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The construction of cyclic codes can be generalized to so called module θ-cyclic codes using noncommutative polynomials. The product of the generator polynomial g of a self-dual module θ-cyclic code and its "skew reciprocal polynomial" is known to be a noncommutative polynomial of the form X n -a, reducing the problem of the computation of all such codes to a Gröbner basis problem where the unknowns are the coefficients of g. In previous work, with the exception of the length 2 s , over IF 4 a large number of self-dual codes were found. In this paper we show that a must be ±1 and that for n = 2 s the decomposition of X n ± 1 into a product of g and its "skew reciprocal polynomial" has some rigidity properties which explains the small number of codes found for those particular lengths over IF 4 . In order to overcome the complexity limitation resulting from the Gröbner basis computation we present, in the case θ of order two, an iterative construction of self-dual codes based on least common multiples and factorization of noncommutative polynomials. We use this approach to construct a [78, 39, 19] 4 self-dual code and a [52, 26, 17] 9 self-dual code which improve the best previously known minimal distances for these lengths.

Introduction

For a finite field IF q and θ an automorphism of IF q we consider the ring R = IF q [X; θ] = {a n X n + . . . + a 1 X + a 0 | a i ∈ IF q and n ∈ IN} where addition is defined to be the usual addition of polynomials and where multiplication is defined by the basic rule X • a = θ(a) X (a ∈ IF q ) and extended to all elements of R by associativity and distributivity. The noncommutative ring R is called a skew polynomial ring or Ore ring (cf. [START_REF] Ore | Theory of non-commutative polynomials[END_REF]) and its elements are skew polynomials. It is a left and right Euclidean ring whose left and right ideals are principal. Left and right gcd and lcm exist in R and can be computed using the left and right Euclidean algorithm. Over finite fields skew polynomial rings are also known as linearized polynomials (cf. [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF]). Following [START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF] we define module θ-codes using the skew polynomial ring R.

Definition 1 Let f ∈ R = IF q [X; θ] be of degree n. A module θ-code (or module skew code) C is a left R-submodule Rg/Rf ⊂ R/Rf in the basis 1, X, . . . , X n-1 where g is a right divisor of f in R. We denote this code C = (g) θ n . If there exists an a ∈ IF q \ {0} such that g divides X n -a on the right, then the code (g) θ n is θ-constacyclic. We will denote it (g) θ,a n . If a = 1, the code is θ-cyclic and if a = -1, it is θ-negacyclic.

The length of the code is n and its dimension is k = n -deg(g), we say that the code C is of type [n, k] q . If the minimal distance of the code is d, then we say that the code C is of type [n, k, d] q .

Since IF q [X; θ] is not a unique factorization ring, we obtain much more codes using the noncommutative approach than in the commutative case. Module θ-codes are a generalization of Gabidulin codes based on linearized polynomials and introduced in [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF].

Example 1 For IF 4 = IF 2 (a) where a 2 + a + 1 = 0 and θ the Frobenius automorphism α → α 2 the skew polynomial X 2 -1 admits three distinct decompositions as products of irreducible polynomials in IF 4 [X; θ] X 2 + 1 = (X + a 2 )(X + a) = (X + a)(X + a 2 ) = (X + 1)(X + 1) (1)

The polynomials X 4 -1, X 6 -1 and X 8 -1 admit respectively 15, 90 and 543 distinct decompositions as products of irreducible polynomials in IF 4 [X; θ].

There is a strong analogy to classical cyclic codes. For g = n-k i=0 g i X i , the generator matrix of a module θ-code (g) 

0 θ k-1 (g 0 ) . . . θ k-1 (g n-k-1 ) θ k-1 (g n-k )        (2) 
showing that distinct generator polynomials correspond to distinct generator matrices. For a θ-constacyclic code (g) θ,a n , where f = X n -a, we have (c 0 , . . . , c n-1 ) ∈ (g) θ,a n ⇒ (a θ(c n-1 ), θ(c 0 ), . . . , θ(c n-2 )) ∈ (g) θ,a n .

In previous work many self-dual module θ-codes with good minimum distances were obtained, sometimes even improving the previously best known minimal distances. However, like for cyclic codes ( [START_REF] Jia | On self-dual cyclic codes over finite fields[END_REF]), there is a phenomena for the module θ-codes whose lengths are a power of 2. For the lengths 4, 8, 16, 32 and 64 there are only three self-dual module θ-codes over IF 4 , while otherwise there is a large number of self-dual codes which increases with the length. The authors conjectured that for any s there are only three self-dual module θ-codes of length 2 s over IF 4 ([2, 4]). The aim of this paper is to use the factorization properties of skew polynomials to count and construct self-dual module θ-codes when θ is of order two. The material is organized as follows:

In section 2 we introduce self-dual skew codes and recall the basic properties of such codes. Such a code was known to be θ-constacyclic and we show that it must in fact be θ-cyclic or θ-negacyclic.

In section 3 we prove that for all s ∈ IN * , there are 2 2 s-1 +1 -1 θ-cyclic codes of length 2 s and dimension 2 s-1 over IF 4 but that for s > 1 among them only three are self-dual. This gives an answer to the above conjecture.

In section 4, we give an iterative construction of self-dual module θcodes by constructing generator polynomials of self-dual module θ-codes as least common left multiples (lclm) of skew polynomials of lower degree. An example of a [78, 39, 19] 4 self-dual code is given.

Self-dual skew codes over a finite field

The (Euclidean) dual of a linear code C of length n over IF q is defined with the Euclidean scalar product < x, y >= n i=1

x i y i in IF n q as C ⊥ = {x ∈ IF n q | ∀y ∈ C, < x, y >= 0}. A linear code C over IF q is Euclidean self-dual or self-dual if C = C ⊥ .
To characterize self-dual module θ-codes, we need to define the skew reciprocal polynomial of a skew polynomial (definition 3 of [START_REF] Boucher | A note on the dual codes of module skew codes[END_REF]) and also the left monic skew reciprocal polynomial.

Definition 2 The skew reciprocal polynomial

of h = m i=0 h i X i ∈ R of degree m is h * = m i=0 X m-i • h i = m i=0 θ i (h m-i ) X i . The left monic skew reciprocal polynomial of h is h := (1/θ m (h 0 )) • h * .
Since θ is an automorphism, the map * : R → R given by h → h * is a bijection. In particular for any g ∈ R there exists a unique h ∈ R such that g = h * and, if g is monic, such that g = h . In order to describe some properties of the skew reciprocal polynomial we will use the morphism of rings Θ : R → R given by n i=0 a i X i → n i=0 θ(a i )X i :

Lemma 1 ([4], Lemma 1) Let f and g be skew polynomials in R. Then 1. (f g) * = Θ k (g * )f * , where k = deg(f ). 2. (f * ) * = Θ n (f ), where n = deg(f ).
A module θ-code of length n = 2k which is self-dual is known to be θconstacyclic, i.e. its generator polynomial g of degree k divides on the right X n -a for some a in IF q \ {0}. Furthermore the dual of (g) θ,a n is generated by the polynomial h where h satisfies simultaneously Θ n (h) • g = X n -a and g • h = X n -θ -k (a) (Corollary 1 and Theorem 1 of [START_REF] Boucher | A note on the dual codes of module skew codes[END_REF]). The following proposition improves those previous results:

Proposition 1 A self-dual module θ-code is either θ-cyclic or θ-negacyclic. Proof: If n = 2k and C = (g) θ n is a self-dual module θ-code, then C is necessarily θ-constacyclic with a generator polynomial g dividing X n -a on the right in R with a ∈ IF q \ {0} ( [4], Corollary 1). Consider h ∈ R of degree k such that Θ n (h) • g = X n -a. From Lemma 1, we ob- tain Θ k (g * )Θ n (h * ) = 1 -θ n (a)X n . Applying Θ -n to this equation, gives Θ k-n (g * )h * = -a(X n -1 a ), or equivalently -1 a Θ k-n (g * )h * = X n -1 a . Therefore h = 1 θ k (h 0 ) h * divides X n -1
a on the right. Furthermore from ( [START_REF] Boucher | A note on the dual codes of module skew codes[END_REF], Theorem 1), the dual of C = (g) θ n is generated by h . Since C is a self-dual module θ-code, from the uniqueness of its monic generator polynomial, we have g = h . Therefore g divides on the right the polynomial (X n -a) -(X n -1 a ) = a -1 a of degree less than g which must be zero and we obtain a 2 = 1.

Combining this result with ([4], Theorem 1) we obtain:

Corollary 1 A module θ-code (g) θ 2k with g ∈ IF q [X; θ] of degree k is self- dual if and only if there exists h ∈ R such that g = h and h h = X 2k -ε with ε ∈ {-1, 1}.
(3)

3 Self-dual module θ-codes of length 2 s over IF 4 .

We keep the notation R = IF q [X; θ] and we denote (IF q ) θ the fixed field of θ. The properties of the ring R used in this paper can for example be found in [START_REF] Jacobson | The Theory of Rings[END_REF] Chapter 3 and [START_REF] Giesbrecht | Factoring in skew-polynomial rings over finite fields[END_REF][START_REF] Ore | Theory of non-commutative polynomials[END_REF]. The center Z(R) of R is the commutative polynomial subring (IF q ) θ [X |θ| ] in the variable Y = X |θ| where |θ| is the order of θ. We denote Z(R) also (IF q ) θ [Y ]. Following [START_REF] Jacobson | The Theory of Rings[END_REF] we call an element h ∈ R bounded if the left ideal it generates contains a two-sided ideal. In the ring R all elements are bounded. The monic generator f of the maximal twosided ideal contained in Rh is the bound of h. The generators of two-sided ideals in R are the elements of the form X m f where f ∈ Z(R). The two-sided ideals are closed under multiplication, a bound f is an irreducible bound if the two-sided ideal (f ) is maximal. A bound f with a nonzero constant term belongs to the center

Z(R) = (IF q ) θ [Y ] of R and is an irreducible bound if and only if f (Y ) ∈ (IF q ) θ [Y ] is an irreducible (commutative) polynomial ([9], Chap. 3, Th. 12). Theorem 1 ([12]; [9], Chap. 3, Th. 5) Let R = IF q [X; θ]. If h 1 h 2 • • • h n and g 1 g 2 • • • g m are two decompositions into irreducible factors of h ∈ R, then m = n
and there exists a permutation σ ∈ S n such that the R-modules R/h i R and R/g σ(i) R are isomorphic. In particular the degrees of the irreducible factors of h are unique up to permutation.

The noncommutative ring R is not a unique factorization ring and there can be more distinct monic factors than in the commutative case as shown in the example below. An important difference is that those monic factors can not always be permuted. 

Definition 3 ([9], Chap. 3) h ∈ R is lclm-decomposable 1 if
X 2 + 1 = (X + a 2 )(X + a) = (X + a)(X + a 2 ) = (X + 1)(X + 1). (4)
Since the polynomial X 2 + 1 is right divisible by both X + a and by X + 1, it must be the lclm of X + a and X + 1 which is unique up to nonzero constants. In IF 4 [X; θ] we have g 1 = (X + a)(X + 1) = X 2 + a 2 X + a = X 2 + aX + a = (X + 1)(X + a) = g 2 . One can verify that the polynomials g 1 and g 2 have no further irreducible right or left monic factor, showing that those two polynomials are not lclm of irreducible right factors and that in the nonunique factorization ring R some factorizations can still be unique in the sense that the unique irreducible monic factors can only be written in a unique order.

The next theorem gives a first characterization of those skew polynomials in R which do have a unique factorization into irreducible monic skew polynomials :

Theorem 2 ([9], Chap. 3, Th. 21 and 24) Let R = IF q [X; θ] and m ∈ IN * .

1. A monic polynomial in h ∈ R has a unique factorization into irreducible monic polynomials (in the sense that the unique irreducible monic factors can only be written in a unique order) if and only if h is lclm-indecomposable.

If h

1 , h 2 , . . . , h m are monic irreducible polynomials of R having the same irreducible bound f ∈ R, then the product h = h 1 h 2 • • • h m is an lclm-indecomposable monic polynomial in R if and only if the bound of h is f m .
Since the bound of a skew polynomial h ∈ R can be computed using linear algebra ([9, 3]), the above result is an efficient test to verify if h is lclm-indecomposable. In the following however, we search for a method to construct lclm-indecomposable polynomials directly.

Corollary 2 Consider the decomposition

h = h 1 • • • h m of h ∈ R into irre-
ducible monic polynomials having all the same irreducible bound f which is reducible in R.

1. If h is lclm-indecomposable, then f does not divide h.

If f does not divide h then no partial product h

i h i+1 . . . h i+j appearing in h = h 1 • • • h m can be equal to f .
Proof:

1. From ([9], Chap. 3, Th. 12) we obtain that the bound of a product divides the product of the bounds. If f divides h, then the quotient is a product of at most m-2 factors, because f is reducible and therefore the bound of h divides f times the bound of the quotient, so it divides f m-1 and the result follows from part (2) of Theorem 2.

If there exists

i, j such that f = h i h i+1 . . . h i+j then f h i+j+1 • • • h m is a right factor of h. As f is central, it commutes with h i+j+1 • • • h m
and therefore f divide h on the right.

Example 3

We keep the notations of the previous example. The bound of

h = (X + 1)(X + a)(X + 1)(X + a 2 )(X + 1)(X + a 2 )(X + 1)
is (X 2 + 1) 7 and therefore the previous theorem shows that this factorization of h in IF 4 [X; θ] is unique. Corollary 2 implies that the common central bound X 2 + 1 of the factors of h does not divide h and that two irreducible factors X + 1, X + a and X + a 2 of X 2 + 1 who appear together in a decomposition of X 2 + 1 (like in example 2) never appear next to each other in the decomposition of h.

Our goal is to prove the converse of the above corollary under the assumption that θ ∈ Aut(IF q ) is of order two, as is the case for IF 4 , IF 9 , IF 25 and IF 49 . When θ is of order two, then X 2n ± 1 belongs to the center Z(R) of R. In this case the bound of any factor of X 2n ± 1 also belongs to Z(R) ([9], Chap. 3, Th. 12). Therefore we will now focus on polynomials whose bound are central polynomial of the form f

∈ (IF q ) θ [X |θ| ].
Lemma 2 Consider R = IF q [X; θ] with θ of order two.

1. For g = m i=0 a i X i ∈ R and for g = m i=0 (-1) i θ i+1 (a i )X i we have gg ∈ Z(R). In particular the bound of g is of degree ≤ 2 deg(g).

2. An irreducible bound f ∈ Z(R) which is reducible in R, factors as the product of two irreducible polynomials in R of degree deg(f )/2.

Proof:

1. For l ∈ {0, . . . , 2m}, the l-th coefficient of G = gg is given by G l = i+j=l a i (-1) j θ l+1 (a j ). If l is even, then G l = i+j=l a i (-1) l-i θ(a j ) = i+j=l a i (-1) i θ(a j ).
As If the characteristic of IF q divides the order of θ, then a central bound

θ 2 = id, θ(G l ) = i+j=l θ(a i )(-1) i a j = G l . If l is odd, then G l = i+j=l a i (-1) j a j = i+j=l,j even,i odd a i a j - i+j=l,j odd,i even a i a j = 0. So G belongs to (IF q ) θ [X 2 ] = Z(R).
f ∈ (IF q ) θ [X |θ| ] is reducible in the commutative subring (IF q ) θ [X] ⊂ R
and therefore reducible in R. From Theorem 1 we get that the number of irreducible factors of f is independent of the factorization. Definition 4 Consider R = IF q [X; θ] and let f ∈ Z(R) be an irreducible bound which is reducible in R. To each right monic factor g of f corresponds a unique g ∈ R such that gg = f called the complement of g (for f ).

Example 4 Consider R = IF q [X; θ] with θ of order two. If the central bound f = X 2 + λ ∈ Z(R) is reducible in R, then its irreducible monic factors are of the form X + α ∈ R. The skew polynomial X + α ∈ R is the complement of X + α if and only if (X + α)(X + α) = X 2 + (α + θ(α))X + αα = X 2 + λ, which is the case if and only if α = λ/α and θ(α) = -λ/α (5) 
The following Proposition gives the converse of Corollary 2 when θ is of order two.

Proposition 2 Consider R = IF q [X; θ] with θ of order two, f ∈ Z(R) and irreducible bound that is reducible over R and h = h 1 • • • h m a product of irreducible monic polynomials bounded by f . The following assertions are equivalent (i) h is lclm-decomposable;

(ii) f divides h in R;

(iii) there exists i in {1, . . . , m -1} such that h i+1 is the complement of h i for f (a factor f = h i+1 h i must be present in the factorization).

Proof: Corollary 2 shows that even if θ has not order two we always have (iii) ⇒ (ii) ⇒ (i). In order to prove the implication (i) ⇒ (iii) we proceed by induction on m ≥ 2 (here we will use the fact that θ is of order two). If h = h 1 h 2 where h 1 and h 2 are irreducible polynomials with bound f , the bound of h divides the product of the bounds of h 1 and h 2 ([9], Chap. 3, Th. 12), so it divides f2 in the commutative ring (IF q ) θ [X]. Assume that h is lclm-decomposable, then according to part (2) of Theorem 2, the bound of

h is not f 2 . As f is irreducible in (IF q ) θ [X 2
] the bound of h is equal to f and h divides f on the right. Since θ is of order two, the irreducible bound f has degree 2 deg(h i ) (Lemma 2) so deg(h) = deg(f ) and h = f , which proves that the results holds for m = 2. Suppose now m > 2 and that the result holds for i < m. Let h = h 1 • • • h m be lclm-decomposable where h i are irreducible monic polynomials with bound f . Then, there exist

g 1 , . . . , g m ∈ R such that h = g 1 • • • g m where (g 1 , . . . , g m ) = (h 1 , . . . , h m ). If g m = h m then g 1 • • • g m-1 = h 1 • • • h m-1
is lclm-decomposable and one concludes using the induction hypothesis.

Otherwise lclm(g

m , h m ) = hm-1 h m divides on the right h = h 1 • • • h m = h1 • • • hm-1 h m . So h 1 • • • h m-1 = h1 • • • hm-1 . If there exist i such that hi = h i , then h 1 • • • h m-1 is
lclm-decomposable and one concludes using the induction hypothesis; otherwise h m-1 = hm-1 and lclm(g m , h m ) = h m-1 h m is lclm-decomposable; so using the same argument as for m = 2 above, we obtain h m-1 h m = f and the result follows.

Example 5 We keep the notations of the previous example. The above lemma shows that in IF 4 [X; θ] the polynomials (X + 1)(X + a)(X + 1)(X + a 2 )(X + 1)(X + a 2 )(X + 1), (X + a)(X + a), (X + a)(X + 1), (X + 1)(X + a), (X + a 2 )(X + a 2 ), (X + a 2 )(X + 1) and (X + 1)(X + a 2 ) are lclmindecomposable, i.e. the factorization of each polynomial into monic irreducible polynomials is unique.

Definition 5 Consider R = IF q [X; θ] and let f ∈ Z(R) be an irreducible bound which is reducible in R. The number of distinct irreducible monic right factors g ∈ IF q [X; θ] of f is the capacity κ of f . Example 6 Consider R = IF q [X; θ] with θ of order two. Example 4 shows that the capacity κ of the bound X 2 + λ is the size of {a ∈ IF q | θ(a)a = -λ}. In particular, the capacity of the central polynomial

X 2 + 1 ∈ IF 4 [X; θ] with θ : α → α 2 is 3, while the three irreducible factors of X 2 + 1 in IF 4 [X; θ] are given in example 2. Proposition 3 Let R = IF q [X; θ] with θ of order two, 1 ≤ m ∈ IN and f ∈ Z(R) an irreducible bound which is reducible in R of capacity κ > 2.
The number A(m) of distinct monic right factors g ∈ R of degree m•deg(f )

Proof: According to Lemma 2, the irreducible factors of f have all the same degree deg(f )/2 so the irreducible factors of f m , and therefore also the right factors of f m , are all of degree deg(f )/2. If g = g 1 g 2 • • • g m is a factorization into monic irreducible polynomials with bound f , and g i the complement of

g i , then f m = g m • • • g 2 g 1 g 1 g 2 • • • g m .
Therefore g is always a divisor of f m and we only need to count the different polynomials g = g 1 g 2 • • • g m whose irreducible monic factors are bounded by f .

1. If g is divisible by the central bound f ∈ Z(R), then g = g f where g = g 1 • • • g m-2
and g i of degree deg(f )/2 : there are A(m -2) such polynomials.

2. Proposition 2 shows that g is not divisible by f if and only if for all i, g i+1 is not the complement for f of g i . There are κ choices for g 1 and κ -1 choices for each factor g 2 , g 3 . . . , g m .

From A(0) = 1, A(1) = κ and A(m) = A(m -2) + κ(κ -1) m-1 we get the result by solving the recursion.

Corollary 3 Let θ be the Frobenius automorphisms of IF 4 . For s ∈ IN \ {0} there are 2 2 s-1 +1 -1 module θ-cyclic codes over IF 4 of length 2 s and dimension 2 s-1 .

Proof:

X 2 s -1 = (X 2 + 1) 2 s-1 in IF 4 [X; θ],
and the capacity of X 2 + 1 is κ = 3, so according to the previous proposition applied with m = 2 s-1 , the skew polynomial X 2 s -1 has 2 2 s-1 +1 -1 monic right factors of degree 2 s-1 in IF 4 [X; θ].

In the proposition and the corollary above the number of θ-cyclic codes over IF 4 of length 2 s was obtained by counting the number of distinct monic factors with degree 2 s-1 of (X 2 + 1) 2 s-1 = X 2 s + 1 using the fact that they are products of linear factors. In the same way the number of selfdual θ-cyclic codes over IF 4 of length 2 s will now be obtained by counting the number of factors h with degree 2 s-1 of X 2 s + 1 which satisfy also the relation h h = X 2 s + 1 (cf. Corollary 1).

Proposition 4 Let R = IF q [X; θ] with θ of order two, 1 ≤ m ∈ IN, f ∈ Z(R)
an irreducible bound which is reducible in R and h i ∈ R and g j ∈ R monic irreducible polynomials having all the same bound f . If

g m g m-1 • • • g 1 is lclm-indecomposable and f m = h 1 • • • h m-1 h m g m g m-1 • • • g 1 (6)
then h i is the complement of g i (for f ).

Proof: We proceed by induction on m. If m = 1 the result is trivial. Suppose that the result holds for i < m. The rhs of ( 6) is clearly divisible by f and Proposition 2 shows that two consecutive factors in the rhs of ( 6) must be complements to each other and their product equal to f . We get three cases 1. There are two successive factors which are complements to each other in the decomposition g m g m-1 • • • g 1 of g. Since g is lclm-indecomposable, Corollary 2 shows that this case cannot occur.

2. If h m is the complement of g m , then we can divide both sides of equation ( 6) by the central polynomial h m g m = f to obtain

h 1 • • • h m-1 g m-1 • • • g 1 = f m-1 . Since g m-1 • • • g 1 is lclm-indecomposable,
we obtain the result by induction.

3. Otherwise there are two successive factors which are complements to each other in the product h 1 • • • h m-1 h m and we prove that this case cannot happen. Namely, consider i such that h i h i+1 = f . Dividing both sides of ( 6) by the central polynomial f gives

(h 1 • • • h i-1 h i+2 h m g m ) (g m-1 • • • g 1 ) = f m-1 .
Applying the induction hypothesis to g m-1 • • • g 1 which is lclm-indecomposable, we obtain that g m is the complement of g m-1 which is impossible according to Corollary 2 because g m g m-1 • • • g 1 is lclm-indecomposable.

In the following we want to decide in some special cases if a product of linear polynomials (X + α 1 )(X + α 2 ) • • • (X + α m ) generates a self-dual code. The main difficulty is that the skew reciprocal polynomial of a monic polynomial is not always monic: (X +α

) * = θ(α)X +1 = θ(α) (X + 1/θ(α)). Lemma 3 Consider 0 < m ∈ IN and α 1 , α 2 , . . . , α m in IF q \ {0}. For the skew polynomial g = (X + α 1 )(X + α 2 ) • • • (X + α m ) ∈ IF q [X; θ] we have g * = θ m (α 1 • • • α m ) X + θ m-1 (α 1 • • • α m-1 ) θ m (α 1 • • • α m ) • • • X + θ(α 1 ) θ 2 (α 1 α 2 ) X + 1 θ(α 1 )
from which we can deduce g by dividing on the left by θ m (α 1 • • • α m ).

Proof: We proceed by induction on m. For m = 1 the result holds. Assume that the result holds for k < m. Lemma 1 shows ((X + α 1 )

• • • (X + α m )) * = θ m-1 ((X + α m ) * ) ((X + α 1 ) • • • (X + α m-1 )) * .

By induction we only need to express

h = θ m ((X + α m ) * ) θ m-1 (α 1 • • • α m-1 )
as a product of a constant times a monic linear polynomial. By direct computation we obtain

h = θ m (α m ) X + 1 θ(α m ) θ m-1 (α 1 • • • α m-1 ) = θ m (α 1 • • • α m ) X + θ m-1 (α 1 • • • α m-1 ) θ m (α 1 • • • α m ) .
The claim now follows by induction.

Proposition 5 Consider IF 4 = IF 2 (a), θ the Frobenius automorphism α → α 2 and h ∈ IF 4 [X; θ] to be monic of degree m ∈ IN. Then h h = (X 2 + 1) m (7) 
if and only if

h = (X + 1) m if m is odd (X + 1) m-1 (X + u), u ∈ {1, a, a 2 } if m is even.
Proof: (⇐): If m is odd, the previous Lemma shows that the skew polynomial h = (X + 1) m satisfies [START_REF] Grassl | On circulant self-dual codes over small fields[END_REF]. Let us assume that m is even and consider h = (X + 1) m-1 (X + u) with u ∈ IF 4 \ {0}. From Lemma 1 we obtain

h * = Θ((X + u) * )(X + 1) m-1 = u(X + u 2 )(X + 1) m-1 .
Therefore h = (X + u 2 )(X + 1) m-1 and hh = (X 2 + 1) m . Since (X 2 + 1) m is central, this product commutes. (⇒): From ( 7) and the fact that

X 2 + 1 is reducible over IF 4 [X; θ] we obtain that h is of the form (X + α 1 ) • • • (X + α m ). Lemma 3 shows that h = X + θ m-1 (α 1 • • • α m-1 ) θ m (α 1 • • • α m ) • • • X + θ(α 1 ) θ 2 (α 1 α 2 ) X + 1 θ(α 1 )
.

Since all the factors of h have the same irreducible bound X 2 + 1 which is reducible in IF 4 [X; θ] and θ is of order two, we can apply Proposition 4 whenever h is lclm-indecomposable. We proceed by induction on m.

1. Case m = 1. We get (X + 1/θ(α 1 )) (X + α 1 ) = X 2 + 1 showing that X +1/θ(α 1 ) is the complement of X +α 1 . Using formula ( 5) we obtain 1/θ(α 1 ) = 1/α 1 and θ(α 1 ) = 1/α 1 . Therefore α 2 1 + 1 = (α 1 + 1) 2 = 0, which implies α 1 = 1.

Case

m = 2. If h = (X + α 1 )(X + α 2 ) is lclm-decomposable, then
according to Proposition 2, h is divisible and therefore equal to X 2 + 1 = (X +1)(X +1) and the result follows. If h is lclm-indecomposable, then Proposition 4 shows that X+1/θ(α 1 ) is the complement of X+α 1 . Like in the case m = 1 this implies that α 1 = 1 and h = (X+1)(X+α 2 ) and the result follows.

3. Case m = 3. If h = (X + α 1 )(X + α 2 )(X + α 3 ) is lclm-indecomposable then Proposition 4 shows that for i = 1, 2, 3,

X + θ i-1 (α 1 • • • α i-1 )/θ i (α 1 • • • α i ) is the complement of X + α i . For i = 1
, like in the case m = 1 we get that α 1 = 1, and therefore

for i = 3 we obtain (X + α 2 θ(α 2 α 3 ) )(X + α 3 ) = X 2 + 1. The constant coefficient of these two polynomials is α 2 α 3 θ(α 2 α 3 ) = 1, so α 2 α 3 = 1. We obtain (X + α 2 )(X + α 3 ) = (X + α 2 )(X + 1/α 2 ) = X 2 + 1, so X 2 + 1 divides h, which contradicts the lclm-irreducibility of h (Corollary 2).
Therefore h is lclm-decomposable and, according to Proposition 2, X 2 + 1 divides h. We can write h = (X + α)(X 2 + 1). Lemma 1 shows that h h = (X 2 + 1)(X + 1/θ(α))(X + α)(X 2 + 1) and after simplifying [START_REF] Grassl | On circulant self-dual codes over small fields[END_REF] we obtain (X + 1/θ(α))(X + α) = X 2 + 1. Like in the case m = 1 this implies that α = 1, showing that h = (X + 1) 3 .

4. Suppose m > 3 and that the result holds for i < m. We first show that h must be lclm-decomposable.

If h = (X + α 1 ) • • • (X + α m ) is lclm-indecomposable then Proposition 4 shows that X + θ m-1 (α 1 • • • α m-1 )/θ m (α 1 • • • α m ) is the complement of X + α m .
Dividing both sides of ( 7) on the right by X + α m and on the left by its complement, we obtain that (X + α 1 )

• • • (X + α m-1 ) satis- fies the induction hypothesis. So α 1 = α 2 = • • • = α m-2 = 1 and (X + α 1 )(X + α 2 ) = X 2 + 1, which contradicts that h is lclm- indecomposable (Corollary 2).
As h is lclm-decomposable X 2 +1 divides h, say h = q(X 2 +1) (Proposition 2). Lemma 1 shows that h h = (X 2 + 1)q q(X 2 + 1). Therefore q q = (X 2 + 1) m-2 and we obtain the result for q by induction, which gives also the result for h = (X 2 + 1)q.

We now show that for any integer s ≥ 1, from the 2 2 s-1 +1 -1 module θ-cyclic codes over IF 4 of length 2 s , only 3 are self-dual, which proves Conjecture 1 of [START_REF] Boucher | A note on the dual codes of module skew codes[END_REF] :

Corollary 4 Consider IF 4 = IF 2 (a), θ the Frobenius automorphism α → α 2 , s > 1 an integer and g ∈ IF 4 [X; θ] monic of degree 2 s-1 . The code (g) θ 2 s is self-dual if and only if g = (X + u)(X + 1) 2 s-1 -1 , where u ∈ {1, a, a 2 }.
Proof: The code (g) θ 2 s is self-dual if and only if there exists h ∈ R such that g = h and h h = X 2 s -1. The previous proposition applied with m = 2 s-1 shows that h = (X + 1)

2 s-1 -1 (X + u) with u ∈ {1, a, a 2 }. There- fore h * = Θ(1 + u 2 X)(X + 1) 2 s-1 -1 and g = h = (X + u 2 )(X + 1) 2 s-1 -1 (Lemma 1).
4 Construction of self-dual θ-codes with θ of order 2

Self-dual θ-cyclic codes over IF q can be constructed by solving polynomial systems satisfied by the coefficients of their generator polynomials, however the polynomial system becomes increasingly difficult to solve (cf. [START_REF] Boucher | Coding with skew polynomial rings[END_REF]). In [START_REF] Jia | On self-dual cyclic codes over finite fields[END_REF] a characterization of the generator polynomials of (classical) self-dual cyclic codes of length n over IF 2 m is given using the factorization of

X n -1 in IF 2 m [X].
In analogy to this result we give now a procedure that allows to construct all self-dual codes from suitable smaller degree polynomials. We start with a technical Lemma (a similar result appears in [START_REF] Jia | On self-dual cyclic codes over finite fields[END_REF] page 2245).

Lemma 4 Let IF q be a finite field, θ ∈ Aut(IF q ), R = IF q [X; θ] and ∈ {-1, 1}. The polynomial Y t -∈ (IF q ) θ [Y ] = (IF q ) θ [X |θ| ] ⊂ R factors in (IF q ) θ [Y ] into distinct irreducible monic polynomials as Y t -= h 1 (Y ) • • • h s (Y ) g 1 (Y )g 1 (Y ) g 2 (Y )g 2 (Y ) • • • g r (Y )g r (Y ) (8) where h i (Y ) = h i (Y ), g i (Y ) = g i (Y ) and (g i g i ) = g i g i . Furthermore Y t - factors in (IF q ) θ [Y ] = (IF q ) θ [X 2 ] as a product f 1 (Y ) • • • f m (Y ) of pairwise coprime polynomials of minimal degree such that f i = f i .
Proof: Let g be an irreducible monic factor of Y t -such that g = g . Assume that g * is reducible in (IF q ) θ [Y ], then according to Lemma 1, g = (g * ) * is also reducible in (IF q ) θ [Y ], so g * and therefore g are irreducible in (IF q ) θ [Y ]. Furthermore g * divides (Y t -) * (Lemma 1) therefore g divides (Y t -) . As (Y t -) * = -(Y t -1/ ) and as 1/ = , we have (Y t -) = Y t -, which shows that g divides Y t -. This proves the existence of the decomposition [START_REF] Gulliver | Double circulant and quasi-twisted self-dual codes over IF 5 and IF 7[END_REF]. For λ the constant coefficient of g we obtain (g ) * = ( 1 λ g * ) * = 1 λ g. Therefore the monic polynomial (g ) is equal to g, showing that the irreducible factors appearing in (8) are distinct. A direct computation gives (gg ) * = g * (g ) * = g g (Lemma 1). Setting f i = h i for i ∈ {1, . . . , s} and f s+j = g j g j for j ∈ {1, . . . , r †} in ( 8) we obtain a factorization

f 1 (Y )f 2 (Y ) • • • f m (Y ) of Y t -ε in (IF q ) θ [Y ] = Z(R) into pairwise coprime monic polynomials f i (Y ) with f i = f i . Algorithm 1 Construction of self-dual module θ-codes. Require: n, IF q of characteristic p, θ ∈ Aut(IF q ) of order 2, ∈ {-1, 1} Ensure: the set of all generator polynomials of self-dual module θ-codes of length n over IF q which are θ-cyclic if = 1, θ-negacyclic if = -1 1: compute s and t such that n = p s × 2 × t with t mod p = 0 2: compute a factorization of Y t -= f 1 (Y ) • • • f m (Y ) in the commutative ring (IF q ) θ [Y ] = (IF q ) θ [X 2
] into pairwise coprime polynomials of minimal degree such that f i = f i 3: for i in {1, . . . , m} do 4:

compute the sets

H i = {h i ∈ IF q [X; θ] | h i h i = (f i ) p s (X 2
)} by solving the corresponding polynomial system whose unknowns are the coefficients of h i . 5: end for

6: return {lclm(h 1 , . . . , h m ) | h i ∈ H i }
The following algorithm reduces the computation of h ∈ R with the property h h = X 2k -(Corollary 1) to the computation of the polynomials h i of smaller degree with the properties h i h i = (f i ) p s . The computational gain depends on the degrees of the polynomials h i and therefore of on s and the degrees polynomial

f i in the factorization Y t -= f 1 (Y ) • • • f m (Y ).
The correctness of the algorithm is proven in the next proposition.

Proposition 6 Let IF q be a finite field, θ ∈ Aut(IF q ) of order 2, R = IF q [X; θ] and k = p s × t a nonzero integer with s ∈ IN and t ∈ IN not multiple of p. Let ε ∈ {-1, 1} and Y t -ε = f 1 (Y )f 2 (Y ) • • • f m (Y ) ∈ (IF q ) θ [Y ]= (IF q ) θ [X 2 ] = Z(R)
, where f i (Y ) are monic polynomials that are pairwise coprime with the property that f i = f i . For ε = 1 (resp. ε = -1) and for h ∈ R of degree k the polynomial g = h generates a self-dual θcyclic (resp. θ-negacyclic) code over IF q of length n = 2k if and only if there exist h 1 , . . . , h m ∈ R such that 1.

h i h i = (f i ) p s , 2. h = lcrm(h 1 , . . . , h m ) Proof:
1. (⇐): (the codes obtained are self-dual) According to Corollary 1 we have to show that h h = X 2tp s -ε.

From h = lcrm(h 1 , . . . , h m ) we obtain that h = h i q i with q i ∈ R. Lemma 1 shows that

h * = Θ deg(h i ) (q * i )h * i . As h * (resp. h * i ) is a constant times h (resp. h i ), there exists qi ∈ R such that h = qi h i . Therefore h h = qi (h i h i )q i = qi (f i ) p s q i = qi q i (f i ) p s (because (f i ) p s ∈ (IF q ) θ [X 2 ] is central), showing that lclm((f 1 ) p s , . . . , (f m ) p s ) is a right divisor of h h in R.
To prove the claim it remains to show that lclm((f 1 ) p s , . . . , (f m ) p s ) = (f 1 )

p s • • • (f m ) p s = X n -ε. (9) 
Comparing degrees we obtain from relation (9) that h h = X n -ε.

In order to prove the first equality of relation [START_REF] Jacobson | The Theory of Rings[END_REF] we first show that the least common right multiple of polynomials in Z(R) ⊂ R coincide when viewed as polynomials either in R or in the commutative polynomial ring Z(R). Both R and Z(R) are euclidean rings and the (left and right for R) euclidean division has a unique quotient and unique remainder. Therefore a division in Z(R) is also a (left and right) division in R. Since the lclm can be computed in both cases using the euclidean algorithm ( [START_REF] Ore | Theory of non-commutative polynomials[END_REF], Section 3), they coincide in both rings. In the commutative ring Z(R) = (IF q ) θ [Y ] the second equality of relation ( 9) is a consequence of Gauss Lemma and the claim follows.

2. (⇒): (all self-dual module θ-codes are obtained this way) Corollary 1 shows that if g = h generates a self-dual θ-code over IF q of length n = 2k, then

h h = X n -ε = (X 2 ) t -ε p s = Y t -ε p s
(where Y = X 2 ). We noted above that the division in Z(R) and R coincide in Z(R), so that ((f i ) p s ) = (f i ) p s are pairwise coprime in Z(R) and R. According to ([6], Theorem 4.1), we have h = lclm(h 1 , . . . , h m ) where h i = gcrd((f i ) p s , h ) are pairwise coprime in R. In particular, according to [START_REF] Ore | Theory of non-commutative polynomials[END_REF], deg(lclm(h i , h j )) = deg(h i ) + deg(h j ) for i = j and

deg(h ) = deg(lclm(h i )) = deg(h i ).
We now show that h i divides (f i ) p s and h on the left :

• Let δ i be the degree of (f i ) p s and d i be the degree of h i . Since

f i ∈ Z(R), δ i is even. Applying Lemma 1 to (f i ) p s = q i h * i we ob- tain ((f i ) p s ) * = Θ δ i -d i (h * i * )q * i = Θ δ i -d i (Θ d i (h i ))q * i = Θ δ i (h i )q * i = h i q *
i (δ i is even and θ 2 = id). So h i divides on the left ((f i ) p s ) * . As (f i ) p s is central, it is equal to ((f i ) p s ) * times a constant, so h i divides on the left ((f i ) p s ) = (f i ) p s .

• Since h i divides h on the right, we also have

h * = p i h * i . Using Lemma 1, we obtain Θ k (h) = h * * = Θ k-d i (h * i * )p * i . Therefore Θ k (h) = Θ k-d i (Θ d i (h i ))p * i = Θ k (h i )p * i .
Since Θ is a morphism of rings, h i divides h on the left.

Since h i divides h on the right and h i divides h on the left, we obtain h h = gi h i h i g i . Since two factors of a decomposition of the central polynomial h h = gi h i h i g i into two factors commute, h i h i divides h h = X n -ε on the right. According to Theorem 4.1 of [START_REF] Giesbrecht | Factoring in skew-polynomial rings over finite fields[END_REF], h i h i = lclm(gcrd(h i h i , (f j ) p s ), j = 1, . . . m). We now note that both h i and h i divide the central polynomial (f i ) p s , so that the product h i h i divides ((f i ) p s ) 2 . For j = i we obtain gcrd(h i h i , (f j ) p s ) = 1 and h i h i = gcrd(h i h i , (f i ) p s ). In particular, h i h i divides (f i ) p s . For i ∈ {1, . . . , m} the polynomials (f i ) p s are pairwise coprime, showing that their divisors h i h i are also pairwise coprime. Therefore

deg(lclm(h

i h i )) = m i=1 deg(h i h i ) = 2 m i=1 deg(h i ) = 2 deg(h ) = m i=1 deg((f i ) p s ). From m i=1 deg(h i h i ) = m i=1 deg((f i ) p s ) and the fact that h i h i divides (f i ) p s , we obtain h i h i = (f i ) p s .
As h i divides h on the left, lcrm(h i , i = 1, . . . , m) also divides h on the left. Since gcrd(h i , h j ) = 1 implies gcld(h i , h j ) = 1 we have deg(lcrm

(h i , i = 1, . . . , m)) = deg(h i ) = deg(h). Therefore h = lcrm(h i , i = 1, . . . , m). Example 7 Let IF 4 = IF 2 (a), θ the Frobenius automorphism α → α 2 and R = IF 4 [X; θ]. In IF 2 [Y ] = Z(R) (where Y = X 2 ), we have Y 39 -1 = f 1 (Y )f 2 (Y )f 3 (Y )f 4 (Y ) where: f 1 (Y ) = Y + 1 f 2 (Y ) = Y 2 + Y + 1 f 3 (Y ) = Y 12 + Y 11 + Y 10 + Y 9 + Y 8 + Y 7 + Y 6 + Y 5 + Y 4 + Y 3 + Y 2 + Y + 1 f 4 (Y ) = (Y 12 + Y 11 + Y 10 + Y 9 + Y 5 + Y 4 + Y 3 + Y 2 + 1) (Y 12 + Y 10 + Y 9 + Y 8 + Y 7 + Y 3 + Y 2 + Y + 1).
The polynomials f i are pairwise coprime polynomials satisfying f i = f i (i ∈ {1, . . . , 4}). The computational problem is therefore reduced from degree 39 to degree at most 12 which is now in reach of a Gröbner basis computation and allows to compute the four sets H i . For all h i ∈ H i we computed all the codes generated by g = h = lclm(h 1 , h 2 , h 3 , h 4 ). For the skew polynomials

h 1 = X + 1 h 2 = X 2 + X + 1 h 3 = X 12 + aX 11 + X 10 + X 8 + aX 6 + a 2 X 4 + a 2 X 2 + X + a 2 h 4 = X 24 + a 2 X 23 + X 22 + a 2 X 20 + X 19 + a 2 X 18 + X 17 + aX 15 + X 13 + a 2 X 12 + a 2 X 11 + aX 9 + a 2 X 7 + a 2 X 6 + a 2 X 5 + a 2 X 4 + aX 2 + X + a we obtain the skew polynomial g = X 39 + a 2 X 38 + a 2 X 37 + X 36 + a 2 X 34 + aX 33 + aX 32 + a 2 X 31 + aX 30 +a 2 X 29 + a 2 X 28 + aX 27 + a 2 X 26 + a 2 X 25 + X 24 + a 2 X 22 + X 20 + X 19 +a 2 X 17 + X 15 + a 2 X 14 + a 2 X 13 + aX 12 + a 2 X 11 + a 2 X 10 + aX 9 +a 2 X 8 + aX 7 + aX 6 + a 2 X 5 + X 3 + a 2 X 2 + a 2 X + 1
which generates a [78, 39, 19] 4 self-dual code and therefore improves the best previously known minimal distance from Table 5 in [START_REF] Grassl | On circulant self-dual codes over small fields[END_REF]. Note that the generator matrix G θ g,78 of this code can be easily obtained from the generator polynomial using the formula (2), so that it is straightforward to construct this code and verify in Magma (cf. [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]) that its minimum distance is equal to 19. 

= IF 9 [X; θ]. In IF 3 [Y ] = Z(R) (where Y = X 2 ), we have Y 26 + 1 = f 1 (Y )f 2 (Y )f 3 (Y ) where: f 1 (Y ) = Y 2 + 1 f 2 (Y ) = (Y 6 + 2Y 2 + 1)(Y 6 + Y 4 + 2Y 2 + 1) = Y 12 + 2Y 10 + 2Y 8 + 2Y 4 + 2Y 2 + 1 f 3 (Y ) = (Y 6 + 2Y 4 + 1)(Y 6 + 2Y 4 + Y 2 + 1) = Y 12 + 2Y 8 + Y 6 + 2Y 4 + 1.
The polynomials f i are pairwise coprime polynomials satisfying f i = f i (i ∈ {1, . . . , 3}). The computational problem is therefore reduced from degree 26 to degree at most 12 which is now in reach of a Gröbner basis computation and allows to compute the three sets H i . For all h i ∈ H i we computed the codes generated by g = h = lclm(h 1 , h 2 , h 3 ). For the skew polynomials h 1 = X 2 + 2X + 2 h 2 = X 12 + a 5 X 11 + a 5 X 10 + aX 9 + a 5 X 8 + 2X 6 + a 7 X 4 + a 7 X 3 + a 7 X 2 +a 3 X + 1 h 3 = X 12 + aX 11 + X 10 + X 8 + aX 6 + a 2 X 4 + a 2 X 2 + X + a 2 we obtain the skew polynomial g = X 26 + 2X 25 + 2X 24 + X 22 + aX 21 + 2X 20 + X 19 + aX 18 + a 5 X 16 + 2X 14 +X 13 + X 12 + a 3 X 10 + a 7 X 8 + X 7 + X 6 + a 3 X 5 + 2X 4 + X 2 + 2X + 2 which generates a [52, 26] 9 self-dual code. Note that the generator matrix of this code can be easily obtained from the generator polynomial using the formula [START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF], so that it is straightforward to construct this code. We verify in Magma (cf. [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]) that its minimum distance is 17, which improves the previous best known minimum distance for self-dual codes of this length (table 14 of [START_REF] Grassl | On circulant self-dual codes over small fields[END_REF]).

The following example illustrates the fact that polynomials f i ∈ (IF q ) θ [Y ] with the property f i = f i can appear at different length n and that this previous computation can be used again. H 1 = X 2 + 4X + 6, X 2 + a 6 , X 2 + a 10 X + a 36 , X 2 + a 22 X + a 12 , X 2 + 3X + 6, X 2 + a 34 X + a 36 , X 2 + a 42 , X 2 + a 46 X + a 12 H 2 = X 2 + a 21 X + a 6 , X 2 + a 45 X + a 6 , X 2 + a 18 , X 2 + X + 6, X 2 + a 30 , X 2 + a 3 X + a 42 , X 2 + a 27 X + a 42 , X 5 6 5 2 4 4 4 1 1 0 0 0 0 0 0 0 6 6 2 3 4 0 1 3 0 1 0 0 0 0 0 0 0 0 6 1 3 5 0 3 3 6 1 0 0 0 0 0 0 0 1 5 5 5 3 4 6 4 0 1 0 0 0 0 0 0 0 0 5 6 5 2 4 4 4 1 1 0 0 0 0 0 0 0 6 6 2 3 4 0 1 3 0 1 0 0 0 0 0 0 0 0 6 1 3 5 0 3 3 6 1 0 0 0 0 0 0 0 1 5 5 5 3 4 6 4 0 1

                   
1 6 4 3 5 1 3 0 1 0 0 0 0 0 0 0 6 2 3 1 1 4 0 3 0 1 0 0 0 0 0 0 0 0 2 1 1 4 4 6 3 0 1 0 0 0 0 0 0 0 1 1 4 4 6 5 0 3 0 1 0 0 0 0 0 0 0 0 1 6 4 3 5 1 3 0 1 0 0 0 0 0 0 0 6 2 3 1 1 4 0 3 0 1 0 0 0 0 0 0 0 0 2 1 1 4 4 6 3 0 1 0 0 0 0 0 0 0 1 1 4 4 6 5 0 3 0 1

is an example of a generator polynomial for a [24, [START_REF] Ore | Theory of non-commutative polynomials[END_REF][START_REF] Ore | Theory of non-commutative polynomials[END_REF] 49 self-dual code. The generator matrix G θ g,24 of this code can be easily obtained from the generator polynomial using the formula [START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF], so that it is straightforward to construct this code and verify in Magma (cf. [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]) that its minimum distance is equal to 12.

2 .

 2 The irreducible factors of an irreducible bound f are of the same degree d ([9], Chap. 3, Corollary of Th. 20 or Theorem 4.3 of [6]) and as f is reducible, d must be ≤ deg(f )/2. The first assertion shows that the factors of f are of degree ≥ deg(f )/2 so d = deg(f )/2.

Example 8

 8 Let IF 9 = IF 3 (a)where a 2 -a -1 = 0, θ the Frobenius automorphism α → α 3 and R

Example 9

 9 Let IF 49 = IF 7 (a) where a 2 -a + 3 = 0, θ the Frobenius automorphism α → α 2 and R = IF 49 [X; θ]. • The polynomial Y 4 + 1 factorizes over IF 7 into the product of two irreducible polynomials as Y 4 + 1 = (Y 2 + 3Y + 1)(Y 2 + 4Y + 1), where(Y 2 + 3Y + 1) = Y 2 + 3Y + 1, (Y 2 + 4Y + 1) = Y 2 + 4Y + 1. The sets H 1 = {h ∈ IF 49 [X; θ], h h = X 4 + 3X 2 + 1} and H 2 = {h ∈ IF 49 [X; θ], h h = X 4 + 4X 2 + 1} are

  h is the least common left multiple of skew polynomials of degree strictly less than h, i.e.h = lclm(h 1 , h 2 ) where h i ∈ R and deg(h i ) < deg(h). The polynomial h ∈ R is lclm-indecomposable if h is not lclm-decomposable.

	Example 2 For IF 4 = IF 2 (a) where a 2 + a + 1 = 0 and θ the Frobenius
	automorphism α → α 2 . Two factors of a central polynomial always commute
	in IF 4 [X; θ]:

  2 + 6X + 6 and the polynomials g = lclm(h 1 , h 2 ) (where h i ∈ H i ) generate all the 64 self-dual θ-negacyclic codes[START_REF] Gulliver | Double circulant and quasi-twisted self-dual codes over IF 5 and IF 7[END_REF][START_REF] Boucher | A note on the dual codes of module skew codes[END_REF] over IF 49 , among which 20 reach the Singleton Bound 5. The generator polynomial g of four of those codes are belong to IF 7 [X] and are therefore negacyclic, i.e. g divides X 8 + 1 in IF 7 [X]. Since codes over IF 49 are not well classified, we use Theorem 3.4 of [11] to construct self-dual codes over IF 7 as 7-ary images d B (C) of self-dual codes C over IF 7 2 using the symmetric basis B = (1, a 3 ). Many good codes over IF p 2 reduce poorly to IF p , but in the present case we obtain four [16, 8, 7] 7 self-dual codes over IF 7 whose generator matrices are

	
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In[START_REF] Jacobson | The Theory of Rings[END_REF] the term decomposable is used

of f m is (κ -1) m+1 -1 /(κ -2).