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We perform an extensive experimental spectroscopic study of the collective spin-wave dynamics
occurring in a pair of magnetic nano-disks coupled by the magneto-dipolar interaction. For this, we
take advantage of the stray field gradient produced by the magnetic tip of a ferromagnetic resonance
force microscope (f-MRFM) to continuously tune and detune the relative resonance frequencies
between two adjacent nano-objects. This reveals the anti-crossing and hybridization of the spin-wave
modes in the pair of disks. At the exact tuning, the measured frequency splitting between the binding
and anti-binding modes precisely corresponds to the strength of the dynamical dipolar coupling Ω.
This accurate f-MRFM determination of Ω is measured as a function of the separation between the
nano-disks. It agrees quantitatively with calculations of the expected dynamical magneto-dipolar
interaction in our sample.

Studies of the collective dynamics in magnetic nano-
objects coupled by the dipolar interaction has recently
attracted a lot of attention [1–8] due to its potential for
creating novel properties and functionalities for the infor-
mation technology. It affects the writing time of closely
packed storage media [9], the synchronization of spin
transfer nano-oscillators [10], and more broadly the field
of magnonics [11], which aims at using spin-waves (SW)
for information process [12]. Despite the generic na-
ture of the dynamic magneto-dipolar interaction, which
is present in all ferromagnetic resonance phenomena, its
direct measurement has been elusive because it is diffi-
cult to reach a regime where this coupling is dominant.
It requires that the strength of the dynamical coupling
Ω exceeds both the deviation range of eigen-frequencies
between coupled objects and the resonance linewidth.
Large Ω are usually obtained by fabricating nano-objects
having large magnetization and placed nearby. But the
constraint of fabricating two nano-objects, whose SW
modes both resonate within Ω, is difficult to meet. For
long wavelengths, the SW eigen-frequency is indeed very
sensitive to imperfections in the confinement geometry,
inherent to uncertainties of the nano-fabrication process.
Moreover, a direct determination of the coupling strength
between any two systems, as for instance a superconduct-
ing qubit and electronic spins [13], requires the ability to
tune and detune them at least on the Ω-range. So far, the
absence of a knob to do so with the individual frequen-
cies of nearby magnetic objects has prevented a reliable
measurement of the dynamical dipolar coupling.

In this paper we shall demonstrate that ferromagnetic
resonance force microscopy (f-MRFM) allows this quan-
titative measurement of Ω. We shall rely on the field
gradient of the magnetic tip as a mean to fully tune
and detune the resonance frequencies of two nano-disks
by continuously moving the tip laterally above the pair

of disks. One can find a position where the stray field
of the tip exactly compensates the deviation of inter-
nal field due to the patterning process. At this position,
the splitting between the eigen-frequencies of the binding
and anti-binding modes is exactly equal to the dynamical
dipolar coupling Ω. By studying Ω as a function of the
separation between the nano-disks, we shall demonstrate
that f-MRFM provides a reliable mean to measure the
strength of the dynamical coupling. It provides also a
reliable mean to measure mode hybridization and mode
linewidth.

The magnetic material used for this study is a t =
26.7 nm thick Fe-V (10% V) film grown by molecular
beam epitaxy on MgO(001) [14, 15]. This is a ferro-
magnetic alloy with a very high magnetization, 4πMs =
1.7 × 104 G, and a very low magnetic Gilbert damping,
α = 2 × 10−3. The film is patterned into disks by e-
beam lithography and ion milling techniques. The ge-
ometrical pattern (image in FIG.1a) consists in three
pairs of nearby disks having the same nominal diame-
ter 2R = 600 nm but different edge to edge separation:
s = 200 nm, 400 nm and 800 nm. Each set is separated
by 3 µm in order to avoid cross coupling. An isolated
disk of identical diameter is also patterned for reference
purpose. The sample is then placed in the room tem-
perature bore of an axial superconducting magnet. The
disks are perpendicularly magnetized (z-axis) by an ex-
ternal field of 1.72 Tesla [16]. This field is sufficient to
saturate all the disks. A linearly polarized (y-axis) mi-
crowave field hrf is produced by a broadband Au strip-line
antenna of width 5 µm deposited on top of a 50 nm thick
Si3O2 isolating layer, above the magnetic disks. The f-
MRFM experiment consists in detecting the mechanical
motion produced by the magnetization dynamics in the
Fe-V nano-disks of a Biolever cantilever with an Fe nano-
sphere of diameter 700 nm glued at its apex (see FIG.1a)
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FIG. 1. a) Schematic of the f-MRFM setup: an Fe sphere
glued at the apex of a soft cantilever is scanned laterally above
different pairs of Fe-V disks excited by a microwave field. b)
Density plot of the f-MRFM signal as a function of the dis-
placement x of the sphere above an isolated disk. The inset
is a SEM image of the 2R = 600 nm Fe-V disk (green) placed
below the microwave antenna (gold).

[17]. We will consider in the following that the stray
field of the tip Hsph reduces to the dipolar field created
by a punctual magnetic moment msph = 3 × 10−10 emu
placed at the center of the sphere. The role of the mag-
netic tip in f-MRFM is to create a field gradient tensor
Ĝ = ∇Hsph on the sample in order to spatially code the
resonance frequency and to provide a local detection [18].
These two features are illustrated by FIG.1b, which

shows the dependence of the f-MRFM signal measured
above the isolated disk as a function of the position of
the tip on the x-axis. It displays the behavior of the
lowest energy SW mode, where all spins are precessing
in phase at the Larmor frequency around the unit vector
ẑ. The cantilever is scanned at constant height h above
the sample surface. The position x = 0 corresponds to
placing the probe on the axis of the disk.

We first concentrate on the variation of the FMR res-
onance frequency as a function of the x-position of the
sphere. It displays a bell curve, whose shape is due to
the additional bias field produced by the tip

ω(x) = ωFMR + γ{Hsph,z(x)} , (1)

where the first term is the resonance frequency in the ab-
sence of the sphere and the second term is the gyromag-
netic ratio γ times the spatial average of the z-component
of the stray field of the sphere over the disk volume.
The curly bracket indicates that this average should be

weighted by the spatial profile of the lowest energy SW
mode [19]. The maximum shift of frequency occurs close
to x = 0, where the additional field from the f-MRFM
sphere is maximal [20]. The slope of the wings is propor-
tional to the lateral field gradient Gzx. For h ≫ 2R, it is
maximum at x ≃ 0.39 h, where h is the height between
the sample surface and the sphere center. At this loca-
tion, the gradient is about Gzx ≈ 2.7msph/h

4. Since it
is important to keep h as large as possible for stability
purpose, the optimal h is reached when γGzxR > Ω. For
our settings, this occurs at h = 1.8 µm, leading to slope
of about 0.3 GHz/µm. At this distance, the maximum
stray field of the sphere is about 140 G, a small variation
compared to the static perpendicular field of 1.72 T, en-
suring that no significant deformation of the SW modes
profile is induced [17].
We then turn to the variation of the amplitude of the f-

MRFM signal as a function of the position of the sphere
in FIG.1b. The force acting on the cantilever can be
calculated as the vertical force exerted by the tip on the
sample, Fz = Gzz∆Mz, where ∆Mz is the variation of
the sample magnetization induced by the FMR resonance
[17]. The gradient Gzz decays as the power 1/x5, for
large lateral displacement x. This decay ensures a local
detection. Experimentally, the signal decreases by one
order of magnitude when the probe is displaced by 1.2 µm
laterally.
We now discuss the same experiment above the pair

of two 600 nm disks separated by s = 200 nm. The
result is displayed on FIG.2a. Here x = 0 corresponds
to the middle of the pair. At each position x of the f-
MRFM probe, we can see two modes. The upper branch
has two frequency maxima at x1,2 = ∓400 nm, whose
separation corresponds to the center to center distance
between disk 1 and disk 2. The two maxima occur at
slightly different frequencies, presumably due to a small
difference in diameter between the two disks. When the
probe is placed in between, x1 < x < x2, the two levels
anti-cross, which is a characteristic behavior of a coupled
dynamics. Defining ω1,2 as the frequencies of the two
uncoupled disks, the collective frequencies follow:

ωA,B =
ω1 + ω2

2
±

√(
ω1 − ω2

2

)2

+

(
Ω

2

)2

(2)

with Ω being the dynamical coupling strength. The two
coupled eigen-frequencies ωA,B correspond respectively
to the anti-binding mode (A), where spins are precessing
out-of-phase between the two disks, and to the binding
mode (B), where spins are precessing in-phase [21]. In our
f-MRFM experiment, ω1,2 both depend on x, see Eq.1:
ω1,2(x) = ωFMR+γ{Hsph,z(x−x1,2)}. Using these depen-
dencies in Eq.2, one can obtain an analytical expression
for the frequency difference ωA(x) − ωB(x) observed in
FIG.2. At x = 0, when ω1 = ω2, the splitting ωA − ωB

exactly measures Ω. Using this analytical expression for
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FIG. 2. a) Density plot of the experimental f-MRFM spectra
as a function of the displacement x of the sphere above a
pair of 600 nm Fe-V disks separated by s = 200 nm. b)
Predicted behavior by micromagnetic simulations. The upper
mode (blue) corresponds to the anti-binding mode (A), while
the lower (red) shows the binding mode (B). Insets: simulated
precession profiles in each disk for modes (A) and (B) at the
anti-crossing. The dashed lines would be the individual modes
of each disks in the absence of dynamical coupling.

the spatial dependence of the splitting, we have fitted
Ω/2π = 50± 5 MHz. We emphasize that this splitting is
2.5 times larger than the linewidth, found to be 20 MHz.
Theoretically, the coupling Ω for the magneto-dipolar in-
teraction is defined by [21]

Ω2 = 4γ2h1,2h2,1 . (3)

hi,j represents the cross depolarization field produced by
the SW in the j-th disk on the i-th disk (i, j = 1, 2)
[22, 23]. It can be expressed as a function of the cross
depolarization tensor elements, which have an analytical
expression in the approximation of a uniform precession
[24]: hi,j = 2πMs({N

i,j
xx}+{N i,j

yy }). This formula reflects
that the magneto-dipolar interaction is anisotropic and
thus, it induces an elliptical precession in the two disks.
For the separation s = 200 nm, a numerical application
yields {N1,2

xx } ≈ −2{N1,2
yy } ≈ 0.0012, which corresponds

to a coupling field of about 10 G between the two disks,
or a coupling frequency Ω/2π = 56 MHz, in very good
agreement with the measured value.
Another striking feature in FIG.2a is the strong varia-

tion of the signal amplitude near the optimum coupling.
We have explicitly plotted in FIG.3a the amplitude of the
f-MRFM signal as a function of the lateral displacement
x of the probe, showing both the near extinction of the

anti-binding mode (A) and the strong enhancement of the
binding mode (B) near x = 0. The ratio of hybridization
in the two coupled disks follows the expression:

c1
c2

∣∣∣∣
A,B

=

(
(ω1 − ω2)∓

√
(ω1 − ω2)2 +Ω2

Ω

)∓1

(4)

Introducing the spatial dependence of ω1,2 described by
Eq.1 in Eq.4 we can calculate the total force Fz ∝
P
[
c21 Gzz(x− x1) + c22 Gzz(x− x2)

]
acting on the can-

tilever. The power efficiency P = |c1 + c2|
2h2

rf is propor-
tional to the overlap integral between the uniform rf field
and the collective SW mode (the vector sum of the trans-
verse magnetization in the two disks) [21]. Using Eq.4,
the dependence on x of the force produced by the binding
and anti-binding mode gives the continuous lines shown
in FIG.3a. The difference between the two curves comes
mainly from the selection rules defined in P . We find
that at the optimum coupling (when ω1 and ω2 cross),
the anti-binding mode (A) in Eq.4 has c1 = −c2 , i.e., a
precession with equal hybridization weight between the
two disks and out-of-phase. The overlap with the uni-
form rf field excitation is thus zero at x = 0, leading to
a vanishing amplitude. In contrast, the binding mode
(B) has c1 = +c2 at the anti-crossing, i.e., a precession
with equal hybridization weight too, but now in-phase
between the two disks. It represents and enhancement
of the absorbed power by a factor of 22 compared to the
amplitude in one disk.
We then study the effect the magneto-dipolar coupling

on the linewidth of the collective mode. We observe that
the linewidth does not change much with tuning and
the observed variation with x is below the 5% range.
At the optimal tuning x = 0, the linewidth measured
is ∆f = 22.3 ± 0.5 MHz (see FIG.3b) and it becomes
slightly larger ∆f = 23.1 ± 0.5 MHz at the maximum
detuning x = x1,2. For comparison we have displayed
in FIG.3c the linewidth observed above the single disk,
whose value ∆f = 21.4 ± 0.5 MHz. A small increase of
the ratio ∆f/f is indeed expected for the dynamically
coupled modes. This comes from the fact that this ratio
is equal to ∆f/f = α(Hx+Hy)/

√
HxHy, where α is the

Gilbert damping, and Hx and Hy represent the two stiff-
ness fields which characterize the torque exerted on the
magnetization when it is tipped along the x- or y-axis
[25]. The degree of hybridization as well as the nature
of the mode (A or B) change the values and signs of Hx

and Hy. For the binding mode, the magneto-dipolar cou-
pling generates an elliptical precession whose long axis
is along the two disks axis. The induced ellipticity E is
maximum at the anti-crossing (x = 0), with an amplitude
E = β−1

β+1
Ω
ωB

≈ 3%, with β = {N1,2
xx }/{N1,2

yy } ≈ −2. An
increase of ellipticity induces an increase of the linewdith,
a behavior which is consistent with the small additional
broadening measured in our experiment.
The analytical model used above to analyze the data
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FIG. 3. a) Variation of the amplitude of the binding (red)
and anti-binding (blue) resonances as a function of the lateral
position of the probe for the two disks separated by 200 nm.
The solid lines correspond to the behavior following from Eq.4
(see text). b) Linewidth of the binding mode for the same
pair at the tuning position (x = 0) c) Comparison with the
measurement of the linewidth above a single disk.

assumes a uniform magnetization throughout the mag-
netic body. To take more precisely into account the 3D
texture of the magnetization and the static deformation
induced by the probe, we have also calculated the eigen-
frequencies of the two lowest energy modes as a function
of x using SpinFlow3D, a finite element solver developed
by In Silicio [26]. The disks are discretized with a mesh
size of 10 nm using a Delaunay mesh construction. At
each position of the probe, we first calculate the equilib-
rium configuration in the disks. The Arnoldi algorithm
is then used to compute the lowest eigen-values of the
problem as well as the associated eigen-vectors. The re-
sult is represented in red and blue in FIG.2b for the two
lowest energy modes. The precession patterns associated
to each mode at the anti-crossing are shown in inset.
In this color representation, the hue indicates the phase
(or direction) of the oscillating magnetization, while the
brightness indicates its amplitude. The simulation re-
sults confirm very nicely the interpretation made above
in terms of amplitude and peak position.

We have then repeated the same procedure on the two
other pairs of disks, with larger edge to edge separation
s. The strength of the dynamical coupling measured by
f-MRFM is plotted as a function of s in FIG.4. The
main results is that, with our experimental parameters,
s needs to be less than the diameter of the disks in order
to have Ω larger than the linewidth ∆f . The data are
plotted along with the analytical prediction (continuous
line) and the simulations (dashed line with small dots).
We observe an excellent overall agreement between the
three sets of results, which all exhibit a similar decay
with s (not a simple polynomial law [27]). Still, the ex-

FIG. 4. Coupling strength as a function of the separation
s between two disks. The plot compares the experimental
findings to the predicted amplitude of the magneto-dipolar
interaction either analytically (continuous line) or by micro-
magnetic simulations (small dots, dashed line is a guide to
the eye).

perimental points are systematically slightly below the
theoretical expectation. This could be explained by the
fact that the disks are slightly smaller than their nomi-
nal value (e.g., due to some oxidation at their periphery),
or that the true separation between the disks is slightly
larger than expected, which we have represented on the
graph by the horizontal error bars. The agreement be-
tween the analytical model and the simulation is very
good until s = 0.1 µm. The discrepancy for very small
s is due to a significative change in the static magnetic
texture. These changes are not taken into account by the
analytical model. The effect of the static coupling is to
produce a static magnetization along the x-direction. As
shown by the simulations, this deformation enhances the
strength of the dynamical coupling.

In conclusion, we have shown that f-MRFM enables a
detailed investigation of the dynamical dipolar coupling
between two nearby magnetic objects, owing to the pos-
sibility of the technique to study both the tuned and de-
tuned regime on the same object. It has been applied to
study the collective SW dynamics in pairs nano-disks of
Fe-V, an ultra-low damping material. Several signatures
of the collective behavior have been experimentally ev-
idenced and quantitatively explained: the anti-crossing,
the hybridization of the modes and the effects on the
linewidth. Moreover, we have found that in order to
have a frequency splitting larger than the linewidth of the
modes, the edge to edge separation between our disks has
to be smaller than their diameter, due to the fast decay
of the magneto-dipolar interaction. We believe that our
method of local characterization of the dipolar coupling
will be very useful to the field of magnonics.
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