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We look to gradations of Kac-Moody Lie algebras by Kac-Moody root systems with finite dimensional weight spaces. We extend, to general Kac-Moody Lie algebras, the notion of C-admissible pair as introduced by H. Rubenthaler and J. Nervi for semi-simple and affine Lie algebras. If g is a Kac-Moody Lie algebra (with Dynkin diagram indexed by I) and (I, J) is such a C-admissible pair, we construct a C-admissible subalgebra g J , which is a Kac-Moody Lie algebra of the same type as g, and whose root system Σ grades finitely the Lie algebra g. For an admissible quotient ρ : I → I we build also a Kac-Moody subalgebra g ρ which grades finitely the Lie algebra g. If g is affine or hyperbolic, we prove that the classification of the gradations of g is equivalent to those of the C-admissible pairs and of the admissible quotients. For general Kac-Moody Lie algebras of indefinite type, the situation may be more complicated; it is (less precisely) described by the concept of generalized C-admissible pairs.

Introduction. The notion of gradation of a Lie algebra g by a finite root system Σ was introduced by S. Berman and R. Moody [START_REF] Berman | Lie algebras graded by finite root systems[END_REF] and further studied by G. Benkart and E. Zelmanov [START_REF] Benkart | Lie algebras graded by finite root systems and intersection matrix algebras[END_REF], E. Neher [START_REF] Neher | Lie algebras graded by J-graded root systems and Jordan pairs covered by grids[END_REF], B. Allison, G. Benkart and Y. Gao [START_REF] Allison | Central extensions of Lie algebras graded by finite root systems[END_REF] and J. Nervi [START_REF] Nervi | Algèbres de Lie simples graduées par un système de racines et sous-algèbres C-admissibles[END_REF]. This notion was extended by J. Nervi [START_REF] Nervi | Affine Kac-Moody algebras graded by affine root systems[END_REF] to the case where g is an affine Kac-Moody algebra and Σ the (infinite) root system of an affine Kac-Moody algebra; in her two articles she uses the notion of C-admissible subalgebra associated to a C-admissible pair for the Dynkin diagram, as introduced by H. Rubenthaler [START_REF] Rubenthaler | Construction de certaines sous-algèbres remarquables dans les algèbres de Lie semi-simples[END_REF].

We consider here a general Kac-Moody algebra g (indecomposable and symmetrizable) and the root system Σ of a Kac-Moody algebra. We say that g is finitely Σ-graded if g contains a Kac-Moody subalgebra m (the grading subalgebra) whose root system relatively to a Cartan subalgebra a of m is Σ and moreover the action of ad(a) on g is diagonalizable with weights in Σ ∪ {0} and finite dimensional weight spaces, see Definition 1.4. The finite dimensionality of weight spaces is a new condition, it was fulfilled by the non trivial examples of J. Nervi [START_REF] Nervi | Affine Kac-Moody algebras graded by affine root systems[END_REF] but it excludes the gradings of infinite dimensional Kac-Moody algebras by finite root systems as in [START_REF] Benkart | Lie algebras graded by finite root systems and intersection matrix algebras[END_REF]. Many examples of these gradations are provided by the almost split real forms of g, cf. 1.7. We are interested in describing the possible gradations of a given Kac-Moody algebra (as in [START_REF] Nervi | Algèbres de Lie simples graduées par un système de racines et sous-algèbres C-admissibles[END_REF], [START_REF] Nervi | Affine Kac-Moody algebras graded by affine root systems[END_REF]), not in determining all the Lie algebras graded by a given root system Σ (as e.g. in [START_REF] Allison | Central extensions of Lie algebras graded by finite root systems[END_REF] for Σ finite).

Let I be the index set of the Dynkin diagram of g, we generalize the notion of C-admissible pair (I, J) as introduced by H. Rubenthaler [START_REF] Rubenthaler | Construction de certaines sous-algèbres remarquables dans les algèbres de Lie semi-simples[END_REF] and J. Nervi [START_REF] Nervi | Algèbres de Lie simples graduées par un système de racines et sous-algèbres C-admissibles[END_REF], [START_REF] Nervi | Affine Kac-Moody algebras graded by affine root systems[END_REF], cf. Definition 2.1. For each Dynkin diagram I the classification of the C-admissible pairs (I, J) is easy to deduce from the list of irreducible C-admissible pairs due to these authors. We are able then to generalize in section 2 their construction of a C-admissible subalgebra (associated to a C-admissible pair) which grades finitely g: Theorem 1. (cf. 2.6, 2.11, 2.14) Let g be an indecomposable and symmetrizable Kac-Moody algebra, associated to a generalized Cartan matrix A = (a i,j ) i,j∈I . Let J ⊂ I be a subset of finite type such that the pair (I, J) is C-admissible. There is a generalized Cartan matrix A J = (a ′ k,l ) k,l∈I ′ with index set I ′ = I \ J and a Kac-Moody subalgebra g J of g associated to A J , with root system ∆ J . Then g is finitely ∆ J -graded with grading subalgebra g J .

For a general finite gradation of g with grading subalgebra m, we prove (in section 3) that m is also symmetrizable and the restriction to m of the invariant bilinear form of g is nondegenerate (Corollary 3.16). The Kac-Moody algebras g and m have the same type: finite, affine or indefinite; the first two types correspond to the cases already studied e.g. by J. Nervi. Moreover if g is indefinite Lorentzian or hyperbolic, then so is m (propositions 3.3 and 3.21). We get also the following precise structure result for this general situation: Theorem 2. Let g be an indecomposable and symmetrizable Kac-Moody algebra, finitely graded by a root system Σ of Kac-Moody type with grading subalgebra m. 1) We may choose the Cartan subalgebras a of m, h of g such that a ⊂ h. Then there is a surjective map ρ a : ∆ ∪ {0} → Σ ∪ {0} between the corresponding root systems. We may choose the bases Π a = {γ s | s ∈ I} ⊂ Σ and Π = {α i | i ∈ I} ⊂ ∆ of these root systems such that ρ a (∆ + ) ⊂ Σ + ∪ {0} and {α ∈ ∆ | ρ a (α) = 0} = ∆ J := ∆ ∩ ( j∈J Zα j ) for some subset J ⊂ I of finite type.

2) Let I ′ re = {i ∈ I | ρ a (α i ) ∈ Π a }, I ′ im = {i ∈ I | ρ a (α i ) ∈ Π a ∪ {0}}. Then J = {i ∈ I | ρ a (α i ) = 0}. We note I re (resp. J • ) the union of the connected components of I \I ′ im = I ′ re ∪J meeting I ′ re (resp. contained in J), and J re = J ∩I re . Then the pair (I re , J re ) is C-admissible.

3) There is a Kac-Moody subalgebra g(I re ) of g, associated to I re , which contains m. This Lie algebra is finitely ∆(I re ) Jre -graded, with grading subalgebra g(I re ) Jre . Both algebras g(I re ) and g(I re ) Jre are finitely Σ-graded with grading subalgebra m.

It may happen that I ′ im is non empty, we then say that (I, J) is a generalized C-admissible pair. We give and explain precisely an example in section 5.

When I ′ im is empty, I re = I, J re = J, g(I re ) = g, (I, J) = (I re , J re ) is a C-admissible pair and the situation looks much like the one described by J. Nervi in the finite [START_REF] Nervi | Algèbres de Lie simples graduées par un système de racines et sous-algèbres C-admissibles[END_REF] or affine [START_REF] Nervi | Affine Kac-Moody algebras graded by affine root systems[END_REF] cases. Actually we prove that this is always true when g is of finite type, affine or hyperbolic (Proposition 3.20). In this "empty" case we get the gradation of g with two levels: g is finitely ∆ J -graded with grading subalgebra g J as in Theorem 1 and g J is finitely Σ-graded with grading subalgebra m. But the gradation of g J by Σ and m is such that the corresponding set "J" described as in Theorem 2 is empty; we say (following [START_REF] Nervi | Algèbres de Lie simples graduées par un système de racines et sous-algèbres C-admissibles[END_REF], [START_REF] Nervi | Affine Kac-Moody algebras graded by affine root systems[END_REF]) that it is a maximal gradation, cf. Definition 3.15 and Proposition 3.22.

To get a complete description of the case I ′ im empty, it remains to describe the maximal gradations; this is done in section 4. We prove in Proposition 4.1 that a maximal gradation (g, Σ, m) is entirely described by a quotient map ρ : I → I which is admissible i.e. satisfies two simple conditions (MG1) and (MG2) with respect to the generalized Cartan matrix A = (a i,j ) i,j∈I . Conversely for any admissible quotient map ρ, it is possible to build a maximal gradation of g associated to this map, cf. Proposition 4.5 and Remark 4.7.

Preliminaries

We recall the basic results on the structure of Kac-Moody Lie algebras and we set the notations. More details can be found in the book of Kac [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]. We end by the definition of finitely graded Kac-Moody algebras.

1.1. Generalized Cartan matrices. Let I be a finite index set. A matrix A = (a i,j ) i,j∈I is called a generalized Cartan matrix if it satisfies : [START_REF] Allison | Central extensions of Lie algebras graded by finite root systems[END_REF] Note that a symmetrizable hyperbolic generalized Cartan matrix is non singular and Lorentzian (cf. [START_REF] Moody | Root systems of hyperbolic type[END_REF]).

a i,i = 2 (i ∈ I) (2) a i,j ∈ Z - (i = j) (3) a i,j = 0 implies a j,i = 0.
1.2. Kac-Moody algebras and groups. (See [START_REF] Kac | Infinite dimensional Lie algebras[END_REF] and [START_REF] Peterson | Infinite flag varieties and conjugacy theorems[END_REF]). Let A = (a i,j ) i,j∈I be an indecomposable and symmetrizable generalized Cartan matrix. Let (h R , Π = {α i , i ∈ I}, Πˇ= {αǐ, i ∈ I}) be a realization of A over the real field R: thus h R is a real vector space such that dimh R = |I| + corank(A), Π and Πˇare linearly independent in h * R and h R respectively such that α j , αǐ

= a i,j . Let h = h R ⊗ C, then (h, Π, Πˇ) is a realization of A over the complex field C. It follows that, if A is non-singular, then Πˇ(resp. Π) is a basis of h (resp. h * ); moreover h R = {h ∈ h | α i (h) ∈ R, ∀i ∈ I} is well defined by the realization (h, Π, Πˇ).
Let g = g(A) be the complex Kac-Moody algebra associated to A : it is generated by {h, e i , f i , i ∈ I} with the following relations

(1.1) [h, h] = 0, [e i , f j ] = δ i,j αǐ (i, j ∈ I); [h, e i ] = α i , h e i , [h, f i ] = -α i , h f i (h ∈ h); (ade i ) 1-ai,j (e j ) = 0, (adf i ) 1-ai,j (f j ) = 0 (i = j).
The Kac-Moody algebra g = g(A) is called of finite, affine or indefinite type if the corresponding generalized Cartan matrix A is.

The derived algebra g ′ of g is generated by the Chevalley generators e i , f i , i ∈ I, and the center c of g lies in h ′ = h ∩ g ′ = i∈I Cαǐ. If the generalized Cartan matrix A is non-singular, then g = g ′ is a (finite or infinite)-dimensional simple Lie algebra, and the center c is trivial.

The subalgebra h is a maximal ad(g)-diagonalizable subalgebra of g, it is called the standard Cartan subalgebra of g. Let ∆ = ∆(g, h) be the corresponding root system; then Π is a root basis of ∆ and ∆ = ∆ + ∪ ∆ -, where ∆ ± = ∆ ∩ Z ± Π is the set of positive (or negative) roots relative to the basis Π. For α ∈ ∆, let g α be the root space of g corresponding to the root α;

then g = h ⊕ ( ⊕ α∈∆ g α ).
The Weyl group W of (g, h) is generated by the fundamental reflections r i (i ∈ I) such that r i (h) = hα i , h αǐ for h ∈ h, it is a Coxeter group on {r i , i ∈ I} with length function w → l(w), w ∈ W . The Weyl group W acts on h * and ∆, we set ∆ re = W (Π) (the real roots) and ∆ im = ∆ \ ∆ re (the imaginary roots). Any root basis of ∆ is W -conjugate to Π or -Π.

A Borel subalgebra of g is a maximal completely solvable subalgebra. A parabolic subalgebra of g is a (proper) subalgebra containing a Borel subalgebra. The standard positive (or negative) Borel subalgebra is b ± := h ⊕ (⊕ α∈∆ ± g α ). A parabolic subalgebra p + (resp. p -) containing b + (resp. b -) is called positive (resp. negative) standard parabolic subalgebra of g; then there exists a subset J of I (called the type of p ± ) such that p ± = p ± (J) := ( ⊕ α∈∆J g α ) + b ± , where ∆ J = ∆ ∩ (⊕ j∈J Zα j ) (cf. [START_REF] Kac | On automorphisms of Kac-Moody algebras and groups[END_REF]).

In [START_REF] Peterson | Infinite flag varieties and conjugacy theorems[END_REF], D.H. Peterson and V.G. Kac construct a group G, which is the connected and simply connected complex algebraic group associated to g when g is of finite type, depending only on the derived Lie algebra g ′ and acting on g via the adjoint representation Ad : G → Aut(g). It is generated by the one-parameter subgroups U α = exp(g α ), α ∈ ∆ re , and Ad(U α ) = exp(adg α )). In the definitions of J. Tits [START_REF] Tits | Uniqueness and presentation of Kac-Moody groups over fields[END_REF] G is the group of complex points of G D where D is the datum associated to A and the Z-dual Λ of i∈I Zα ∨ i . The Cartan subalgebras of g are G-conjugate. If g is not of finite type, there are exactly two conjugate classes (under the adjoint action of G) of Borel subalgebras :

G.b + and G.b -. A Borel subalgebra b of g which is G-conjugate to b + (resp. b -)
is called positive (resp. negative). It follows that any parabolic subalgebra p of g is G-conjugate to a standard positive (or negative) parabolic subalgebra, in which case, we say that p is positive (or negative).

1.3. Standard Kac-Moody subalgebras and subgroups. Let J be a nonempty subset of I. Consider the generalized Cartan matrix A J = (a i,j ) i,j∈J .

Definition 1.1. The subset J is called of finite, affine or indefinite type if the corresponding generalized Cartan matrix A J is. We say also that J is connected, if the Dynkin subdiagram, with vertices indexed by J, is connected, or equivalently, the corresponding generalized Cartan submatrix A J is indecomposable. Proposition 1.2. Let Π J = {α j , j ∈ J} and ΠJ = {αǰ, j ∈ J}. Let h ′ J be the subspace of h generated by ΠJ , and h J = Π ⊥ J = {h ∈ h, α j , h = 0, ∀j ∈ J}. Let h ′′ J be a supplementary subspace of h ′ J + h J in h and let

h J = h ′ J ⊕ h ′′ J ,
then, we have : 1) (h J , Π J , ΠJ ) is a realization of the generalized Cartan matrix A J . Hence h ′′ J = {0}, h J = h ′ J when A J is regular (e.g. when J is of finite type).

2) The subalgebra g(J) of g, generated by h J and the e j , f j , j ∈ J, is the Kac-Moody Lie algebra associated to the realization (h J , Π J , ΠJ ) of A J .

3) The corresponding root system ∆(J) = ∆(g(J), h J ) can be identified with ∆ J := ∆ ∩ (⊕ j∈J Zα j ).

N.B. The derived algebra g ′ (J) of g(J) is generated by the e j , f j for j ∈ J; it does not depend of the choice of h ′′ J .

Proof.

1) Note that dim(h ′′ J ) = dim(h ′ J ∩ h J ) = corank(A J ).
In particular, dim(h J ) -|J| = corank(A J ). If α ∈ V ect(α j , j ∈ J), then α is entirely determined by its restriction to h J and hence Π J defines, by restriction, a free family in h * J . As ΠJ is free, assertion 1) holds. Assertions 2) and 3) are straightforward.

In the same way, the subgroup G J of G generated by U ±αj , j ∈ J, is equal to the Kac-Moody group associated to the generalized Cartan matrix A J : it is clearly a quotient; the equality is proven in [18, 5.15.2].

1.4. The invariant bilinear form. (See [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]). We recall that the generalized Cartan matrix A is supposed indecomposable and symmetrizable. There exists a nondegenerate ad(g)-invariant symmetric C-bilinear form (. , .) on g, which is entirely determined by its restriction to h, such that

(αǐ, h) = (αǐ, αǐ) 2 α i , h , i ∈ I, h ∈ h,
and we may thus assume that (1.2) (αǐ, αǐ) is a positive rational for all i.

The nondegenerate invariant bilinear form (. , .) induces an isomorphism ν :

h → h * such that α i = 2ν(αǐ) (αǐ, αǐ) and αǐ = 2ν -1 (α i ) (α i , α i ) for all i.
There exists a totally isotropic subspace h ′′ of h (relatively to (. , .)) which is in duality with the center c of g. In particular, h ′′ defines a supplementary subspace of h ′ in h. Note that any invariant symmetric bilinear form b on g satisfying b(αǐ, αǐ) > 0, ∀i ∈ I, is nondegenerate and b(αǐ, h) = b(αǐ,αǐ)

1.5. The Tits cone. (See [START_REF] Kac | Infinite dimensional Lie algebras[END_REF], chap. 3 and 5).

Let C := {h ∈ h R ; α i , h ≥ 0, ∀i ∈ I} be the fundamental chamber (relative to the root basis Π) and let X := w∈W w(C) be the Tits cone. We have the following description of the Tits cone:

(1) X = {h ∈ h R ; α, h < 0 only for a finite number of α ∈ ∆ + }.

(2) X = h R if and only if the generalized Cartan matrix A is of finite type.

(

) If A is of affine type, then X = {h ∈ h R ; δ, h > 0} ∪ Rν -1 (δ) 3 
, where δ is the lowest imaginary positive root of ∆ + . (4) If A is of indefinite type, then the closure of the Tits cone, for the metric 3) and ( 4) one obtains that if A is not of finite type then X = {h ∈ h R ; α, h ≥ 0, ∀α ∈ ∆ + im }. 1.6. Graded Kac-Moody Lie algebras. From now on we suppose that the Kac-Moody Lie algebra g is indecomposable and symmetrizable. Definition 1.4. Let Σ be a root system of Kac-Moody type. The Kac-Moody Lie algebra g is said to be finitely Σ-graded if : (i) g contains, as a subalgebra, a Kac-Moody algebra m whose root system relative to Cartan subalgebra a is equal to Σ.

topology on h R , is X = {h ∈ h R ; α, h ≥ 0, ∀α ∈ ∆ + im }. (5) If h ∈ X, then h lies in the interior • X of X if and only if the fixator W h of h, in the Weyl group W , is finite. Thus • X is the union of finite type facets of X. (6) If A is hyperbolic, then X ∪ (-X) = {h ∈ h R ; (h, h) ≤ 0} and the set of imaginary roots is ∆ im = {α ∈ Q \ {0}; (α, α) ≤ 0}, where Q = ZΠ is the root lattice. Remark 1.3. Combining (
(ii) g = α∈Σ∪{0} V α , with V α = {x ∈ g ; [a, x] = α, a x, ∀a ∈ a}. (iii) V α is finite dimensional for all α ∈ Σ ∪ {0}.
We say that m (as in (i) above) is a grading subalgebra, and (g, Σ, m) a gradation with finite multiplicities (or, to be short, a finite gradation).

Note that from (ii) the Cartan subalgebra a of m is ad(g)-diagonalizable, and we may assume that a is contained in the standard Cartan subalgebra h of g. Lemma 1.5. Let g be a Kac-Moody algebra finitely Σ-graded, with grading subalgebra m. If m itself is finitely Σ ′ -graded (for some root system Σ ′ of Kac-Moody type), then g is finitely Σ ′ -graded.

Proof. If m ′ is the grading subalgebra of m, we may suppose the Cartan subalgebras such that a ′ ⊂ a ⊂ h, with obvious notations. Conditions (i) and (ii) are clearly satisfied for g, m ′ and a ′ . Condition (iii) for m and Σ ′ tells that, for all

α ′ ∈ Σ ′ , the set {α ∈ Σ | α |a ′ = α ′ } is finite. But V α ′ = ⊕ α |a ′ =α ′ V α , so each V α ′ is finite dimensional if this is true for each V α .
1.7. Examples of gradations. 1) Let ∆ = ∆(g, h) the root system of g relative to h, then g is finitely ∆-graded : this is the trivial gradation of g by its own root system. 2) Let g R be an almost split real form of g (see [START_REF] Back-Valente | Formes presque déployées d'algèbres de Kac-Moody, Classification et racines relatives[END_REF]) and let t R be a maximal split toral subalgebra of g R . Suppose that the restricted root system ∆

′ = ∆(g R , t R ) is reduced of Kac-Moody type. In [[4], §9], N. Bardy constructed a split real Kac- Moody subalgebra l R of g R such that ∆ ′ = ∆(l R , t R ), then g is obviously finitely ∆ ′ -graded.
We get thus many examples coming from known tables for almost split real forms: see [START_REF] Back-Valente | Formes presque déployées d'algèbres de Kac-Moody, Classification et racines relatives[END_REF] in the affine case and [START_REF] Messaoud | Almost split real forms for hyperbolic Kac-Moody Lie algebras[END_REF] in the hyperbolic case.

3) When g R is an almost compact real form of g, the same constructions should lead to gradations by finite root systems, as in [START_REF] Benkart | Lie algebras graded by finite root systems and intersection matrix algebras[END_REF] e.g..

Gradations associated to C-admissible pairs.

We recall some definitions introduced by H. Rubenthaler ([19]) and J. Nervi ([15], [START_REF] Nervi | Affine Kac-Moody algebras graded by affine root systems[END_REF]). Let J be a subset of I of finite type. For k ∈ I \ J, we denote by I k the connected component, containing k, of the Dynkin subdiagram corresponding to J ∪ {k}, and let J k := I k \ {k}.

Suppose now that I k is of finite type for all k ∈ I \ J : that is always the case if g is of affine type and |I \ J| ≥ 2 or g is of hyperbolic type and |I \ J| ≥ 3. For k ∈ I \ J, let g(I k ) be the simple subalgebra generated by g ±αi , i ∈ I k , then

h I k = h ∩ g(I k ) = i∈I k Cαǐ is a Cartan subalgebra of g(I k ). Let H k be the unique element of h I k such that α i , H k = 2δ i,k , ∀i ∈ I k .
Definition 2.1. We preserve the notations and the assumptions introduced above.

1) Let k ∈ I \ J. (i) The pair (I k , J k ) is called admissible if there exist E k , F k ∈ g(I k ) such that (E k , H k , F k ) is an sl 2 -triple. (ii) The pair (I k , J k ) is called C-admissible if it is admissible and the simple Lie al- gebra g(I k ) is A 1 -graded by the root system of type A 1 associated to the sl 2 -triple (E k , H k , F k ). 2) the pair (I, J) is called C-admissible if the pairs (I k , J k ) are C-admissible for all k ∈ I \ J.
Schematically, any C-admissible pair (I, J) is represented by the Dynkin diagram, corresponding to A, on which the vertices indexed by J are denoted by white circles • and those of I \ J are denoted by black circles •.

It is known that, when (I k , J k ) is admissible, H k = i∈I k n i,k αǐ, where n i,k are positive integers (see [START_REF] Rubenthaler | Construction de certaines sous-algèbres remarquables dans les algèbres de Lie semi-simples[END_REF] or [ [START_REF] Nervi | Affine Kac-Moody algebras graded by affine root systems[END_REF]; Prop. 1.4.1.2]).

Remark 2.2. Note that this definition, for C-admissible pairs, is equivalent to that introduced by Rubenthaler and Nervi (see [START_REF] Rubenthaler | Construction de certaines sous-algèbres remarquables dans les algèbres de Lie semi-simples[END_REF], [START_REF] Nervi | Algèbres de Lie simples graduées par un système de racines et sous-algèbres C-admissibles[END_REF]) in terms of prehomogeneous spaces of parabolic type : if

(I k , J k ) is C-admissible, define for p ∈ Z, the subspace d k,p := {X ∈ g(I k ) ; [H k , X] = 2pX}; then (d k,0 , d k,1
) is an irreducible regular and commutative prehomogeneous space of parabolic type, and d k,p = {0} for |p| ≥ 2. Then we say that (I k , J k ) is an irreducible C-admissible pair. According to Rubenthaler and Nervi ([ [START_REF] Rubenthaler | Construction de certaines sous-algèbres remarquables dans les algèbres de Lie semi-simples[END_REF]; table1] or [ [START_REF] Nervi | Algèbres de Lie simples graduées par un système de racines et sous-algèbres C-admissibles[END_REF]; table 2] ) the irreducible C-admissible pair (I k , J k ) should be among the list in Table 1 below. Definition 2.3. Let J be a subset of I and let i, k ∈ I \ J. We say that i and k are J-connected relative to A if there exist j 0 , j 1 , ...., j p+1 ∈ I such that j 0 = i, j p+1 = k, j s ∈ J, ∀s = 1, 2, ..., p, and a js,js+1 = 0, ∀s = 0, 1, ..., p.

Remark 2.4. Note that the relation " to be J-connected " is symmetric on i and k. As the generalized Cartan matrix is assumed to be indecomposable, for any vertices i, k ∈ I \ J there exist i 0 , i 1 , ...., i p+1 ∈ I \ J such that i 0 = i, i p+1 = k and i s and i s+1 are J-connected for all s = 0, 1, ..., p.

Table 1

List of irreducible C-admissible pairs

A 2n-1 , n≥1 1 • 2 • .... • n • • .... • 2n-1 • B n , n≥3 1 • 2 • 3 • ...... • • > n • C n , n≥2 1 • 2 • 3 • ...... • • < n • D n,1 , n≥4 1 • 2 • .... • • • n n-1 • D 2n,2 , n≥2 1 • 2 • .... • • • 2n 2n-1 • E 7 1 • 3 • 4 • • 2 5 • 6 • 7 •
Let us assume from now on that (I, J) is a C-admissible pair and let

I ′ := I \ J. For k ∈ I ′ , let (E k , H k , F k ) be an sl 2 -triple associated to the irreducible C-admissible pair (I k , J k ). Lemma 2.5. Let k = l ∈ I ′ , then : 1) α l , H k ∈ Z -. 2) the following assertions are equivalent : i) k, l are J-connected ii) α l , H k is a negative integer iii) α k , H l is a negative integer Proof. 1) Recall that H k = i∈I k n i,k αǐ, where n i,k are positive integers. As l / ∈ I k , we have that α l , H k = i∈I k n i,k α l , αǐ ∈ Z -.
2) In view of Remark 2.4, it suffices to prove the equivalence between i) and ii). Since I k is the connected component of J ∪ {k} containing k, the assertion i) is equivalent to say that the vertex l is connected to I k , so there exists i k ∈ I k such that α l , α ǐk < 0 and hence α l , H k < 0.

Proposition 2.6. Let h J = Π ⊥ J = {h ∈ h, α j , h = 0, ∀j ∈ J}. For k ∈ I ′ , denote by α ′ k = α k /h J the restriction of α k to the subspace h J of h, and Π J = {α ′ k ; k ∈ I ′ }, Π J∨ = {H k ; k ∈ I ′ }. For k, l ∈ I ′ , put a ′ k,l = α l , H k and A J = (a ′ k,l ) k,l∈I ′ .
Then A J is an indecomposable and symmetrizable generalized Cartan matrix, (h J , Π J , Π J∨ ) is a realization of A J and corank(A J ) = corank(A).

Proof. The fact that a ′ k,k = 2 follows from the definition of

H k for k ∈ I ′ . If k = l ∈ I ′ , then by lemma 2.5, a ′ k,l ∈ Z -and a ′ k,l = 0 if and only if a ′ l,k = 0. Hence A J is a generalized Cartan matrix. As the matrix A is indecomposable, A J is also indecomposable (see Remark 2.4). Clearly Π J = {α ′ k ; k ∈ I ′ } is free in h J * the dual space of h J , Π J∨ = {H k ; k ∈ I ′ } is free in h J and by construction α l , H k = a ′ k,l , ∀k, l ∈ I ′ . We have to prove that dim(h J ) -|I ′ | = corank(A J ).
As J is of finite type, the restriction of the invariant bilinear form (. , .) to h J is nondegenerate and

h J is contained in h ′ = ⊕ i∈I Cαǐ. Therefore h = h J ⊥ ⊕ h J and h ′ = (h ′ ∩ h J ) ⊕ h J . It follows that dim(h ′ ∩ h J ) = |I ′ | = dim( ⊕ k∈I ′ CH k ). As the subspace ⊕ k∈I ′ CH k is contained in h ′ ∩ h J , we deduce that h ′ ∩ h J = ⊕ k∈I ′ CH k . Note that any supple- mentary subspace h J ′′ of h ′ ∩ h J in h J is also a supplementary of h ′ in h; hence, we have that corank(A) = dim(h J ′′ ) = dim(h J ) -|I ′ |. In addition, it is known that corank(A) = dim(c), where c = ∩ i∈I ker(α i ) is the center of g. Let c J = ∩ k∈I ′ ker(α ′ k ), then c J = c and corank(A J ) = dim(c J ) = corank(A) = dim(h J ) -|I ′ |. It remains to prove that A J is symmetrizable. For k ∈ I ′ , let R J k be the funda- mental reflection of h J such that R J k (h) = h -α ′ k , h H k , ∀h ∈ h J . Let W J be the Weyl group of A J generated by R J k , k ∈ I ′ . Let (. , .
) J be the restriction to h J of the invariant bilinear form (. , .) on h. Then (. , .) J is a nondegenerate symmetric bilinear form on h J which is W J -invariant (see the lemma hereafter). From the relation (R

J k (H k ), R J k (H l )) J = (H k , H l ) J one can deduce that : (H k , H l ) J = (H k , H k ) J 2 a ′ l,k , ∀k, l ∈ I ′ , but (H k , H k ) J > 0, ∀k ∈ I ′ ; hence t A J (and so A J ) is symmetrizable.
Lemma 2.7. For k ∈ I ′ := I \ J, let w J k be the longest element of the Weyl group W (I k ) generated by the fundamental reflections r i , i ∈ I k . Then w J k stabilizes h J and induces the fundamental reflection R J k of h J associated to H k . Proof. If one looks at the list above of the irreducible C-admissible pairs, one can see that w J k (α k ) = -α k and that -w J k permutes the α j , j ∈ J k . In addition,

w J k (α j ) = α j , ∀j ∈ J \ J k . Now it's clear that w J k stabilizes h J and hence it stabilizes h J = h ⊥ J . Note that -w J k (H k ) ∈ h I k and satisfies the same equations defining H k . Hence -w J k (H k ) = H k = -R J k (H k ). Clearly w J k and R J k fix both ker(α ′ k ) = ker(α k ) ∩ ( ∩ j∈J ker(α j )). As h J = ker(α ′ k ) ⊕ CH k , the reflection R J k and W J k coincide on h J .
Remark 2.8. Actually we can now rediscover the list of irreducible C-admissible pairs given in Remark 2.2. The black vertex k should be invariant under -w J k and the corresponding coefficient of the highest root of I k should be 1 (an easy consequence of the definition 2.1 1) (ii) ).

Example 2.9. Consider the hyperbolic generalized Cartan matrix A of type HE

8 = E 10 indexed by I = {-1, 0, 1, ..., 8}.

The following two choices for J define C-admissible pairs : 1) J = {2, 3, 4, 5}.

1 • 3 • 4 • •2 5 • 6 • 7 • 8 • 0 • • -1
The corresponding generalized Cartan matrix A J is hyperbolic of type HF

(1) 4

:

• 1 • 6 < • 7 • 8 • 0 • -1 2) J = {1, 2, 3, 4, 5, 6}. 1 • 3 • 4 • •2 5 • 6 • 7 • 8 • 0 • • -1
The corresponding generalized Cartan matrix A J is hyperbolic of type HG (1) 2 :

• 7 < • 8 • 0 • -1
Note that the first example corresponds to an almost split real form of the Kac-Moody Lie algebra g(A) and A J is the generalized Cartan matrix associated to the corresponding (reduced) restricted root system (see [START_REF] Messaoud | Almost split real forms for hyperbolic Kac-Moody Lie algebras[END_REF]) whereas the second example does not correspond to an almost split real form of g(A).

Lemma 2.10.

For k ∈ I ′ , set s(k) = CE k ⊕ CH k ⊕ CF k .
Then, the Kac-Moody algebra g is an integrable s(k)-module via the adjoint representation of s(k) on g.

Proof. Note that s(k) is isomorphic to sl 2 (C) with standard basis (E k , H k , F k ). It is clear that ad(H k ) is diagonalizable on g and E k = α e α ∈ d k,1 , where α runs over the set ∆ k,1 = {α ∈ ∆(I k ); α, H k = 2}, e α ∈ g α for α ∈ ∆(I k ), and

d k,1 := {X ∈ g(I k ) ; [H k , X] = 2X}. Since ∆ k,1 ⊂ ∆ re , ad(e α ) is locally nilpotent for α ∈ ∆ k,1 . As d k,1 is commutative (see Remark 2.
2) we deduce that ad(E k ) is locally nilpotent on g. The same argument shows that ad(F k ) is also locally nilpotent. Hence, the Kac-Moody algebra g is an integrable s(k)-module.

Proposition 2.11. Let g J be the subalgebra of g generated by h J and E k , F k , k ∈ I ′ . Then g J is the Kac-Moody Lie algebra associated to the realization (h J , Π J , Π J∨ ) of the generalized Cartan matrix A J . Proof. It is not difficult to check that the following relations hold in the Lie subalgebra

g J : [h J , h J ] = 0, [E k , F l ] = δ k,l H k (k, l ∈ I ′ ); [h, E k ] = α ′ k , h E k , [h, F k ] = -α ′ k , h F k (h ∈ h J , k ∈ I ′ ).
We have to prove the Serre's relations :

(adE k ) 1-a ′ k,l (E l ) = 0, (adF k ) 1-a ′ k,l (F l ) = 0 (k = l ∈ I ′ ). For k ∈ I ′ , let s(k) = CF k ⊕ CH k ⊕ CE k be the Lie subalgebra of g isomorphic to sl 2 (C). Let l = k ∈ I ′ ; note that [H k , F l ] = -a ′ k,l F l and [E k , F l ] = 0, which means
that F l is a primitive weight vector for s(k). As g is an integrable s(k)-module (see Lemma 2.10) the primitive weight vector F l is contained in a finite dimensional s(k)-submodule (see [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]; 3.6). The relation (adF k ) 1-a ′ k,l (F l ) = 0 follows from the representation theory of sl 2 (C) (see [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]; 3.2). By similar arguments we prove that (adE k ) 1-a ′ k,l (E l ) = 0. Now g J is a quotient of the Kac-Moody algebra associated to A J and (h J , Π J , Π J∨ ). By [11, 1.7] it is equal to it.

Definition 2.12. The Kac-Moody Lie algebra g J is called the C-admissible algebra associated to the C-admissible pair (I, J).

Proposition 2.13. The Kac-Moody algebra g is an integrable g J -module with finite multiplicities.

Proof. The g J -module g is clearly ad(h J )-diagonalizable and ad(E k ), ad(F k ) are locally nilpotent on g for k ∈ I ′ (see Lemma 2.10). Hence, g is an integrable g J -module. For α ∈ ∆, let α ′ = α |h J be the restriction of α to h J . Set ∆ ′ = {α ′ ; α ∈ ∆}\{0}. Then the set of weights, for the g J -module g, is exactly ∆ ′ ∪{0}. Note that for α ∈ ∆, α ′ = 0 if and only if α ∈ ∆(J). In particular, the weight space

V 0 = h ⊕ ( ⊕ α∈∆(J) g α ) corresponding to the null weight is finite dimensional. Let α = i∈I n i α i ∈ ∆ such that α ′ = 0. We will see that the corresponding weight space V α ′ is finite dimensional. Note that V α ′ = ⊕ β ′ =α ′ g β . Let β = i∈I m i α i ∈ ∆ such that β ′ = α ′ = k∈I ′ n k α ′ k , then m k = n k , ∀k ∈ I ′ , since Π J = {α ′ k , k ∈ I ′ }
is free in (h J ) * . In particular, β and α are of the same sign, and we may assume α ∈ ∆ + . Let ht J (β) = j∈J m j be the height of β relative to J, and let W J be the finite subgroup of W generated by r j , j ∈ J. Since W J fixes pointwise h J , we deduce that γ ′ = β ′ , ∀γ ∈ W J β, and so we may assume that ht J (β) is minimal among the roots in W J β. From the inequality ht J (β) ≤ ht J (r j (β)), ∀j ∈ J, we get β, αǰ ≤ 0, ∀j ∈ J. Let ρJ be the half sum of positive coroots of ∆(J). It is known that

α j , ρJ = 1, ∀j ∈ J. It follows that 0 ≥ β, ρJ = j∈J m j + k∈I ′ n k α k , ρJ , so finally, we obtain : ht J (β) ≤ k∈I ′
-n k α k , ρǰ . Hence, there is just a finite number of possibilities for β, and then α ′ is of finite multiplicity.

Theorem 2.14. Let ∆ J be the root system of the pair (g J , h J ), then the Kac-Moody Lie algebra g is finitely ∆ J -graded, with grading subalgebra g J .

Proof. Let ∆ ′ = {α ′ , α ∈ ∆} \ {0} be the set of nonnull weights of the g J -module g relative to h J . Let ∆ ′ + = {α ′ ∈ ∆ ′ , α ∈ ∆ + } and ∆ J + the set of positive roots of ∆ J relative to the root basis Π J . We have to prove that ∆ ′ = ∆ J or equivalently ∆ ′ + = ∆ J + . Let Q J = ZΠ J be the root lattice of ∆ J and Q J + = Z + Π J . It is known that the positive root system ∆ J + is uniquely defined by the following properties (see [START_REF] Kac | Infinite dimensional Lie algebras[END_REF], Ex. 5.4) :

(i) Π J ⊂ ∆ J + ⊂ Q J + , 2α ′ i / ∈ ∆ J + , ∀i ∈ I ′ ; (ii) if α ′ ∈ ∆ J + , α ′ = α ′ i , then the set {α ′ + kα ′ i ; k ∈ Z} ∩ ∆ J + is a string {α ′ -pα ′ i , ...., α ′ + qα ′ i }
, where p, q ∈ Z + and pq = α ′ , H i ; (iii) if α ′ ∈ ∆ J + , then supp(α ′ ) is connected. We will see that ∆ ′ + satisfies these three properties and hence ∆ ′

+ = ∆ J + . Clearly Π J ⊂ ∆ ′ + ⊂ Q J + . For α ∈ ∆ and k ∈ I ′ , the condition α ′ ∈ Nα k implies α ∈ ∆(I k ) + . As (I k , J k ) is C-admissible for k ∈ I ′ ,
the highest root of ∆(I k ) + has coefficient 1 on the root α k (cf. Remark 2.8). It follows that 2α ′ k / ∈ ∆ ′ + and (i) is satisfied. By Proposition 2.13, g is an integrable g J -module with finite multiplicities. Hence, the propriety (ii) follows from [ [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]; prop.3.6]. Let α ∈ ∆ + , then supp(α) is connected and supp(α ′ ) ⊂ supp(α). Let k, l ∈ supp(α ′ ); if k, l are J-connected in supp(α) relative to the generalized Cartan matrix A (cf. 2.3), then by lemma 2.5, k, l are linked in I ′ relative to the generalized Cartan matrix A J . Hence, the connectedness of supp(α ′ ), relative to A J , follows from that of supp(α) relative to A (see Remark 2.4) and (iii) is satisfied.

Remark 2.15. Note that the definition of C-admissible pair can be extended to decomposable Kac-Moody Lie algebras : thus if I 1 , I 2 , ...., I m are the connected components of I and J k = J ∩ I k , k = 1, 2, ...., m, then (I, J) is C-admissible if and only if (I k , J k ) is for all k = 1, 2, ...., m. In particular, the corresponding

C-admissible algebra is g J = m ⊕ k=1 g(I k ) J k , where g(I k ) J k is the C-admissible subalgebra of g(I k ) corresponding to (I k , J k ), k = 1, 2, ...., m.

General gradations.

Let m be an indecomposable Kac-Moody subalgebra of g and let a be a Cartan subalgebra of m. Put Σ = ∆(m, a) the corresponding root system. We assume that a ⊂ h and that g is finitely Σ-graded with m as grading subalgebra. Thus g = γ∈Σ∪{0} V γ , with V γ = {x ∈ g ; [a, x] = γ, a x, ∀a ∈ a} is finite dimensional for all γ ∈ Σ ∪ {0}. For α ∈ ∆, denote by ρ a (α) the restriction of α to a. As g is Σ-graded, one has ρ a (∆ ∪ {0}) = Σ ∪ {0}. Lemma 3.1. 1) Let c be the center of g and denote by c a the center of m. Then c a = c ∩ a. In particular, if g is perfect, then the grading subalgebra m is also perfect. 2) Suppose that

∆ im = ∅, then ρ a (∆ im ) ⊂ Σ im . Proof. 1) It is clear that c ∩ a ⊂ c a . Since g is Σ-graded, we deduce that c a is contained in the center c of g, hence c a ⊂ c ∩ a. If g is perfect, then g = g ′ , h = h ′ , c = {0}; so c a = {0}, a = a ′ and m = m ′ . 2) If α ∈ ∆ im , then Nα ⊂ ∆. Since V 0 is finite dimensional, ρ a (α) = 0 and Nρ a (α) ⊂ Σ, hence ρ a (α) ∈ Σ im .
In the following, we will show that the Kac-Moody Lie algebra g and the grading subalgebra m are of the same type.

Lemma 3.2. The Kac-Moody Lie algebra g is of indefinite type if and only if ∆ im generates the dual space (h/c) * of h/c. Proof. Note that the root basis Π = {α i , i ∈ I} induces a basis of the vector space (h/c) * . In particular, dim(h/c) * ≥ 2 when ∆ im is nonempty. Suppose now that g is of indefinite type. Let α ∈ ∆ sim + be a positive strictly imaginary root satisfying α, αǐ < 0, ∀i ∈ I; then, r i (α) = αα, αǐ α i ∈ ∆ im + for all i ∈ I. In particular, the vector subspace ∆ im spanned by ∆ im contains Π and hence is equal to (h/c) * . Conversely, if ∆ im generates (h/c) * , then ∆ im is nonempty and contains at least two linearly independent imaginary roots; hence ∆ can not be of finite or affine type.

Proposition 3.3.

1) The Kac-Moody Lie Algebra g and the grading subalgebra m are of the same type.

2) Suppose g of indefinite type and Lorentzian, then m is also Lorentzian.

Proof. 1) If g is of finite type, then ∆ is finite and hence Σ = ρ a (∆) \ {0} is finite. If g is is affine, let δ be the lowest positive imaginary root. One can choose a root basis Π a = {γ i , i ∈ Ī} of Σ so that δ := ρ a (δ) is a positive imaginary root. Note that a ′ := a ∩ m ′ ⊂ h ′ ; in particular δ(a ′ ) = {0} and δ, γǐ = 0, ∀i ∈ Ī. It follows that m is is affine (see [ [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]; Prop. 4.3]). Suppose now that g is is of indefinite type. Thanks to Lemma 3.2, it suffices to prove that Σ im generates (a/c a ) * , where c a = c ∩ a is the center of m. The natural homomorphism of vector spaces π : a → h/c induces a monomorphism π : a/c a → h/c. By duality, the homomorphism π * : (h/c) * → (a/c a ) * is surjective and π * (∆ im ) ⊂ Σ im generates (a/c a ) * . 2) Suppose that g is Lorentzian and let (. , .) be an invariant nondegenerate bilinear form on g. Then, the restriction of (. , .) to h R has signature (+ + ....+, -) and any maximal totally isotropic subspace of h R relatively to (. , .) is one dimensional. Let a R := a ∩ h R and let (. , .) a be the restriction of (. , .) to m. As m is of indefinite type, dim (a) ≥ 2 and the restriction of (. , .) a to a R is nonnull. It follows that the orthogonal subspace m ⊥ of m relatively to (. , .) a is a proper ideal of m. Since m is perfect (because g is) we deduce that m ⊥ = {0} (cf. [11, 1.7]) and the invariant bilinear form (. , .) a is nondegenerate. It follows that m is symmetrizable and the restriction of (. , .) a to a is nondegenerate. As m is of indefinite type, the restriction of (. , .) a to a R can not be positive definite. Hence, the bilinear form (. , .) a has signature (+ + ....+, -) on a R and then the grading subalgebra m is Lorentzian. Definition 3.4. Let Π a be a root basis of Σ and let Σ + be the corresponding set of positive roots. The root basis is said to be adapted to the root basis Π of ∆ if ρ a (∆ + ) ⊂ Σ + ∪ {0}.

We will see that adapted root bases always exist. (ii) The imaginary roots α and β are said to be linkable if there exists a finite family of imaginary roots (β i ) 0≤i≤n+1 such that β 0 = α, β n+1 = β and β i and β i+1 are linked for all i = 0, 1, ...., n. Proposition 3.6. ([3]; Prop. 5.2.7) Suppose that ∆ im = ∅. To be linkable is an equivalence relation on ∆ im and, if A is indecomposable, there exist exactly two equivalence classes : ∆ im -and ∆ im + .

Lemma 3.7. Suppose that ∆ im = ∅, then there exists a root basis of Σ such that ρ a (∆ im + ) ⊂ Σ im + . Proof. Let α, β ∈ ∆ im + , then, by Proposition 3.6, α and β are linkable and so are ρ a (α) and ρ a (β). Since Σ is assumed to be indecomposable, ρ a (α) and ρ a (β) are of the same sign. One can choose a root basis of Σ such that ρ a (α) and ρ a (β) are positive, and then we have ρ a (∆ im + ) ⊂ Σ im + .

Corollary 3.8. Let Π a be a root basis of Σ such that ρ a (∆ im + ) ⊂ Σ im + and let X a be the corresponding positive Tits cone. Then we have Xa ⊂ X ∩ a.

Proof. As ∆ im = ∅, one has X = {h ∈ h R ; α, h ≥ 0, ∀α ∈ ∆ im + } (see Remark 1.
3). The corollary follows from Lemma 3.7. Lemma 3.9. Suppose that ∆ im = ∅. Let p ∈ X such that α, p ∈ Z, ∀α ∈ ∆, and

β, p > 0, ∀β ∈ ∆ im + . Then p ∈ • X.
Proof.

The result is clear when ∆ is of affine type since

• X= • X= {h ∈ h R ; δ, h > 0}.
Suppose now that ∆ is of indefinite type. If one looks to the proof of Proposition 5.8.c) in [START_REF] Kac | Infinite dimensional Lie algebras[END_REF], one can show that an element p ∈ X satisfying the conditions of the lemma lies in X. As ∆ im + is W -invariant, we may assume that p lies in the fundamental chamber C. Hence there exists a subset J of I such that {α ∈ ∆; α, p = 0} = ∆ J = ∆ ∩ j∈J Zα j . Since ∆ J ∩ ∆ im = ∅, the root subsystem ∆ J is of finite type and p lies in the finite type facet of type J. Theorem 3.10. There exists a root basis Π a of Σ which is adapted to the root basis Π of ∆. Moreover, there exists a finite type subset J of I such that ∆ J = {α ∈ ∆; ρ a (α) = 0}.

N.B. This is part 1) of Theorem 2.

Proof. Let Π a = {γ i , i ∈ Ī} be a root basis of Σ such that ρ a (∆ im + ) ⊂ Σ im + , where Ī is just a set indexing the basis elements. Let p ∈ a such that γ i , p = 1, ∀i ∈ Ī and let P = {α ∈ ∆; α, p ≥ 0}. If ∆ is finite, then P is clearly a parabolic subsystem of ∆ and the result is trivial. Suppose now that ∆ im = ∅; then p satisfies the conditions of the Lemma 3.9 and we may assume that p lies in the facet of type J for some subset J of finite type in I. In which case P = ∆ J ∪ ∆ + is the standard parabolic subsystem of finite type J. Note that, for γ ∈ Σ + , one has γ, p = ht a (γ) the height of γ with respect to Π a . It follows that {α ∈ ∆; ρ a (α) = 0} = ∆ J , in particular, ρ a (∆ + ) = ρ a (P ) ⊂ Σ + ∪ {0}. Hence, the root basis Π a is adapted to Π.

From now on, we fix a root basis Π a = {γ s , s ∈ Ī}, for the grading root system Σ, which is adapted to the root basis Π = {α i , i ∈ I} of ∆ (see Theorem 3.10). As before, let J := {j ∈ I ; ρ a (α j ) = 0} and I ′ := I \ J. For k ∈ I ′ , we denote, as above, by I k the connected component of J ∪ {k} containing k, and J k := J ∩ I k . Proposition 3.11. 1) Let s ∈ Ī, then there exists k s ∈ I ′ such that ρ a (α ks ) = γ s and any preimage

α ∈ ∆ of γ s is equal to α k modulo j∈J k Zα j for some k ∈ I ′ satisfying ρ a (α k ) = γ s . 2) Let k ∈ I ′ such that ρ a (α k ) is a real root of Σ. Then ρ a (α k ) ∈ Π a is a simple root.
Proof. This result was proved by J. Nervi for affine algebras (see [START_REF] Nervi | Affine Kac-Moody algebras graded by affine root systems[END_REF], Prop.2.3.10 and the proof of Prop. 2.3.12). The arguments used there are available for general Kac-Moody algebras.

We introduce the following notations :

I ′ re := {i ∈ I ′ ; ρ a (α i ) ∈ Π a } ; I ′ im := I ′ \ I ′ re , I re = ∪ k∈I ′ re I k ; J re = I re ∩ J = ∪ k∈I ′ re J k ; J • = J \ J re Γ s := {i ∈ I ′ ; ρ a (α i ) = γ s } , ∀s ∈ Ī.
Note that J • is not connected to I re . Remark 3.12. 1) In view of Proposition 3.11, assertion 2), one has

ρ a (α k ) ∈ Σ + im , ∀k ∈ I ′ im . 2) I = I re ∪ I ′ im ∪ J • is a disjoint union. 3) If I ′ im = ∅, then I = I re ∪ J • . Since I is connected (and I re is not connected to J • ) we deduce that J • = ∅, I = I re and I ′ re = I ′ = I \ J. Proposition 3.13. 1) Let k ∈ I ′ re , then I k is of finite type. 2) Let s ∈ Ī. If |Γ s | ≥ 2 and k = l ∈ Γ s , then I k ∪ I l is not connected: g(I k
) and g(I l ) commute and are orthogonal.

3) For all k ∈ I ′ re , (I k , J k ) is an irreducible C-admissible pair. 4) The derived subalgebra m ′ of the grading algebra m is contained in g ′ (I re ) (as defined in proposition 1.2).

Proof. 1) Suppose that there exists k ∈ I ′ re such that I k is not of finite type; then there exists an imaginary root β k whose support is the whole I k . Hence, there exists a positive integer m k ∈ N such that ρ a (β k ) = m k ρ(α k ) is an imaginary root of Σ. It follows that ρ a (α k ) is an imaginary root and this contradicts the fact that k ∈ I ′ re . 2) Let s ∈ Ī such that |Γ s | ≥ 2 and let k = l ∈ Γ s . Since V nγs = {0} for all integer n ≥ 2, the same argument used in 1) shows that I k ∪ I l is not connected, and I k and I l are its two connected components. In particular, [g(I k ), g(I l )] = {0} and (g(I k ), g(I l )) = {0}.

3) Let k ∈ I ′ re and let s ∈ Ī such that ρ a (α k ) = γ s . Let ( Xs , Hs = γš, Ȳs ) be an sl 2 -triple in m corresponding to the simple root γ s . Let V γs be the weight space of g corresponding to γ s . In view of Proposition 3.11, assertion 1), one has :

(3.1) V γs = ⊕ l∈Γs V γs ∩ g(I l ).
Hence, one can write :

(3.2) Xs = l∈Γs E l ; Ȳs = l∈Γs F l ,
with E l ∈ V γs ∩ g(I l ) and F l ∈ V -γs ∩ g(I l ). It follows from assertion 1) that

(3.3) Hs = γš = [ Xs , Ȳs ] = l∈Γs [E l , F l ] = l∈Γs H l ,
where

H l := [E l , F l ] ∈ h I l , ∀l ∈ Γ s . Then one has, for k ∈ Γ s , 2 = γ s , γš = α k , γš = l∈Γs α k , H l = α k , H k , and for j ∈ J k , 0 = α j , γš = l∈Γs α j , H l = α j , H k .
In particular, H k is the unique semi-simple element of h I k satisfying :

(3.4) α i , H k = 2δ i,k , ∀i ∈ I k .
Hence, (E k , H k , F k ) is an sl 2 -triple in the simple Lie algebra g(I k ) and since V 2γs = {0}, (I k , J k ) is an irreducible C-admissible pair for all k ∈ Γ s . The assertion 4) follows from the relation (3.2).

Corollary 3.14. The pair (I re , J re ) is C-admissible. If I ′ im = ∅, then I re = I, J re = J and g is finitely ∆ J -graded, with grading subalgebra g J . N.B. We have got part 2) of Theorem 2.

Proof. The first assertion is a consequence of Proposition 3.13. By remark 3.12, when I ′ im = ∅, we have I = I re ; hence, by Theorem 2.14, g is finitely ∆ J -graded.

Definition 3.15. If I ′ im = ∅, then (I, J) is called a generalized C-admissible pair. If I ′ im = J = ∅, the Kac-Moody algebra g is said to be maximally finitely Σ-graded. Corollary 3.16. The grading subalgebra m of g is symmetrizable and the restriction to m of the invariant bilinear form of g is nondegenerate.

Proof. Let (. , .) a be the restriction to m of the invariant bilinear form (. , .) of g. Recall from the proof of Proposition 3.13 that γš = k∈Γs H k , ∀s ∈ Ī. In particular (γš, γš) a = k∈Γs (H k , H k ) > 0. It follows that (. , .) a is a nondegenerate invariant bilinear form on m (see §1.4) and that m is symmetrizable.

Corollary 3.17. Let h J be the orthogonal of h J in h.

For k ∈ I ′ im , write ρ a (α k ) = s∈ Ī n s,k γ s .
For s ∈ Ī, choose l s a representative element of Γ s . Then a/c a can be viewed as the subspace of h J /c defined by the following relations :

α k , h = α ls , h , ∀k ∈ Γ s , ∀s ∈ Ī α k , h = s∈ Ī n s,k α ls , h , ∀k ∈ I ′ im .
Proof. The subspace of h J /c defined by the above relations has dimension | Ī| and contains a/c a and hence it is equal to a/c a . Proposition 3.18. Let (. , .) a be the restriction to m of the invariant bilinear form (. , .) of g. 1) Let a ′ = a ∩ m ′ and let a ′′ be a supplementary subspace of a ′ in a which is totally isotropic relatively to (. , .) a . Then a ′′ ∩ h ′ = {0}. 2) Let A Ire be the submatrix of A indexed by I re . Then there exists a subspace h Ire of h containing a such that (h Ire , Π Ire , Π Ǐ re ) is a realization of A Ire . In particular, the Kac-Moody subalgebra g(I re ) associated to this realization (in 1.2) contains the grading subalgebra m.

3) The Kac-Moody algebra g(I re ) is finitely ∆(I re ) Jre -graded and its grading subalgebra is the subalgebra g(I re ) Jre associated to the C-admissible pair (I re , J re ) as in Proposition 2.11. 4) The Kac-Moody algebra g(I re ) Jre contains m.

Proof. 1) Recall that the center c a of m is contained in the center c of g. Since h ′ = c ⊥ and c a is in duality with a ′′ relatively to (. , .) a , we deduce that a ′′ ∩ h ′ = {0}.

2) From the proofs of 3.16 and 3.13 we get γ Proof. The result is trivial if g is of finite type. Suppose I ′ im = ∅ for one of the other cases. If g is affine, then I re is of finite type and by Lemma 3.18 , m is contained in the finite dimensional semi-simple Lie algebra g(I re ). This contradicts the fact that m is, as g, of affine type (see Proposition 3.3). If g is hyperbolic, then it is Lorentzian and perfect (cf. section 1.1), and by Lemma 3.19, g(I re ) is a finitely Σ-graded subalgebra of g. As I re is assumed to be a proper subset of I, g(I re ) is of finite or affine type. This contradicts Proposition 3.3, since m should be Lorentzian (cf. 3.3). Hence, I ′ im = ∅ in the two last cases. Proposition 3.21. If g is of hyperbolic type, then the grading subalgebra m is also of hyperbolic type.

∨ s = k∈Γs H k ∈ k∈Γs h I k = h ′ Ire . So c a ⊂ a ′ ⊂ h ′ Ire ⊂ h ′ . It follows that (h ′ Ire + h Ire ) is contained in c ⊥ a the orthogonal subspace of c a in h. Since a ′′ ∩ c ⊥ a = {0},
Proof. Recall that in this case, I re = I (see Proposition 3.20 and Corollary 3.14). Let Ī1 be a proper subset of Ī and suppose that Ī1 is connected. Let I 1 = ∪ s∈ Ī1 ( ∪ k∈Γs I k ). Then, I 1 is a proper subset of I. We may assume that the subalgebra m( Ī1 ) of m is contained in g(I 1 ). Let Σ 1 := Σ( Ī1 ) be the root system of m( Ī1 ). Then, it is not difficult to check that g(I 1 ) is Σ 1 -graded. Since g(I 1 ) is of finite or affine type, we deduce, by Proposition 3.3, that m( Ī1 ) is of finite or affine type. Hence, m is hyperbolic. Proposition 3.22. If I ′ im = ∅, then g(I re ) = g and the C-admissible subalgebra g J is maximally finitely Σ-graded, with grading subalgebra m.

Proof. This result is due to J. Nervi ([16]; Thm 2.5.10) for the affine case; it follows from the facts that V 0 ∩ g J = h J and m ⊂ g J (see Prop. 3.18). Corollary 3.23. If g is of finite, affine or hyperbolic type, the problem of classification of finite gradations of g comes down first to classify the C-admissible pairs (I, J) of g and then the maximal finite gradations of the corresponding admissible algebra g J .

Proof. This follows from Proposition 3.20, Proposition 3.22 and Lemma 1.5.

Maximal gradations

We assume now that g is maximally finitely Σ-graded. We keep the notations in section 3 but we have J = I ′ im = ∅. So I is a quotient of I, with quotient map ρ defined by ρ a (α k ) = γ ρ(k) . For s ∈ I, Γ s = ρ -1 ({s}). 

k (α ∨ l ) = α l (α ∨ k ) = 0 and (α k , α l ) = 0. 2) a ⊂ {h ∈ h | α k (h) = α l (h) whenever ρ(k) = ρ(l)}.
3) For good choices of the simple coroots and Chevalley generators

(α ∨ k , e k , f k ) k∈I in g and (γ ∨ s , X s , Y s ) s∈I in m, we have γ ∨ s = k∈Γs α ∨ k , X s = k∈Γs e k and Y s = k∈Γs f k . 4)
In particular, for s, t ∈ I, we have γ s (γ ∨ t ) = k∈Γt α i (α ∨ k ) for any i ∈ Γ s . Proof. Assertions 1) and 2) are proved in 3.13 and 3.17. For i ∈ Γ s , γ s = ρ a (α i ) is the restriction of α i to a; so 4) is a consequence of 3).

For 3) recall the proof of Proposition 3.13. The sl 2 -triple (X s , γ ∨ s , Y s ) may be written γ

∨ s = k∈Γs H k , X s = k∈Γs E k and Y s = k∈Γs F k where (E k , H k , F k ) is an sl 2 -triple in g(I k ), with α k (H k ) = 2. But now J = I ′ im = ∅, so I k = {k} and g(I k ) = Ce k ⊕ Cα ∨ k ⊕ Cf k , hence the result.
So the grading subalgebra m may be entirely described by the quotient map ρ.

We look now to the reciprocal construction.

So g is an indecomposable and symmetrizable Kac-Moody algebra associated to a generalized Cartan matrix A = (a i,j ) i,j∈I . We consider a quotient I of I with quotient map ρ : I → I and fibers Γ s = ρ -1 ({s}) for s ∈ I. We suppose that ρ is an admissible quotient i.e. that it satisfies the following two conditions:

(MG1) If k = l ∈ I and ρ(k) = ρ(l), then a k,l = α l (α ∨ k ) = 0. (MG2) If s = t ∈ I, then a s,t := i∈Γs a i,j = i∈Γs α j (α ∨ i ) is independent of the choice of j ∈ Γ t .
Proposition 4.2. The matrix A = (a s,t ) s,t∈I is an indecomposable generalized Cartan matrix.

Proof. Let s = t ∈ Ī and let j ∈ Γ t . By (MG1) one has āt,t = i∈Γt a i,j = a j,j = 2, and by (MG2) a s,t := i∈Γs a i,j ∈ Z -(∀j ∈ Γ t ). Moreover, a s,t = 0 if and only if a i,j = 0 (= a j,i ), ∀(i, j) ∈ Γ s × Γ t . It follows that a s,t = 0 if and only if a t,s = 0, and Ā is a generalized Cartan matrix. Since A is indecomposable, Ā is also indecomposable.

Let

h Γ = {h ∈ h | α k (h) = α l (h) whenever ρ(k) = ρ(l)}, γ ∨ s = k∈Γs α ∨ k and a ′ = ⊕ s∈I Cγ ∨ s ⊂ h Γ .
We may choose a subspace a ′′ in h Γ such that a ′′ ∩ a ′ = {0}, the restrictions α i =: γ ρ(i) to a = a ′ ⊕ a ′′ of the simple roots α i (corresponding to different ρ(i) ∈ I) are linearly independent and a ′′ is minimal for these two properties. 

| s ∈ I}, {γ ∨ s | s ∈ I}) is a (minimal) realization of A.
We note ∆ ρ = Σ ⊂ ⊕ s∈I Zγ s the root system associated to this realization. We define now X s = k∈Γs e k and Y s = k∈Γs f k . Let m = g ρ be the Lie subalgebra of g generated by a and the elements X s , Y s for s ∈ I. Proof. Clearly, the following relations hold in the Lie subalgebra g ρ :

[a, a] = 0, [X s , Y t ] = δ s,t γ ∨ s (s, t ∈ Ī); [a, X s ] = γ s , a X s , [a, Y s ] = -γ s , a Y s (a ∈ a, s ∈ Ī).
For the Serre's relations, one has :

1 -a s,t ≥ 1 -a i,j , ∀(i, j) ∈ Γ s × Γ t .
In particular, one can see, by induction on |Γ s |, that :

(adX s ) 1-as,t (e j ) = ( i∈Γs ade i ) 1-as,t (e j ) = 0, ∀j ∈ Γ t .

Hence

(adX s ) 1-as,t (X t ) = 0, ∀s, t ∈ I, and in the same way we obtain that :

(adY s ) 1-as,t (Y t ) = 0, ∀s, t ∈ I.

It follows that g ρ is a quotient of the Kac-Moody algebra g(A) associated to A and (a, {γ s | s ∈ I}, {γ ∨ s | s ∈ I}) in which the Cartan subalgebra a of g(A) is embedded. By [11, 1.7] g ρ is equal to g(A). It's clear that g is an integrable g ρ -module with finite dimensional weight spaces relative to the adjoint action of a, since for α = i∈I n i α i ∈ ∆ + , its restriction to a, is given by Proof. As in Theorem 2.14, we will see that ρ a (∆

+ ) ⊂ Q Γ + := ⊕ s∈ Ī Z + γ s satisfies, as Σ + = ∆ ρ + , the following conditions : (i) γ s ∈ ρ a (∆ + ) ⊂ Q Γ + , 2γ s / ∈ ρ a (∆ + ), ∀s ∈ Ī. (ii) if γ ∈ ρ a (∆ + ), γ = γ s , then the set {γ + kγ s ; k ∈ Z} ∩ ρ a (∆ + ) is a string {γ -pγ s , ...., γ + qγ s }, where p, q ∈ Z + and p -q = γ, γ ∨ s ; (iii) if γ ∈ ρ a (∆ + ), then supp(γ) is connected. Clearly {γ s | s ∈ I} ⊂ ρ a (∆ + ) ⊂ Q Γ + . For α ∈ ∆ and s ∈ Ī, the condition ρ a (α) ∈ Nγ s implies α ∈ ∆(Γ s ) + = {α i ; i ∈ Γ s } [see (4.1)]. It follows that 2γ s /
∈ ρ a (∆ + ) and (i) is satisfied. By Proposition 4.4, g is an integrable g ρ -module with finite multiplicities. Hence, the propriety (ii) follows from [ [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]; prop.3.6]. Let α ∈ ∆ + and let s, t ∈ supp(ρ a (α)). By (4.1) there exists (k, l) ∈ Γ s × Γ t such that k, l ∈ supp(α), which is connected. Hence there exist i 0 = k, i 1 , ...., i n+1 = l such that α ij ∈ supp(α), j = 0, 1, ...., n+1, and for j = 0, 1, ..., n, i j and i j+1 are linked relative to the generalized Cartan matrix A. In particular, ρ(i j ) = ρ(i j+1 ) ∈ supp(ρ a (α)) and they are linked relative to the generalized Cartan matrix A, j = 0, 1, ..., n, with ρ(i 0 ) = s and ρ(i n+1 ) = t. Hence the connectedness of supp(ρ a (α)) relative to A. It follows that ρ a (∆ + ) = ∆ ρ + and hence ρ a (∆) = ∆ ρ (see [START_REF] Kac | Infinite dimensional Lie algebras[END_REF], Ex. 5.4). In particular, g is finitely ∆ ρ -graded with J = ∅ = I ′ im .

Corollary 4.6. The restriction to m = g ρ of the invariant bilinear form (. , .) of g is nondegenerate. In particular, the generalized Cartan matrix A is symmetrizable of the same type as A.

Proof. The first part of the corollary follows form Proposition 4.5 and Corollary 3.16. The second part follows form Proposition 3.3.

Remark 4.7. The map ρ coincides with the map (also denoted ρ) defined at the beginning of this section using the maximal gradation of Proposition 4.5. Conversely Proposition 4.1 tells that, for a general maximal gradation, ρ is admissible and m = g ρ for good choices of the Chevalley generators. So we get a good correspondence between maximal gradations and admissible quotient maps.

An example

The following example shows that generalized C-admissible pairs do exist. It shows in particular that, for a generalized C-admissible pair (I, J), J • may be nonempty and I re may be non connected. Moreover, the Kac-Moody algebra may be not graded by the root system of g(I re ). Gradations revealing generalized C-admissible pairs will be studied in a forthcoming paper.

Example 5.1. Consider the Kac Moody algebra g corresponding to the indecomposable and symmetric generalized Cartan matrix A :

A =         2 -3 -1 0 0 0 -3 2 -1 0 0 0 -1 -1 2 -1 -1 -1 0 0 -1 2 0 0 0 0 -1 0 2 -3 0 0 -1 0 -3 2        
with the corresponding Dynkin diagram :

3 1 • 3 • 2 3 • • 4 5 • 3 • 6 3
Note that det(A) = 275 and the the symmetric submatrix of A indexed by {1, 2, 4, 5, 6} has signature (+ + +, --). Since det(A) > 0, the matrix A should have signature (+ + ++, --). Let Σ be the root system associated to the strictly hyperbolic generalized Cartan matrix 2 -3 -3 2 , the corresponding Dynkin diagram is the following :

H 3,3 1 • 3 2 • 3
We will see that g is finitely Σ-graded and describe the corresponding generalized C-admissible pair.

1) Let τ be the involutive diagram automorphism of g such that τ (1) = 5, τ (2) = 6 and τ fixes the other vertices. Let σ ′ n be the normal semi-involution of g corresponding to the split real form of g. Consider the quasi-split real form g 1 R associated to the semi-involution τ σ ′ n (see [START_REF] Back-Valente | Formes presque déployées d'algèbres de Kac-Moody, Classification et racines relatives[END_REF] or [START_REF] Messaoud | Almost split real forms for hyperbolic Kac-Moody Lie algebras[END_REF]). Then t R := h τ R is a maximal split toral subalgebra of g 1 R . The corresponding restricted root system ∆ ′ := ∆(g R , t R ) is reduced and the corresponding generalized Cartan matrix A ′ is given by :

A ′ =     2 -3 -2 0 -3 2 -2 0 -1 -1 2 -1 0 0 -1 2    
with the corresponding Dynkin diagram :

3 1 • < 3 • 2 < 3 • 4 •
Following N. Bardy [[4], §9], there exists a split real Kac-Moody subalgebra m 1 R of g 1 R containing t R such that ∆ ′ = ∆(m 1 R , t R ). It follows that g is finitely ∆ ′ -graded. 2) Let m 1 := m 1 R ⊗ C and t := t R ⊗ C. Denote by α ′ i := α i /t, i = 1, 2, 3, 4. Put α ′ 1 = α1 + α5, α ′ 2 = α2 + α6, α ′ 3 = α3 and α ′ 4 = α4. Let I 1 := {1, 2, 3, 4}, then (t, Π ′ = {α ′ i , i ∈ I 1 }, Π ′∨ = {α ′ ǐ, i ∈ I 1 }) is a realization of A ′ which is symmetrizable and Lorentzian.

Let m be the Kac-Moody subalgebra of m 1 corresponding to the submatrix Ā of A ′ indexed by {1, 2}. Thus Ā = 2 -3 -3 2 is strictly hyperbolic. Let a := only finitely many possibilities for n i , i = 1, 2, 3. The same argument as the one used in the proof of Proposition 2.13 shows also that there are only finitely many possibilities for n 4 .

3) Recall that m ⊂ m 1 ⊂ g. The fact that g is finitely ∆ ′ -graded with grading subalgebra m 1 and m 1 is finitely Σ-graded implies that g is finitely Σ-graded (cf. lemma 1.5). Let I = {1, 2, 3, 4, 5, 6}, then the root basis Π a of Σ is adapted to the root basis Π of ∆ and we have I re = {1, 2, 5, 6} (not connected), Γ 1 = {1, 5}, Γ 2 = {2, 6}, J = {4}, J re = ∅, I ′ im = {3} and J • = J = {4}. Note that, for this example, g(I re ), which is Σ-graded, is isomorphic to m × m. This gradation corresponds to that of the pseudo-complex real form of m × m (i.e. the complex Kac-Moody algebra m viewed as real Lie algebra) by its restricted reduced root system. Since the pair (I 3 , J 3 ) = ({3, 4}, {4}) is not admissible, it is not possible to bring back J • to the empty set i.e. to build a Kac-Moody algebra g J grading finitely g and maximally finitely Σ-graded.

Definition 3 . 5 .

 35 ([3]; 5.2.6) Suppose that ∆ im = ∅. Let α, β ∈ ∆ im . (i) The imaginary roots α and β are said to be linked if Nα + Nβ ⊂ ∆ or β ∈ Q + α.

Lemma 3 . 19 .

 319 Let l be a Kac-Moody subalgebra of g containing m. Then l is finitely Σ-graded. In particular, the Kac-Moody subalgebra g(I re ) or g(I re ) Jre is finitely Σ-graded. N.B. Proposition 3.18 and Lemma 3.19 finish the proof of Theorem 2.Proof. Recall that the Cartan subalgebra a of m is ad g -diagonalizable. Since l is ad(a)-invariant, one has l = γ∈Σ∪{0} V γ ∩ l. By assumption {0} = m γ ⊂ V γ ∩ l for all γ ∈ Σ; hence, we deduce that l is finitely Σ-graded. Proposition 3.20. If g is of finite, affine or hyperbolic type, then I ′ im = ∅ and (I, J) is a C-admissible pair.

Proposition 4. 1 . 1 )

 11 If k = l ∈ I and ρ(k) = ρ(l), then there is no link between k and l in the Dynkin diagram of A: α

Proposition 4 . 4 .

 44 The Lie subalgebra m = g ρ is the Kac-Moody algebra associated to the realization (a,{γ s | s ∈ I}, {γ ∨ s | s ∈ I}) of A.Moreover, g is an integrable g ρ -module with finite multiplicities.

Ī i∈Γs n i γ s Proposition 4 . 5 .

 45 The Kac-Moody algebra g is maximally finitely ∆ ρ -graded with grading subalgebra g ρ .

  one can choose a supplementary subspace h ′′ Ire of (h ′ Ire + h Ire ) containing a ′′ . Let h Ire = h ′ Ire ⊕ h ′′ Ire , then, by Proposition 1.2, (h Ire , Π Ire , Π Ǐ re ) is a realization of A Ire . 3) As in Corollary 3.14, assertion 3) is a simple consequence of Theorem 2.14. 4) The algebra a is in h Ire ∩ Π ⊥ J = (h Ire ) Jre . By the proof of Proposition 3.13, for s ∈ I, X s and Y s are linear combinations of the elements in {E k , F k | k ∈ Γ s } ⊂ g(I re ) Jre . Hence g(I re ) Jre contains all generators of m.

  Proposition 4.3. (a, {γ s | s ∈ I}, {γ ∨ s | s ∈ I}) is a realization of A. Proof. Let ℓ be the rank of A. Note that a contains a ′ = ⊕ s∈I Cγ ∨ s ; the family (γ s ) s∈ Ī is free in the dual space a * of a and satisfies γ t , γ ∨ s = ās,t , ∀s, t ∈ Ī. It follows that dim(a) ≥ 2| Ī|ℓ (see [[10]; Prop. 14.1] or [[11]; Exer. 1.3]). As a is minimal, we have dim(a) = 2| Ī|ℓ (see [[10]; Prop. 14.2] for minimal realization). Hence (a, {γ s

α i , h , ∀i ∈ I, ∀h ∈ h. It follows that the restriction of b to g ′ is proportional to that of (. , .). In particular, if A is non-singular, then the invariant bilinear form (. , .) satisfying the condition 1.2 is unique up to a positive rational factor.

Cα ′ 1 ⊕ Cα ′ 2 be the standard Cartan subalgebra of m and let Σ = ∆(m, a). For α ′ ∈ t * , denote by ρ 1 (α ′ ) the restriction of α ′ to a. Put γ s = ρ 1 (α ′ s ), γš = α ′ š, s = 1, 2. Then Π a = {γ 1 , γ 2 } is the standard root basis of Σ. One can see easily that ρ 1 (α ′ 4 ) = 0 and ρ 1 (α ′ 3 ) = 2(γ 1 + γ 2 ) is a strictly positive imaginary root of Σ. Now we will show that m 1 is finitely Σ-graded. Let (. , .) 1 be the normalized invariant bilinear form on m 1 such that short real roots have length 1 and long real roots have square length 2. Then there exists a positive rational q such that the restriction of (. , .) 1 to t has the matrix B 1 in the basis Π ′ ˇ, where :

By duality, the restriction of (. , .) 1 to t induces a nondegenerate symmetric bilinear form on t * (see [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]; §2.1) such that its matrix B ′ 1 in the basis Π ′ , is the following :

; hence ρ 1 is injective on Σ and Σ + ⊂ ρ 1 (∆ ′+ ). Let (. , .) a be the normalized invariant bilinear form on m such that all real roots have length 2. Then the restriction of (. , .) a to a has the matrix B a in the basis Πǎ = {γ1, γ2}, where :

Since Ā is symmetric, the nondegenerate symmetric bilinear form, on a * , induced by the restriction of (. , .) a to a, has the same matrix B a in the basis Π a . In particular, we have that :

As Σ is hyperbolic and ρ 1 (α ′ ) ∈ Nγ 1 + Nγ 2 , we deduce that ρ 1 (α ′ ) is a positive imaginary root of Σ (see [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]; Prop. 5.10). It follows that ρ 1 (∆ ′+ ) = Σ + ∪ {0}. To see that m 1 is finitely Σ-graded, it suffices to prove that, for γ
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