence in mathematical statistics are
not achieved in general dependent contexts due to the variance term appearing in
the classical dimension free inequalities of Bernstein’s types. On the contrary, the
Hoeffding’s inequality that do not have a variance term is easily extended to very
general dependent case, see Rio [30] and Djellout et al. [12]. Unfortunately, the
Hoeffding inequality, equivalent to the T1(C) transport inequality, is not dimension



WEAK TRANSPORT INEQUALITIES AND APPLICATIONS 3

free. Thus, this probabilistic inequality yields low rates of convergence of order
n−1/2, see Alquier and Wintenberger [3].

In this paper we develop new probabilistic tools to obtain dimension free expo-
nential inequalities and thus fast convergence rates in oracle inequalities. Let (E, d)
be a Polish space. With the notation P [h] =

∫

hdP for any probability measure P
and any measurable function h, we say that P satisfies the new transport inequality
T̃p(C) for any C > 0 and 1 ≤ p ≤ q if for any measure Q

sup
α

inf
π

π[α(Y )d(X,Y )]

(Q[α(Y )q])1/q
≤

√

2CK(P |Q)

with 1/p+ 1/q = 1 and the convention +∞/ +∞ = 0/0 = 0. Here α is any non-
negative measurable function, π is any coupling scheme of (X,Y ) with margins
(P,Q) and K(P |Q) is the relative entropy Q[log(dP/dQ)] (also called the Kullback-
Leibler divergence). As the role of P and Q is not the same, we also introduce

T̃
(i)
p (C) where P and Q are interchanged in the left hand side term. These inequal-

ities are weakened versions of the transport inequalities introduced by Marton [26]
(for d being the Hamming distance)

inf
π∈M̃

sup
α>0

π[α(Y )d(X,Y )]

(Q[α(Y )q])1/q
≤

√

2CK(Q|P ).

These inequalities are already weakened forms of the classical Tp(C) transport in-
equality

inf
π∈M̃

π[dp(X,Y )]1/p ≤
√

2CK(Q|P ).

Contrary to the classical Tp(C) transport inequalities, any compactly supported

measure P satisfies the weak T̃p(C) transport inequalities for any 1 ≤ p ≤ 2. More-
over, the weak transport inequalities extend nicely to non-products non-contractive
measures P on En, n ≥ 1. Using a new Markov coupling scheme, our main result
in Theorem 3.2 states that there exists C′ > 0 such that

(1.1) sup
α

inf
π

∑n
j=1 π[αj(Y )d(Xj , Yj)]

(
∑n
j=1Q[αj(Y )q])1/q

≤
√

2n2/p−1C′K(P |Q)

when conditional measures Pxi|x(i) , x(i) = (xi, . . . , x0) satisfy the weak transport

inequalities T̃p(C) and under a new γ(p)-weak dependent condition:

Wp(Pxk|x(i) , Pxk|x(i−1),yi) ≤ γk,i(p) d(xi, yi), 0 ≤ i < k ≤ n.

When d is the Hamming distance, the γ(2)-weak dependance coincides with the
context of weakly dependence already studied by Samson [32] and we obtain simi-
lar results. We keep the notation and denote γ̃(p) the weak dependence coefficients
when d is the Hamming distance. However, to tackle much more general and clas-
sical time series contexts, we prefer to choose d as the euclidian norm, see Section

4. Then, when p = 1 and T̃1(C) = T̃
(i)
1 (C) = T1(C) by definition, the γ(1)-weak

dependence is linked with the weak dependence notion introduced by Rio in [30] as
discussed in Djellout et al. [12]. Thus we recover the Hoeffding’s inequality of [30]
which is not dimension free because n2/p−1 = n as p = 1.

The dual forms of the weak transport inequalities yield new exponential inequal-
ities. Except in the specific case of tha Hamming distance, the deviations are not
estimated in terms of the variance and contrary to the Hoeffding’s inequality, it is
a dimension free inequality when p = 2. If P satisfies T̃2(C) on En then for any
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function f of the observations (X1, . . . , Xn) such that there exist functions Lj(x)

satisfying f(x)− f(y) ≤ ∑n
j=1 Lj(x)d(xj , yj) for any x, y ∈ (IRd)n we have

(1.2) P
[

exp
(

λ(f − P [f ])− Cλ2

2

n
∑

j=1

Ljf
2
))]

≤ exp(λP [f ]), λ > 0.

When d is the Hamming distance, inequality (1.2) yields to the classical Bern-
stein’s inequality, see Ledoux [22] in the independent setting and Samson [32] in
the uniform mixing setting. When the function f is a convex function, it satisfies
the above condition with Lj = ∂j its sub-gradient and the inequality (1.2) coin-
cides with generalizations of the Tsirel’son inequality of [34] (also implied by the
T2 transport inequality, see Bobkov et al. [7]). For convex functions that are also
Lipschitz continuous the inequality stated above leads to new extensions of the
classical exponential inequality due to Talagrand [33] for products measure.

As n2/p−1 = 1 for p = 2, combining inequalities (1.1) and (1.2) we obtain new
dimension free exponential inequalities for many dependent classical time series
that are γ(2)-weakly dependent. As the transport inequalities yield concentration
of measures via relative entropy, we couple it with the statistical PAC-bayesian
aparadigm that describes the accuracy of estimators in term of relative entropy
too, see McAllester [29]. The oracle inequalities can thus be expressed as a condi-
tional mass transport problem. We apply this new approach to the Ordinary Least

Square (OLS) estimator θ̂ in the linear regression context (other interesting statis-
tical issues will be investigated in the future). Denoting by R the risk of prediction,

an oracle inequality states with high probability that R(θ̂) ≤ (1 + η)R(θ) +Rnη
−1

where η ≥ 0, θ is the oracle defined as R(θ̂) ≤ R(θ) for all θ and Rn is the rate of
convergence. Oracle inequalities are standard non asymptotic criteria for the effi-
ciency of statistical estimators, see Massart [28]. If η = 0 then the oracle inequality
is said to be exact and otherwise it is non exact, see Lecué and Mendelson [21]
for a discussion. The dimension free concentration properties yield to fast rates
of convergence Rn ∝ n−1. For γ(2)-weakly dependent time series, we obtain new

nonexact oracle inequalities for the OLS θ̂ when the conditional measures satisfies
the weak transport inequalities. These assumptions are satisfied for many models
such as classical ARMA models with bounded, gaussian or log-concave innovations.
In the specific case when d is the Hamming distance, we recover in the conditional
mass transport problem the classical variance term as it was the case in exponential
inequalities. This variance term plays a crucial role through the so called necessary
margins condition introduced by Tsybakov [35]. Thus, fixing d as the Hamming
distance, we obtain new exact oracle inequalities with fast convergence rates for the

OLS θ̂ in the γ̃(2)-weakly dependent case.

The paper is organized as follow: in Section 2 are developed the properties of
the weak transport costs used in the proof of our main result, a weak transport
inequalities for non product measures stated in Section 3. Section 4 is devoted
to some examples. The dual form of the weak transport inequalities yields new
exponential inequalities presented in Section 5. Finally, new oracle inequalities
with fast rates of convergence are given in Section 6.

2. Weak transport costs, gluing lemma and Markov couplings

2.1. Weak transport costs on E. Let M(F ) denotes the set of probability mea-
sure on some space F , M+(F ) the set of lower semi-continuous non negative mea-

surable functions and M̃(P,Q) the set of coupling measures πx,y, i.e. πx,y ∈M(E2)
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with margins πx = P and πy = Q. Let (p, q) be real numbers satisfying 1 ≤ p ≤ 2
and 1/p+ 1/q = 1. Let us define the weak transport cost as

(2.1) W̃p(P,Q) = sup
α∈M+(E)

inf
π∈M̃(P,Q)

π[α(Y )d(X,Y )]

Q[αq]1/q

with the classical conventionsQ[αq]1/q = ess supα(Y ) when q = ∞ and +∞/+∞ =
0/0 = 0. For fixed α ∈M+(F ), let us denote

(2.2) W̃α(P,Q) = inf
π∈M̃(P,Q)

π[α(Y )d(X,Y )].

Notice that W̃ is not symmetric and that W̃ (P,Q) = W̃ (Q,P ) = W̃α(P,Q) =

W̃α(Q,P ) = 0 if P = Q. Notice that α ∈ M+ is assumed lower semi-continuous
such that the optimal transport in the weak transport costs exist, see for example
[16]. Now let us show that the weak transport cost satisfies the triangular inequality.
It is a simple consequence of the second assertion of the following version of the
gluing Lemma:

Lemma 2.1. For any coupling πx,y ∈ M̃(P,Q) and πy,z ∈ M̃(Q,R) respectively
there exists a distribution πx,y,z with corresponding margins and such that X and
Z are independent conditionally on Y , i.e. πx,z|y = πx|yπz|y.

Proof. From the classical gluing Lemma, se for example the Villani’s textbook [36],
we can choose πx,y,z such that πx,y,z = πx|yπz|yπy as the margins corresponds:
πx|yπy = πx,y and πz|yπy = πy,z The conditional independence follows from the
specific form of πx,y,z as πx,z|y = πx,y,z/πy by definition. �

The conditional independence in the gluing Lemma 2.1 is the main ingredient to
prove the triangular inequality on W̃p:

Lemma 2.2. For any P,Q,R we have

(2.3) W̃p(P,R) ≤ W̃p(P,Q) + W̃p(Q,R)

Proof. Let us fix α ∈M+(E) such that R[αq] <∞. We have

πx,z[α(Z)d(X,Z)] ≤ π[α(Z)d(X,Y )] + πy,z[α(Z)d(Y, Z)].

Let us choose π∗
y,z satisfying

π∗
y,z[α(Z)d(Y, Z)] = inf

π∈M̃(Q,R)
π[α(Z)d(Y, Z)] ≤ R[αq]1/qW̃p(Q,R).

By conditional independence in Lemma 2.1, we also have

π[α(Z)d(X,Y )] = πx,y[π
∗
z|y[α(Z)|Y ]d(X,Y )] =: πx,y[α̃(Y )d(X,Y )].

Let us choose π∗
x,y satisfying

π∗
x,y[α̃(Y )d(X,Y )] = inf

π∈M̃(P,Q)
π[α̃(Y )d(X,Y )] ≤ Q[α̃q]1/qW̃p(P,Q).

Notice that Q[α̃q] = Q[π∗
z|y[α(Z)|Y ]q] ≤ R[αq] using Jensen’s inequality. Let us

denote π∗ = π∗
x,y,z obtained by the gluing Lemma 2.3 of π∗

x,y and π∗
y,z. Collecting

all these bounds we have π∗[α(Z)d(X,Y )] ≤ R[αq]W̃p(P,Q). We obtain

π∗
x,z[α(Z)d(X,Z)]

R[αq]1/q
≤ (W̃p(P,Q) + W̃p(Q,R)).

and taking the supremum on α the desired result follows from the definition of
W̃p(Q,R). �
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2.2. Markov couplings. In this section, we only consider Markov couplings on
the product space En with n = 2, the cases n ≥ 2 following by simple induction
reasoning.

Definition 2.1. Let P , Q ∈ M(E2), the set of Markov couplings M̃(P,Q) are
defined as the products π = π1π2|1 with π1 a coupling of P1 and Q1 and π2|1 a
coupling of P2|1 and Q2|1.

The terminology of Markov couplings was introduced by Rüschendorf in [31].
Similar couplings have been used by Marton in [26]. The property of conditional
independence in the gluing Lemma 2.1 is nicely compatible with Markov couplings:

Lemma 2.3. For any Markov couplings πx,y ∈ M̃(P,Q) and πy,z ∈ M̃(P,Q)

with P, Q, R ∈ M̃(E2) it exists a distribution πx,y,z with corresponding margins
and such that X = (X1, X2) and Z = (Z1, Z2) are independent conditionally on
Y = (Y1, Y2).

Proof. By assumption πx,y = πx1,y1πx2,y2|x1,y1 and πy,z = πy1,z1πy2,z2|y1,z1 . Let us
define πx,y,z as πx1,y1,z1πx2,y2,z2|x1,y1,z1 by the relation

(2.4) πx1,y1,z1 = πx1|y1πz1|y1πy1 ,

and

(2.5) πx2,y2,z2|x1,y1,z1 = πx2|x1,y1,y2πz2|y1,z1,y2πy2|y1 .

Let us check that πx,y,z has the correct margins. First, from the classical glu-
ing lemma we know that πx1,y1,z1 has the correct margins. It remains to prove
that πx2,y2,z2|x1,y1,z1 has the correct margins. Notice that from the definition of
Markov couplings, we have πy2|y1 = πy2|x1,y1 = πy2|y1,z1 . Thus the first margin of
πx2,y2,z2|x1,y1,z1 is equal to

πx2|x1,y1,y2πy2|y1 = πx2|x1,y1,y2πy2|x1,y1 = πx2,y2|x1,y1 .

The same reasoning show that the second margin is also the correct one.

We proved above that by construction X1 and Z1 are independent conditionally
on Y1, i.e. that πx1,z1|y1 = πx1|y1πz1|y1 . Let us show that it is also the case
conditionally on Y1 and Y2. We have

πx1,z1|y1,y2 =
πx1,z1,y1,y2

πy1,y2
=
πy2|y1πx1,z1,y1

πy2|y1πy1
= πx1,z1|y1

the third identity following from the identity πy2|y1 = πy2|x1,y1,z1 by the identity
(2.5). Thus, using thatX1 and Z1 are independent conditionally on Y1 we obtain the
identity πx1,z1|y1,y2 = πx1|y1πz1|y1 . We conclude that πx1,z1|y1,y2 = πx1|y1,y2πz1|y1,y2
as

πx1|y1 =
πy2|y1πx1,y1

πy2|y1πy1
=
πx1,y1,y2

πy1,y2
= πx1|y1,y2

the third identity following from the identity πy2|y1 = πy2|x1,y1 by definition of
Markov couplings (the same is true replacing x1 by z1).

It remains to prove that X2 is independent of Z2 conditionally on (X1, Z1) and
(Y1, Y2). Indeed, we have by construction

πx2,z2|x1,y1,z1,y2 =
πx2,y2,z2|x1,y1,z1

πy2|x1,y1,z1

=
πx2,y2,z2|x1,y1,z1

πy2|y1
= πx2|x1,y1,y2πz2|y1,z1,y2 ,

the last identity following from the idenity (2.5). Thus the result is proved:

πx,z|y = πx2,z2|x1,y1,z1,y2πx1,z1|y1,y2 = πx2|x1,y1,y2 .πz2|y1,z1,y2

�
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2.3. Weak transport costs on En, n ≥ 2. We extend the definition of W̃ on the
product space En for n ≥ 2. Let P , Q ∈M(En) we define

(2.6) W̃p(P,Q) = sup
α∈M+(En)

inf
π∈M̃(P,Q)

∑n
j=1 π[αj(Y )d(Xj , Yj)]

(
∑n

j=1Q[αj(Y )q])1/q

with the convention (
∑n

j=1Q[αj(Y )q])1/q = max1≤j≤n ess supαj if q = ∞ and

(2.7) W̃α(P,Q) = inf
π∈M̃(P,Q)

n
∑

j=1

π[αj(Y )d(Xj , Yj)]

for any fixed α = (αj)1≤j≤n ∈ M+(En). Considering Markov couplings, we can
use the conditional independence in the gluing Lemma 2.3 to assert that the weak
transport cost on En also satisfies the triangular inequality. More useful, W̃α

satisfies an inequality similar than the triangular one:

Lemma 2.4. For any P,Q,R ∈ M(En), for any α ∈ M+(En) there exists α̃ ∈
M+(En) satisfying Q[α̃j(Y )]q ≤ R[αqj(Z)] fo any 1 ≤ j ≤ n and

(2.8) W̃α(P,R) ≤ W̃α̃(P,Q) + W̃α(Q,R)

Remark 2.1. As a consequence of the Lemma 2.4, we obtain the triangular inequal-
ity for W̃

(2.9) W̃p(P,R) ≤ W̃p(P,Q) + W̃p(Q,R)

by taking the supremum on α on both sides of (2.8) and using the relationQ[α̃j(Y )]q ≤
R[αqj(Z)].

Proof. Let us fix α ∈ M+(En) such that R[αqj ] < ∞ for all 1 ≤ j ≤ n. Define

recursively the couplings π∗
y,z and π∗

x,y ∈ M̃(E2) such that

π∗
y,z

[

n
∑

j=1

αj(Z)d(Xj , Zj)
]

= W̃α(Q,R),

π∗
x,y

[

n
∑

j=1

π∗
z|y[αj(Z)|Y ]d(Xj , Yj)

]

= W̃π∗
z|y

[α(Z)|Y ](P,Q).

where we use Jensen’s inequality. Let us denote π∗ = π∗
x,y,z obtained by the gluing

Lemma 2.3 of π∗
x,y and π∗

y,z. Then

π∗
x,z

[

n
∑

j=1

αjd(Xj , Zj)
]

≤ π∗
y,z

[

n
∑

j=1

αj(Z)d(Xj , Yj)
]

+ π∗
[

n
∑

j=1

αj(Z)d(Yj , Zj)
]

≤ π∗
x,y

[

n
∑

j=1

π∗
z,y[αj(Z)|Y ]d(Xj , Yj)

]

+π∗
y,z

[

n
∑

j=1

αj(Z)d(Yj , Zj)
]

≤ W̃π∗
z|y

[α(Z)|Y ](P,Q) + W̃α(Q,R).(2.10)

The inequality (2.8) follows from (2.10) taking α̃j = π∗
y,z[αj(Z)|Y = ·] and notic-

ing that the relation Q[α̃2
j (Y )] ≤ R[α2

j (Z)] holds by an application of Jensen’s
inequality. �
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3. Weak transport inequalities

3.1. Weak transport inequalities. Let us denote K(P |Q) the relative entropy
(or the Kullback-Leibler divergence) defined as K(P |Q) = Q[log(dQ/dP )] when
Q << P , K(P |Q) = ∞ otherwise. Let us say that the probability measure P on

En satisfies the weak transport inequality T̃p(C) when for all distribution Q on En

we have

(3.1) W̃p(P,Q) ≤
√

2CK(P |Q).

Let us say that P satisfies the inverted weak transport inequality T̃
(i)
p (C) when

(3.2) W̃p(Q,P ) ≤
√

2CK(P |Q).

Notice that by definition and by Jensen’s inequality P satisfies T̃p(C) and T̃
(i)
p (C) as

soon as T̃p′(C) and T̃
(i)
p′ (C) reciprocally with p′ ≥ p. Moreover T̃1(C) = T̃

(i)
1 (C) =

T1(C) where Tp(C) is the classical transport inequality defined for any 1 ≤ p ≤ 2
as

inf
π∈M̃(P,Q)

π[dp(X,Y )]1/p ≤
√

2CK(P |Q).

3.2. Weak transport inequalities on E. Let us consider in this section P a
probability measure on E (case n = 1). Let us show the following

Theorem 3.1.

(1) Any P ∈M(E) satisfies T̃2(1) and T̃
(i)
2 (1) when d is the Hamming distance

d(x, y) = 1x 6=y.

(2) Any P ∈ M(E) satisfies T̃2(D
2) and T̃

(i)
2 (D2) for any metric d such that

sup(x,y)∈E2 d(x, y) =: D <∞.

Remark 3.1. Below is the proof of point (1) for the sake of completeness. However,
it is a direct consequence of Theorem 2 in Marton [26], with an alternative proof
in Samson [32] as their transport costs are stronger than ours. The constant 1 is
still optimal for our weaker transport inequality, see the discussion in Section 5.3.

Remark 3.2. By definition every P satisfying the classical transport inequality

T2(C) such that gaussian or log-concave measure satisfies also T̃2(C) and T̃
(i)
2 (C).

However, any distribution having a support with finite diameter satisfies T̃2(C)

by point (2) of the above Theorem but not necessarily T̃2(C). For any metric d

the weak transport inequalities T̃2(C) and T̃
(i)
2 (C) have dual forms given below in

(3.3) and (3.4). These expression are particularly explicit when d is the Hamming
distance.

Proof. Let Cb denotes the set of all continuous bounded functions. From the dual
form of W̃α for α ∈M+(E) fixed we have

W̃α(P,Q) = inf
π
π[α(Y )d(X,Y )] = sup

f∈Cb

Q[fα]− P [f ]

where fα(y) = infx{α(y)d(x, y) + f(x)}. Then a measure P satisfies T̃2(C) if for
any α ∈M+(E) and any probability measure Q

sup
f∈Cb

Q[fα]− P [f ] ≤
√

2CQ[α2]K(Q|P ) = inf
λ>0

λCQ[α2]/2 +
K(Q|P )

λ
.

Thus P satisfies T̃2(C) if for any measure Q it holds

sup
λ>0

sup
α>0

sup
f∈Cb

Q[λ(fα − P [f ])− (λα)2C/2]−K(Q|P ) ≤ 0.
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By the variational form of the entropy we obtain

(3.3) sup
λ>0

sup
α>0

sup
f∈Cb

P [exp(λ(fα − P [f ])− (λα)2C/2)] ≤ 1.

In the specific case d(x, y) = 1x 6=y we have the explicit expression fα(y) = (α(y) +
inf f) ∧ f(y). As the difference fα − f is unchanged when adding a constant on f ,
we can take inf f = 0 with no loss of generality and

sup
α>0

P [exp(λ(fα − P [f ])− (λα)2C/2)] = P [exp(λ(f − P [f ])− λ2f2C/2))].

But for any X > 0 we have X −X2/2 ≤ log(1 +X) and thus

P [exp(X −X2/2)] ≤ 1 + P [X ] ≤ exp(P [X ]).

T̃2(1) follows by taking X = λf . To prove that T̃
(i)
2 (1) holds we start from its

dual form. For equivalent reasons than the preceding dual form (3.3), our weak

transport inequality T̃
(i)
2 (C) holds for any C > 0 iff

(3.4) sup
λ>0

sup
α>0

sup
f∈Cb

P [exp(λ(fα − P [f ])− P [(λα)2]C/2)] ≤ 1.

Noticing that we can restrict to α(x) ≤ sup f − f(x), taking sup f = 0 and C = 1
we obtain the sufficient condition

sup
f<0

P [exp(λ(f − P [f ])− P [(λf)2]/2)] ≤ 1.

For any non positive r.v. X we have exp(X) ≤ 1+X+X2/2 and the desired result
follows.

Point (2) is proved noticing that d(x, y) ≤ D1x 6=y. �

3.3. Weak transport inequalities on En, n ≥ 2. Let us present a new coupling
technique based on the following so called γ̃(p)-weakly dependent properties of any
measure P on En. Add artificially time 0 and put X0 = Y0 = x0 = y0 for a fixed
point y0 ∈ E. Denote x(i) = (xi, . . . , x0) for i ≥ 0. Recall the classical Wassertein
distance

Wp(P,Q) = inf
π∈M̃(P,Q)

π[dp(X,Y )]1/p.

Let us work under the following weak dependence assumption:

Definition 3.1. For any 1 ≤ 2 ≤ p, any measure d, the probability measure P
is γ(p)-weakly dependent if for any 0 ≤ i < k ≤ n there exists the coefficient
γk,i(p) ≥ 0 such that

(3.5) Wp(Pxk|x(i) , Pxk|x(i−1),yi) ≤ γk,i(p)d(xi, yi) ∀x(i) ∈ Ei+1, (xk, yk) ∈ E2.

Let us denote

Γ(p) =

















1 0 0 . . . 0
γ2,1(p) 1 0 . . . 0

γ3,1(p) γ3,2(p) 1
. . .

...
...

...
. . . 1 0

γn,1(p) γn,2(p) . . . γn,n−1(p) 1

















.

The matrix Γ(p) has n rows and n columns. We equip IRn with the ℓp norm and
the set of the matrix of size n× n with the subordinated norm, both denoted ‖ · ‖p
for any 1 ≤ p ≤ ∞.
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Theorem 3.2. If P is γ(p)-weakly dependent and Pxj |x(j−1) satisfies T̃p(C) or

T̃
(i)
p (C) for all 1 ≤ j ≤ n then T̃p(C‖Γ(p)‖2pn2/p−1) or T̃

(i)
p (C‖Γ(p)‖2pn2/p−1) holds

respectively.

Remark 3.3. When the process (Xt) is stationary, we have γi,j(p) = γk,ℓ(p) for

j − i = k− ℓ. From the basic inequality ‖A‖p ≤ ‖A‖1/p1 ‖A‖1−1/p
∞ and the fact that

‖Γ‖1 = ‖Γ‖∞ = 1 +
∑n
i=1 γi,0(p), then ‖A‖p ≤ 1 +

∑n
i=1 γi,0(p).

Remark 3.4. In the case p = 1 we recover the Hoeffding’s inequality of Djellout
et al. [12] from the dual form of T̃1(C) = T̃ i1(C) = T1(C). Recall the assumption
(C1)

′ of [12]: for any 1-Lipschitz function f it holds

|P [f(Xk+1, . . . , Xn)|x(k)]− P [f(Xk+1, . . . , Xn)|yk, x(k−1)]| ≤ Sd(xk, yk).

For any a = (ak+1, . . . , an)
′, as f =

∑n
j=k+1 ajfj is a 1-Lipschitz function whenever

‖a‖∞ ≤ 1 and the fj are 1-Lipschitz functions, we obtain a′Wi ≤ S with Wi =
d(xi, yi)

−1(Wp(Pxk|x(i) , Pxk|x(i−1),yi))
′
1≤i<k≤n. Denoting W the n×n matrix of the

Wk completed with 0 we obtain ‖a′W‖∞ ≤ S for all ‖a‖∞. By the definition of
the matrix norm and by duality it is equivalent to ‖W′‖1 ≤ S. Finally, one can
always choose Γ such that it coincides with the supremum of W′ overall (xk, yk)
such that d(xk, yk) 6= 0 and thus (C1)

′ is equivalent to ‖Γ‖1 ≤ S.

Remark 3.5. In the case d is the Hamming distance 1x 6=y then by the Kantorovitch-

Rubinstein duality, for any 1 ≤ p ≤ 2 and any x(i) ∈ Ei+1 and yi ∈ E:

inf
π∈M̃

(

P
xk|x(i) ,Pxk|x(i−1),yi

)

π[dp(X,Y )]

≤ sup
A∈B

sup
x(i),yi

|P(Xk ∈ A|X(i) = x(i))− P(Xk ∈ A|Xi = yi, X
(i−1) = x(i−1))|.

Here B is the Borel σ-algebra and the supremum in x(i), yi is taken almost ev-
erywhere. Following the notation of Samson [32] for p = 2 and Kontorovitch and
Ramanan [20] for p = 1, let us define for any 1 ≤ p ≤ 2 the γ̃(p)-weakly dependent
coefficients as

γ̃k,i(p) =

(3.6)

sup
A∈B

sup
x(i),yi

|P(Xk ∈ A|X(i) = x(i))− P(Xk ∈ A|Xi = yi, X
(i−1) = x(i−1))|1/p.

The probability measure P is said to be γ̃(p)-weakly dependent when its coefficients
are finite. For Markov chains, condition (3.6) is equivalent to the uniform ergodicity.
By definition, γ̃pk,i ≤ 2φk−i where φ is the uniform mixing coefficient introduced by

Ibragimov [18]. For p = 2, we obtain a weakened form of the transport inequality
obtained by Samson [32] as

W̃2(P,Q) ≤ inf
π∈M̃

sup
αj>0

∑n
j=1 π[αj(Y )d(Xj , Yj)]

(
∑n

j=1Q[αj(Y )2])1/2
= inf

π∈M̃

(

n
∑

i=1

Q[π[Xi 6= Yi | Yi]2
)1/2

.

However, the dual form of our weak transport inequality yields the same exponential
inequalities than those obtained in [32]. Notice however that our notion of transport
seems too weak to yield concentration properties in term of the convex distance as
it is done in Talagrand in [33] or in Marton in [25].

Proof. The proofs of the two assertions are similar as the weak dependence con-
dition (3.5) is symmetric in xi and yi. Thus the proof of the second assertion is
omitted.
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Let us fix α ∈M+(En) such that Q[αqj ] <∞ for all 1 ≤ j ≤ n. As preliminaries,
we recall the following result of existence of the optimal Markov coupling due to
from Rüschendorf, [31] and a simple and useful inequality of this result stated in
Lemma 3.4.

Let σ : En × En 7→ IR+ and the section of σ in (x1, y1) ∈ E2 as

σx1,y1(x2, y2) = σ((x1, x2), (y1, y2)).

Theorem 3.3 (Theorem 3 in [31]). We have the equivalence between (1) and (2)
which asserts (a) and (b)

(1) infπ∈M̃ π[σ] = π∗[σ] with π∗ ∈ M̃ ,
(2) (a) h(x, y) := infπ2|1

π[σx,y] = π∗
2|1[σx,y|(x, y)] is finite π1−a.s. and

(b) infπ1 π1[h] = π∗
1 [h] <∞.

A simple corollary of this Theorem is the following result:

Lemma 3.4. Let P , Q ∈ M(En) be decomposed as P = P1P|X1
and Q = Q1Q|Y1

for P1, Q1 ∈ M(E) and P|x1
, Q|y1 ∈ M(En−1). Then for any α ∈ M+(En) and

any coupling π1 ∈ M̃(P1, Q1) we have

(3.7) W̃α(P,Q) ≤ π1[Q|Y1
[α1|Y1]d(X1, Y1) + W̃α(1)(P|X1

, Q|Y1
)].

Proof. Let us assume that for almost all x1, y1 ∈ E we have W̃α(1)(P|x1
, Q|y1) <∞.

Then, by lower semi-continuity, it exists π∗
|x1,y1

such that:

π∗
|x1,y1

[

n
∑

j=2

α
(1)
j d(Xj , Yj)

]

= W̃α(1)(P|x1
, Q|y1)].

Thus the desired result follows from Theorem 3.3 remarking that for any x1, y1 ∈ E
we have

π∗
|x1,y1

[α
(1)
1 d(x1, y1)] = π∗

|x1,y1
[α

(1)
1 |x1, y1]d(x1, y1) = Q|y1 [α1|y1]d(x1, y1)

by definition of Markov couplings. �

Let us consider now the following coupling scheme denoted π̃ defined recursively
as π̃ = π̃n|n−1 · · · π̃2|1π̃1|0 ∈ M̃(En) where π̃j|j−1 = π̃xj ,yj|x(j−1),y(j−1) is determined
such that

(3.8) π̃j|j−1

[

n
∑

k=j

Q|Yj ,y(j−1) [α
q
k|Yj , y(j−1)]1/qγk,jd(Xj , Yj)

]

=
(

n
∑

k=j

Q|y(j−1) [α
q
k|y(j−1)]γqk,j

)1/q

W̃p(Pxj |x(j−1) , Qyj |y(j−1))

for all x(i−1), y(i−1) in Ei−1.
We are now ready to prove the result iterating several time the same reasoning.

Let us detail the case j = 1 when considering probabilities conditionally on y0.
Applying (3.7) and (2.8) we have

W̃α(P,Q) ≤ π̃1|y(0) [Q|Y1,y(0) [α1|Y1, y(0)]d(X1, Y1) + W̃α(1)(P|X1,y(0) , Q|Y1,y(0))]

≤ π̃1|y(0) [Q|Y1,y(0) [α1|Y1, y(0)]d(X1, Y1) + W̃α(1)(P|Y1,y(0) , Q|Y1,y(0))(3.9)

+W̃α̃(1)(P|X1,y(0) , P|Y1,y(0))].

To bound the last term, we use the definition of the γ(p)-weak dependence:
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Lemma 3.5. For any αk ∈M+(E) for all j < k ≤ n and any γ(p)-weakly depen-
dent probability measure P we have

(3.10) W̃α(j)(P|xj ,y(j−1) , P|y(j)) ≤
n
∑

k=j+1

Q|y(j) [α
q
k|y(j)]1/qγk,jd(xj , yj)

Proof. Assume that Q[αqk] <∞ for j < k ≤ n. Then, applying the Holder inequal-
ity and the definition of Markov couplings, we have

W̃α(j) (P|xj ,y(j−1) , P|y(j)) = inf
π|j

π|j

[

n
∑

k=j+1

αkd(Xk, Yk)
]

≤ inf
π|j

n
∑

k=j+1

π|j [α
q
k|y(j)]1/qπ|j [dp(Xk, Yk)]

1/p

≤
n
∑

k=j+1

Q|y(j) [α
q
k|y(j)]1/q infπ|j

π|j [d
p(Xk, Yk)]

1/p

≤
n
∑

k=j+1

Q|y(j) [α
q
k|y(j)]1/qWp(P|xj ,y(j−1) , P|y(j))

and the result follows by definition of the γ(p)-weak dependence coefficients. �

Collecting the bounds (3.9) and (3.10) we obtain

W̃α(P|y(0) , Qy(0)) ≤ π̃1|y(0)
[

n
∑

k=1

Q|Y (1),y0 [α
q
k|Y (1), y0]

1/qγk,1d(X1, Y1)

+ W̃α(1)(P|Y1,y(0) , Q|Y1,y(0))].

Let us do the same reasoning than above for any 1 ≤ j ≤ n conditionally on y(j) on

W̃α(j−1) (P|y(j) , Qy(j)) where α
(i)
j denotes the section of αj in y(i) as α

(i)
j (yi+1, . . . , yn) =

αj(y) and α(i) = (α
(i)
j )j>i. For any 1 ≤ j ≤ n, we obtain:

W̃α(j−1) (P|y(j−1) , Qy(j−1)) ≤ π̃j|y(j−1)

[

n
∑

k=j

Q[αqk|Yj , y(j−1)]1/qγk,jd(Xj , Yj)

+ W̃α(j) (P|Yj ,y(j−1) , Q|Yj,y(j−1))].

For the specific Markov coupling we consider, the identity (3.8) holds and

W̃α(j−1) (P|y(j−1) , Qy(j−1)) ≤
(

n
∑

k=j

Q|y(j−1) [α
q
k|y(j−1)]γqk,j

)1/q

W̃ (Pxj |y(j−1) , Qyj|y(j−1))

+ π̃j|y(j−1) [W̃α(j)(P|Yj ,y(j−1) , Q|Yj ,y(j−1))]

≤
n
∑

k=j

Q|y(j−1) [α
q
k|y(j−1)]1/qγk,jW̃ (Pxj |y(j−1) , Qyj|y(j−1))

+ π̃j|y(j−1) [W̃α(j)

(P|Yj ,y(j−1) , Q|Yj,y(j−1))]

where the last inequality follows from the concavity of x → x1/q and Jensen’s
inequality. Applying an inductive argument, we obtain

W̃α(P,Q) ≤ Q
[

n
∑

j=1

n
∑

k=j

Q[αqk|Y (j−1)]1/qγk,jW̃ (Pxj |Y (j−1) , Qyj |Y (j−1))
]



WEAK TRANSPORT INEQUALITIES AND APPLICATIONS 13

≤
n
∑

j=1

n
∑

k=j

Q[αqk]
1/qγk,jQ[W̃ (Pxj |Y (j−1) , Qyj|Y (j−1))p]1/p

≤
n
∑

j=1

n
∑

k=j

Q[αqk]
1/qγk,jQ[2CK(Qyj|Y (j−1) |Pxj |Y (j−1))p/2]1/p

the second inequality follows from Hölder’s and Jensen’s inequalities and the last
one from the assumption Pxj |y(j−1) ∈ T̃p(C). Let us denote Q the row vector

(Q[αqk]
1/q)1≤k≤n and W the column vector (Q[2CK(Pxj |Y (j−1) |Qyj|Y (j−1) )p/2]1/p)′1≤j≤n.

With <;> denoting the scalar product, we obtain

W̃α(P,Q) ≤< Q; ΓW >≤ ‖Q‖q‖Γ‖p‖W‖p.
Notice that we have the identities

‖Q‖q =
(

n
∑

j=1

Q[αqk]
)1/q

,

‖W‖p =
(

n
∑

j=1

Q[2CK(Qyj|Y (j−1) |Pxj |Y (j−1))p/2]
)1/p

,

K(P |Q) =

n
∑

j=1

Q[2CK(Qyj |Y (j−1) |Pxj |Y (j−1))].

Indeed, noticing that p/2 ≤ 1, successive applications of Jensen’s inequality and
Holder’s inequality yield

‖W‖p ≤
(

n
∑

j=1

Q[2CK(Qyj |Y (j−1) |Pxj |Y (j−1) )]p/2
)1/p

≤ n1/p−1/2
(

n
∑

j=1

Q[2CK(Qyj|Y (j−1) |Pxj |Y (j−1))]
)1/2

≤
√

n2/p−12CK(Q|P ).

Finally, we obtain
∑n
j=1 π̃[αj(Y )d(Xj , Yj)]

(
∑n

j=1Q[αqj ])
1/q

≤
√

2C‖Γ‖2pn2/p−1K(Q|P ).

The desired result follows by definition of the weak transport cost by taking the
supremum over all α ∈M+(En). �

4. Examples of γ(p)-weakly dependent processes

We have already noticed that when d is chosen as the Hamming distance then
the γ̃(p)-weakly dependence is, for example, satisfied for φ-mixing processes with
‖Γ(p)‖p ≤ 1 +

∑n
i=1(2φi)

1/p for any 1 ≤ p ≤ 2, see [32]. But the γ̃(p)-weakly
dependence is also satisfied for non stationary sequences, see [20].

For E being a real vector space, the choice of the Hamming distance is not
natural and the resulting weakly dependent conditions are often too restrictive. In
what follows, we focus on the more natural choice d = ‖ · ‖ the euclidian norm.
We will extensively use the fact that probability measures satisfying weak transport
inequalities admit finite moments of any order for d(x0, X), ∀x0 ∈ E (it also implies
exponential moments, see the next Section).
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4.1. Linear models.

Example 4.1 (AR(∞) models). Consider (Xt) the stationary solution solution of
the autoregressive equation

Xt =
∑

i≥1

aiXt−i + ξt

where the real numbers ai are such that 1 − ∑

i≥1 aiz
i does not have unit root

outside the unit circle. Then the weak dependence condition (3.5) is satisfied with
γk,j(p) = |ak−j | for any 1 ≤ p ≤ 2 and any 0 ≤ j < k ≤ n.

Example 4.2 (MA(∞) models). Let consider Xt =
∑∞

i=1 aiξt−i with real numbers
ai such that

∞
∑

i=1

|ai| <∞.

Then the model is well defined and if it is invertible, i.e.
∑∞
i=1 aiz

i has no root
outside the unit circle, then it admits an AR(∞) representation and the weak

dependence condition (3.5) holds with γk,j(p) ≤ |∑j≤k

∑

i1+···+ij=k

∏j
ℓ=1 aiℓ | for

any 1 ≤ p ≤ 2 and any 0 ≤ j < k ≤ n.

Example 4.3 (ARMA models). Let us consider the ARMA model

X0(x) = x, Xt+1(x) = AXt(x) + ξt+1

in E = IRd where A ∈ Md,d (the space of d × d matrices) and (Zt) is a sequence

of i.i.d. random vectors in IRd called the innovations. This model is a particular
case of the general model above with ψt(x) = Ax+Zt. The γ(p)-weak dependence
condition is equivalent to

ρsp(A) := max{|λ|; λ is an eigenvalue in IC of A} < 1,

which is the necessary and sufficient condition for the ergodicity of this linear
ARMA model (Xt).

4.2. Non-linear models.

Example 4.4 (Stochastic Recurrent Equation (SRE)). Consider the SRE (also
called Iterated Random Functions)

(4.1) X0(x) := x ∈ E, Xt+1(x) = ψt+1(Xt(x)), t ≥ 0,

where (ψt) is a sequence of i.i.d. random maps. Let us denote also P the probability
of the whole process (Xt)t≥0. For any 1 ≤ p ≤ 2, if the distribution of ψ1(x) belongs

to T̃p(C) or T̃
(i)
p (C) for any x ∈ E and that there exists some S > 0 satisfying

(4.2)

∞
∑

t=1

P [d(Xt(x), Xt(x
′))p]1/p ≤ Sd(x, x′) ∀x, x′ ∈ E.

then P ∈ T̃p(C(1 + S)2n2/p−1) or T̃
(i)
p (C(1 + S)2n2/p−1).

Example 4.5 (General affine processes). Consider now the specific SRE

X0(x) = x,Xt+1(x) = f(Xt(x)) +M(Xt(x))ξt+1,

where E = IRd, ξt ∈ IRd
′

, f : IRd 7→ IRd, M : IRd 7→ Md,d′ (the space of d × d′

matrices) and the noise (ξt) is a sequence of i.i.d. random vectors of IRd
′

such that
its distribution Pξ is centered. Fix p = 2 and assume that:

(1) Pξ ∈ T̃2(C) or T̃
(i)
2 (C) on IRd′ w.r.t. the Euclidean metric;

(2) there exists K > 0 such that ‖M(x)‖2 ≤ K, ∀x ∈ IRd;
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(3) the Lyapunov exponent in L2 satisfies

λmax(L
2) := lim

t→∞

(

sup
x 6=y

P [|Xt(x)−Xt(y)|2]
|x− y|2

)1/t

< 1.

Using a version of Lemma 2.1 in [12] we obtain that conditions (1) and (2) implies

that Pxi|xi−1
∈ T̃2(CK

2) or T̃
(i)
2 (CK2). Moreover condition (4.2) is satisfied with

S = (1 − λmax(L
2))−1/2 and thus P ∈ T̃2(CK

2(1 + (1 − λmax(L
2))−1/2)2) or

T̃
(i)
2 (CK2(1 + (1− λmax(L

2))−1/2)2). We answer positively to a question raised in
Remark 3.6 in [12]. However notice that the condition λmax(L

2) can be difficult to
check on specific models. One possible sufficient condition is the Lipschitz mixing
condition of Duflo [14] asserting the existence of K > 0 and 0 < r < 1 such that

P [|Xt(x)−Xt(y)|2 ≤ Krt|x− y|2, ∀x, y ∈ E.

Another possibility is given in the next example.

Example 4.6 (Iterated Random Lipschitz Maps). Consider the general SRE (4.1)
and assume that the random maps ψt are Lipschitz-continuous. Denote the Lips-
chitz coefficient of any function f by

Λ(f) := sup
x 6=y

d(f(x), f(y))

d(x, y)
.

Let Pψ be the distribution of the sequence of iid random maps (ψt) The top Lya-
punov exponent Λ∗ is defined as limt→∞ t−1 log(ψ0oψ−1o · · · oψ−t+1). Its existence
in IR ∪ −∞ is due to the subadditive ergodic theorem. The condition Λ∗ < 0 is
sufficient for the existence of the stationary of the SRE. It implies that λmax(L

2)

when ψ1(x) belongs to T̃p(C) or T̃
(i)
p (C) for any x ∈ E.

Example 4.7 (Chains with Infinite Memory). Let us consider now the case of
Chains with Infinite Memory introduced by Doukhan and Wintenberger [13]:

Xt = F (Xt−1, Xt−2, . . . ; ξt), ∀t ∈ Z.

This model does not exhibit any Markov property. Assume there exists a sequence
of non negative numbers (ai) such that

Pξ[d(F (x1, x2, . . . ; ξ), F (y1, y2, . . . ; ξ))
p]1/p ≤

∑

i≥1

aid(xi, yi).

If
∑

i≥1 ai < 1 and F (x1, x2, . . . ; ξ) is in T̃2(C) or T̃
(i)
2 (C) the stationary measure

exists and (3.5) holds with γk,j(p) ≤ ak−j for any 0 ≤ j < k ≤ n.

5. New exponential inequalities

5.1. General exponential inequalities. Let X = (X1, . . . , Xn) be distributed as
P and consider the function f : En 7→ IR such that there exist auxiliary functions
Lj : E

n 7→ IR+, 1 ≤ j ≤ n satisfying

(5.1) f(y)− f(x) ≤
n
∑

j=1

Lj(y)d(xj , yj) ∀x, y ∈ En.

Let us consider the function g : En 7→ IR such that there exist auxiliary functions

L
(i)
j : En 7→ IR+, 1 ≤ j ≤ n such that

(5.2) g(y)− g(x) ≤
n
∑

j=1

L
(i)
j (x)d(xj , yj) ∀x, y ∈ En.

The dual form of the weak transport inequalities implies the following new expo-
nential inequality:
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Theorem 5.1. If P satisfies T̃p(C) and f satisfies (5.1) then for all λ > 0 we have

(5.3) P
[

exp
(

λ(f − P [f ])− Cλ2

2

((

2− 2

p

)

n
∑

j=1

L
p

p−1

j +
(2

p
− 1

))]

≤ 1.

If P satisfies T̃
(i)
p (C) and g satisfies (5.2) then for all λ > 0 we have

(5.4) P
[

exp
(

λ(g − P [g])− Cλ2

2

((

2− 2

p

)

n
∑

j=1

P
[

L
(i)
j

p
p−1

]

+
(2

p
− 1

))]

≤ 1.

Remark 5.1. Consider the case of a γ(2)-weakly dependent sequence supported by

[0, 1]n. Then P satisfies T̃ (‖Γ(2)‖22) and T̃
(i)
2 (‖Γ(2)‖22) by Theorem 3.2 and the

above results apply with C = ‖Γ(2)‖.
Proof. The proofs of (5.3) and (5.4) are similar. We only detail the first one.
Integrating (5.1) in (x, y) by π with marginals P and Q we get

Q[f ]− P [f ] ≤ π
[

n
∑

j=1

Lj(Y )d(Xj , Yj)
]

and by definition of W̃ we obtain

Q[f ]− P [f ] ≤ Q
[

n
∑

j=1

Lqj

]1/q

W̃p(P,Q).

Using that P ∈ T̃2(C) we obtain

(5.5) Q[(f − P [f ])] ≤ Q
[

n
∑

j=1

Lqj

]1/q√

2CK(P |Q).

From the variational identity

ab = inf
λ>0

λaq/q + bp/(λp−1p)

we get for all λ > 0:

Q[(f − P [f ])] ≤ λC/q Q
[

n
∑

j=1

Lqj

]

+K(P |Q)p/22p/2C1−p/2/(λp−1p).

We can rewrite it as

(p/2)Q
[

(p/C)1−p/2λp−1(f − P [f ]− λC/q

n
∑

j=1

Lqj)
]2/p

≤ K(P |Q).

From the Young inequality

(p/2)x2/p ≥ yx− (1− p/2)y2/(2−p)

applied with y = (Cλ2/p)2/p−1 we obtain

(p/2)((p/C)1−p/2λp−2)2/px2/p ≥ x− (1− p/2)Cλ2/p

For x = Q[λ(f − P [f ]− λC/q
∑n

j=1 L
q
j)] we obtain

Q
[

λ(f − P [f ]− λC/q

n
∑

j=1

Lqj)
]

−K(P |Q) ≤ (1/p− 1/2)Cλ2.

Then the desired result follows from the variational formula of the entropy. �
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5.2. Extensions of classical concentration inequalities to dependent cases.

A first corollary of Theorem 5.1 is an extension of the classical following inequality:
let f be a separately convex Lipschitz function on [0, 1]n then

(5.6) P (|f − P [f ]| ≥ t) ≤ 2 exp
(

− t2

2L2

)

where L satisfies |f(x)− f(y)| ≤ L‖x− y‖ for any x, y ∈ [0, 1]n equipped with the
Euclidian norm. This result was extended to contracting Markov chains in Marton
[25] and to γ̃(2)-weakly dependent processes in Samson [32] for convex Lipschitz
functions f . The extension to the more general γ(2)-weakly dependent context is
a straightforward Corollary of Theorem 5.1. From Remark 5.1 we know that P

satisfies T̃ (‖Γ(2)‖22) and T̃
(i)
2 (‖Γ(2)‖22). Remark that with no loss of generality we

can assume that f is smooth enough (see Samson [32] for a detailed proof of this
well known fact). Then for any x, y ∈ [0, 1]n, by convexity we have

f(x)− f(y) ≤
n
∑

j=1

∂jf(x)(xj − yj) ≤
n
∑

j=1

|∂jf(x)||xj − yj|.

Thus f satisfies condition (5.1) with Lj = ∂jf . From the Lipschitz assumption on
f we assert that

∑n
j=1 L

2
j(x) = ‖∇f‖2 ≤ L where ∇f denotes the usual gradient

of f . An application of Theorem 5.1 yields that

P [exp(λ(f − P [f ])] ≤ exp(‖Γ(2)‖22L2λ2/2).

From similar arguments −f satisfies (5.2) with
∑n

j=1 L
(i)
j

2
(x) ≤ L and the same

estimate holds on the Laplace transform of −f + P [f ]. Applying the classical
Chernoff arguments yields

Corollary 5.2. For any γ(2)-weakly dependent sequences on [0, 1]n , for any convex
L-Lipschitz function f it holds

P (|f − P [f ]| ≥ t) ≤ 2 exp
(

− t2

2‖Γ(2)‖22L2

)

.

This type of inequalities have a lot of applications, see [33].

From a statistical perspective, it is also interesting to investigate the properties
of the empirical process. As a corollary of Theorem 5.1 we also obtain a Poissonian
inequality for the empirical process f(x) = supG

∑n
i=1 g

2(Xi) for square of real
valued Lipschitz functions. Similar results are obtained in Section 3 of Boucheron
et al. [8].

Corollary 5.3. Assume that there exists (ℓi)1≤i≤n such that for any g ∈ G we have

|g(x)− g(y)| ≤
n
∑

i=1

ℓid(xi, yi), ∀x, y ∈ En

with
∑n

i=1 ℓ
2
i = L2 < ∞. If P satisfies T̃2(C) and T̃

(i)
2 (C) then for every t ≥ 0 we

have

P (f ≥ P [f ] + t) ≤ exp
(

− t2

8CL2(P [f ] + t)

)

,

P (f ≤ P [f ]− t) ≤ exp
(

− t2

8CL2P [f ]

)

.
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Proof. From the convex inequality x2−y2 ≤ 2x(x−y) we easily check that f satisfies

(5.1) with
∑n
j=1 L

2
j ≤ 4L2f and −f satisfies (5.2) with

∑n
j=1 L

(i)
j

2
≤ 4L2f . As P

satisfies T̃2(C) an application of (5.3) yields that for all λ > 0 we have

P [exp(f(λ− 4CL2λ2)− λP [f ])] ≤ 1.

An application of the Chernoff argument yields that for every 0 ≤ λ ≤ (4CL2)−1

P (f ≥ P [f ] + t) ≤ exp(−tλ(1 − 4CL2λ) + 4CL2λ2P [f ]).

Optimizing in λ we obtain

λ =
t

8CL2(t+ P [f ])

and the first inequality of the Corollary follows. For the second inequality, we apply
inequality (5.4) to obtain, for any λ > 0, that

P [exp(λ(f − P [f ]))] ≤ exp(4CL2λ2P [f ]).

The desired inequality follows by the Chernoff argument. �

5.3. The specific case of the Hamming distance. We fix d(x, y) = 1x 6=y as in
Samson [32]. Thus the result of this section holds for any γ̃(2)-weakly dependent
sequence (with no restriction on the margins). Using exactly the same arguments
than above, an extension of the classical exponential inequality (5.6) also holds in
this case

P (|f − P [f ]| ≥ t) ≤ 2 exp
(

− t2

2‖Γ̃(2)‖22L2

)

where Γ̃(2) is the matrix corresponding to the coefficients γ̃(2)

The case of the Hamming distance is specific because for any non negative func-
tion f we can replace the convexity argument x2 − y2 ≤ 2x(x − y) by the sim-
ple inequality f(x) − f(y) ≤ f(x)1x 6=y. Let us consider the empirical process
f(x) = | supG

∑n
i=1 g(Xi)| for some set of non negative real functions G bound-

ing by M . Then f satisfies (5.1) with
∑n

j=1 L
2
j ≤ Mf and −f satisfies (5.2) with

∑n
j=1 L

(i)
j

2
≤ Mf . Applying Theorem 5.1 we recover the results of Theorem 2 of

[32]:

Theorem 5.4. If 0 ≤ g ≤M for all g ∈ G then for every t ≥ 0

P (f ≥ P [f ] + t) ≤ exp
(

− t2

2M‖Γ̃(2)‖22(P [f ] + t)

)

,

P (f ≤ P [f ]− t) ≤ exp
(

− t2

2M‖Γ̃(2)‖22P [f ]
)

.

The constant 1 in T̃2(1) or T̃
(i)
2 (1) is optimal in Theorem as discussed in Boucheron

et al. [9] for the iid case. We refer the reader to this article for nice statistical ap-
plications of this result in the iid case.

Due to the simple inequality f(x)−f(y) ≤ f(x)1x 6=y, it is also possible to extend
classical Bernstein’s inequality in the γ̃(2)-weakly dependent case:

Theorem 5.5 ([32] (page 460, line7)). Let g be a measurable function R →
[−M,M ] and let

f =

n
∑

i=1

g(Xi).



WEAK TRANSPORT INEQUALITIES AND APPLICATIONS 19

Then for all 0 ≤ λ ≤ 1/(M‖Γ̃(2)‖22) we have

P [exp(λ(f − P [f ]))) ≤ exp
(

8‖Γ̃(2)‖22
n
∑

i=1

P [(g(Xi)− P [g(Xi)])
2]λ2

)

.

This inequality has been applied to obtain exact oracle inequality with fast rates
in the γ̃(2)-weakly dependent context in [2].

6. Applications to oracle inequalities with fast convergence rates

In this section we use the weak transport inequality to obtain new nonexact oracle
inequalities in the γ(2)-weakly dependent setting and oracle inequalities in the γ̃(2)-
weakly dependent setting. Instead of using extensions of classical inequalities given
in the last Section we prefer to use a more direct approach using the PAC-bayesian
paradigm. It allows us to consider the mathematical statistic problem of asserting
oracle inequalities as a problem of conditional mass transport.

6.1. The statistical setting. We focus on the oracle inequalities of the the or-
dinary least square estimator. Let us consider the case of linear regression where
E = IRd+1, X = (Y, Z) = (Y, Z(1), . . . , Z(d)) equipped with the euclidian norm ‖ ·‖.
The empirical risk is denoted

r(θ) =
1

n

n
∑

i=1

(Yi − Ziθ)
2

where (Xi)1≤i≤n = (Yi, Zi)1≤i≤n are the observations. In our context, these ob-
servations are not necessarily independent and we denote by P their distribution.
The risk of prediction is denoted

R(θ) = P [r(θ)] ∀θ ∈ IRd.

The aim is to estimate the value θ ∈ IRd such that R(θ) ≤ R(θ), ∀θ ∈ IRd. We

consider the ordinary least square estimator θ̂ of θ such that r(θ̂) ≤ r(θ) for all

θ ∈ IRd. Let us denote the excess of risk R(θ) = R(θ) − R(θ) ≥ 0, r its empirical
counterpart, Z = (Zi)1≤i≤n the n×d matrix of the design, ‖Z‖2n = n−1

∑n
i=1 ‖Zi‖2

and G = P [ZTZ] its corresponding Gram’s matrix. Assume that G is a definite
positive matrix and denote ρ = max(1, ρsp(G

−1)). All the results of this sections

are given for probability measures P satisfying T2(C) and T
(i)
2 (C) for some C > 0

on En. In view of Theorem 3.2 and for applications perspective in time series we
are interested on γ(2) or γ̃(2) weakly dependent observations. The case of possibly
non linear autoregression is of special interest. There the vector Zi is a function of
the past values φ(Y1, . . . , Yi−1). Here ϕ is known, one can think of the projection
on the last coordinates (case of linear autoregression), functions on Fourier basis or
wavelets, etc. The regularity of the function ϕ impact the concentrations properties.
The constant C in the weak transport inequality has to be estimated in each specific
statistical case. For example, in the linear autoregressive case of order ℓ ≥ 1 fixed,
we have γ(2)k,0 ≤ γ(2)⌈k/ℓ⌉,0 and in the non-linear autoregressive case, γ̃(2)k,0 ≤
‖ϕ‖∞γ̃(2)⌈k/ℓ⌉,0. Finally notice that γ̃(2) coefficients are nicely estimated for any
bounded measurable functions ϕ whereas it is not the case of γ(2) coefficients that
require more regularity on ϕ.

6.2. Nonexact oracle inequality for γ(2)-weakly-dependent sequences. Our
first result is a bound on the excess of risk.

Theorem 6.1. For any measure Q and any β > 0 we have

(6.1) Q[R(θ̂)] ≤ Q[‖Z‖2n]/β + 4

√

ρCQ[K]n−1(K(P |Q) + βQ[R(θ̂)]/2)
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where

K := 4
d

β
+
(

1 + ‖θ‖2 + d+ 2

β

)

R(θ) +
(

‖θ‖2 + d

β

)d− 1

β
+ (1 + ‖θ‖2)r(θ).

Proof. Considering the change (Z, θ) → (ZG−1/2, G1/2θ), we assume that the
Gram matrix G is the identity matrix. This change of variable is ρ-Lipschitz func-

tion. Thus ZG−1/2 satisfies T̃2(ρC) and T̃
(i)
2 (ρC) using similar arguments than in

Lemma 2.1 in [12]. Thus in the sequel G = Id, Z ∈ T̃2(ρC) and T̃
(i)
2 (ρC). With

this notation, P [‖Z‖2n] = d where and ‖θ̂ − θ‖2 = R(θ̂) − R(θ). We adopt the so

called PAC-bayesian approach considering that θ̂ = ρθ̂[θ] where ρθ̂ = Nd(θ, β
−1Id)

for any β > 0. This probability measure is measurable with respect to the obser-
vations (Xi). Thus, the properties of the measure Pρθ̂ are not simple to handle
directly. The PAC-bayesian approach consist in introducing artificially the measure
ρθ called a priori because it does not depend on the observations (Xi). Let us fix
some measure Q and denote Qθ the probability measure such that ρθQθ = Qρθ̂.

Let us first study similar properties than in (5.1) of the function f = r. With
some abuse the euclidian norm on any vector space will also be denoted ‖ ·‖. Using
the inequality x2 − y2 ≤ 2x(x− y) ≤ 2|x||x− y| for any x, y ∈ IR we obtain

f(x)− f(x′) ≤ 1

n

n
∑

i=1

((yi − ziθ)
2 − (y′i − z′iθ)

2 + (y′i − z′iθ)
2 − (yi − ziθ)

2)

≤ 2

n

n
∑

i=1

(|yi − ziθ|‖(1, θ)‖‖xi − x′i‖+ |y′i − z′iθ|(‖(1, θ)‖)‖xi − x′i‖).

Then by definition of W̃2 and using Cauchy-Schwartz inequality we obtain condi-
tionally on θ that

P [f ]−Qθ[f ] ≤ 2‖(1, θ)‖
√

n−1R(θ)W̃2(Qθ, P ) + 2‖(1, θ)‖
√

n−1Qθ[r(θ)]W̃2(P,Qθ)

As P satisfies T̃2(ρC) and T̃
(i)
2 (ρC) and using the Cauchy-Schwartz inequality we

obtain

Qθ[P [f ]− f ] ≤ 4

√

ρCn−1K(P |Qθ)((1 + ‖θ)‖2)R(θ) + (1 + ‖θ‖2)Qθ[r(θ)]).
The positivity of the integrand with respect to ρθ yields

ρθQθ[P [f ]− f ] ≤ 4ρθ

[

√

ρCn−1K(P |Qθ)((1 + ‖θ‖2)R(θ) + (1 + ‖θ‖2)Qθ[r(θ)])
]

≤ 4
√

ρCn−1ρθ[K(P |Qθ)](ρθ[(1 + ‖θ‖2)R(θ)] + (1 + ‖θ‖2)Q[r(θ)]).

Notice that by definition ρθQθ = Qρθ̂ such that we have ρθ[K(P |Qθ) = K(P |Q) +

Q[K(ρθ̂|ρθ)]. Moreover K(ρθ̂ |ρθ)] ≤ β/2(R(θ̂)−R(θ)) so that we obtain

Qρθ̂[R(θ)−R(θ)− r(θ) + r(θ)] ≤

4

√

ρCn−1(K(P |Q′) + β/2Q[R(θ̂)−R(θ)])ρθ[(1 + ‖θ)‖2)R(θ)] + (1 + ‖θ‖2)Q[r(θ)]).

Now, by Jensen’s inequality Qρθ̂[R(θ)] ≥ Q[R(θ̂)] and computations gives that

Qρθ̂[r(θ)] ≤ r(θ̂) + Q[‖Z‖2n]/β ≤ r(θ) + Q[‖Z‖2n]/β. Collecting those bounds, we
obtain

Q[R(θ̂)−R(θ)− ‖Z‖2n]/β] ≤

4

√

ρCn−1(K(P |Q) + β/2Q[R(θ̂)− R(θ)])ρθ[(1 + ‖θ)‖2)R(θ)] + (1 + ‖θ‖2)Q[r(θ)]).
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To end the proof, let us compute ρθ[(1 + ‖θ‖2)R(θ)] using the following identity

ρθ[(1 + ‖θ‖2)R(θ)] = ρθ[R(θ)] + ρθ[‖θ‖2]R(θ) + ρθ[‖θ‖2R(θ)−R(θ)].

Let us decompose the last term:

ρθ[‖θ‖2R(θ)−R(θ)] = ρθ[‖θ‖2‖θ̂θ‖] + 2n−1P [YZ]ρθ[‖θ‖2(θ − θ)]

where Y = (Y1, . . . , Yn). Simple computations on gaussian random variables give

ρθ[R(θ)] = R(θ) + d/β

ρθ[‖θ‖2] = ‖θ‖2 + d/β

ρθ[‖θ‖2(θ − θ)] = 2θ/β

ρθ[‖θ‖2‖θ − θ‖2] = (‖θ‖2 + d/β)(d− 1)/β + ‖θ‖2/β + 3d/β.

The desired result follows collecting all these bounds and noticing that 4P [YZ]θ ≤
2nR(θ). �

In the proof above, we obtain the more general result: for any probability mea-
sures µ and ν such that there exists Qθ satisfying Qµ = νQθ we have:
(6.2)

Qµ[R] ≤ Qµ[r(θ)] + 4

√

ρCn−1K(Pν|Qµ)(ν[(1 + ‖θ‖2)R(θ)] + (1 + ‖θ‖2)Q[r(θ)].

This bound is obtained by integrating with respect to ν the conditional mass trans-
port of Qθo r(θ)

−1 to Po r(θ)−1. The weak transport inequalities satisfied by P
and the convex properties of the function (x1, . . . , xn) → r(θ) are used to obtain a
bound conditionally on θ.

Let us discuss the choices µ = ρθ̂ and ν = ρθ made above. Notice that µ
and ν have the same support from the assumption Qµ = νQθ. As soon as µ

is centered in θ̂, Jensen’s inequality yields Qµ[R(θ)] ≥ Q[R(θ̂)]. Next, if µ is

sufficiently concentrated around θ̂ then Qµ[r(θ)− r(θ)] is small as r(θ̂)− r(θ) < 0.

Choosing µ as the Dirac mass in θ̂ is excluded as the existence of some measure
Qθ satisfying νQθ = Qµ. The fact that the support of µ cannot depend on the
observations (Xi) constrain us to choose measures supported on the whole space

IRd in absence of a priori information on θ̂. The term Qµ[r(θ)−r(θ)] can be seen as
an alternative to the classical VC-dimension, see Mc Allester [29]. The measure µ
should be chosen in order to bound this term (and the entropy K(ν|µ)). It leads to
Gibbs estimators that are nice alternatives to classical estimators, see Chapter 4 of
the textbook of Catoni [10] in the iid case, Alquier and Wintenberger [3, 2] in weakly
dependent settings. Here we choose the gaussian measures µ = ρθ̂ and ν = ρθ as
in Audibert and Catoni [4] for simplicity because we have an explicit computation

K(ν|µ) = β/2‖θ̂ − θ‖2. This choice leads to estimate the term Qµ[r(θ) − r(θ)] by
Q[‖Z‖2n]/β. This term can easily be estimated with d/β and a concentration term
implying the entropy K(P |Q) in order to obtain a nonexact oracle inequality:

Corollary 6.2. For any 0 < ε < 1 and any (d + 2)/n < η < 1 we have with
probability 1− ε:

R(θ̂) ≤ (1 +B1η)R(θ) +
B2d+ 16ρC log(ε−1)

nη
+

B3

(nη)2

where

B1 = 2(3 + 2‖θ‖2 + η/n),

B2 = 2(5 + ‖θ‖2),
B3 = 2(d(d− 1) + d/n).
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Remark 6.1. This result extends nonexact oracle inequalities as developed by Lecué
and Mendelson [21] to a dependent context but for the OLS only (and not also
regularized estimators).

Proof. As for any a, b > 0 we have 2
√
ab ≤ aλ+ b/λ for any λ > 0 then from (6.1)

we obtain

Q[R(θ̂)− ‖Z‖2/β −Kλ/n− βR(θ̂)/(2λ)]− 4ρCK(P |Q)

λ
≤ 0.

Notice that by definition of K we have

Q[K] = 4
d

β
+
(

1 + ‖θ‖2 + d+ 2

β

)

R(θ) +
(

‖θ‖2 + d

β

)d− 1

β
+ (1 + ‖θ‖2)Q[r(θ)]

by similar arguments than in the proof of Theorem 6.1 we have

Q[r(θ)]−R(θ) ≤ 2

√

2ρCR(θ)n−1K(P |Q).

Similarly, as P [‖Z‖2] = d we obtain

Q[‖Z‖2]− d ≤ 2
√

2ρCdn−1K(P |Q).

Collecting those bounds and using Cauchy-Schwartz inequality we obtain

Q[‖Z‖2/β + λ/nr(θ)] ≤ d/β + λ/nR(θ)

+ 4

√

ρCn−1(d/β2 + (λ/n)2R(θ))K(P |Q).

Using again that 2
√
ab ≤ aλ + b/λ, choosing β = λ = nη and by definition of B1,

B2 and B3 we have

Q[R(θ̂)−B1ηR(θ)−B2d/(nη)−B3/(nη)
2] ≤ 16ρCK(P |Q)

nη
.

Choose Q as the probability P restricted to the complementary of the event corre-
sponding to the desired oracle inequality and denoted A. Then

16ρC log(ε−1)

nη
≤ Q[R(θ̂)−B1ηR(θ)−B2d/(nη)−B3/(nη)

2]

Combining these two inequality we assert that for this specific Q we have − log(ε) ≤
K(P |Q). The relative entropy can be computed explicitly K(P |Q) = − log(1−P (A))
and thus the desired result follows. �

6.3. Exact oracle inequality for γ̃(2)-weakly-dependent sequences. Let us
now give an equivalent of (6.2) when we equipped E with the Hamming distance
d(x, y) = 1x 6=y. Instead of using the convexity of x 7→ x2 as above, we use that
f(x) − f(y) ≤ |f(x)|1x 6=y + |f(y)|1x 6=y for any f . Following the lines of the proof
above with f = r we obtain easily

(6.3) Qµ[R] ≤ Qµ[r] + 2

√

2ρCK(Pν|Qµ)(Pν[r2] +Qµ[r2]).

For the specific choice µ = ρθ̂ and ν = ρθ we use computations given in Lemma 1.2

in the supplementary material of [4] stating that for any θ ∈ IRd

ρθ[r
2] ≤ 5 r(θ)2 +

4‖Z‖2n
nβ

r(θ) +
4‖Z‖4n
nβ2

where ‖Z‖4n = n−1
∑n

i=1 ‖Zi‖4. The quantities Q[‖Z‖2nr(θ̂)] and Q[‖Z‖4n] can be
difficult to estimate for desired choices of Q. Let us work under the following



WEAK TRANSPORT INEQUALITIES AND APPLICATIONS 23

assumption on the set of parameters Θ ⊆ IRd containing the support of P and the
unit disc: there exists some finite constant B > 0 such that

(6.4) B = sup
θ∈Θ

∑n
i=1 ‖Ziθ‖∞

∑n
i=1 P [Ziθ]

2
.

Similar assumption has been used in the iid case by Audibert and Catoni in [4].
Under (6.4) and the fact that we assume P [‖Z‖2] = d with no loss of generality (see
discussion in the proof above) we have ‖Z‖2n ≤ Bd and ‖Z‖2n ≤ (Bd)2. Moreover,
using computations given in the supplementary material of [4] we obtain easily that

r(θ)2 ≤ n−1(2B2 + 8Br(θ))R(θ).

It leads to the following equivalent of Theorem 6.1

Theorem 6.3. If condition (6.4)holds, we have

Q[R(θ̂)] ≤ Bd

β
+ 2

√

2ρCn−1(K(P |Q) + βQ[R(θ̂)]/2)×
√

Q[(10B2 + 40Br(θ))R(θ̂)] + 4Bd(R(θ) +Q[r(θ)])/β + 8(Bd/β)2.

In the above estimate the terms involving r(θ) are nuisance terms because there
is no control on θ. If this term is bounded then the main term multiplying the

entropy is proportional to the excess risk Q[R(θ̂)]. It is the major advantage con-
sidering the Hamming distance compared with the Euclidian distance where instead

Q[R(θ̂)] appeared. In the classical approach as developed by Massart in [28], the
excess risk also appears via the variance term in Bernstein’s inequality under the

margin assumption of Tsybakov [35] that estimates this variance term by R(θ̂).

As Q[R(θ̂)] is the quantity of interest, we can obtain exact oracle inequality the
following corollary

Corollary 6.4. For any 0 < ε < 1 and any M > 0 we have with probability 1− ε:

R(θ̂) ≤ R(θ) + 160
B2 + 4BM

n
×

×
(

Bd+ 8ρC(log(ε−1)− logP (r(θ) > M)) +
d(R(θ) +M)

10B + 40M
+

8(Bd)2

n

)

.

Remark 6.2. As already noticed by Audibert and Catoni in [4] in the iid case,
the exact oracle inequality holds for γ̃(2)-waekly dependent sequences without any
assumptions on the margins P except (6.4) (because any probability measures have
supports diameter bounded by 1 for the Hamming distance d). We refer the reader
to [4] for a nice way to bound the term logP (r(θ) > M) in the iid case under finite
moments assumption on P of order 4 only.

Proof. Let us denote A = {r(θ) ≤ M} and PA the restriction of P on A defined
as PA(B) = P (B ∩ A) for any measurable set B on En. We do not know wether
PA satisfies any weak transport inequality. However, a similar reasoning than for
obtaining (6.3) yields

Q[R(θ̂)] ≤ Bd/β + ρθ̂

[

√

(4BdR(θ)/β + (4Bd/β)2)n−1W̃2(Qθ, PA)

+

√

((10B2 + 40BM)Q[R(θ̂)] + 4BdM/β + (4Bd/β)2)n−1W̃2(PA, Qθ)
]

.

Now let us the triangular inequality of the weak transport cost (2.9):

W̃2(PA, Qθ) ≤ W̃2(PA, P ) + W̃2(P,Qθ),

W̃2(Qθ, PA) ≤ W̃2(Qθ, P ) + W̃2(P, PA).
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Because P satisfies T̃2(ρC) and T̃
(i)
2 (ρC), both RHS terms are estimated with

√

2ρCH(PA|P ) +
√

2ρCK(P |Qθ) ≤ 4
√

ρC(K(P |Qθ)− logP (A))

Collecting all these bounds and using the Cauchy-Schwartz inequality we obtain

Q[R(θ̂)] ≤ Bd/β + 4
[

√

2ρCn−1(K(P |Q) + βQ[R(θ̂)]/2− logP (A))×
√

((10B2 + 40BM)Q[R(θ̂)] + 4Bd(R(θ) +M)/β + 8(Bd/β)2).

Using several times the inequality 2
√
ab ≤ aλ + b/λ with λ = β = n(40B2 +

160BM)−1 yields

Q[R]/4 ≤ 40
B2 + 4BM

n

(

Bd+8ρC(K(P |Q)− logP (A))+
d(R(θ) +M)

10B + 40M
+
8(Bd)2

n

)

We conclude as in the proof of Corollary 6.2 choosing Q as P restricted to the
complementary of the event corresponding to the desired oracle inequality. �
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