Self-dual skew codes and factorization of skew polynomials

Delphine Boucher, Félix Ulmer

To cite this version:

Delphine Boucher, Félix Ulmer. Self-dual skew codes and factorization of skew polynomials. 2013. hal-00719506v2

HAL Id: hal-00719506 https://hal.science/hal-00719506v2

Preprint submitted on 13 May 2013 (v2), last revised 24 May 2013 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Self-dual skew codes and factorization of skew polynomials

D. Boucher and F. Ulmer*

May 10, 2013

Abstract

The construction of cyclic codes can be generalized to so called module θ-cyclic codes using noncommutative polynomials. The product of the generator polynomial g of a self-dual module θ-cyclic code and its "skew reciprocal polynomial" is known to be a noncommutative polynomial of the form $X^{n}-a$, reducing the problem of the computation of all such codes to a Gröbner basis problem where the unknowns are the coefficients of g. In previous work, with the exception of the length 2^{s}, over \mathbb{F}_{4} a large number of self-dual codes were found. In this paper we show that a must be ± 1 and that for $n=2^{s}$ the decomposition of $X^{n} \pm 1$ into a product of g and its "skew reciprocal polynomial" has some rigidity properties which explains the small number of codes found for those particular lengths over \mathbb{F}_{4}. In order to overcome the complexity limitation resulting from the Gröbner basis computation we present, in the case θ of order two, an iterative construction of self-dual codes based on least common multiples and factorization of noncommutative polynomials. We use this approach to construct a $[78,39,19]_{4}$ self-dual code and a $[52,26,17]_{9}$ self-dual code which improve the best previously known minimal distances for these lengths.

[^0]
1 Introduction

In [3], self-dual skew codes with good minimum distances were obtained. However, like for cyclic codes ([10]), there is a phenomena in lengths which are a power of 2 . For the lengths $4,8,16,32$ and 64 there are only three selfdual skew codes, while otherwise there is a large number of self-dual codes which increases with the length (cf. [2]). The authors conjectured in [4] that for any s there are only three self-dual skew codes of length 2^{s}.

The aim of this paper is to use the factorization of skew polynomials for studying self-dual skew codes. This allows to prove the above conjecture and to give an iterative construction of self-dual skew codes using least common multiples.

The material is organized as follows.
The section 2 is devoted to some generalities about skew codes ([3]) and self-dual skew codes ([4]).

In section 3 it is proven that for all nonnegative s, there are $2^{2^{s-1}+1}-1$ θ-cyclic codes of length 2^{s} and dimension 2^{s-1} over \mathbb{F}_{4} but that among them only three are self-dual for $s>1$. This gives an answer to Conjecture 1 of [4].

In section 4, we give a construction of self-dual module θ-codes which is based on the factorization and least common right multiples (lcrm) of skew polynomials. An example of a $[78,39,19]_{4}$ self-dual code is given.

2 Self-dual skew codes over a finite field

Starting from the finite field \mathbb{F}_{q} and an automorphism θ of \mathbb{F}_{q}, a ring structure is defined in [12] on the set:

$$
R=\mathbb{F}_{q}[X ; \theta]=\left\{a_{n} X^{n}+\ldots+a_{1} X+a_{0} \mid a_{i} \in \mathbb{F}_{q} \text { and } n \in \mathbb{N}\right\}
$$

The addition in R is defined to be the usual addition of polynomials and the multiplication is defined by the basic rule $X \cdot a=\theta(a) X\left(a \in \mathbb{F}_{q}\right)$ and extended to all elements of R by associativity and distributivity. The ring R is called a skew polynomial ring and its elements are skew polynomials. It is a left and right euclidean ring whose left and right ideals are principal. Left and right gcd (gcrd) and lcm (lclm) exist in R and can be computed using the left and right euclidean algorithm ([6], Section 2).

Following [2] we define linear codes using the skew polynomial ring R.

Definition 1 Consider $R=\mathbb{F}_{q}[X ; \theta]$ and let $f \in R$ be of degree n. A module θ-code (or module skew code) \mathcal{C} is a left R-submodule $R g / R f \subset$ $R / R f$ in the basis $1, X, \ldots, X^{n-1}$ where g is a right divisor of f in R. We denote this code $\mathcal{C}=(g)_{n}^{\theta}$. If there exists an $a \in \mathbb{F}_{q} \backslash\{0\}$ such that g divides $X^{n}-a$ on the right then the code $(g)_{n}^{\theta}$ is θ-constacyclic. We will denote it $(g)_{n}^{\theta, a}$. If $a=1$, the code is θ-cyclic and if $a=-1$, it is θ-negacyclic.

Let us now recall that the euclidean dual or dual of a linear code C of length n over \mathbb{F}_{q} can be defined with the euclidean scalar product :

$$
\forall x, y \in \mathbb{F}_{q}^{n},<x, y>=\sum_{i=1}^{n} x_{i} y_{i}
$$

as $C^{\perp}=\left\{x \in \mathbb{F}_{q}^{n}, \forall y \in C,<x, y>=0\right\}$. A linear code C over \mathbb{F}_{q} is euclidean self-dual or self-dual if $C=C^{\perp}$.

To characterize self-dual module θ-codes, we need to define the skew reciprocal polynomial of a skew polynomial (definition 3 of [4]) and also the left monic skew reciprocal polynomial.

Definition 2 The skew reciprocal polynomial of $h=\sum_{i=0}^{m} h_{i} X^{i} \in R$ of degree m is $h^{*}=\sum_{i=0}^{m} X^{m-i} \cdot h_{i}=\sum_{i=0}^{m} \theta^{i}\left(h_{m-i}\right) X^{i}$. The left monic skew reciprocal polynomial of h is $h^{* \ell}:=\left(1 / \theta^{m}\left(h_{0}\right)\right) \cdot h^{*}$.

Since θ is an automorphism, the map $*: R \rightarrow R$ given by $h \mapsto h^{*}$ is a bijection. In particular for any $g \in R$ there exists a unique $h \in R$ such that $g=h^{*}$ and if g is monic, then $g=h^{*} \ell$.

In order to describe some properties of the skew reciprocal polynomial we need the following morphism of rings already used in [4]:

$$
\begin{aligned}
\Theta: R & \rightarrow R \\
\sum_{i=0}^{n} a_{i} X^{i} & \mapsto \sum_{i=0}^{n} \theta\left(a_{i}\right) X^{i}
\end{aligned}
$$

Lemma 1 ([4]) Let $f \in R$ be a skew polynomial of degree n such that $f=$ $h g$, where h and g are skew polynomials of degrees k and $n-k$. Then

1. $f^{*}=\Theta^{k}\left(g^{*}\right) h^{*}$
2. $\left(f^{*}\right)^{*}=\Theta^{n}(f)$.

In [4], it is established that a module θ-code which is self-dual is necessarily θ-constacyclic (Corollary 1 of [4]). In this case its generator polynomial g divides on the right $X^{n}-a$ for some a in $\mathbb{F}_{q} \backslash\{0\}$ where $n=2 k$ is the length of the code. Furthermore the dual of $(g)_{n}^{\theta, a}$ is generated by the polynomial $h^{* \ell}$ where h is defined by the two equivalent following equalities :

$$
\Theta^{n}(h) \cdot g=X^{n}-a \Leftrightarrow g \cdot h=X^{n}-\theta^{-k}(a) .
$$

The following proposition improves Corollary 1 of [4]:
Proposition $1 A$ self-dual module θ-code is either θ-cyclic or θ-negacyclic.
Proof: If $C=(g)_{n}^{\theta}$ is a self-dual module θ-code, then C is necessarily θ-constacyclic ([4], Corollary 1). Let a be in $\mathbb{F}_{q} \backslash\{0\}$ such that g divides $X^{n}-a$ on the right in R. Consider $h \in R$ such that $\Theta^{n}(h) \cdot g=X^{n}-a$. From Lemma 1, we obtain $\frac{-1}{a} \Theta^{k-n}\left(g^{*}\right) h^{*}=X^{n}-\frac{1}{a}$, showing that $h^{* \ell}=\frac{1}{\theta^{k}\left(h_{0}\right)} h^{*}$ divides $X^{n}-\frac{1}{a}$ on the right. Since $C=(g)_{n}^{\theta}$ is a self-dual module θ-code we must have $g=h^{* \ell}$ ([4], Theorem 1). So g divides on the right the polynomial $\left(X^{n}-a\right)-\left(X^{n}-\frac{1}{a}\right)=a-\frac{1}{a}$ of degree less than g. Therefore $a^{2}=1$.

Combining this result with ([4], Theorem 1) we obtain:
Corollary 1 A module θ-code $(g)_{2 k}^{\theta}$ with $g \in \mathbb{F}_{q}[X ; \theta]$ of degree k is self-dual if and only if $g=h^{* \ell}$ and h satisfies

$$
\begin{equation*}
h^{* \ell} h=X^{2 k}-\varepsilon \text { with } \varepsilon \in\{-1,1\} . \tag{1}
\end{equation*}
$$

3 Self-dual module θ-codes of length 2^{s} over \mathbb{F}_{4}.

We keep the notation $R=\mathbb{F}_{q}[X ; \theta]$ and we denote $\left(\mathbb{F}_{q}\right)^{\theta}$ the fixed field of θ. The properties of the ring R used in this paper can be found in [6, 9]. The center $Z(R)$ of R is is the commutative polynomial subring $\left(\mathbb{F}_{q}\right)^{\theta}\left[X^{|\theta|}\right]$ in the variable $Y=X^{|\theta|}$ where $|\theta|$ is the order of θ. We denote $Z(R)$ also $\left(\mathbb{F}_{q}\right)^{\theta}[Y]$. Following [9] we call an element of a ring bounded if the left ideal it generates contains a two-sided ideal. In the ring R all elements are bounded. The monic generator f of the maximal two-sided ideal contained
in $R f$ is the bound of f. The generators of two-sided ideals in R are the elements of the form $X^{m} f$ where $f \in Z(R)$. The two-sided ideals are closed under multiplication, a bound f is an irreducible bound if the two-sided ideal (f) is maximal. A bound f with a nonzero constant term belongs to $Z(R)=\left(\mathbb{F}_{q}\right)^{\theta}[Y]$ and is an irreducible bound if and only if $f(Y) \in\left(\mathbb{F}_{q}\right)^{\theta}[Y]$ is an irreducible (commutative) polynomial ([9], Chap. 3, Th. 12).

Definition 3 ([9], Chap. 3) $h \in R$ is lclm-decomposable ${ }^{1}$ if h is the least common left multiple of skew polynomials of degree strictly less than h, i.e. $h=\operatorname{lclm}\left(h_{1}, h_{2}\right)$ where $h_{i} \in R$ and $\operatorname{deg}\left(h_{i}\right)<\operatorname{deg}(h)$. The polynomial $h \in R$ is $\mathbf{l c l m}$-indecomposable if h is not lclm-decomposable.

Theorem 1 ([9], Chap. 3, Th. 5 or [6], Th. 1.3) Let $R=\mathbb{F}_{q}[X ; \theta]$. If $h_{1} h_{2} \cdots h_{n}$ and $g_{1} g_{2} \cdots g_{m}$ are two decompositions into irreducible factors of $h \in R$, then $m=n$ and there exists a permutation $\sigma \in S_{n}$ such that the R-modules $R / h_{i} R$ and $R / g_{\sigma(i)} R$ are isomorphic. In particular the degrees of the irreducible factors of h are unique up to permutation.

The noncommutative ring R is not a unique factorization ring.
Example 1 For $\mathbb{F}_{4}=\mathbb{F}_{2}(a)$ where $a^{2}+a+1=0$ and θ the Frobenius automorphism $a \mapsto a^{2}$ we have in $\mathbb{F}_{4}[X ; \theta]$ that $(X+a)(X+1)=X^{2}+$ $a^{2} X+a \neq X^{2}+a X+a=(X+1)(X+a)$. Two factors of a central polynomial always commute:

$$
\begin{equation*}
X^{2}+1=\left(X+a^{2}\right)(X+a)=(X+a)\left(X+a^{2}\right)=(X+1)(X+1) . \tag{2}
\end{equation*}
$$

In a nonunique factorization ring R some factorizations can still be unique. As we will see, in $\mathbb{F}_{4}[X ; \theta]$ the polynomials $(X+a)(X+a),(X+a)(X+1)$, $(X+1)(X+a),\left(X+a^{2}\right)\left(X+a^{2}\right),\left(X+a^{2}\right)(X+1)$ and $(X+1)\left(X+a^{2}\right)$ are lclmindecomposable, i.e. their factorization into monic irreducible polynomials is unique. In $\mathbb{F}_{4}[X ; \theta]$ the bounds X^{2} and $X^{2}+1$ are irreducible bounds.

The next theorem characterizes the skew polynomials of R which do have a unique factorization into irreducible monic skew polynomials :

Theorem 2 ([9], Chap. 3, Th. 21 and 24) Let $R=\mathbb{F}_{q}[X ; \theta]$ and $m \in \mathbb{N}^{*}$.

[^1]1. If $h_{1}, h_{2}, \ldots, h_{m}$ are monic irreducible polynomials of R having the same irreducible bound $f \in R$, then the product $h=h_{1} h_{2} \cdots h_{m}$ is an lclmindecomposable monic polynomial in R if and only if the bound of h is f^{m}.
2. An lclm-indecomposable monic polynomial in R has a unique factorization into irreducible monic polynomials.

Lemma 2 Let $R=\mathbb{F}_{q}[X ; \theta]$. The lclm-decomposable product $h_{1} h_{2}$ of two irreducible polynomials h_{1} and h_{2} having both the same irreducible bound $f \in R$ is equal to $f \in R$.

Proof: Otherwise, since the bound of a product divides the products of the bounds ([9], Chap. 3, Th. 12), the bound of $h_{1} h_{2}$ is f^{2} and $h_{1} h_{2}$ would be lclm-indecomposable by the above theorem.

Definition 4 Consider $R=\mathbb{F}_{q}[X ; \theta]$ and let $f \in Z(R)$ be an irreducible bound which is reducible in R. To each right factor g of f corresponds a unique $\bar{g} \in \mathbb{F}_{q}[X ; \theta]$ such that $\bar{g} g=f$ called the complement of g (for f). The number of distinct irreducible factors $g \in \mathbb{F}_{q}[X ; \theta]$ of f is the capacity κ of f.

Example 2 Consider $R=\mathbb{F}_{q}[X ; \theta]$ with $\theta^{2}=i d$. If the central bound $f=$ $X^{2}+\lambda \in Z(R)$ is reducible in R, then its irreducible monic factors are of the form $X+a \in R$. The skew polynomial $X+\tilde{a} \in R$ is the complement of $X+a$ if and only if $(X+\tilde{a})(X+a)=X^{2}+(\tilde{a}+\theta(a)) X+\tilde{a} a=X^{2}+\lambda$, which is the case if and only if

$$
\begin{equation*}
\tilde{a}=\lambda / a \quad \text { and } \quad \theta(a)=-\lambda / a \tag{3}
\end{equation*}
$$

In particular $\theta^{2}(a)=a$. From the previous example we see that the capacity of the central polynomial $X^{2}+1 \in \mathbb{F}_{4}[X ; \theta]$ is $\kappa=3$.

In the following we will be interested in the case where, as in the previous example, the irreducible factors in R of an irreducible bound f, which is reducible in R, are of degree $\operatorname{deg}(f) / 2$.

Lemma 3 Consider $R=\mathbb{F}_{q}[X ; \theta]$ with $\theta^{2}=i d$.

1. For $g=\sum_{i=0}^{m} a_{i} X^{i} \in R$ and for $\bar{g}=\sum_{i=0}^{m}(-1)^{i} \theta^{i+1}\left(a_{i}\right) X^{i}$ we have $g \bar{g} \in Z(R)$. In particular the bound of g is of degree $\leq 2 \operatorname{deg}(g)$.
2. Consider a product $h=h_{1} \cdots h_{m}$ of irreducible monic polynomials having all the same irreducible bound $f \in Z(R)$ which is reducible in R. The following assertions are equivalent :
(i) h is lclm-decomposable;
(ii) h is divisible by f;
(iii) there exists i in $\{1, \ldots, m-1\}$ such that h_{i+1} is the complement of h_{i} (for f).

Proof:

1. For $l \in\{0, \ldots, 2 m\}$, the l-th coefficient of $G=g \bar{g}$ is given by $G_{l}=$ $\sum_{i+j=l} a_{i}(-1)^{j} \theta^{l+1}\left(a_{j}\right)$.
If l is even, then $G_{l}=\sum_{i+j=l} a_{i}(-1)^{l-i} \theta\left(a_{j}\right)=\sum_{i+j=l} a_{i}(-1)^{i} \theta\left(a_{j}\right)$. As $\theta^{2}=i d, \theta\left(G_{l}\right)=\sum_{i+j=l} \theta\left(a_{i}\right)(-1)^{i} a_{j}=G_{l}$.
If l is odd, then
$G_{l}=\sum_{i+j=l} a_{i}(-1)^{j} a_{j}=\sum_{i+j=l, j \text { even }, i \text { odd }} a_{i} a_{j}-\sum_{i+j=l, j \text { odd }, i \text { even }} a_{i} a_{j}=0$.
So G belongs to $\left(\mathbb{F}_{q}\right)^{\theta}\left[X^{2}\right]=Z(R)$.
2. The irreducible factors of an irreducible bound f are all similar and therefore of the same degree d ([9], Chap. 3, Corollary of Th. 20 or Theorem 4.3 of [6]). The first assertion shows that in our situation this degree d is equal to $\operatorname{deg}(f) / 2$.
The implications $(i i i) \Rightarrow(i i) \Rightarrow(i)$ are straightforward.
To prove $(i) \Rightarrow(i i i)$, we proceed by induction on m. According to Lemma 2, it is true for $m=2$. Suppose $m>2$ and that the result holds for $i<m$. Let $h=h_{1} \cdots h_{m}$ be lclm-decomposable where h_{i} are irreducible polynomials with bound f. Then, there exist $g_{1}, \ldots, g_{m} \in R$ such that $h=g_{1} \cdots g_{m}$ where $\left(g_{1}, \ldots, g_{m}\right) \neq\left(h_{1}, \ldots, h_{m}\right)$. If $g_{m}=h_{m}$ then $g_{1} \cdots g_{m-1}=h_{1} \cdots h_{m-1}$ is lclm-decomposable and one concludes using the induction hypothesis. Otherwise $\underset{\tilde{\sim}}{\ln } \operatorname{lm}\left(g_{m}, h_{m}\right)=\tilde{h}_{m-1} h_{m}$ divides on the right $h=h_{1} \cdots h_{m}=\tilde{h}_{1} \cdots \tilde{h}_{m-1} h_{m}$. So $h_{1} \cdots h_{m-1}=$
$\tilde{h}_{1} \cdots \tilde{h}_{m-1}$. If there exist i such that $\tilde{h}_{i} \neq h_{i}$, then $h_{1} \cdots h_{m-1}$ is lclmdecomposable and one concludes using the induction hypothesis; otherwise $h_{m-1}=\tilde{h}_{m-1}$ and $\operatorname{lclm}\left(g_{m}, h_{m}\right)=h_{m-1} h_{m}$ is lclm-decomposable; so according to Lemma $2, h_{m-1} h_{m}=f$.

Proposition 2 Let $R=\mathbb{F}_{q}[X ; \theta]$ with $\theta^{2}=i d, 1 \leq m \in \mathbb{N}$ and $f \in Z(R)$ an irreducible bound of degree $2 m$ and capacity κ which is reducible in R. The number $A(m)$ of distinct monic right factors $g \in R$ of degree $m \operatorname{deg}(f) / 2$ of f^{m} is $\left((\kappa-1)^{m+1}-1\right) /(\kappa-2)$.

Proof: The irreducible factors of f^{m} and therefore also of its right factor g are all of degree $\operatorname{deg}(f) / 2$. If $g=g_{1} g_{2} \cdots g_{m}$ is a factorization into irreducible, and $\overline{g_{i}}$ the complement of g_{i}, then $f^{m}=\overline{g_{m}} \cdots \overline{g_{2}} \overline{g_{1}} g_{1} g_{2} \cdots g_{m}$. Therefore g is always a divisor of f^{m} and that we only need to count the different polynomials $g=g_{1} g_{2} \cdots g_{m}$.

1. If g is divisible by the central bound $f \in Z(R)$, then $g=g^{\prime} f$ where $g^{\prime}=g_{1}^{\prime} \cdots g_{m-2}^{\prime}$ and g_{i}^{\prime} of degree $\operatorname{deg}(f) / 2:$ there are $A(m-2)$ such polynomials.
2. If g is not divisible by f then according to Lemma 3 , for all i, g_{i+1} is not the complement of g_{i}. There are κ choices for g_{1} and $\kappa-1$ choices for each factor $g_{2}, g_{3} \ldots, g_{m}$.

From $A(0)=1, A(1)=\kappa$ and $A(m)=A(m-2)+\kappa(\kappa-1)^{m-1}$ we get the result.

Corollary 2 Let s be a nonnegative integer. The number of module θ-cyclic codes over \mathbb{F}_{4} with length 2^{s} and dimension 2^{s-1} is $2^{2^{s-1}+1}-1$.

Proof: $\quad X^{2^{s}}-1=\left(X^{2}+1\right)^{2^{s-1}}$ in $\mathbb{F}_{4}[X ; \theta]$, and the capacity of $X^{2}+1$ is $\kappa=3$, so according to the previous proposition applied with $m=2^{s-1}$, the skew polynomial $X^{2^{s}}-1$ has $2^{2^{s-1}+1}-1$ monic right factors of degree 2^{s-1} in $\mathbb{F}_{4}[X ; \theta]$.

Proposition 3 Let $R=\mathbb{F}_{q}[X ; \theta]$ with $\theta^{2}=i d, 1 \leq m \in \mathbb{N}, f \in Z(R)$ an irreducible bound which is reducible in R and $h_{i} \in R$ and $g_{j} \in R$ monic irreducible polynomials having all the same bound f. If $g_{m} g_{m-1} \cdots g_{1}$ is lclmindecomposable and $f^{m}=h_{1} \cdots h_{m-1} h_{m} g_{m} g_{m-1} \cdots g_{1}$, then h_{i} is the complement of g_{i}.

Proof: We proceed by induction on m. If $m=1$ the result is trivial. Suppose that the result holds for $i<m$.

1. If h_{m} is the complement of g_{m}, then we can divide both sides by the central polynomial $h_{m} g_{m}=f$ to obtain $h_{1} \cdots h_{m-1} g_{m-1} \cdots g_{1}=f^{m-1}$. Since $g_{m-1} \cdots g_{1}$ is lclm-indecomposable, we obtain the result by induction.
2. Otherwise $h_{1} \cdots h_{m-1} h_{m}$ is divisible by f. After simplification we obtain
$\left(h_{1}^{\prime} \cdots h_{m-2}^{\prime} h_{m-3}^{\prime} g_{m}\right)\left(g_{m-1} \cdots g_{1}\right)=f^{m-1}$. Applying the induction hypothesis we obtain the contradiction that g_{m} is the complement of g_{m-1} and therefore that f divides $g_{m} \cdots g_{1}$. Since $g_{m-1} \cdots g_{1}$ is lclmindecomposable, the above lemma shows that this case is not possible.

In the following we want to decide in some special cases if a product of linear polynomials $\left(X+\alpha_{1}\right)\left(X+\alpha_{2}\right) \cdots\left(X+\alpha_{m}\right)$ generates a self-dual code. The main difficulty is that the skew reciprocal polynomial of a monic polynomial is not always monic: $(X+\alpha)^{*}=\theta(\alpha) X+1=\theta(\alpha)(X+1 / \theta(\alpha))$.

Lemma 4 Consider $0<m \in \mathbb{N}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ in $\mathbb{F}_{q} \backslash\{0\}$. For $g=$ $\left(X+\alpha_{1}\right)\left(X+\alpha_{2}\right) \cdots\left(X+\alpha_{m}\right) \in \mathbb{F}_{q}[X ; \theta]$ we have $g^{*}=$
$\theta^{m}\left(\alpha_{1} \cdots \alpha_{m}\right)\left(X+\frac{\theta^{m-1}\left(\alpha_{1} \cdots \alpha_{m-1}\right)}{\theta^{m}\left(\alpha_{1} \cdots \alpha_{m}\right)}\right) \cdots\left(X+\frac{\theta\left(\alpha_{1}\right)}{\theta^{2}\left(\alpha_{1} \alpha_{2}\right)}\right)\left(X+\frac{1}{\theta\left(\alpha_{1}\right)}\right)$
from which we can deduce $g^{* \ell}$ by dividing on the left by $\theta^{m}\left(\alpha_{1} \cdots \alpha_{m}\right)$.
Proof: We proceed by induction on m. For $m=1$ the result holds. Assume that the result holds for $k<m$. Lemma 1 shows

$$
\left(\left(X+\alpha_{1}\right) \cdots\left(X+\alpha_{m}\right)\right)^{*}=\theta^{m-1}\left(\left(X+\alpha_{m}\right)^{*}\right)\left(\left(X+\alpha_{1}\right) \cdots\left(X+\alpha_{m-1}\right)\right)^{*} .
$$

By induction we only need to express $h=\theta^{m}\left(\left(X+\alpha_{m}\right)^{*}\right) \theta^{m-1}\left(\alpha_{1} \cdots \alpha_{m-1}\right)$
as a product of a constant times a monic linear polynomial. By direct computation we obtain

$$
\begin{aligned}
h & =\theta^{m}\left(\alpha_{m}\right)\left(X+\frac{1}{\theta\left(\alpha_{m}\right)}\right) \theta^{m-1}\left(\alpha_{1} \cdots \alpha_{m-1}\right) \\
& =\theta^{m}\left(\alpha_{1} \cdots \alpha_{m}\right)\left(X+\frac{\theta^{m-1}\left(\alpha_{1} \cdots \alpha_{m-1}\right)}{\theta^{m}\left(\alpha_{1} \cdots \alpha_{m}\right)}\right) .
\end{aligned}
$$

The claim now follows by induction.

Proposition 4 Consider $\mathbb{F}_{4}=\mathbb{F}_{2}(a)$, θ the Frobenius automorphism $a \mapsto$ a^{2} and $h \in \mathbb{F}_{4}[X ; \theta]$ to be monic of degree $m \in \mathbb{N}$. Then $h^{* \ell} h=\left(X^{2}+1\right)^{m}$ if and only if

$$
h= \begin{cases}(X+1)^{m} & \text { if } m \text { is odd } \\ (X+1)^{m-1}(X+u), u \in\left\{1, a, a^{2}\right\} & \text { if } m \text { is even } .\end{cases}
$$

Proof: $\quad(\Leftarrow)$: If m is odd, the previous Lemma shows that the skew polynomial $h=(X+1)^{m}$ satisfies $h^{* \ell} h=\left(X^{2}+1\right)^{m}$. Let us assume that m is even and consider $h=(X+1)^{m-1}(X+u)$ with $u \in \mathbb{F}_{4} \backslash\{0\}$. Then $h^{*}=\Theta\left((X+u)^{*}\right)(X+1)^{m-1}=u\left(X+u^{2}\right)(X+1)^{m-1}$, which gives $h^{* \ell}=\left(X+u^{2}\right)(X+1)^{m-1}$ and $h h^{* \ell}=\left(X^{2}+1\right)^{m}$. Furthermore this product commutes because $\left(X^{2}+1\right)^{m}$ is central.
(\Rightarrow) : The polynomial h is of the form $\left(X+\alpha_{1}\right) \cdots\left(X+\alpha_{m}\right)$. We will show by induction that we can choose $\alpha_{1}=\cdots=\alpha_{m}=1$ for m odd and $\alpha_{1}=\cdots=\alpha_{m-1}=1$ for m even. This will show that h must be one of the above polynomials and prove the claim.

1. For $m=1$ we get from the lemma that $\left(X+1 / \theta\left(\alpha_{1}\right)\right)\left(X+\alpha_{1}\right)=$ $X^{2}+1$ or that $X+1 / \theta\left(\alpha_{1}\right)$ is the complement of $X+\alpha_{1}$. Using formula (3) we obtain $1 / \theta\left(\alpha_{1}\right)=1 / \alpha_{1}$ and $\theta\left(\alpha_{1}\right)=1 / \alpha_{1}$. Therefore $\alpha_{1}^{2}+1=\left(\alpha_{1}+1\right)^{2}=0$ and $\alpha_{1}=1$.
2. For $m=2$. If $h=\left(X+\alpha_{1}\right)\left(X+\alpha_{2}\right)$ is lclm-decomposable, then h is divisible and therefore equal to to $X^{2}+1=(X+1)(X+1)$. If h is lclm-indecomposable, then combining proposition 3 and the previous lemma we obtain that $X+1 / \theta\left(\alpha_{1}\right)$ is the complement of $X+\alpha_{1}$. Like in the case $m=1$ this implies that $\alpha_{m-1}=1$.
3. Suppose $m>2$ and that the result holds for $i<m$. If $X^{2}+1$ divides h, then $h=q\left(X^{2}+1\right)$. Lemma 1 shows that $h^{* \ell} h=\left(X^{2}+\right.$ 1) $q^{* \ell} q\left(X^{2}+1\right)$. Therefore $q^{*} q=\left(X^{2}+1\right)^{m-2}$ and we obtain the result for q by induction, which gives also the result for $h=\left(X^{2}+1\right) q$. Otherwise $h=\left(X+\alpha_{1}\right) \cdots\left(X+\alpha_{m}\right)$ is lclm-indecomposable (Lemma 3). Combining proposition 3 and the previous lemma we obtain that $X+\theta^{i-1}\left(\alpha_{1} \cdots \alpha_{i-1}\right) / \theta^{i}\left(\alpha_{1} \cdots \alpha_{i}\right)$ is the complement of $X+\alpha_{i}$. Dividing $\left(X^{2}+1\right)^{m}$ on the right by $X+\alpha_{m}$ and on the left by its complement, we obtain the result by induction for $\alpha_{1}, \ldots, \alpha_{m-1}$. If m is even we get $\alpha_{1}=\ldots=\alpha_{m-1}=1$ and the result follows. If m is odd we get $\alpha_{1}=\ldots=\alpha_{m-2}=1$. Using $\alpha_{1} \alpha_{2} \cdots \alpha_{m-2}=1$ we get from the above formula that $X+1 / \theta\left(\alpha_{m-1}\right)$ is the complement of $X+\alpha_{m-1}$. Like in the case $m=1$ this implies that $\alpha_{m-1}=1$ and completes the proof.

This shows that for any integer $s \geq 1$, from the $2^{2^{s-1}+1}-1 \theta$-cyclic codes over \mathbb{F}_{4} of length 2^{s}, only 3 are self-dual and proves Conjecture 1 of [4]:

Corollary 3 Consider $\mathbb{F}_{4}=\mathbb{F}_{2}(a)$, θ the Frobenius automorphism $a \mapsto a^{2}$, $s>1$ an integer and $g \in \mathbb{F}_{4}[X ; \theta]$ monic of degree 2^{s-1}. The code $(g)_{2^{s}}^{\theta}$ is self-dual if and only if,

$$
g=(X+u)(X+1)^{2^{s-1}-1}, u \in\left\{1, a, a^{2}\right\} .
$$

Proof: The code $(g)_{2^{s}}^{\theta}$ is self-dual if and only if $g=h^{* \ell}$ with $h^{* \ell} h=X^{2^{s}}-1$. According to the previous proposition applied with $m=2^{s-1}$, one gets $h=(X+1)^{2^{s-1}-1}(X+u)$ with $u \in\left\{1, a, a^{2}\right\}$ so according to Lemma 1, $h^{*}=\Theta\left(1+u^{2} X\right)(X+1)^{2^{s-1}-1}$ and $g=h^{*}=\left(X+u^{2}\right)(X+1)^{2^{s-1}-1}$.

4 Construction of self-dual θ-codes with $\theta^{2}=$ id

In [10] a characterization of the generator polynomials of (classical) selfdual cyclic codes of length n over $\mathbb{F}_{2^{m}}$ is given using the factorization of $X^{n}-1$ in $\mathbb{F}_{2^{m}}[X]$. In [3], self-dual θ-cyclic codes over \mathbb{F}_{4} are constructed by solving polynomial systems satisfied by the coefficients of their generator
polynomials. Since the polynomial system becomes increasingly difficult to solve, we propose in this section a construction that allows to construct selfdual codes from suitable smaller degree polynomials.

Proposition 5 Consider a finite field \mathbb{F}_{q} of characteristic $p, R=\mathbb{F}_{q}[X ; \theta]$ with $\theta^{2}=i d$ and $k=p^{s} \times t$ with $s \in \mathbb{N}^{*}$ and t an integer not multiple of p. For $h \in R$ of degree k the polynomial $g=h^{* \ell}$ generates a self-dual θ-code over \mathbb{F}_{q} of length $n=2 k$ if and only if

1. $Y^{t}-\varepsilon=f_{1}(Y) f_{2}(Y) \cdots f_{m}(Y) \in\left(\mathbb{F}_{q}\right)^{\theta}[Y]=Z(R) \quad(\varepsilon= \pm 1$ and $\left.Y=X^{2}\right)$, where $f_{i}\left(X^{2}\right) \in R$ are monic polynomials that are pairwise coprime with the property that $f_{i}^{* \ell}=f_{i}$.
2. $h_{i}^{*} h_{i}=f_{i}^{p^{s}}$
3. $h=\operatorname{lcrm}\left(h_{1}, \ldots, h_{m}\right)$

Proof:

1. (\Leftarrow) : We have to prove that $h^{* \ell} h=X^{2 t p^{s}}-\varepsilon$ (Corollary 1). From $h=\operatorname{lcrm}\left(h_{1}, \ldots, h_{m}\right)$ we obtain that $h=h_{i} q_{i}$ with $q_{i} \in R$. Lemma 1 shows that $h^{* \ell}=\tilde{q}_{i} h_{i}^{* \ell}$ where $\tilde{q}_{i} \in R$. Therefore $h^{* \ell} h=\tilde{q}_{i}\left(h_{i}^{* \ell} h_{i}\right) q_{i}=$ $\tilde{q}_{i}\left(f_{i}\right)^{p^{s}} q_{i}=\tilde{q}_{i} q_{i}\left(f_{i}\right)^{p^{s}}$ (because $\left(f_{i}\right)^{p^{s}} \in\left(\mathbb{F}_{q}\right)^{\theta}\left[X^{2}\right]$ is central), showing that $\operatorname{lclm}\left(\left(f_{1}\right)^{p^{s}}, \ldots,\left(f_{m}\right)^{p^{s}}\right)$ is a right divisor of $h^{* \ell} h$ in R. To prove the claim it remains to show that

$$
\begin{equation*}
\operatorname{lclm}\left(\left(f_{1}\right)^{p^{s}}, \ldots,\left(f_{m}\right)^{p^{s}}\right)=\left(f_{1}\right)^{p^{s}} \cdots\left(f_{m}\right)^{p^{s}}=X^{n}-\varepsilon \tag{4}
\end{equation*}
$$

Comparing degrees we obtain from relation (4) that $h^{*} h=X^{n}-$ ε. In order to prove the first equality of relation (4) we first show that the least common right multiple of polynomials in $Z(R) \subset R$ coincide when viewed as polynomials either in R or in the commutative polynomial ring $Z(R)$. Both R and $Z(R)$ are euclidean rings and the (left and right for R) euclidean division has a unique quotient and unique remainder. Therefore a division in $Z(R)$ is also a (left and right) division in R. Since the lclm can be computed in both cases using the extended euclidean algorithm ([6], Section 2), they coincide in both rings. In the commutative ring $Z(R)=\left(\mathbb{F}_{q}\right)^{\theta}[Y]$ the first equality of relation (4) is a consequence of Gauss Lemma and the claim follows.
2. (\Rightarrow) : Corollary 1 shows that if $g=h^{* \ell}$ generates a self-dual θ-code over \mathbb{F}_{q} of length $n=2 k$, then $h^{* \ell} h=X^{n}-\varepsilon=\left(\left(X^{2}\right)^{t}-\varepsilon\right)^{p^{s}}=$ $\left(Y^{t}-\varepsilon\right)^{p^{s}}\left(\right.$ where $\left.Y=X^{2}\right)$. Since $\left(Y^{t}-\varepsilon\right)^{* \ell}=Y^{t}-\varepsilon$, a decomposition $Y^{t}-\varepsilon=f_{1}(Y) f_{2}(Y) \cdots f_{m}(Y) \in\left(\mathbb{F}_{q}\right)^{\theta}[Y]=Z(R)$ into pairwise coprime $f_{i}(Y)$ with $f_{i}^{* \ell}=f_{i}$ must exist in $\mathbb{F}_{q}[Y]$. We noted above that the division in $Z(R)$ and R coincide in $Z(R)$, so that $\left(f_{i}^{p^{s}}\right)^{* \ell}=f_{i}^{p^{s}}$ are pairwise coprime in $Z(R)$ and R. According to ([6], Theorem 4.1), we have $h^{* \ell}=\operatorname{lclm}\left(h_{1}{ }^{* \ell}, \ldots, h_{m}{ }^{* \ell}\right)$ where $h_{i}{ }^{* \ell}=\operatorname{gcrd}\left(f_{i}^{p^{s}}, h^{* \ell}\right)$ are pairwise coprime in R. In particular, according to [12], $\operatorname{deg}\left(\operatorname{lclm}\left(h_{i}{ }^{* \ell}, h_{j}{ }^{* \ell}\right)\right)=$ $\operatorname{deg}\left(h_{i}{ }^{* \ell}\right)+\operatorname{deg}\left(h_{j}{ }^{* \ell}\right)$ for $i \neq j$ and $\operatorname{deg}\left(h^{* \ell}\right)=\operatorname{deg}\left(\operatorname{lclm}\left(h_{i}{ }^{* \ell}\right)\right)=$ $\sum \operatorname{deg}\left(h_{i}^{* \ell}\right)$.
We now show that h_{i} divides $f_{i}^{p^{s}}$ and h on the left:

- Let δ_{i} be the degree of $f_{i}^{p^{s}}$ and d_{i} be the degree of h_{i}. Since $f_{i} \in Z(R), \delta_{i}$ is even. Applying Lemma 1 to $f_{i}^{p^{s}}=q_{i} h_{i}^{*}$ we obtain $\left(f_{i}^{p^{s}}\right)^{*}=\Theta^{\delta_{i}-d_{i}}\left(h_{i}^{* *}\right) q_{i}^{*}=\Theta^{\delta_{i}-d_{i}}\left(\Theta^{d_{i}}\left(h_{i}\right)\right) q_{i}^{*}=\Theta^{\delta_{i}}\left(h_{i}\right) q_{i}^{*}=h_{i} q_{i}^{*}\left(\delta_{i}\right.$ is even and $\left.\theta^{2}=i d\right)$. So h_{i} divides on the left $\left(f_{i}^{p^{s}}\right)^{*}$. As $\left(f_{i}\right)^{p^{s}}$ is central, it is equal to $\left(f_{i}^{p^{s}}\right)^{*}$ times a constant, so h_{i} divides on the left $\left(f_{i}^{p^{s}}\right)^{* \ell}=f_{i}^{p^{s}}$.
- Since $h_{i}^{* \ell}$ divides $h^{* \ell}$ on the right, we also have $h^{*}=p_{i} h_{i}^{*}$. Using Lemma 1, we obtain $\Theta^{k}(h)=h^{* *}=\Theta^{k-d_{i}}\left(h_{i}^{* *}\right) p_{i}^{*}$. Therefore $\Theta^{k}(h)=\Theta^{k-d_{i}}\left(\Theta^{d_{i}}\left(h_{i}\right)\right) p_{i}^{*}=\Theta^{k}\left(h_{i}\right) p_{i}^{*}$. Since Θ is a morphism of rings, h_{i} divides h on the left.

Since $h_{i}^{* \ell}$ divides $h^{* \ell}$ on the right and h_{i} divides h on the left, we obtain $h^{* \iota} h=\tilde{g}_{i} h_{i}^{* l} h_{i} g_{i}$. Since two factors of a decomposition of the central polynomial $h^{* l} h=\tilde{g}_{i} h_{i}^{* l} h_{i} g_{i}$ into two factors commute, $h_{i}^{* l} h_{i}$ divides $h^{* l} h=X^{n}-\varepsilon$ on the right. According to Theorem 4.1 of [6], $h_{i}^{* \ell} h_{i}=\operatorname{lclm}\left(\operatorname{gcrd}\left(h_{i}^{* \ell} h_{i}, f_{j}^{p^{s}}\right), j=1, \ldots m\right)$. We now note that both $h_{i}^{* \ell}$ and h_{i} divide the central polynomial $f_{i}^{p^{s}}$, so that the product $h_{i}^{* \ell} h_{i}$ divides $\left(f_{i}^{p^{s}}\right)^{2}$. For $j \neq i$ we obtain $\operatorname{gcrd}\left(h_{i}^{* \ell} h_{i}, f_{j}^{p^{s}}\right)=1$ and $h_{i}^{* \ell} h_{i}=\operatorname{gcrd}\left(h_{i}^{* \ell} h_{i}, f_{i}^{p^{s}}\right)$. In particular, $h_{i}^{* \ell} h_{i}$ divides $f_{i}^{p^{s}}$.
For $i \in\{1, \ldots, m\}$ the polynomials $f_{i}^{p^{s}}$ are pairwise coprime, showing that their divisors $h_{i}^{* \ell} h_{i}$ are also pairwise coprime. Therefore

$$
\operatorname{deg}\left(\operatorname{lclm}\left(h_{i}^{* \ell} h_{i}\right)\right)=\sum_{i=0}^{m} \operatorname{deg}\left(h_{i}^{* \ell} h_{i}\right)=2 \sum_{i=0}^{m} \operatorname{deg}\left(h_{i}^{* \ell}\right)
$$

$$
=2 \operatorname{deg}\left(h^{* \ell}\right)=\sum_{i=0}^{m} \operatorname{deg}\left(f_{i}^{p^{s}}\right) .
$$

From $\sum_{i=0}^{m} \operatorname{deg}\left(h_{i}^{* \ell} h_{i}\right)=\sum_{i=0}^{m} \operatorname{deg}\left(f_{i}^{p^{s}}\right)$ and the fact that $h_{i}^{* \ell} h_{i}$ divides $f_{i}^{p^{s}}$, we obtain $h_{i}{ }^{*}{ }^{\ell} h_{i}=f_{i}^{p^{s}}$.
As h_{i} divides h on the left, $\operatorname{lcrm}\left(h_{i}, i=1, \ldots, m\right)$ also divides h on the left. Since $\operatorname{gcrd}\left(h_{i}^{* \ell}, h_{j}^{* \ell}\right)=1$ implies $\operatorname{gcld}\left(h_{i}, h_{j}\right)=1$ we have $\operatorname{deg}\left(\operatorname{lcrm}\left(h_{i}, i=1, \ldots, m\right)\right)=\sum \operatorname{deg}\left(h_{i}\right)=\operatorname{deg}(h)$. Therefore $h=$ $\operatorname{lcrm}\left(h_{i}, i=1, \ldots, m\right)$.

Example 3 Let $\mathbb{F}_{4}=\mathbb{F}_{2}(a)$, θ the Frobenius automorphism $a \mapsto a^{2}$ and $R=\mathbb{F}_{4}[X ; \theta]$. In $\mathbb{F}_{2}[Y]=Z(R)$ (where $Y=X^{2}$), we have $Y^{39}-1=$ $f_{1}(Y) f_{2}(Y) f_{3}(Y) f_{4}(Y)$ where:
$f_{1}(Y)=Y+1$
$f_{2}(Y)=Y^{2}+Y+1$
$f_{3}(Y)=Y^{12}+Y^{11}+Y^{10}+Y^{9}+Y^{8}+Y^{7}+Y^{6}+Y^{5}+Y^{4}+Y^{3}+Y^{2}+Y+1$
$f_{4}(Y)=\left(Y^{12}+Y^{11}+Y^{10}+Y^{9}+Y^{5}+Y^{4}+Y^{3}+Y^{2}+1\right)$

$$
\left(Y^{12}+Y^{11}+Y^{10}+Y^{9}+Y^{8}+Y^{7}+Y^{6}+Y^{5}+Y^{4}+Y^{3}+Y^{2}+Y+1\right)
$$

The polynomials f_{i} are pairwise coprime polynomials satisfying $f_{i}^{* \ell}=f_{i}$ $(i \in\{1, \ldots, 4\})$.

The skew polynomials
$h_{1}=X+1$
$h_{2}=X^{2}+X+1$
$h_{3}=X^{12}+a X^{11}+X^{10}+X^{8}+a X^{6}+a^{2} X^{4}+a^{2} X^{2}+X+a^{2}$
$h_{4}=X^{24}+a^{2} X^{23}+X^{22}+a^{2} X^{20}+X^{19}+a^{2} X^{18}+X^{17}+a X^{15}+X^{13}+a^{2} X^{12}$
$+a^{2} X^{11}+a X^{9}+a^{2} X^{7}+a^{2} X^{6}+a^{2} X^{5}+a^{2} X^{4}+a X^{2}+X+a$
satisfy $h_{i}^{* \ell} h_{i}=f_{i}\left(=f_{i}\left(X^{2}\right)\right) \quad(i \in\{1,2,3,4\}$.
According to Proposition 5 for $h=\operatorname{lcrm}\left(h_{1}, h_{2}, h_{3}, h_{4}\right)$ the skew polynomial $g=h^{* \ell}=\operatorname{lclm}\left(h_{1}^{* \ell}, h_{2}^{* \ell}, h_{3}^{* \ell}, h_{4}^{* \ell}\right)$ below
$X^{39}+a^{2} X^{38}+a^{2} X^{37}+X^{36}+a^{2} X^{34}+a X^{33}+a X^{32}+a^{2} X^{31}+a X^{30}+a^{2} X^{29}+a^{2} X^{28}+$
$a X^{27}+a^{2} X^{26}+a^{2} X^{25}+X^{24}+a^{2} X^{22}+X^{20}+X^{19}+a^{2} X^{17}+X^{15}+a^{2} X^{14}+a^{2} X^{13}$
$+a X^{12}+a^{2} X^{11}+a^{2} X^{10}+a X^{9}+a^{2} X^{8}+a X^{7}+a X^{6}+a^{2} X^{5}+X^{3}+a^{2} X^{2}+a^{2} X+1$
generates a $[78,39]$ self-dual code over \mathbb{F}_{4}. Using the generator matrix of the code (cf. [3, 2]) one can verify in Magma (cf. [1]) that its minimum distance is equal to 19. Therefore g generates a $[78,39,19]_{4}$ self-dual code.

References

[1] Bosma, W., Cannon, J., Playoust, C., 1997. The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (3-4), 235-265, computational algebra and number theory (London, 1993).
[2] Boucher, D., Ulmer, F., 2009a. Codes as modules over skew polynomial rings. In: Cryptography and coding. Vol. 5921 of Lecture Notes in Comput. Sci. Springer, Berlin, pp. 38-55.
[3] Boucher, D., Ulmer, F., 2009b. Coding with skew polynomial rings. J. Symbolic Comput. 44 (12), 1644-1656.
[4] Boucher, D., Ulmer, F., 2011. A note on the dual codes of module skew codes. Vol. 7089 of Lecture Notes in Comput. Sci. pp. 230-243.
[5] Gabidulin, È. M., 1985. Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21 (1), 3-16. Translated in: Problems Inform. Transmission, 1985, 21 (1), pp. 1-12
[6] Giesbrecht, M., 1998. Factoring in skew-polynomial rings over finite fields. J. Symbolic Comput. 26 (4), 463-486.
[7] Grassl, M., Gulliver, T. A., 2009. On circulant self-dual codes over small fields. Des. Codes Cryptogr. 52 (1), 57-81.
[8] Gulliver, T. A., Harada, M., Miyabayashi, H., 2007. Double circulant and quasi-twisted self-dual codes over \mathbb{F}_{5} and \mathbb{F}_{7}. Adv. Math. Commun. 1 (2), 223-238.
[9] Jacobson, N., 1943. The Theory of Rings. American Mathematical Society Mathematical Surveys, vol. I. American Mathematical Society, New York.
[10] Jia, Y., Ling, S., Xing, C., 2011. On self-dual cyclic codes over finite fields. IEEE Trans. Inform. Theory 57 (4), 2243-2251.
[11] Mouaha, C., 1992. On q-ary images of self-dual codes. Appl. Algebra Engrg. Comm. Comput. 3 (4), 311-319.
[12] Ore, O., 1933. Theory of non-commutative polynomials. Ann. of Math. (2) 34 (3), 480-508.

[^0]: *IRMAR, CNRS, UMR 6625, Université de Rennes 1, Université européenne de Bretagne, Campus de Beaulieu, F-35042 Rennes

[^1]: ${ }^{1}$ In [9] the term decomposable is used

