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We report on the observation of the periodic pattern occuring in a two-dimengRibahssembly

of heavy beadsof diameterD =280—-630um) immersed in water when the vessel containing the
fluid and the beads is submitted to horizontal vibrati@fdrequencyf and oscillation amplitud@,).

Under vibrations, regularly spaced, one bead thick lines perpendicular to the direction of vibrations
are formed at small surface fraction. In the ranfjes.0—20 Hz andA=0.7—3.5 mm, the amplitude

of the oscillatory motion of the beads relative to the flBit found to vary linearly wittA. A simple
phenomenological model based on dynamic solid friction and viscous drag gives qualitatively
account for this linear dependence. The period of the pakésnfound to vary with viscosity,
w=2xf, D, andB according to the law./D~ (B/D)*3YBwD/v) ~%?L The dynamics of pattern
formation exhibits several scenarii, depending on the initial bead distribution, as well as several
characteristic time scales. We review and discuss possible mechanisms of pattern formation reported
in literature and proposed for similar phenomena observed in the frame of rheology of suspensions
and acoustic streaming flows. @002 American Institute of Physic§DOI: 10.1063/1.1483842

I. INTRODUCTION reported’® We are interested in the action of alternating
flows on suspensions through nonlinear effeseaming
The behavior of macroscopic solid particles immersed irflows). The specificity of alternating flows is that their linear
a fluid is determined by collisions, solid friction, and hydro- effects have zero time-averaged value. Thus, only nonlinear
dynamic interactions, i.e., reciprocal effects between particleffects of these flows are expected to be visible, even if they
motion and induced fluid flow. Hydrodynamic interactions are small compared to the instantaneous linear effects. A
are involved in many physical phenomena, e.g., stability andtriking effect of streaming flows was early reported by An-
sedimentation of colloidal or macroscopic suspensions, muldrade and Lewérand by Carriee:)® When powder is laid
tiphase transport, mixing and segregation of particles ifnto an air tube in which a standing acoustic wave is estab-
flows. Applying external force fields to suspensions waslished (Kundt's tube experimeint powder heaps form at the
found to induce hydrodynamic interactions that are helpful tohodes whereas periodic distributions of one particle thick
control the distribution, the orientation or the size of particleslines perpendicular to the tube form at the antinctiesthis
in the fluid. The effects of externally imposed flows on sus-article we report on the occurrence of a periodic distribution
pensions are reviewed by PetiThe effect of shear on the of regularly spaced one bead thick lines perpendicular to the
structure of colloidal suspensiditshas been evidenced long direction of vibrations when a monolayer of heavy beads
ago. In macroscopic suspensions, a shear induced crystallmmersed in water are set mechanically into vibration. To
zation phenomenon was evidenced when an alternating shegiir knowledge, this phenomenon has not been previously
stress was applietRef. 4 and references thergiin more  reported. Moreover, since to our knowledge no theoretical
complex flows involving inhomogeneous shear stress distriprediction has been proposed concerning this ordering phe-
bution, like flows in tubeor in planar shear celfsthe phe-  nomenon, we give numerous quantitative as well as qualita-
nomenon of migration of neutrally buoyant dense suspentive details on the observed phenomenon as well as numer-
sions from regions of high shear rate to regions of low sheapus hypotheses relative to the possible mechanisms. In
rate was identified. More recently, particle segregation irparticular, we compare our observations to the phenomenon
neutrally buoyant macroscopic suspensions partially filling abserved in a Kundt's tube.
horizontal Couette shear cell and a horizontal cylinder was  |n Sec. Il, we present the experimental setup. In Sec. llI
we present the main features of the phenomenon of periodic
aAuthor to whom correspondence should be addressed. Ptggie: 44 32 Ordering presented above as well as our measurements of the
35 01; fax(33) 1 44 32 34 33; electronic mail: wunenbur@Ips.ens.fr periodicity of the periodic pattern. Since this periodic order

1070-6631/2002/14(7)/2350/10/$19.00 2350 © 2002 American Institute of Physics
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FIG. 1. Experimental setup. Inset: Conventions for the
dynamics of a sphere rolling with solid friction on an
oscillating wall.

accgferometer

/ diffusing surface

is determined by the oscillatory motion of the beads, welll. STEADY PERIODIC PATTERN
present in Sec. IV our measurements of the amplitude of the Three different sieved bead samples were used. charac-
oscillatory motion of the bead lines, and discuss their dy- . ) pie: '
X . . . rized by bead densityd=7.8 and diameter rang®
namics. Using the experimental results presented in Sec. |\$f - -
we determine in Sec. V an experimental law of variation for . 200 >1o#M, D=355-400um, and D =500-630um
S ' . .~ (in the following analysis of the experimental data the aver-
the periodicity of the pattern. In Sec. VI we discuss various : :
; o . . . age values of the bead diameters are considdded297,
mechanisms of hydrodynamic interactions found in the lit-
. : 377, and 565um). The number of beads was chosen so that
terature which could explain the observed pattern. In Sec :
i . o . the fraction of the surface covered by the beads to the surface
VII we finally give some qualitative information on the pat-
X . of the vessel bottonds be small and constait%). In order
tern formation dynamics and defects. . o .
to favor initially strong repulsive interactions between beads,
their initial distribution is always chosen to be a compact
Il. EXPERIMENTAL SETUP monolayer of beads in contact, located in the middle of the
) ) ) o ~vessel. Two types of initial distributions were tested, a square
The experimental setup is schematized in Fig. 1. It ispf sige ~30 mm, and a stripe perpendicular to the direction
composed of spherical bronze beddétypical diameteD  of the acceleration. When vibrations are applied, after a tran-
=0.3mm lying on the bottom of a 100 mm100 MM  gjent |asting for a few tens of seconds, regardless of their
X10 mm vessel. The top and bottom walls of the vessel, ofpjtial compact distribution, the beads form regularly spaced
transparent altuglas, allow for the observation of the beagines (distant of the period), as shown in Fig. 2. The lines
distribution by light transmission. Special care is taken ingre perpendicular to the direction of vibrations. The charac-
order to insure horizontality of the bottom wall of the cell. igristic features of the steady state of the periodic pattern

The cell is then completely filled with gas-free water, so that nder vibrations are the following line of beads is only
there is no free water—air interfa¢epecial care is taken in

order to avoid the presence of air bubbleShe vessel is
vibrated horizontally with a Bruel and KjagiBK) 4809 < >
shaker powered by a BK 2706 Power Amplifier driven by a =T '
sinusoidal signal produced by a Wavetek 81 Function Gen-
erator. Notingx the position of any point of the vessel along
an horizontal axis and the time, the horizontal sinusoidal
acceleration applied to the vessel reads)=—1T" sin(wt),
where w=27f is the pulsation and the frequency. This
acceleration is measured by a BK 4393 accelerometer pow
ered by a BK Nexus Charge Amplifier and visualized on an
Tektronix TDS 220 Digital Oscilloscope. The position of the
vessek readsx(t) = A sin(wt) + X, whereA=T"/ w?. The fre-
guencies and amplitudes investigated &+el0, 15, and 20 : 3
Hz andA=0.5-3.7 mm. The bead distribution is observed ,
using a Lutron DT2239-1l stroboscopic flash light of fre- t_,x
qguency slightly different from the vibration frequency in or-
der to observe the whole phase of the motion. The picturegi. 2. picture of steady periodic pattern formed by a 2D assembly of
are recorded at the VHS format at a frequency of 25 Hzoronze beads of diamet&r=355—400um immersed in water when sub-
using a Pulnix PE 2015 CCD camera, then digitized. Amitt(_ad to hori_zontal sinusoidal vibrations at frgqueﬁey20 Hz and_acqel-
5 mmx 5 mm grid printed on the bottom of the vessel givesergtlon amplitudel’=18.7 ms™2. The black ticks locate the grid _Ilngs

. . . : rinted on the bottom of the vessel, 5 mm spaced. Double arrow indicates
a scaling of the picture to be determined. The resolution the direction of oscillations. A: fork defect. B: local pattern dilation. C: line
the pictures is typically 12 pixels per millimeter. thickening.

10 mm
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57 interactions between the beads. It is noteworthy that in ab-
sence of beads no fluid motion occurs in the vessel frame of
. y X . reference. As a consequence the hydrqdynamic interactiqns
o & + T between beads are only due to the motion of the beads with
] x @ Tt T a8 respect to the vessel and not to the influence of any exter-
E 31 « % &+ *o el n " nally imposed flow. Since. does not depend o, these
E ] e ®e, ) “a induced hydrodynamic interactions consistiinan attractive
<, Ix 27+ . :@ 91 A A a O 280-315 um 10 Hz force between the peads along a_Ilne, and__l_ljm}fa repuIS|_ve
] 'OODlj Bogaa® E gggg}gm ;g :; force between the lines at short distance @inglan attractive
] apa ® 355400 um 10 Hz force between the lines at long distance. Thus, the key pa-
. S0 rameter of the formation of the periodic pattern is not the
1 i gggggg ﬁm 1g:§ motion of the fluid relative to the laboratory, but rather the
] ©  500-630 pm 20 Hz motion of the beads relative to the medium which causes
0 A 1'0 T 1'5 LA U their interactions, i.e., to the fluid. This part is dedicated to
r (m.s'z) the study of the motion of the beads relative to the fluid. We

first present our measurements of the oscillatory motion of
FIG. 3. Variations of periodicity. of the pattern as a function of the accel- the bead lines.

erationI" for various bead diameters and frequencies.

A. Measurement of the motion

An easily measurable quantity is the amplit8lef the
oscillatory motion of the beads relative to the fluid noted
y(t)=B S(t) +yq, whereSis an unknown periodic function

stany at the vibration frequencyin the reference frame of ©f time of extreme values 1 aneél1, andy; is a constant
the vessel. Since all the beads oscillate in phase with eadfPending on the line considered. It is possible to detect with
other and with the same amplitude, two neighboring linedh® naked eye on the video pictures the two extreme posi-
never collide depends on bot, A, andf, but is indepen- tions of the bead lines relative to the grid, i.e., two instants
dent of ¢ for small values ofips. The steady pattern does ar/1d t; at which S(t;)=1, S'(t;)=0 and S(tz)=—1,

not depend on the initial distribution of the beads, only theS (t2) =0. For this we establish a slight frequency shift be-

transients and their duration do: The same steady pattern §{/€€n the stroboscopic flash and the shaker that slowly
period A, can be obtained for the vibrational parametersChangeS the phase shift between the alternating motion and

(A,,f) either from an initial dense distribution as describedthe flash. This simple d_etection is facilited by the fact thaF _the
above, or from another steady pattern of perigth\; ob- beads. spenq a_lot of t.|me per cycle at the extreme positions
tained for @,,f) with A,>A, (\ increases with increasing of thellr oscillating trajectpry, Wh_ere their velocity cancels
A). The fact thaix be independent ofs means thati) the  [the histogram ok(t) =B sin(wt) diverges forx=+B]. The
periodic pattern does not cover the whole surface of the vedduantity 2B is measured by intercorrelating the pictures
sel at small enough, and (i) when the periodic pattern taken att; andt,. Notingl(x,y,t) the value of the gray level
covers the whole surface, some of the beads stick to the sid& pixel of coordinatesx, y) on picture taken at timé (co-

of the vessel so that the number of lines be reduced. Therdinates are defined in Fig),Zhe intercorrelation function
period of the patteri. was measured for various values of Of pictures taken at; andt, is defined ag(fI(x,y,t;)I(x
parameter®, A, f. \ is determined by averaging the distance +AX,Y,t2)dx),, whereAx is the shift between the two pic-
between lines on the whole pattern. The variationa @k a  tures in the vibration direction, an@, is the average on all
function of the acceleratioR are plotted in Fig. 3 for various Y values. In Fig 4 a series of intercorrelation functions of
values ofD andf. \ increases with increasing at fixedD  pairs of pictures taken during experiments performed at

one bead thickAlong a line, the beads are either in contact
or very close to each othédistance much smaller thd).
The periodic pattern oscillates as a wh@leremains con-

andf and decreases with increasBdand f at fixed . In =10 Hz and at various values éfis plotted. The distance
order to clarify such behaviors, we now study the oscillatorybetween the correlation maxima due to the grid lifuesshed
motion of the bead lines. curve on the leftand the correlation maxima due to the bead

lines (dashed curve on the righis equal to B. The varia-
tions of B as a function ofA for various values of andD are
IV. MOTION OF THE BEADS RELATIVE TO THE FLUID plotted in Fig. 5.B is found to vary roughly linearly wittA
Since the acoustic wavelength in water corresponding t¢B=a(A—A;)) with « and Ay depending on botfiandD.
f=10-20 Hz is much larger than the vessel size, the periThe high-frequency limit of our experimental investigation
odic pattern can obviously not be due to compressible flowswas fixed equal to 20 Hz mainly because our shaker did not
When the two-phase system is submitted to an horizontallow us to realize values @ sufficiently large to be detect-
acceleration, because of their density larger than water, beadble with our detection method at larger frequencies. Never-
move with respect to the fluid as in the case of sedimentatheless, the periodic pattern could be observed at frequencies
tion. Under the effect of an oscillatory acceleration, beadsip to 120 Hz.
oscillate in the frame of reference of the fluid. The flow It is noteworthy that isolated beads were found to oscil-
induced by these oscillations induces in turn hydrodynamidate with the same phase and amplitude than the bead lines.
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—e—A=194mm B. Model of the motion
—8—A=2.02mm
—&—A=229mm Since in the frequency randge= 10—20 Hz no compress-

—o— A =257 mm

— A=282mm ible flow occurs in the fluid, in absence of beads the pressure
—=— A=3.07mm field p in the fluid is at any time hydrostatic, i.eV,p(t)
A A=332mm =p¢ (—dV, /dt+g), wherep; is the fluid densityV, is the

—+—A=362mm R ; . - .
vessel velocityg is Earth gravity, and the fluid is at rest in

the frame of reference of the vessel. At low Reynolds num-
ber, the resulting effect of pressure and viscous forces on a
single bead can be modeled(@sthe acceleration that would
apply to a fluid particle replacing the beHd(ii) the drag
force and torque induced by its motion relative to the fluid as
considered as stationaf¥(iii) an added mass, (iv) a so-
called “historic” force® and torqué:* An additional force
applying on the bead is the solid friction with the wall.

The first question to be addressed is whether the bead
does roll without slipping on the bottom or not. Unfortu-
nately, the added mass as well as the historic force and
torque were not calculated for the present case of a bead
FIG. 4. Series of intercorrelation functions of pairs of pictures taken duringtm_JChIng a wall, but for the case Of_a_bead In an unbou_nded
experiments performed &t=10 Hz and at various values & The curves  flUid. Consequently, no exact prediction can be established
were shifted vertically for clarityvertical scale is arbitrajy Ax is the shift ~ for our case. Moreover, the Reynolds number associated to
between the intercorrelated pictures along the direction of vibrations. Thghe flow around the bead RevsBD/v (wherewB is the typi-

distance between the correlation maxima due to the @@ghed curve on - . . .
the lef) and the correlation maxima due to the bead lifdsshed curve on cal VelOCIty of the bead relative to the fluid, ands the fluid

the right is equal to B, i.e., twice the amplitude of oscillation of the beads Kinematic viscosity is not small compared to unityRe

with respect to the fluid. ranges from 2 to 50 in our experimgnalthough not large.
Nevertheless, retaining only the drag force and torque apply-
ing at low Re on the bead near the wall as established by
Goldmanet al. using lubrication theory? should provide a

This observation justifies that the dynamics of the bead linegpertinent order of magnitude for the slipping threshold.

can be analyzed in terms of the dynamics of a single bead. The main feature of the lubrication theory is that the

Moreover it shows that only the dimension of the oscillatingforce and torque diverge slowly when the distard®tween

object in the direction of vibrations matters in this orderingthe bead and the wall vaniglas the logarithm o&/D). In

phenomenon. We now discuss the forces that apply on arder to account for both solid frictioimplying contact

single rolling bead and model the oscillatory motion of thebetween the bead and the wadind finite drag force and

bead lines described above. torque (implying a finite distance between the bead and the
wall), the roughness of the surfaces in the contact area is
usually considered as permitting both the fluid flow around
its roughness elements and solid contact between the surface

Picture intercorrelation (a.u.)

156 -©— 280-315 um ; 10 Hz and the roughness elements. Thus, the pertinent distance be-
E—gggglgﬁm;g Hz e tween the bead and the wall to be considered is of the order
—@— 355-400 um ; 10 Hz ey of the roughness of the surfaces, typically some micions
o0 e T I S tens of microns The validity of these assumptions and of
4 |r¢-500-630 um £10 Hz ' g the prediction of Goldmaet al. was recently quantitatively
R :jg:j:gggjggg hm ;g :; - demonstrated by Smast al. in the particular case of a
E e sphere rolling down steadily on an inclined wall in a viscous
E fluid.*> For the case of our experiment, assuming a quasi-
o steady creeping flow around the oscillating bead, solid fric-
0,57 tion without slip, and using the geometrical conventions
given in the insert of Fig. 1, in the frame of reference of the
laboratory the bead motion is governed by the following set
A of equations:
0 T T T T T T 1 dv dv
0,5 1 15 ,21\ (mrr?’)S 3 35 4 mbd_tc _ mfd_tv T Fot Frt Fr, &
FIG. 5. Variations of amplitude of oscillation of bead lines relative to the 1
fluid B as a function of fluid oscillation amplitud&, for various values of — mez_ =Cl DFS+ TT+ TR, (2)

10 dt

bead diameter range and of oscillation frequencfy Symbols: Experimen-
tal data. Lines: Best fits obtained using EG1) with k and up as free
parametergsee Table | for the best fit valules V.+QOCI=V,. 3)
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m, is the bead mass, ant; the mass of a fluid particle ¢~ 367
replacing the bead./czvc? is the velocity of the bead grav- g S I -2
ity centerC, andﬂzﬂj is the angular velocity of the bead ;’ T "‘O"'10sze=l10|,1m
around its horizontal symmetry axis normal to the direction E 3,2 —8—10Hz-e=1pum
of vibrations.| is the bead—wall contact poirftg is the static 7 ] w15 Hz - e = 10 um
. L . - o 4] ——15Hz-e=1um
friction force which is opposite t&.—V, and verifies < ] cts- 20 Hz - @ = 10 ym
c ] | —+—20Hz-e=1pum
[Fgl< ms(my—mp)lldl, (4 S 28] i
with us the static friction coefficient=r, Fg, (resp.Tt and S 26 | e tihe sipping treshel’
Tg) are the viscous forcegesp. torquesdue to the transla- @ ] |
tional (T) and rotationalR) velocities of the bead relative to  § 247
the fluid? > |
= 2,24 4
Fr= F¥377Dpr(VC—VU), & ] | I | O e oo 1?5? 1)500
(5) » e i L B B B B |
, 8 (ze) 0 250 500 750 1000 1250 1500
FI=-=In| =] —0.9588<0 D
15 | D ’ (nm)
_T* 2 P _ FIG. 6. Acceleration threshold of the wall beyond which slipping occurs
Tr=Tr47D prvkO(Ve=V,), (under assumption of quasi-steady creeping flas a function of sphere
(6) diameterD for various oscillation frequenciesand of sphere roughness
Tx=— i |n(§) —0.1895>0 characteristic length scake
T 10°\D ' ’

=F&37Dp; QK F¥ . . .
FR=FR37Dpv R We now estimate the magnitude of the corrections to

2 2e Egs. (1) and(2). For the case of a sphere oscillating in an
== E'”(B) —0.2526>0, (7)  unbounded fluidi) the added masgm; , is small compared
to m,, and (ii) the ratio of the historic forc&mp;vD?
‘s . 2 [2e [o(dVe/dr)(t—7) Y47 to the steady drag force
Tr=TrD pv€2, Fr =g lIn| 5|~ 0.381%0. ®)  37DpwV, is yDZw/8o™3 and ranges from 0.8 to 2.2 in
. . .. .the frequency and diameter ranges corresponding to our ex-
Under the hypothesis of creeping flow, the bead oscillation '?)eriment. One can infer that the corresponding historic

sinusoidal. In complex notation, the general solution of th&q .5 ang torques for the case of a sphere oscillating near a
linear system(1)—(3) expressed under the form of the bead | may aiso be of the same order of magnitude as the

velocity relative to the fluidv=(V.—V,)-1 is lubrication forces and torques as defined in E§5-(8). As
Py 1 a consequence, the prediction 10 is not quantit.atively accu-
V=— T T ior o iex Aw, rate, but should provide a good order of magnitude for the
Po s +iSU X (Fr+ 3Ty +Fp+ 3TR) actual slipping threshold. We thus retain from this analysis

9 that in our experiment the beads should slip on the bottom

whereStis the Stokes number associated to the bead motiowall during a large part of the oscillation period.

St=(1/18)(py/p¢) (D?w/v). The no-slip condition4) can The second problem to be addressed is the reason for the
be expressed as observed variations oB with A, f and D. We propose a

simple, phenomenological model in which only the transla-

LHISUYFE+ 3TE+FE+5TY) tional degree of freedom of the bead is retained and perma-

I's 2j_ %St‘l(T§+T$) M9 (10 nent slip of the bead on the wall is assumed. The retained
forces are the viscous drag forde=—k3wDpsv (V.
The upper value of the right-hand term of HGO), as ob- —V,) (k accounts for an increase of the drag force due to

tained asympotically fo6t>1, is 3.5usg. In absence of any lubrication and inertia effects, is of the same order of mag-
measurement ofig for bronze-altuglass in water, we use the nitude asF3, and is a free parameter of the modahd a
value us=0.1, which is typical of well-lubricated metal— dynamic solid friction force Fp=— up(my—my)|gll(V.
nonmetal contacts, i.e., 0.05-0%2n Fig. 6 the variations —V,)/(|V.—V,|) that applies at any timéup is the dy-

of the slipping acceleration thresholés defined as the namic friction coefficient and is also a free parameter of the
equality between both sides of Eq.0)] as a function o©  model, considering the simplicity of the friction moeThe

are plotted for various values 6fand two typical values of corresponding dynamic equation for the velocity of the bead
the roughnese=10um, ande=1um. In the range of relative to the fluid is
moderate values @&t(2.5-17.5 explored in our experiment,

the value of the slipping acceleration threshold varies be- v+ koSt V+ upg .
tween 2.4 ms 2 and 3.4 ms 2. These values are below the b

smallest value 5.6 rs 2 of I at which the periodic pattern is (12)
observedsee Fig. 1L Since the slipping threshold is neglected, this model is obvi-

Po— Pf Sign'V)=— Po~— Pt v
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TABLE I. Values of the free parameteksand up corresponding to the best N B\ X
fit of the model Eq.(11) to the experimental data. The corresponding best _N(_> Re. (12
fits are plotted together with the experimental data in Fig. 5. D
10 15 20 Instead of using the experimental valuesBpfwhich present
f (Hz) a large dispersion, we rather fit linear laBs- a(A—A,) to
D (um) k Ko K Ko K Hp the experimentally measured values and then use these
280-315 7 0.17 7 033 - laws to calculateB for each value ofA. We then determine
355-400 8 0.26 7.75 0.33 6 0.8 the values ofx and y giving the best fit to the data

500-630 16 011 143 033 14 065 fB(A),N(A)}: x=0.50 andy=—0.21. To check the validity

of this fit, the variation oh/D(B/D) "' as a function of Re

is plotted in log—log scales in Fig. 7, whereas the variation of
. _ (AD)RE?as a function oB/D is plotted in log—log scales
ously pertinent forupg<I" and fails for upg=>T". When i, kig 8. Although no theoretical argument supports the hy-
existing, the numerically computed solution of Bd1) ex-  hoihesis of scaling law, and given the precision of the deter-
hibits a periodic sine-like solution after a short transient. Thnination of B, we judge the agreement between the experi-
resulting relation betweeB and A is found to be lineafB  mental data and the scaling law fit as satisfactory, at least in
=a(A=Ag)] with Ag#0. The values ok and up corre-  \4jidating the dimensional analysis proposed above. Its is
spon(_Jllng t_o the best fit of the model to the experlr_nental datﬂoteworthy that the density contragi,t p;)/pp,, Which is

are given in Table I, and the corresponding best fits are plotyresymably also a pertinent quantity, was not varied in these
ted together with the experimental data in Figlibes. The  gyperiments. Finally, we mention that such a simple scaling
limits of accuracy of this phenomenological model are obvi-j,y evidently fails if the formation of the pattern is found to

ous when considering the variations @ with D and in 5ccyr above a given threshold of any flow control parameter.
particular withf, which have no physical grounds. Moreover, This eventuality as well as the various mechanisms of hydro-

the mean value ofp , (up)=0.37, although physically ac- 4ynamic interactions which could explain the observed pat-
ceptable, is much larger than the values reported in Ref. 16q/n are discussed in the next part.

As a conclusion of this part, slip is likely to occur during

a large part of an oscillation cycle. In other words, rotation
seems to matter less than translation in this ordering phe-
nomenon. The qualitative model presented above shows thﬁl'E
solid dynamic friction together with fluid drag force can ex-
plain the dependence & with respect toA andf. Since the In this part, we review some mechanisms that could ex-
theoretical determination of actual historic forces and torqueg|ain the periodic order observed in our experiment. The fact
applying on a translating and rotating sphere near a wall arghat)\ does not depend ofig, as well the law of variation of
extremely difficult, even when Rel, the improvement of ) with respect toA/D and Re, indicate that the periodic

such an analysis is unlikely. A further step would be to in-grder does not result only from a repulsion between lines but
crease the precision of the measurement of the bead motion

relative to the fluid and to meadure the bead rotation, e.g.,

using a high-speed camera. The measurement of the phase
shift between the oscillation of the bead and the oscillation (A/D) / (B/D)
of the fluid, which is visible with the naked eye, could also

DISCUSSION ABOUT A POSSIBLE ORDERING
CHANISM
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. 280-315 ym 10 Hz
be exploited. . ' . _ 280-315 pm 15 Hz
Once the amplitude of the oscillatory motidh being ~ 280-315 um 20 Hz

355-400 um 10 Hz

O
O
PaN
measured, we can now seek an experimental law of variation g
B 355-400 um 15 Hz
A
X
+
&
<

for the periodicity of the patterh usingB instead ofA as a
pertinent length scale.

-

355-400 um 20 Hz
500-630 um 10 Hz
500-630 um 15 Hz
500-630 pm 20 Hz

V. AN EXPERIMENTAL LAW OF VARIATION FOR A

We first have to define the pertinent dimensionless quan- 41
tities that determiner. Since\ does not depend orbg at
small ¢5, we assume that the horizontdbngitudinal and 3
transversedimensions of the vessel are not pertinent length
scales. Because of the small value of the ratio of the bead R ———
diameterD to the vessel heightl (0.03—0.06 we also as- 1 10 100
sume thatD/H is neither a pertinent quantity. As a conse- Re
guence,\ depends only oD, B, w, andv. We choose to o _ _ _
determine the relation between the dimensionless quantitigd®: 7- Variation(in log—log scalesof dimensionless pattern period D

. reduced with square root of dimensionless amplitude of oscillation of the
AD, B/D and Re=BwD/v. For this purpose, we assume a bead line relative to the fluiB/D as a function of Reynolds number Re for
scaling law of the form various values of bead diameter rari@eand of frequency.
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thors of Ref. 4 observed that scales adD but does vary
neither with Re around Rel0 3, nor with ¢g in a large

280-315 um 10 Hz range ¢s=0.1-0.55. No mechanism is proposed for a pos-

280-315 um 15 H ; ; ; ; ;

280313 hm 20 Ha sible attraction between lines that could explain the indepen-

355-400 ym 10 Hz dence of\ with respect togs. We mention these explana-

355-400 pum 15 Hz s ) : . .

355-400 um 20 Hz tions given for low Reynolds hydrodynamics since they rely

500-630 pm 10 Hz on nonlinear effects of nonzero time-averaged value which

500-630 pm 15 Hz : : . .

500-630 pm 20 Hz can be of large magnitude in our experiment. In particular,
the above proposed mechanism of line formation could be
the same as in our experiment since the beads rotate alterna-

om0 tively due to solid and fluid friction.

- In their review on streaming flow’§, Petit and Gondret

also mention a mechanism proposed bynipand cited by

RayleigH® explaining the formation of similar periodic pat-

tern observed at higher Re in powder at the antinodes of the

301 ] T, standing acoustic wave in the Kundt's tube experiment, as

’ B/D presented in the IntroductiohiThe particles are supposed to
be sufficiently dense to behave as obstacles for the flow. The

FIG. 8. Variation(in log—log scalesof dimensionless pattern periodD alternating inertial flow is shrinked and accelerated between

reduced with Re®?! as a function of dimensionless oscillation amplitude of two neighboring particles aligned normal to the flow, thus the

the bead lines relative to the fluB/D for various values of bead diameter mean pressure between the particles is lower than the mean

rangeD and of frequency. . .

pressure far from them: They attract and constitute lines per-
pendicular to the oscillating flofsee Fig. #)]. On the con-

rather from the competition between an attraction betweeffary, the inertial flow is slower in the wake between two
two adjacent lines at large distance and a repulsion betwedtighboring particles aligned along the flow direction, thus
them at short distance. the mean pressure is higher between the particles than far
We first made sure that eventual magnetic interactionérom them: They repelsee Fig. &)]. Although this mecha-
between the bronze beads and the electro-magnetic shak@gm is valid for translational motion of the particles relative
were not involved in this ordering phenomenon by reproducto the fluid and for high Re, no mechanism is proposed of an
ing the same pattern using glass beads. Moreover, the higitraction between lines at large distance. Finally, we men-
electrical conductivity of water prevents electrostatic repul-tion apparently opposite theoretical predictions given by
sive interactions between beads. Tabakova and Zapruané¥%?ti.e., a repulsion between beads
In the case of an analogous periodic order occurring irin the plane normal to the flow and an attraction along the
suspensions under shear flow at low Re as reported in Ref. flow direction.
the alignment of beads, as well as a repulsive hydrodynamic A strinking feature of the streaming flow around a cyl-
interaction between them, are attributed to the steady flovinder or a sphere oscillating in an unbounded fluid is the
induced by the oscillating rotation of beads under the effecfiuadrupolar vorticity distribution around the object. Theories
of the oscillating shear stre$s? Fluid driven into rotation valid for B/D<1 predict that when the Strouhal number
by the bead is expelled away from the bead in its equatoriaD?w/v is much smaller than unity, these four steady vorti-
plane because of centrifugal force. Consequently, fluid isies [represented in Fig. 18)] suck the fluid towards the
sucked towards the bead along its axis of rotation due tonoving object in the flow direction and eject the fluid away
volume conservation. The polar suction induces attractiorfirom it in the plane normal to the floW:* For D?w/v>1,
between the beads perpendicular to the direction of oscillathese vortices are reversed, i.e., suck the fluid towards the
tion, leading to formation of lines of beads. The equatorialmoving object in the plane normal to the flow and eject the
expulsion induces repulsion along the direction of oscilla-fluid away from it in the flow directiortfour smaller vortices
tion, explaining the repulsion between the lines of beadsof opposite direction of flow, located in the viscous boundary
This flow is drawn in Fig. 8a). In their experiment, the au- layer near the obstacle, also remain, as drawn in Fig.

(./D) / Re®?!

20 1

Ct+XprHODPOO

-

g O N OO
" L PR

FIG. 9. (a) Ejection of fluid in the equatorial plane of a
rotating sphere correlated to suction of the fluid along
its axis of rotation.(b) Average pressure drofunder

‘ P, . Py P assumption of inertial flow between two oscillating

spheres aligned in the direction of vibratidie) Aver-
age overpressur@inder assumption of inertial flown

P> P, the wake between two oscillating spheres aligned with
the direction of vibration.

P,<P,

(@) (b) (c)
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c ] ! —+— 500-630 pm, 15 Hz
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0,001 ——ry .
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cylinder, after Ref. 10
--------- sphere, after Ref. 10
—6&— 280-315 um, 10 Hz

B/D

0.1

FIG. 11. Experimental diagram describing the regimes of flow around a
cylinder—sphere oscillating in an unbounded fluid, after Ref. 10: The con-
tinuous (resp. dashedline separates the left-hand region of the diagram
where vortices suck the fluid towards the cylindegsp. sphenealong the
direction of oscillationgsee Fig. 1(g)] from the right-hand region where
vortices expel the fluid away from the cylindéresp. sphenealong the

1O(b)_22—24 This inversion of the direction of rotation of the direction of oscillationgsee Fig. 1(h)]. The lines decorated with symbols
L . . are the parameter sets for which the periodic pattern was observed in our

qguadrupolar distribution of steady vorticésalled hereafter experiment.

“flow transition”) should occuD?w/v being of the order of

unity. From an experimental point of view, the flow transi-

tion is found by Petit and Gondrétto occur in the range 10(c). Nevertheless, we have no mechanism explaining the
5<D?w/v<14, whereas Andres and Ingard find that theattraction between the bead lines at large distance. It is also
Reynolds number Re(D?w/v)(B/D) better defines the exact noteworthy that up to now no theoretical approach could deal
limit between the two regimes, the parameB¢D having a  with B/D>1, nor with Re=1, which is precisely the case in
small but actual influence on this limit, even wh&D  our experiments. We finally mention that the steady stream-
>110 Considering firsD2w/v as the parameter driving the ing over a wavy wall as studied by Kaneko and HEﬁ']]nay

flow transition, we note that in our experiment the periodicresemble the flow between the lines of beads. Since their
pattern was observed fdd?w/v>5.9, a value compatible experiment was dedicated to the study of the mechanism of
with the measurements of the flow transition done by Petiformation of submarine sand dunes, the question whether the
and Gondret® Using this criterion, the periodic pattern gccurrence of the steady pattern is linked to a flow transition
seems to appear when vortices eject fluid along the directiogt a finite value of any control parameter concerns not only
of the flow. Considering now Re as the parameter driving theyyr experiment but also the initial mechanism of formation
flow transition, as proposed by Andres and Ingard, we compf sand dunegcalled “rolling grain” ripples).

pare in Fig. 11 the values of Re aBdD at which the peri-
odic pattern was observed in our experiment to the experi\-/II QUALITATIVE REMARKS ON PATTERN
mental values reportgd in Ref. 10 at whlch the flow t.ranS'tlonFORMATION AND DEFECTS

occurs around a cylinder and a sphere in a practically un-

bounded fluid. Obviously, the occurrence of the periodic pat-  As the shaker is switched on, the transient leading to the
tern cannot be linked to the flow transition around the cylin-steady pattern and its duration depends strongly on the vibra-
der. The comparison between the flow transition line for thetional parameter#\ andf, as well as on the initial bead dis-
isolated sphere in an unbounded fluid and our experiment igibution. When this initial distribution is a squafsee Fig.
impossible because the flow transition line for the isolatedl2(a)], lines of beads form first along its both sides parallel
sphere was not determined at high enough values/b. to the direction of vibrations, then lengthen slovigee Fig.

As a conclusion of this part, there may exist a correlation12(b)]. In this case of two-dimensional initial beads distribu-
between the occurrence of the periodic pattern and the exigion, the mechanism of pattern formation is a lengthening of
tence of steady vortices ejecting fluid along the flow direc-the lines through their global translation away from the
tion, inducing line repulsion. Anyway, the above compari-square perpendicular to the direction of vibrations. In par-
sons have to be considered with caution, since there may k&ular, the distance between the lines remains constant dur-
large discrepancies between the flow around an isolatethg their lengthening. When the initial bead distribution is a
sphere in an unbounded fluid and the flow around an array dftripe[see Fig. 1&)], thick bead linedi.e., more than one
spheres touching a wall. Moreover, the role of the rotation obead in thicknegsseparate from the stripe and drift away,
the sphere and of neighboring spheres was not consideregiving space to other lines to separate from the stripe or to
An experimental determination of the steady flow around aivide themselves in thinner lindsee Fig. 1&d)]. In that
sphere near a wall is strongly needed in order to confirm ocase of one-dimensional initial beads distribution, the
reject the hypothesis concerning the flow represented in Fignechanism of pattern formation is rather a decompaction of

FIG. 10. Quadrupolar vorticity distribution around an oscillating cylinder—
sphere(a) at low and(b) high Strouhal numbei(c) Hypothetical vorticity
distribution around a sphere oscillating close to a wall at high Re.
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D =355-400rm beads from an initial dense stripe distribution under the

effect of f=20Hz, '=14 m-s 2 vibrations applied fromt=0. After t

=80 s, the pattern becomes 2D. Inset: Evolution in time of the distance
between the line formed first and the stripe. The line is the best fit of the
form N[1—exp(—t/7)] with 7=0.64 s.
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surrounding fluid is ordered in one bead thick lines, regularly
, < spaced, perpendicular to the direction of vibrations. The am-
(d) plitude B of the oscillations of the beads relative to the fluid
varies linearly with the amplituda of the oscillations of the
Distribution of beads 5.0 s afteér=20 Hz, '=14 m-s 2 vibrations have ﬂUiq' A s?mple ph?nomenmogic-al mOdeI- be}sed on dynamic
been switched on(c) Iniiial dense stripe ;iistribution db =355-400um thd.fncnon and viscous drag gives qualitatively account for
beads. The stripe visible on the left hand side of the picture is the shadow oflliS linear dependence; as a consequence, the beads probably
the diffusing surface of the bead stripe visible on the right hand side of theslip most of the time on the vessel wall. The periodf the
picture.(d) Distributk_)n of beads 4.3 s afté=20 HzI'=18.7 ms 2 vibra- pattern is found to vary with the bead diameferoscillation
tions have been switched on. frequencyf=w/27, and viscosityv, according to the em-
pirical law \/D~ (B/D)%3%BwD/v) "%%L The onset of for-
the stripe through thelilation of the pattern(i.e., a continu-  mation of the periodic pattern may be linked to the formation
ous increase of the distance between the bead)lid®  of steady vorticegstreaming flow explaining the formation
evolution in time of the distance between the most distanbf |ines of beads and repulsion between lines.
lines of the pattern formed from a stripthe “size” of the We now come back to the comparison between the pat-
pattern, as defined as in Fig. (2] is plotted in Fig. 13 for  tern observed in the Kundt's tube experiment and our obser-
D=355-400um, f=20Hz, and’=18.7 ms 2. This evo-  vations. In the Kundt's tube experiment, the periodic pattern
lution is slow and cannot be simply characterized by a relaxis visible only where the displacement of air is large. Petit
ation time. A time scale which would be more characteristicand Gondréf report that the distance between two neighbor-
of the interaction between two neighboring bead lines is theng lines decreases with increasing distance of these lines to
characteristic time of formation of the firgthick) line from  the antinode, i.e., with decreasing air oscillation amplitude.
the initial stripe. The evolution in time of the distance be-This is in agreement with our measurements which show that
tween the first line and the stripe is plotted in the inset of Fig)\ increases with increasinB, which itself increases with
13 for D=355-400um, f=20Hz, and['=18.7ms %, increasingA. The main difference between our experimental
The associated time scale is very short, of the order of a tensonfiguration and the Kundt's tube experiment is that the
of vibration periods. A more rapid image acquisition is hottom wall moves with the fluid, whereas the wall of the
needed to measure it precisely as a functiomob, andf.  Kundt's tube is motionless. Providing that the bead rotation
We finally mention that the steady pattern often exhibitshas no pertinent effect on the interaction between the lines,
cristalline defects which consist in fork defects, clusters ofthis difference should actually influence only the relation be-
beads which result in line thickening, and local patterntweenB and A. Despite the fact that the streaming flows
compression—dilation, all these defects being pointed out iRround bluff bodies were mainly studied using compression
Fig. 2. These defects, which arise from bead diameter ofaves?® the wavelength of the acoustic waves are always
shape inhomogeneities and from interaction of the lines witharge compared to the body. Thus, in acoustic streaming flow
boundaries, evolve slowly in time. They are responsible forstudies, the fluid can be considered as oscillating with an
the dispersion of tha measurements. homogeneous amplitude around the body, as in our experi-
ment. Very recently, Gollub observed a dynamic crystalliza-
VIil. CONCLUSION tion of beads on a hexagonal 2D lattice when the same sus-
We first summarize our results. Under the effect of hori-pension as our was vibratagrtically. Since the measured
zontal vibrations, an 2D assembly of beads heavier than thiattice constant of the pattern was found to be larger than the

FIG. 12. (a) Initial dense square distribution &= 355—400um beads(b)
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