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Self-dual skew codes and factorization of skew

polynomials

D. Boucher and F. Ulmer∗

July 19, 2012

Abstract

In previous work the authors generalized cyclic codes to the non-
commutative polynomial setting and used this approach to construct
new self-dual codes over IF4. According to this previous result, such a
self-dual code must be θ-constacyclic, i.e. the generator polynomial is
a right divisor of some noncommutative polynomial Xn − a. The first
result of the paper is that such a self-dual code must be θ-cyclic or
θ-negacyclic, i.e. a = ±1. For codes of length 2s the noncommutative
polynomial approach produced surprisingly poor results. We give an
explanation of the length 2s phenomena by showing that in this case
the generating skew polynomial has some unique factorization prop-
erties. We also construct self-dual skew codes using least common
left multiples of noncommutative polynomials and use this to obtain
a new [78, 39, 19]4 self-dual code.

1 Introduction

In [2], self-dual skew codes with good minimum distances were obtained.
However, like for cyclic codes ([7]), there is a phenomena in lengths which
are a power of 2. For the lengths 4, 8, 16, 32 and 64 there are only three self-
dual skew codes, while otherwise there is a large number of self-dual codes
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which increases with the length (cf. [3]). The authors conjectured in [4] that
for any s there are only three self-dual skew codes of length 2s.

The aim of this paper is to use the factorization of skew polynomials for
studying self-dual skew codes. This allows to prove the above conjecture and
to give an iterative construction of self-dual skew codes using least common
multiples.

The material is organized as follows.
The section 2 is devoted to some generalities about skew codes ([2]) and

self-dual skew codes ([4]).
In section 3 it is proven that for all nonnegative s, there are 22s−1+1 − 1

θ-cyclic codes of length 2s and dimension 2s−1 over IF4 but that among them
only three are self-dual for s > 1. This gives an answer to Conjecture 1 of
[4].

In section 4, we give a construction of self-dual module θ-codes which is
based on the factorization and least common right multiples (lcrm) of skew
polynomials. An example of a [78, 39, 19]4 self-dual code is given.

2 Self-dual skew codes over a finite field

Starting from the finite field IFq and an automorphism θ of IFq, a ring struc-
ture is defined in [8] on the set:

R = IFq[X; θ] = {anX
n + . . . + a1X + a0 | ai ∈ IFq and n ∈ IN} .

The addition in R is defined to be the usual addition of polynomials and
the multiplication is defined by the basic rule X · a = θ(a) X (a ∈ IFq) and
extended to all elements of R by associativity and distributivity. The ring R
is called a skew polynomial ring and its elements are skew polynomials. It is
a left and right euclidean ring whose left and right ideals are principal. Left
and right gcd (gcrd) and lcm (lclm) exist in R and can be computed using
the left and right euclidean algorithm ([5], Section 2).

Following [3] we define linear codes using the skew polynomial ring R.

Definition 1 Consider R = IFq[X; θ] and let f ∈ R be of degree n. A
module θ-code (or module skew code) C is a left R-submodule Rg/Rf ⊂
R/Rf in the basis 1, X, . . . , Xn−1 where g is a right divisor of f in R. We
denote this code C = (g)θ

n. If there exists an a ∈ IFq \ {0} such that g divides
Xn − a on the right then the code (g)θ

n is θ-constacyclic. We will denote it
(g)θ,a

n . If a = 1, the code is θ-cyclic and if a = −1, it is θ-negacyclic.
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Let us now recall that the euclidean dual or dual of a linear code C of
length n over IFq can be defined with the euclidean scalar product :

∀x, y ∈ IFn
q , < x, y >=

n
∑

i=1

xiyi

as C⊥ = {x ∈ IFn
q ,∀y ∈ C, < x, y >= 0}. A linear code C over IFq is

euclidean self-dual or self-dual if C = C⊥.
To characterize self-dual module θ-codes, we need to define the skew

reciprocal polynomial of a skew polynomial (definition 3 of [4]) and also the
left monic skew reciprocal polynomial.

Definition 2 The skew reciprocal polynomial of h =
∑m

i=0 hi X i ∈ R of
degree m is h∗ =

∑m

i=0 Xm−i · hi =
∑m

i=0 θi(hm−i) X i. The left monic skew
reciprocal polynomial of h is h∗ℓ := (1/θm(h0)) · h

∗.

Since θ is an automorphism, the map ∗ : R → R given by h 7→ h∗ is a
bijection. In particular for any g ∈ R there exists a unique h ∈ R such that
g = h∗ and if g is monic, then g = h∗ℓ .

In order to describe some properties of the skew reciprocal polynomial we
need the following morphism of rings already used in [4]:

Θ: R → R
n

∑

i=0

aiX
i 7→

n
∑

i=0

θ(ai)X
i

Lemma 1 ([4]) Let f ∈ R be a skew polynomial of degree n such that f =
hg, where h and g are skew polynomials of degrees k and n − k. Then

1. f ∗ = Θk(g∗)h∗

2. (f ∗)∗ = Θn(f).

In [4], it is established that a module θ-code which is self-dual is necessar-
ily θ-constacyclic (Corollary 1 of [4]). In this case its generator polynomial g
divides on the right Xn−a for some a in IFq \{0} where n = 2k is the length
of the code. Furthermore the dual of (g)θ,a

n is generated by the polynomial
h∗ℓ where h is defined by the two equivalent following equalities :

Θn(h) · g = Xn − a ⇔ g · h = Xn − θ−k(a).

The following proposition improves Corollary 1 of [4] :
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Proposition 1 A self-dual module θ-code is either θ-cyclic or θ-negacyclic.

Proof: If C = (g)θ
n is a self-dual module θ-code, then C is necessarily

θ-constacyclic ( [4], Corollary 1). Let a be in IFq \ {0} such that g divides
Xn−a on the right in R. Consider h ∈ R such that Θn(h)·g = Xn − a. From
Lemma 1, we obtain −1

a
Θk−n(g∗)h∗ = Xn − 1

a
, showing that h∗ℓ = 1

θk(h0)
h∗

divides Xn − 1
a

on the right. Since C = (g)θ
n is a self-dual module θ-code we

must have g = h∗ℓ ([4], Theorem 1). So g divides on the right the polynomial
(Xn − a) − (Xn − 1

a
) = a − 1

a
of degree less than g. Therefore a2 = 1.

Combining this result with ([4], Theorem 1) we obtain:

Corollary 1 A module θ-code (g)θ
2k with g ∈ IFq[X; θ] of degree k is self-dual

if and only if g = h∗ℓ and h satisfies

h∗ℓh = X2k − ε with ε ∈ {−1, 1}. (1)

3 Self-dual module θ-codes of length 2s over

IF4.

We keep the notation R = IFq[X; θ] and we denote (IFq)
θ the fixed field of

θ. The properties of the ring R used in this paper can be found in [5, 6].
The center Z(R) of R is is the commutative polynomial subring (IFq)

θ[X |θ|]
in the variable Y = X |θ| where |θ| is the order of θ. We denote Z(R) also
(IFq)

θ[Y ]. Following [6] we call an element of a ring bounded if the left
ideal it generates contains a two-sided ideal. In the ring R all elements are
bounded. The monic generator f of the maximal two-sided ideal contained
in Rf is the bound of f . The generators of two-sided ideals in R are the
elements of the form Xmf where f ∈ Z(R). The two-sided ideals are closed
under multiplication, a bound f is an irreducible bound if the two-sided
ideal (f) is maximal. A bound f with a nonzero constant term belongs to
Z(R) = (IFq)

θ[Y ] and is an irreducible bound if and only if f(Y ) ∈ (IFq)
θ[Y ]

is an irreducible (commutative) polynomial ([6], Chap. 3, Th. 12).

Definition 3 ([6], Chap. 3) h ∈ R is lclm-decomposable1 if h is the least
common left multiple of skew polynomials of degree strictly less than h, i.e.

1In [6] the term decomposable is used
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h = lclm(h1, h2) where hi ∈ R and deg(hi) < deg(h). The polynomial h ∈ R
is lclm-indecomposable if h is not lclm-decomposable.

Theorem 1 ([6], Chap. 3, Th. 5 or [5], Th. 1.3) Let R = IFq[X; θ]. If
h1h2 · · ·hn and g1g2 · · · gm are two decompositions into irreducible factors of
h ∈ R, then m = n and there exists a permutation σ ∈ Sn such that the
R-modules R/hiR and R/gσ(i)R are isomorphic. In particular the degrees of
the irreducible factors of h are unique up to permutation.

The noncommutative ring R is not a unique factorization ring.

Example 1 For IF4 = IF2(a) where a2 + a + 1 = 0 and θ the Frobenius
automorphism a 7→ a2 we have in IF4[X; θ] that (X + a)(X + 1) = X2 +
a2X + a 6= X2 + aX + a = (X + 1)(X + a). Two factors of a central
polynomial always commute:

X2 + 1 = (X + a2)(X + a) = (X + a)(X + a2) = (X + 1)(X + 1). (2)

In a nonunique factorization ring R some factorizations can still be unique.
As we will see, in IF4[X; θ] the polynomials (X + a)(X + a), (X + a)(X + 1),
(X+1)(X+a), (X+a2)(X+a2), (X+a2)(X+1) and (X+1)(X+a2) are lclm-
indecomposable, i.e. their factorization into monic irreducible polynomials is
unique. In IF4[X; θ] the bounds X2 and X2 + 1 are irreducible bounds.

The next theorem characterizes the skew polynomials of R which do have a
unique factorization into irreducible monic skew polynomials :

Theorem 2 ([6], Chap. 3, Th. 21 and 24) Let R = IFq[X; θ] and m ∈ IN∗.

1. If h1, h2, . . . , hm are monic irreducible polynomials of R having the same
irreducible bound f ∈ R, then the product h = h1h2 · · ·hm is an lclm-
indecomposable monic polynomial in R if and only if the bound of h is
fm.

2. An lclm-indecomposable monic polynomial in R has a unique factoriza-
tion into irreducible monic polynomials.

Lemma 2 Let R = IFq[X; θ]. The lclm-decomposable product h1h2 of two
irreducible polynomials h1 and h2 having both the same irreducible bound
f ∈ R is equal to f ∈ R.
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Proof: Otherwise, since the bound of a product divides the products of the
bounds ([6], Chap. 3, Th. 12), the bound of h1h2 is f 2 and h1h2 would be
lclm-indecomposable by the above theorem.

Definition 4 Consider R = IFq[X; θ] and let f ∈ Z(R) be an irreducible
bound which is reducible in R. To each right factor g of f corresponds a
unique g ∈ IFq[X; θ] such that gg = f called the complement of g (for f).
The number of distinct irreducible factors g ∈ IFq[X; θ] of f is the capacity
κ of f .

Example 2 Consider R = IFq[X; θ] with θ2 = id. If the central bound f =
X2 + λ ∈ Z(R) is reducible in R, then its irreducible monic factors are of
the form X + a ∈ R. The skew polynomial X + ã ∈ R is the complement of
X + a if and only if (X + ã)(X + a) = X2 + (ã + θ(a))X + ãa = X2 + λ,
which is the case if and only if

ã = λ/a and θ(a) = −λ/a (3)

In particular θ2(a) = a. From the previous example we see that the capacity
of the central polynomial X2 + 1 ∈ IF4[X; θ] is κ = 3.

In the following we will be interested in the case where, as in the previous
example, the irreducible factors in R of an irreducible bound f , which is
reducible in R, are of degree deg(f)/2.

Lemma 3 Consider R = IFq[X; θ] with θ2 = id.

1. For g =
∑m

i=0 aiX
i ∈ R and for g =

∑m

i=0(−1)iθi+1(ai)X
i we have

gg ∈ Z(R). In particular the bound of g is of degree ≤ 2 deg(g).

2. Consider a product h = h1 · · ·hm of irreducible monic polynomials hav-
ing all the same irreducible bound f ∈ Z(R) which is reducible in R.
The following assertions are equivalent :

(i) h is lclm-decomposable;

(ii) h is divisible by f ;

(iii) there exists i in {1, . . . ,m − 1} such that hi+1 is the complement
of hi (for f).
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Proof:

1. For l ∈ {0, . . . , 2m}, the l-th coefficient of G = gg is given by Gl =
∑

i+j=l ai(−1)jθl+1(aj).

If l is even, then Gl =
∑

i+j=l ai(−1)l−iθ(aj) =
∑

i+j=l ai(−1)iθ(aj). As

θ2 = id, θ(Gl) =
∑

i+j=l θ(ai)(−1)iaj = Gl.

If l is odd, then

Gl =
∑

i+j=l ai(−1)jaj =
∑

i+j=l,j even,i odd

aiaj −
∑

i+j=l,j odd,i even

aiaj = 0.

So G belongs to (IFq)
θ[X2] = Z(R).

2. The irreducible factors of an irreducible bound f are all similar and
therefore of the same degree d ([6], Chap. 3, Corollary of Th. 20 or
Theorem 4.3 of [5]). The first assertion shows that in our situation this
degree d is equal to deg(f)/2.

The implications (iii) ⇒ (ii) ⇒ (i) are straightforward.

To prove (i) ⇒ (iii), we proceed by induction on m. According to
Lemma 2, it is true for m = 2. Suppose m > 2 and that the result
holds for i < m. Let h = h1 · · ·hm be lclm-decomposable where hi are
irreducible polynomials with bound f . Then, there exist g1, . . . , gm ∈ R
such that h = g1 · · · gm where (g1, . . . , gm) 6= (h1, . . . , hm). If gm = hm

then g1 · · · gm−1 = h1 · · ·hm−1 is lclm-decomposable and one concludes
using the induction hypothesis. Otherwise lclm(gm, hm) = h̃m−1hm di-
vides on the right h = h1 · · ·hm = h̃1 · · · h̃m−1hm. So h1 · · ·hm−1 =
h̃1 · · · h̃m−1. If there exist i such that h̃i 6= hi, then h1 · · ·hm−1 is lclm-
decomposable and one concludes using the induction hypothesis; other-
wise hm−1 = h̃m−1 and lclm(gm, hm) = hm−1hm is lclm-decomposable;
so according to Lemma 2, hm−1hm = f .

Proposition 2 Let R = IFq[X; θ] with θ2 = id, 1 ≤ m ∈ IN and f ∈ Z(R)
an irreducible bound of degree 2m and capacity κ which is reducible in R. The
number A(m) of distinct monic right factors g ∈ R of degree m deg(f)/2 of
fm is

(

(κ − 1)m+1 − 1
)

/(κ − 2).
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Proof: The irreducible factors of fm and therefore also of its right factor g
are all of degree deg(f)/2. If g = g1g2 · · · gm is a factorization into irreducible,
and gi the complement of gi, then fm = gm · · · g2 g1g1g2 · · · gm. Therefore
g is always a divisor of fm and that we only need to count the different
polynomials g = g1g2 · · · gm.

1. If g is divisible by the central bound f ∈ Z(R), then g = g′f where
g′ = g′

1 · · · g
′
m−2 and g′

i of degree deg(f)/2 : there are A(m − 2) such
polynomials.

2. If g is not divisible by f then according to Lemma 3, for all i, gi+1 is
not the complement of gi. There are κ choices for g1 and κ− 1 choices
for each factor g2, g3 . . . , gm.

From A(0) = 1, A(1) = κ and A(m) = A(m − 2) + κ(κ − 1)m−1 we get the
result.

Corollary 2 Let s be a nonnegative integer. The number of module θ-cyclic
codes over IF4 with length 2s and dimension 2s−1 is 22s−1+1 − 1.

Proof: X2s

− 1 = (X2 + 1)2s−1

in IF4[X; θ], and the capacity of X2 + 1 is
κ = 3, so according to the previous proposition applied with m = 2s−1, the
skew polynomial X2s

− 1 has 22s−1+1 − 1 monic right factors of degree 2s−1

in IF4[X; θ].

Proposition 3 Let R = IFq[X; θ] with θ2 = id, 1 ≤ m ∈ IN, f ∈ Z(R)
an irreducible bound which is reducible in R and hi ∈ R and gj ∈ R monic
irreducible polynomials having all the same bound f . If gmgm−1 · · · g1 is lclm-
indecomposable and fm = h1 · · ·hm−1hmgmgm−1 · · · g1, then hi is the comple-
ment of gi.

Proof: We proceed by induction on m. If m = 1 the result is trivial.
Suppose that the result holds for i < m.

1. If hm is the complement of gm, then we can divide both sides by the
central polynomial hmgm = f to obtain h1 · · ·hm−1gm−1 · · · g1 = fm−1.
Since gm−1 · · · g1 is lclm-indecomposable, we obtain the result by induc-
tion.
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2. Otherwise h1 · · ·hm−1hm is divisible by f . After simplification we ob-
tain
(

h′
1 · · ·h

′
m−2h

′
m−3gm

)

(gm−1 · · · g1) = fm−1. Applying the induction hy-
pothesis we obtain the contradiction that gm is the complement of
gm−1 and therefore that f divides gm · · · g1. Since gm−1 · · · g1 is lclm-
indecomposable, the above lemma shows that this case is not possible.

In the following we want to decide in some special cases if a product
of linear polynomials (X + α1)(X + α2) · · · (X + αm) generates a self-dual
code. The main difficulty is that the skew reciprocal polynomial of a monic
polynomial is not always monic: (X +α)∗ = θ(α)X +1 = θ(α) (X + 1/θ(α)).

Lemma 4 Consider 0 < m ∈ IN and α1, α2, . . . , αm in IFq \ {0}. For g =
(X + α1)(X + α2) · · · (X + αm) ∈ IFq[X; θ] we have g∗ =

θm(α1 · · ·αm)

(

X +
θm−1(α1 · · ·αm−1)

θm(α1 · · ·αm)

)

· · ·

(

X +
θ(α1)

θ2(α1α2)

) (

X +
1

θ(α1)

)

from which we can deduce g∗ℓ by dividing on the left by θm(α1 · · ·αm).

Proof: We proceed by induction on m. For m = 1 the result holds. Assume
that the result holds for k < m. Lemma 1 shows

((X + α1) · · · (X + αm))∗ = θm−1 ((X + αm)∗) ((X + α1) · · · (X + αm−1))
∗.

By induction we only need to express h = θm ((X + αm)∗) θm−1(α1 · · ·αm−1)
as a product of a constant times a monic linear polynomial. By direct com-
putation we obtain

h = θm(αm)

(

X +
1

θ(αm)

)

θm−1(α1 · · ·αm−1)

= θm(α1 · · ·αm)

(

X +
θm−1(α1 · · ·αm−1)

θm(α1 · · ·αm)

)

.

The claim now follows by induction.

Proposition 4 Consider IF4 = IF2(a), θ the Frobenius automorphism a 7→
a2 and h ∈ IF4[X; θ] to be monic of degree m ∈ IN. Then h∗ℓh = (X2 + 1)m

if and only if

h =

{

(X + 1)m if m is odd
(X + 1)m−1(X + u), u ∈ {1, a, a2} if m is even.
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Proof: (⇐): If m is odd, the previous Lemma shows that the skew
polynomial h = (X + 1)m satisfies h∗ℓh = (X2 + 1)m. Let us assume
that m is even and consider h = (X + 1)m−1(X + u) with u ∈ IF4 \ {0}.
Then h∗ = Θ((X + u)∗)(X + 1)m−1 = u(X + u2)(X + 1)m−1, which gives
h∗ℓ = (X + u2)(X + 1)m−1 and hh∗ℓ = (X2 + 1)m. Furthermore this product
commutes because (X2 + 1)m is central.
(⇒): The polynomial h is of the form (X + α1) · · · (X + αm). We will
show by induction that we can choose α1 = · · · = αm = 1 for m odd and
α1 = · · · = αm−1 = 1 for m even. This will show that h must be one of the
above polynomials and prove the claim.

1. For m = 1 we get from the lemma that (X + 1/θ(α1)) (X + α1) =
X2 + 1 or that X + 1/θ(α1) is the complement of X + α1. Using
formula (3) we obtain 1/θ(α1) = 1/α1 and θ(α1) = 1/α1. Therefore
α2

1 + 1 = (α1 + 1)2 = 0 and α1 = 1.

2. For m = 2. If h = (X + α1)(X + α2) is lclm-decomposable, then h is
divisible and therefore equal to to X2 + 1 = (X + 1)(X + 1). If h is
lclm-indecomposable, then combining proposition 3 and the previous
lemma we obtain that X + 1/θ(α1) is the complement of X + α1. Like
in the case m = 1 this implies that αm−1 = 1.

3. Suppose m > 2 and that the result holds for i < m. If X2 + 1 di-
vides h, then h = q(X2 + 1). Lemma 1 shows that h∗ℓh = (X2 +
1)q∗ℓq(X2 + 1). Therefore q∗ℓq = (X2 + 1)m−2 and we obtain the re-
sult for q by induction, which gives also the result for h = (X2 + 1)q.
Otherwise h = (X + α1) · · · (X + αm) is lclm-indecomposable (Lemma
3). Combining proposition 3 and the previous lemma we obtain that
X+θi−1(α1 · · ·αi−1)/θ

i(α1 · · ·αi) is the complement of X+αi. Dividing
(X2 + 1)m on the right by X + αm and on the left by its complement,
we obtain the result by induction for α1, . . . , αm−1. If m is even we
get α1 = . . . = αm−1 = 1 and the result follows. If m is odd we get
α1 = . . . = αm−2 = 1. Using α1α2 · · ·αm−2 = 1 we get from the above
formula that X + 1/θ(αm−1) is the complement of X + αm−1. Like in
the case m = 1 this implies that αm−1 = 1 and completes the proof.

This shows that for any integer s ≥ 1, from the 22s−1+1 − 1 θ-cyclic codes
over IF4 of length 2s, only 3 are self-dual and proves Conjecture 1 of [4] :
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Corollary 3 Consider IF4 = IF2(a), θ the Frobenius automorphism a 7→ a2,
s > 1 an integer and g ∈ IF4[X; θ] monic of degree 2s−1. The code (g)θ

2s is
self-dual if and only if,

g = (X + u)(X + 1)2s−1−1, u ∈ {1, a, a2}.

Proof: The code (g)θ
2s is self-dual if and only if g = h∗ℓ with h∗ℓh = X2s

−1.
According to the previous proposition applied with m = 2s−1, one gets
h = (X + 1)2s−1−1(X + u) with u ∈ {1, a, a2} so according to Lemma 1,
h∗ = Θ(1 + u2X)(X + 1)2s−1−1 and g = h∗ℓ = (X + u2)(X + 1)2s−1−1.

4 Construction of self-dual θ-codes with θ2 =

id

In [7] a characterization of the generator polynomials of (classical) self-dual
cyclic codes of length n over IF2m is given using the factorization of Xn −
1 in IF2m [X]. In [2], self-dual θ-cyclic codes over IF4 are constructed by
solving polynomial systems satisfied by the coefficients of their generator
polynomials. Since the polynomial system becomes increasingly difficult to
solve, we propose in this section a construction that allows to construct self-
dual codes from suitable smaller degree polynomials.

Proposition 5 Consider a finite field IFq of characteristic p, R = IFq[X; θ]
with θ2 = id and k = ps × t with s ∈ IN∗ and t an integer not multiple of
p. For h ∈ R of degree k the polynomial g = h∗ℓ generates a self-dual θ-code
over IFq of length n = 2k if and only if

1. Y t − ε = f1(Y )f2(Y ) · · · fm(Y ) ∈ (IFq)
θ[Y ] = Z(R) (ε = ±1 and

Y = X2), where fi(X
2) ∈ R are monic polynomials that are pairwise

coprime with the property that f ∗ℓ

i = fi.

2. h∗ℓ

i hi = fps

i

3. h = lcrm(h1, . . . , hm)

Proof:

11



1. (⇐): We have to prove that h∗ℓh = X2tps

− ε (Corollary 1). From
h = lcrm(h1, . . . , hm) we obtain that h = hiqi with qi ∈ R. Lemma 1
shows that h∗ℓ = q̃ih

∗ℓ

i where q̃i ∈ R. Therefore h∗ℓh = q̃i(h
∗ℓ

i hi)qi =
q̃i(fi)

ps

qi = q̃iqi(fi)
ps

(because (fi)
ps

∈ (IFq)
θ[X2] is central), showing

that lclm((f1)
ps

, . . . , (fm)ps

) is a right divisor of h∗ℓh in R. To prove
the claim it remains to show that

lclm((f1)
ps

, . . . , (fm)ps

) = (f1)
ps

· · · (fm)ps

= Xn − ε. (4)

Comparing degrees we obtain from relation (4) that h∗ℓh = Xn −
ε. In order to prove the first equality of relation (4) we first show
that the least common right multiple of polynomials in Z(R) ⊂ R
coincide when viewed as polynomials either in R or in the commutative
polynomial ring Z(R). Both R and Z(R) are euclidean rings and the
(left and right for R) euclidean division has a unique quotient and
unique remainder. Therefore a division in Z(R) is also a (left and right)
division in R. Since the lclm can be computed in both cases using the
extended euclidean algorithm ([5], Section 2), they coincide in both
rings. In the commutative ring Z(R) = (IFq)

θ[Y ] the first equality of
relation (4) is a consequence of Gauss Lemma and the claim follows.

2. (⇒): Corollary 1 shows that if g = h∗ℓ generates a self-dual θ-code

over IFq of length n = 2k, then h∗ℓh = Xn − ε = ((X2)t − ε)
ps

=

(Y t − ε)
ps

(where Y = X2). Since (Y t − ε)∗ℓ = Y t − ε, a decomposi-
tion Y t − ε = f1(Y )f2(Y ) · · · fm(Y ) ∈ (IFq)

θ[Y ] = Z(R) into pairwise
coprime fi(Y ) with f ∗ℓ

i = fi must exist in IFq[Y ]. We noted above that
the division in Z(R) and R coincide in Z(R), so that (fps

i )∗ℓ = fps

i are
pairwise coprime in Z(R) and R. According to ( [5], Theorem 4.1), we
have h∗ℓ = lclm(h1

∗ℓ , . . . , hm
∗ℓ) where hi

∗ℓ = gcrd(fps

i , h∗ℓ) are pairwise
coprime in R. In particular, according to [8], deg(lclm(hi

∗ℓ , hj
∗ℓ)) =

deg(hi
∗ℓ) + deg(hj

∗ℓ) for i 6= j and deg(h∗ℓ) = deg(lclm(hi
∗ℓ)) =

∑

deg(h∗ℓ

i ).

We now show that hi divides fps

i and h on the left :

• Let δi be the degree of fps

i and di be the degree of hi. Since
fi ∈ Z(R), δi is even. Applying Lemma 1 to fps

i = qih
∗
i we obtain

(fps

i )∗ = Θδi−di(h∗
i
∗)q∗i = Θδi−di(Θdi(hi))q

∗
i = Θδi(hi)q

∗
i = hiq

∗
i (δi

is even and θ2 = id). So hi divides on the left (fps

i )∗. As (fi)
ps

is
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central, it is equal to (fps

i )∗ times a constant, so hi divides on the
left (fps

i )∗ℓ = fps

i .

• Since h∗ℓ

i divides h∗ℓ on the right, we also have h∗ = pih
∗
i . Using

Lemma 1, we obtain Θk(h) = h∗∗ = Θk−di(h∗
i
∗)p∗i . Therefore

Θk(h) = Θk−di(Θdi(hi))p
∗
i = Θk(hi)p

∗
i . Since Θ is a morphism of

rings, hi divides h on the left.

Since h∗ℓ

i divides h∗ℓ on the right and hi divides h on the left, we
obtain h∗lh = g̃ih

∗l

i higi. Since two factors of a decomposition of the
central polynomial h∗lh = g̃ih

∗l

i higi into two factors commute, h∗l

i hi

divides h∗lh = Xn − ε on the right. According to Theorem 4.1 of
[5], h∗ℓ

i hi = lclm(gcrd(h∗ℓ

i hi, f
ps

j ), j = 1, . . . m). We now note that

both h∗ℓ

i and hi divide the central polynomial fps

i , so that the product
h∗ℓ

i hi divides (fps

i )2. For j 6= i we obtain gcrd(h∗ℓ

i hi, f
ps

j ) = 1 and

h∗ℓ

i hi = gcrd(h∗ℓ

i hi, f
ps

i ). In particular, h∗ℓ

i hi divides fps

i .

For i ∈ {1, . . . ,m} the polynomials fps

i are pairwise coprime, showing
that their divisors h∗ℓ

i hi are also pairwise coprime. Therefore

deg(lclm(h∗ℓ

i hi)) =
m

∑

i=0

deg(h∗ℓ

i hi) = 2
m

∑

i=0

deg(h∗ℓ

i )

= 2 deg(h∗ℓ) =
m

∑

i=0

deg(fps

i ).

From
∑m

i=0 deg(h∗ℓ

i hi) =
∑m

i=0 deg(fps

i ) and the fact that h∗ℓ

i hi divides

fps

i , we obtain hi
∗ℓhi = fps

i .

As hi divides h on the left, lcrm(hi, i = 1, . . . ,m) also divides h on
the left. Since gcrd(h∗ℓ

i , h∗ℓ

j ) = 1 implies gcld(hi, hj) = 1 we have
deg(lcrm(hi, i = 1, . . . ,m)) =

∑

deg(hi) = deg(h). Therefore h =
lcrm(hi, i = 1, . . . ,m).

Example 3 Let IF4 = IF2(a), θ the Frobenius automorphism a 7→ a2 and
R = IF4[X; θ]. In IF2[Y ] = Z(R) (where Y = X2), we have Y 39 − 1 =
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f1(Y )f2(Y )f3(Y )f4(Y ) where:

f1(Y ) = Y + 1

f2(Y ) = Y 2 + Y + 1

f3(Y ) = Y 12 + Y 11 + Y 10 + Y 9 + Y 8 + Y 7 + Y 6 + Y 5 + Y 4 + Y 3 + Y 2 + Y + 1

f4(Y ) = (Y 12 + Y 11 + Y 10 + Y 9 + Y 5 + Y 4 + Y 3 + Y 2 + 1)

(Y 12 + Y 11 + Y 10 + Y 9 + Y 8 + Y 7 + Y 6 + Y 5 + Y 4 + Y 3 + Y 2 + Y + 1)

The polynomials fi are pairwise coprime polynomials satisfying f ∗ℓ

i = fi

(i ∈ {1, . . . , 4}).
The skew polynomials

h1 = X + 1

h2 = X2 + X + 1

h3 = X12 + aX11 + X10 + X8 + aX6 + a2X4 + a2X2 + X + a2

h4 = X24 + a2X23 + X22 + a2X20 + X19 + a2X18 + X17 + aX15 + X13 + a2X12

+a2X11 + aX9 + a2X7 + a2X6 + a2X5 + a2X4 + aX2 + X + a

satisfy h∗ℓ

i hi = fi(= fi(X
2)) (i ∈ {1, 2, 3, 4}.

According to Proposition 5 for h = lcrm(h1, h2, h3, h4) the skew polyno-
mial g = h∗ℓ = lclm(h∗ℓ

1 , h∗ℓ

2 , h∗ℓ

3 , h∗ℓ

4 ) below

X39+a2X38+a2X37+X36+a2X34+aX33+aX32+a2X31+aX30+a2X29+a2X28+

aX27+a2X26+a2X25+X24+a2X22+X20+X19+a2X17+X15+a2X14+a2X13

+aX12+a2X11+a2X10+aX9+a2X8+aX7+aX6+a2X5+X3+a2X2+a2X+1

generates a [78, 39] self-dual code over IF4. Using the generator matrix of
the code (cf. [2, 3]) one can verify in Magma (cf. [1]) that its minimum
distance is equal to 19. Therefore g generates a [78, 39, 19]4 self-dual code.
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