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This paper develops an analytic theory for the study of some Pólya urns with random rules. The idea is to extend the
isomorphism theorem in Flajolet et al. (2006), which connects deterministic balanced urns to a differential system for
the generating function. The methodology is based upon adaptation of operators and use of a weighted probability
generating function. Systems of differential equations are developed, and when they can be solved, they lead to
characterization of the exact distributions underlying the urn evolution. We give a few illustrative examples.

Keywords: Pólya urn, random structure, combinatorial probability, mixed models, differential equations.

1 Introduction
A classical definition of the Pólya urn scheme specifies it as an urn which contains balls of up to two
colors (say black and white), and which is governed by a set of evolution rules. A step then consists in
randomly picking a ball from the urn, placing it back, and depending on its color, adding or discarding a
fixed number of black and white balls.

Flajolet et al. (2006) introduces an analytic method to deal with a class of two-color Pólya urns with
deterministic addition rules. The method leads to a fundamental connection to differential equations via
an isomorphism theorem. In the present manuscript, we extend the method to deal with Pólya urns with
random addition rules. One can think of schemes with random replacements as mixtures of deterministic
schemes, with appropriate probabilities.

We develop an analytic theory for the study of balanced tenable Pólya urns with random rules (we
shall make the terms “balanced” and “tenable” more precise in Section 2). Balance and tenability are
restrictions on the rules that admit an analytic treatment through generating functions. Our main result
is the following: to each system of random rules satisfying the balance and tenability conditions, one
can associate a differential system which describes the generating function counting the sequence of
configurations of the urn scheme. A formal statement of this theorem appears in Section 3.
†Email: Basile.Morcrette@inria.fr.

Supported by ANR MAGNUM (10BLAN0204) and ANR BOOLE (09BLAN0011)
‡Email: hosam@gwu.edu

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dm(subm.)ind.html


2 Basile Morcrette and Hosam M. Mahmoud

When the system can be solved, it leads to characterization of the exact distributions underlying the urn
evolution. In Section 4, we give some examples where the generating function is explicit. Some of them
include uniform and binomial discrete random variable in their rules. Other examples investigate some
coupon collector variants. Finding the generating function and deducing the probability distributions is
quite mechanical, owing to classical analytic combinatorics.

2 Basic definitions
In Pólya’s classical urn model, we have an urn containing balls of up to two different colors, say black
and white. The system evolves with regards to particular evolution rules: at each step, add (possibly a
negative number) black and white balls. These rules are specified by a 2× 2 matrix:(

α β
γ δ

)
, α, δ ∈ Z , β, γ ∈ Z≥0 . (1)

The rows of the matrix are indexed with the colors black and white respectively. The columns of the
matrix are indexed by the same colors: they are from left to right indexed by black and white.

The asymptotics of this construct have been approached by traditional probabilistic methods in Athreya
and Karlin (1968), Smythe (1996) and Janson (2004). Mahmoud (2008) presents some of these findings.

In this manuscript we deal with a model where the constants α, β, γ, and δ are replaced by random
variables. We attempt to provide an approach for the study of the urn’s composition after a finite, and
possibly small, number of ball draws. This is an equally important line of attack and can be viewed as
more important in practice,(i) when the number of draws is not sufficiently large to warrant approximation
by asymptotics. We focus on exact distributions in this paper.

2.1 Balanced tenable urns with random entries
We consider urns for which the dynamics of change are now represented by the replacement matrix(

A B
C D

)
, (2)

where A,B, C and D are discrete random variables. If a random variable has a negative realization, it
means we discard balls.

Let Bn and Wn be respectively the number of black and white balls after n draws from the urn. We
call the pair (Bn,Wn) the configuration of the urn after n steps (draws). We start with a deterministic
initial configuration (B0,W0) = (b0, w0). At each step, a ball is uniformly drawn from the urn. We look
at its color and we put it back in the urn: if the color is black, we add A black balls and B white balls; if
the color is white, we add C black and D white balls; the random variables are generated independently at
each step.

We now recall a few definitions, that serve to delineate the scope of our study.

Definition 2.1 (Balance) An urn with the replacement matrix (2) is said to be balanced, if the sums across
rows are equal, that is if A+ B = C +D, and these sums are always constant and equal to a fixed value
θ. The parameter θ is called the balance of the urn.
(i) For example, the Ehrenfest urn is a model for the exchange of gases. If the gas is being exchanged between an airconditioned

room and the outside, the user is more interested in what happens within the next hour or so, not what ultimately happens at
infinity.
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All urns considered in this paper are balanced. As a consequence, the random variables are governed
by the relations B = θ − A, and C = θ − D. In addition, we will only consider urns with nonnegative
balance, θ ≥ 0. The case θ < 0 refers to diminishing urn models. Questions and results on these models
are completely different; see Hwang et al. (2007) for an analytic development.

Since we allow the random variablesA andD to take negative integer values, it is necessary to consider
the concept of tenability.

Definition 2.2 (Tenability) An urn scheme is said to be tenable, if it is always possible to apply a rule,
i.e., if it never reaches a deadlocked configuration (that is, choosing with positive probability a rule that
cannot be applied because there are not enough balls).

To illustrate this notion, suppose we have an urn of black and white balls, with the replacement matrix(
−2 2
2 −2

)
.

This matrix, together with an even initial number of black balls and an even initial number of white balls
form a tenable scheme. Any other initial condition makes this scheme untenable. For instance, if we start
with two black balls and one white ball, the scheme gets stuck upon drawing a white ball.

Remark 2.1 A tenable balanced urn scheme cannot have negative realizations for the nondiagonal en-
tries B = θ − A and C = θ − D, and they cannot have unbounded supports, either. Indeed, if B has a
negative realization, say −k for positive k, we discard k white balls upon withdrawing a black ball. In
view of the balance condition, we must add at the same step θ + k black balls; we can apply this rule
repeatedly until we take out all white balls, and the scheme comes to a halt (contradicting tenability).
Therefore, B and C must have only nonnegative realizations. Furthermore, suppose the urn at some step
has N black balls; if B has an unbounded support, it includes a value greater than θ + N . Here A
must realize a value less then −N . A draw of a black ball requires taking out more than N black balls
(contradicting tenability).

Example 2.1 This example illustrates a mixed model urn in the class we are considering. It has random
entries in the replacement matrix and is balanced and tenable. Consider the Pólya-Friedman urn scheme
with the replacement matrix (

Bp 1− Bp
1− Bp Bp

)
, (3)

where Bp is a Ber(p) random variable.(ii) Such a scheme has balance one, and alternates between(
1 0
0 1

)
, and

(
0 1
1 0

)
,

that is between Pólya-Eggenberger’s urn (with probability p) and Friedman’s urn (with probability 1− p).
The transition in the limit distribution of black balls when p goes from 0 to 1 is quite unusual. For p = 0
(Friedman’s urn), a properly normalized number of black balls has the classical Gaussian distribution,
and for p = 1 (Pólya-Eggenberger’s urn), a properly scaled number of black balls has a beta distribution.
The scheme with replacement matrix (3) is an interesting example that warrants further investigation, and
will be a special case of two illustrative examples (Subsections 4.2 and 4.3).
(ii) The notation Ber(p) stands for the Bernoulli random variable with parameter p, that assumes the value 1 with success probability
p, and the value 0 with failure probability 1− p.
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2.2 Definitions for the analytic methodology
The first use of analytic combinatorics for the treatment of urn models is in Flajolet et al. (2005), where
some balanced urns are linked to a partial differential equation and elliptic functions. We now describe
the analytic tools we use for our study. For a more complete (yet accessible) account see Morcrette (2012)
(§2). For a precise overview of analytic combinatorics, see the reference book Flajolet and Sedgewick
(2009).

The total number of balls after n draws, denoted by sn := Bn +Wn, is deterministic because of the
balance condition. Indeed, at each step, we add a constant number of balls (the balance θ), so

sn = s0 + θn = b0 + w0 + θn . (4)

The main tool in this study is the weighted probability generating function

Q(x, y, z) :=

∞∑
n=0

∑
b,w≥0

s0s1 . . . sn−1 P(Bn = b,Wn = w)xbyw
zn

n!
. (5)

The variable x counts black balls, y counts white balls, and z counts the number of draws. As b, w and n
are governed by (4), one of the variables is redundant. So we can set y = 1 without loss of generality: it
is sufficient to study a marginal distribution because it determines the joint probability distribution.

Remark 2.2 The kernel s0s1 . . . sn−1 corresponds to the total number of paths of length n starting from
the initial configuration. Indeed, at step 0 we can pick a ball among the s0 balls in the urn; at step 1 we
can pick a ball among the s1 balls in the urn, etc.

Remark 2.3 The coefficient(iii) [xbywzn/n!]Q(x, y, z) does not represent a combinatorial count; this
quantity can be fractional. Nevertheless, it is closely connected to the notion of “history” described in
Flajolet et al. (2006). A history is nothing but a finite sequence of draws from the urn. One history of
length n describes one possible evolution from step 0 to step n. It can be viewed as a path in the evolution
tree of the urn. In the context of deterministic rules, histories are combinatorial counts. However, in our
case, we need more information to have a complete description of a sequence of n draws. At each step, we
can choose different rules depending on the realization of the random entries at that step. So, we are now
dealing with weighted histories, that is the sequence of n draws with a weight factor corresponding to the
probability of applying the n different rules we use along the path from step 0 to step n. If we denote by
Qn,b,w the contribution of weighted histories beginning at step 0 in the configuration (b0, w0) and ending
at step n in the configuration (b, w), we have

Q(x, y, z) =

∞∑
n=0

∑
b,w≥0

Qn,b,w x
byw

zn

n!
. (6)

The kernel s0s1 . . . sn−1 is obtained by adding all weighted histories of length n, that is by setting x and
y to 1:

Q(1, 1, z) = (1− θz)−s0/θ ; n! [zn]Q(1, 1, z) = s0s1 . . . sn−1 = θn
Γ(n+ s0/θ)

Γ(s0/θ)
.

(iii) We use the operator [xj1
1 . . . x

jk
k ] to extract the coefficient of xj1

1 . . . x
jk
k from a generating function of x1, . . . , xk .
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In this way, we preserve the equivalence between the probabilistic model and the combinatorial aspects
of weighted history. The balance condition is key to this equivalence:

P(Bn = b,Wn = w) =

[
xbywzn

]
Q(x, y, z)

[zn]Q(1, 1, z)
=

Qn,b,w
s0 . . . sn−1

. (7)

3 An isomorphism theorem for urn schemes with random entries
In this section, we state our main result through the following theorem which links the behavior of a
tenable balanced urn to a differential system. The theorem always yields a differential system, and the
difficulty then lies in extracting information on the generating function: indeed, the system obtained may
not be always explicitly solvable by currently known techniques.

Theorem 3.1 Given a balanced tenable urn with the replacement matrix(
A θ −A

θ −D D

)
,

where A and D are discrete random variables with distributions

P(A = k) = πk , P(D = k) = τk ,

for −K ≤ k ≤ θ, (for some K > 0), the probability generating function of the urn is given by

Q (x, y, z) = Xb0(z)Y w0(z) ,

where (b0, w0) is the starting configuration, and the pair (X(t) , Y (t)) is the solution to the differential
system 

x′(t) =

θ∑
k=−K

πk x
k+1(t) yθ−k(t) ;

y′(t) =

θ∑
k=−K

τk x
θ−k(t) yk+1(t) ,

applied at t = 0, and any initial conditions x := x(0) and y := y(0), such as xy 6= 0.

Proof: The proof follows and generalizes that in Flajolet et al. (2006). The basic idea in this proof is that
the monomial xiyj represents the configuration (Bn,Wn) = (i, j). The actions of the urn transform such
a configuration into xi+kyj+θ−k, if a black ball is drawn and if the nth realization of the replacement
matrix is such that A = k, and θ −A = θ − k (which occurs with probability πk); there are i choices for
such a black ball. Alternatively, the monomial is transformed into xi+θ−kyj+k, if a white ball is drawn
and if the nth realization of the replacement matrix is such that θ−D = θ− k, and D = k (which occurs
with probability τk); there are j choices for such a white ball. We represent the transformation by the
operator

M :=

θ∑
k=−K

πk x
k yθ−k Θx + τk x

θ−k yk Θy ,
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where Θu = u∂u is the pick and replace operator.(iv) When this operator is applied to the configura-
tion (i, j), it yields

M(xiyj) =

θ∑
k=−K

i πk x
i+k yj+θ−k + j τk x

i+θ−k yj+k .

This operator is used to represent all possible configurations of the urn at step n + 1, given the configu-
rations at step n. Indeed, if we write Q(x, y, z) :=

∑∞
n=0 qn(x, y)zn/n! , as a function in one variable z,

the operatorM represents the transition

qn+1(x, y) =M (qn(x, y)) thus qn(x, y) =Mn (q0(x, y)) =Mn (xb0yw0) .

Let x(t) and y(t) be two functions that have Taylor series expansion near t = 0. Recall that the Taylor
series expansion of the product x`(t+ z) ym(t+ z) is

x`(t+ z) ym(t+ z) =

∞∑
n=0

∂n

∂tn
(
x`(t) ym(t)

) zn
n!
.

We also have

Q (x(t), y(t), z) =

∞∑
n=0

Mn
(
xb0(t) yw0(t)

) zn
n!
.

Take ` = b0, and m = w0, and these two expansions coincide, if the operatorsM and ∂/∂t are the same.
This is possible if, for all i, j ≥ 0,

θ∑
k=−K

i πk x
i+k(t) yj+θ−k(t) + j τk x

i+θ−k(t) yj+k(t) = i xi−1(t) yj(t)x′(t) + j xi(t) yj−1 y′(t) ,

and can happen by choosing 
x′(t) =

θ∑
k=−K

πk x
k+1(t) yθ−k(t) ;

y′(t) =

θ∑
k=−K

τk x
θ−k(t) yk+1(t) .

Hence, if (X(t), Y (t)) is a solution of this system with initial conditions x := X(0) and y := Y (0), we
have Q (X(t), Y (t), z) = Xb0(t+ z)Y w0(t+ z).(v) The statement follows by letting t = 0. 2

(iv) See Subsection I.6.2 p.86 in Flajolet and Sedgewick (2009) for more details on the Symbolic method.
(v) A classic theorem of Cauchy and Kovalevskaya guarantees the existence of a solution, and the condition xy 6= 0 guarantees an

analytic expansion near t = 0; see, for example, Folland (1995) (Chap.1 Sect.D., p. 46–55).
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4 Examples of exactly solvable urns with random entries
We now consider a variety of examples for which Theorem 3.1 admits an exact solution, and an exact
probability distribution is obtained. In Subsection 4.1 we treat a variation of the coupon-collector problem.
In Subsections 4.2 and 4.3, we study urns with binomial random variables and uniform random variables.
In Subsection 4.4, we study a variation of the coupon-collector problem that is modeled with three colors,
demonstrating that the analytic methods can be extended to more colors.

By probabilistic techniques, Janson (2004) and Smythe (1996) provide broad asymptotic urn theories
covering some of the urns in the class considered here; our focus is on the exact distributions.

4.1 An urn for coupon collection with delay
Collecting k coupons can be represented by a number of urn schemes. One standard urn model considers
uncollected coupons to be balls of one color (say black) and collected coupons to be balls of another color
(say white); initially all k coupons are not collected (all k balls are black). When a coupon is collected for
the first time (a black ball is drawn from the urn), one now considers that coupon type as acquired, so the
black ball is recolored white and deposited back in the urn. Collecting an already collected coupon type
(drawing a white ball from the urn) results in no change (the white ball is returned to the urn). Thus, the
standard coupon collection is represented by the replacement matrix(

−1 1
0 0

)
.

Occasionally, the coupon collector may misplace or lose a collected coupon immediately after collecting
it; the coupon still needs to be collected. That is, the drawing of a black ball may sometimes result in no
change too, delaying the overall coupon collection. This can be represented by the replacement matrix(

−Bp Bp
0 0

)
, (8)

where Bp is a Ber(p) random variable. Under any nonempty starting conditions, this scheme is balanced
and tenable.

Proposition 4.1 For the urn (8), the exact probability distribution of the number Bn of uncollected
coupons (black balls) after n draws is given by

P(Bn = b) =

b0∑
j=b

(−1)j−b
(
b0
j

)(
j

b

)(
s0 − pj
s0

)n
.

Proof: The urn scheme (8) is amenable to the analytic method described, and leads to an exactly solvable
system of differential equations. By Theorem 3.1, the associated differential system is{

x′(t) = (1− p)x(t) + p y(t) ;
y′(t) = y(t) ,

with solution
X(t) = yet + (x− y) e(1−p)t , and Y (t) = yet .
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Thus,
Q(x, 1, z) =

(
ez + (x− 1)e(1−p)z

)b0
ew0z.

In the course of coupon collection the total number of coupons (balls in the urn) does not change; that is,
sn = s0, for all n ≥ 0. Extracting coefficients, we get

s0 . . . sn−1
n!

P(Bn = b) = [xbzn] ew0z
b0∑
j=0

(
b0
j

)
(x− 1)je(1−p)jz × e(b0−j)z

= [zn] ew0z
b0∑
j=b

(
b0
j

)
(−1)j−b

(
j

b

)
e((1−p)j+b0−j)z .

Since s0 = b0 + w0, we can write this as

sn0
n!

P(Bn = b) = [zn]

b0∑
j=b

(−1)j−b
(
b0
j

)(
j

b

)
e(s0−pj)z .

Consequently, we find the probability expression. 2

4.2 A binomial urn
Consider an urn scheme with replacement matrix(

Xθ,p θ −Xθ,p
θ −Xθ,p Xθ,p

)
, (9)

where Xθ,p is distributed like Bin(θ, p).(vi) Under any nonempty starting conditions, this is a balanced
tenable scheme of balance θ. For an expression of the probability distribution of black balls after n draws,
it seems that a solution for general p is too difficult. We focus here on the tractable unbiased case p = 1

2 .

Proposition 4.2 For the unbiased case p = 1
2 of the urn (9), the exact probability distribution of the

number of black balls Bn is

P(Bn = b) =
1

2θn

(
θn

b− b0

)
, for b ∈ {b0, b0 + 1, . . . , b0 + θn}.

In other words, we have Bn = b0 + Bin (θn, 1/2) . Asymptotics follow easily from the normal approxi-
mation to the binomial distribution. Let N (0, σ2) be a normal random variate with variance σ2. We see
that

Bn − 1
2θn√
n

D−→N
(

0,
θ2

4

)
,

where the symbol D−→ stands for convergence in distribution.

(vi) The notation Bin(k, p) stands for a binomially distributed random variable that counts the number of successes in k independent
identically distributed trials with rate of success p per trial.
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Remark 4.1 The replacement matrix (3) is the special case where θ = 1, and as mentioned in the in-
troduction it alternates between Pólya-Eggenberger’s urn (with probability p) and Friedman’s urn (with
probability 1 − p). So, one may think of the urn process as a mixture model that chooses between two
given models at each step. It is well known that the number of white balls in a pure Pólya-Eggenberger
urn (scaled by n) converges to a beta distribution (see Pólya (1931)), whereas the number of white balls
in a pure Friedman’s urn satisfies the central limit tendency (see Freedman (1965)):

Bn − 1
2n√
n

D−→N
(

0,
1

12

)
.

In an unbiased mixture we getN (0, 1/4) as limit, with centering and scaling similar to that in Friedman’s
urn. The normal limit for an unbiased mixture has a larger variance than a pure Friedman’s urn, in view of
occasional perturbation by the Pólya-Eggenberger choice. Because Friedman’s urn is “mean reverting,”
the entire mixed process is mean reverting, that is having tendency for average equilibrium around an
even split. We thus see that the Friedman effect is stronger than the Pólya-Eggenberger.

Proof of Proposition 4.2: By Theorem 3.1, the associated differential system is


x′(t) =

θ∑
k=0

pk(1− p)θ−k
(
θ

k

)
xk+1(t) yθ−k(t);

y′(t) =

θ∑
k=0

pk(1− p)θ−k
(
θ

k

)
xθ−k(t) yk+1(t).

The unbiased case, p = 1/2, yields an explicit solution:

X(t) =
x(

1− θ
(x+ y

2

)θ
t
)1/θ , and Y (t) =

y(
1− θ

(x+ y

2

)θ
t
)1/θ .

The probability generating function Q(x, y, z) = X(z)b0 Y (z)w0 gives

Q(x, y, z) =

∞∑
n=0

∑
b,w≥0

s0s1 . . . sn−1 P(Bn = b,Wn = w)xbyw
zn

n!

=
xb0yw0(

1− θ
(x+ y

2

)θ
z
) b0+w0

θ

.

Note that P(Bn = b,Wn = w) is 0 for all values of b and w, except for w = θn + s0 − b, when the
probability may differ from zero. In other words, the joint probability distribution can be determined from
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either marginal distribution. We compute

Q(x, 1, z) =

∞∑
n=0

∑
b,w≥0

s0s1 . . . sn−1 P(Bn = b,Wn = w)xb
zn

n!

=

∞∑
n=0

∞∑
b=0

s0s1 . . . sn−1 P(Bn = b)xb
zn

n!

=
xb0(

1− θ
(x+ 1

2

)θ
z
) b0+w0

θ

.

Extraction of coefficients yields(vii)

[xbzn]Q(x, 1, z) =
s0 . . . sn−1

n!
P(Bn = b)

= [xbzn]xb0
∞∑
n=0

(
−θ
(x+ 1

2

)θ
z
)n(− b0+w0

θ

n

)
= [xb]xb0

1

2θn
(x+ 1)θn

s0 . . . sn−1
n!

= [xb]xb0
1

2θn

θn∑
b=0

(
θn

b

)
xb
s0 . . . sn−1

n!
.

From this last expression we deduce the stated probability distribution for the number of black balls. 2

4.3 A uniform urn
Consider an urn scheme with replacement matrix(

Uθ θ − Uθ
θ − Uθ Uθ

)
, (10)

where Uθ is a uniformly distributed random variable on the set {0, 1, . . . , θ}. Under any nonempty starting
conditions, this is a balanced tenable scheme.

Proposition 4.3 The exact probability distribution of black balls for the urn (10) is given by

P(Bn = b) =
Tθ,n,b−b0
(θ + 1)n

, for b ∈ {b0, b0 + 1, . . . , b0 + θn},

where Tθ,n,k := [xk] (1 + x+ . . .+ xθ)n.

The numbers Tθ,n,k are known in the classical literature (see Euler (1801)) and have numerous com-
binatorial interpretations. For instance, in Flajolet and Sedgewick (2009) (Subsection I.15, page 45),
Tr−1,k,n−k is the number of compositions of size n with k summands each at most r. In other words,

(vii) Recall that for n, k ≥ 0 ,
(−k

n

)
=
−k(−k−1)...(−k+n−1)

n!
.
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T2,n,k, called the trinomial coefficient, is the number of distinct ways in which k indistinguishable balls
can be distributed over n distinguishable urns allowing at most two balls to fall in each urn. Several other
interpretations related to counting strings, partitions and unlabeled trees of height 3 exist; see Andrews
(1990).

Proof of Proposition 4.3: By Theorem 3.1, the associated differential system is
x′(t) =

θ∑
k=0

1

θ + 1
xk+1(t) yθ−k(t) ;

y′(t) =

θ∑
k=0

1

θ + 1
xθ−k(t) yk+1(t) .

This yields an explicit solution:

X(t) =
x(

1− θ

θ + 1

( θ∑
l=0

xlyθ−l
)
t
)1/θ ; Y (t) =

y(
1− θ

θ + 1

( θ∑
l=0

xlyθ−l
)
t
)1/θ .

Thus, the probability generating function Q(x, 1, z) = X(z)b0 Y (z)w0 is

Q(x, 1, z) =

∞∑
n=0

∞∑
b=0

s0s1 . . . sn−1 P(Bn = b)xb
zn

n!

=
xb0(

1− θ

θ + 1

( θ∑
l=0

xl
)
z
) b0+w0

θ

.

Extraction of coefficients yields

s0 . . . sn−1
n!

P(Bn = b) = [xbzn]xb0
∞∑
n=0

(
− θ

θ + 1

( θ∑
l=0

xl
)
z
)n(− b0+w0

θ

n

)
= [xb]xb0

1

(θ + 1)n
(
1 + x+ · · ·+ xθ

)n s0 . . . sn−1
n!

.

We thus obtain the stated probability expression. 2

4.4 An urn for a two-type coupon collection
The method has obvious extensions for k ≥ 2 colors. Consider, for instance, the balanced tenable three-
color coupon collection urn scheme with the entries−1 Bp 1− Bp

0 0 0
0 0 0

 , (11)
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in which a collected coupon is randomly categorized to fall in one of two classes. Here again, Bp is a
Ber(p) random variable. The uncollected coupons correspond to black balls in the urn (replacement rules
on the first row), and the white balls of the previous example are now ramified into red and green balls
(second and third rows). The columns of the matrix are indexed by the same colors: they are from left to
right indexed by black, red and green. Let Bn, Rn, Gn be respectively the number of black, red and green
balls in the urn after n draws.

Proposition 4.4 For the urn (11), the distribution of red balls Rn is given by the following probabilities:

P(Rn = r) =

(
p

(1− p)

)r b0∑
j=0

(−1)j
(
j

r

)(
b0
j

)
(1− p)j

j∑
k=0

(
j

k

)
(−1)k

(
k

s0

)n
.

Proof: This scheme has the underlying differential system x′(t) = p y(t) + (1− p)h(t) ;
y′(t) = y(t) ;
h′(t) = h(t) .

This system of differential equations has the solution

X(t) = (p y + (1− p)h) (et − 1) + x ;

Y (t) = y et ;

H(t) = h et .

Note that in this scheme the total number of balls after any number of draws remains the same at all times.
The corresponding generating function is

Q(x, y, h, z) =

∞∑
n=0

∑
b,r,g≥0

sn0 P(Bn = b, Rn = r,Gn = g)xbyrhg
zn

n!
.

The extended isomorphism theorem then gives

Q (x, y, h, z) = Xb0(t)Y r0(t)Hg0(t) .

One can extract univariate and joint distributions from this. For instance,

sn0
n!

P(Rn = r) = [yrzn] Q(1, y, 1, z)

= [yrzn] (p (y − 1) (ez − 1) + ez)
b0 yr0er0zeg0z .

Extracting coefficients (details omitted) we find the probability distribution for red balls. 2
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5 Conclusion
We presented a generalization of the isomorphism theorem for deterministic schemes. The generalization
covers the class of balanced tenable two-color urn schemes with random entries. The result is particularly
useful when the system of ordinary differential equations is amenable to a simple solution, from which
exact probability distributions can be extracted in a fairly mechanical fashion.

Our last example (see Proposition 4.4) shows it is straightforward to extend our theorem to additional
colors: an urn with k colors will lead to a differential system of k equations. This theorem invites further
work, using asymptotic tools from Flajolet and Sedgewick (2009), to obtain limit laws. For instance, the
first example (see Proposition 4.2, a model mixing Pólya and Friedman urn models, and Fig. 1 and 2)
raises various questions such as: Can we obtain an exact explicit expression for the generating function
for general p ∈ (0, 1)? What is the limit law, and what is the asymptotic behavior? How does the phase
transition between a Gaussian regime and a beta regime take place?

10 20 30 40 50
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(a) p = 0
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(b) p = 0.4
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(c) p = 0.8
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(d) p = 1

Fig. 1: Each graph represents a simulation of 100 histories of length 50 for the Pólya–Friedman’s urn (3) (see
Example 2.1) with parameter p ∈ {0, 0.4, 0.8, 1}. There is a transition between a Gaussian behavior (Fig.1(a)) and
a beta behavior (Fig.1(d)).

Fig. 2: Normalized distribution of the number of black balls after 200 draws (B200) for the Pólya–Friedman’s urn (3)
with different values of p ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Here, the starting configuration is one
black and one white ball. We observe a transition between a Gaussian distribution and a uniform distribution (which
is a special case of beta distribution, when b0 = w0 = 1).
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