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Abstract—This paper deals with the presentation of an ex-
perimental platform called PRONOSTIA, which enables testing,
verifying and validating methods related to bearing health
assessment, diagnostic and prognostic. The choice of bearings
is justified by the fact that most of failures of rotating machines
are related to these components. Therefore, bearings can be
considered as critical as their failure significantly decreases
availability and security of machines.
The main objective of PRONOSTIA is to provide real data related
to accelerated degradation of bearings performed under constant
and/or variable operating conditions, which are online controlled.
The operating conditions are characterized by two sensors:
a rotating speed sensor and a force sensor. In PRONOSTIA
platform, the bearing’s health monitoring is ensured by gathering
online two types of signals: temperature and vibration (horizontal
and vertical accelerometers). Furthermore, the data are recorded
with a specific sampling frequency which allows catching all the
frequency spectrum of the bearing during its whole degradation.
Finally, the monitoring data provided by the sensors can be used
for further processing in order to extract relevant features and
continuously assess the health condition of the bearing.
During the PHM conference, a “IEEE PHM 2012 Prognostic
Challenge” is organized. For this purpose, a web link to the
degradation data is provided to the competitors to allow them
testing and verifying their prognostic methods. The results of
each method can then be evaluated regarding its capability
to accurately estimate the remaining useful life of the tested
bearings.

Index Terms—Condition monitoring, Fault detection, Fault
diagnostic, Failure prognostic, Condition-Based Maintenance,
Predictive maintenance.

I. INTRODUCTION

To remain competitive, industrial companies must con-

tinuously keep their production means in good operating

conditions by improving their availability, reliability, secu-

rity while reducing their maintenance costs. One of possible

solutions which allows satisfying the above requirements is

the implementation of appropriate maintenance strategies. In

this domain the Condition-Based Maintenance (CBM) and

Predictive Maintenance (PM) are the most efficient ones

[1]–[3], because they allow optimizing the maintenance by

anticipating the failure’s occurrence. Indeed, contrary to a

traditional corrective maintenance, where the interventions are

done after the occurrence of the failure, in a CBM (or a

PM), the interventions are done according to the observed or

estimated health condition of the equipment.

Generally, a CBM system is seen as the integration of seven

layers [4]: sensors, signal processing, condition monitoring

(or fault detection), health assessment (or fault diagnostic),

prognostic, decision support and finally presentation layers.

Among these activities, failure prognostic is considered as

the most recent one, with an increasing research as well as

industrial interest. The increasing interest accorded to failure

prognostic has led to numerous methods, tools and applications

during the last decade. According to the reported literature,

failure prognostic methods can be classified into three main

approaches: model-based, data-driven and hybrid approaches

[1], [4], [5].

Model-based prognostic approach relies on the use of an

analytical model (set of algebraic or differential equations) to

represent the behavior of the system including its degradation.

The advantage of this approach is that it provides precise

results. However, its drawback dwells in the fact that real

systems are often nonlinear and the degradation mechanisms

are generally stochastic and difficult to obtain in the form of

analytical models.

Data-driven prognostic approach aims at transforming the

monitoring and operating data into relevant information and

behavior models of the system including its degradation. This

approach uses artificial intelligence tools and/or statistical

methods to learn the degradation model and to predict the

Remaining Useful Life (RUL) of the equipment. The data-

driven approach can be used in cases where getting monitoring

data and processing them is easier than constructing physical

and analytical behavior models.

Hybrid prognostic methods combine both model-based and

data-driven approaches and thus take benefit and drawback

from both of them.

In practice, tests and verifications of fault detection and

isolation (or fault diagnostic) methods are easy to perform,

because the faults can be easily simulated or introduced on

the real industrial system. However, this is not the case for

prognostic methods where the fault is generally a consequence

of a long and slow degradation of one or more components of

the system. Thus, to test these methods, it is necessary to create

(or initiate) the degradation through accelerated degradation

tests of physical components. For this purpose, researchers

have made their own experimental platforms, but only a few

number of these platforms are opened to external researchers

to provide them with real monitoring data [6].

This paper aims at presenting a new experimental platform,

called PRONOSTIA, related to bearings’ degradation tests.



This platform comes to complete the list of existing ones and

will be a source of experimental data acquired for constant

and/or variable operating conditions, enabling therefore the

verification of condition monitoring, fault detection, fault

diagnostic and prognostic approaches. In this sens, an IEEE

PHM 2012 Prognostic Challenge is organized during the 2012

IEEE PHM conference, which took place in Denver. Thus, in

addition to the presentation of PRONOSTIA, this paper gives

details on the organized PHM challenge (who and how to

participate, the related data, the requested results, etc.).

The paper is organized as follows: after the introduction,

section 2 gives a brief state of the art on the existing experi-

mental platforms reported in the literature, the PRONOSTIA

platform is presented in section 3, the acquired data and

some experimental results are given in section 4, the IEEE

PHM 2012 Prognostic Challenge is explained in section 5 and

finally, section 6 concludes the paper.

II. STATE OF THE ART ON EXPERIMENTAL PLATFORMS

In order to test and verify the prognostic methods developed

and published in the literature, dedicated test beds and plat-

forms have been designed and realized by several laboratories

over the world. Most of these experimental systems concern

specific physical components, such as bearings, gears, pumps,

etc. The following paragraphs summarize the experimental

platforms which are yet published. Note that not all of the

published test beds provide experiment data for external users,

but only some of them [6].

A. Overview of test beds

The following paragraphs present an overview of experi-

mental platforms reported in the literature and related to crit-

ical physical components such as gearboxes, pumps, pinions,

etc. The test beds related to bearings will be presented in the

subsection II-B.

A test bed related to a gearbox and a pinion gear has been used

in [7]. In this application, a spiral bevel pinion was seeded with

two electrical discharge machine (EDM) notches (heel and toe)

on the drive side of one of the pinion gear teeth to artificially

accelerate tooth root cracking. Several accelerometers were

then placed on the gearbox with a health and usage monitoring

system (HUMS) used to generate the vibration features.

In the case of machining tools, a milling data set experiments

related to milling machine for different speeds, feeds and depth

of cut can be found in [6]. In the same way, an experimental

platform has been developed by SIMTech of Singapore [8]

to provide data during the PHM challenge organized in 2010

by the PHM society. In [9] the authors used an experimental

setup related to drilling life tests to verify their method. The

tests were conducted on a MAHO 700S machine, which is

a computer numerical controlled (CNC) five axis machining

center, with movement in three perpendicular axes and a

rotary/tilt table. Finally, in [10] a method is proposed to

estimate the tool wear of a turning process over a wide range

of cutting conditions. The developments were validated thanks

to experiments conducted on a conventional lathe TUD-50.

Concerning the pumps, an experimental setup has been used

in [11] to evaluate the performance of a developed Hidden

Semi-Markov Model method for equipment health prognostic.

The experimental setup consisted in a real hydraulic pump.

During the experiments, long-term wear test experiments were

conducted at a research laboratory facility. Three pumps were

then worn by running them using oil containing dust.

Finally, data set experiments related to charging and discharg-

ing of Li-Ion batteries can be found in [6]. The records concern

the impedance as the damage criterion and the data set was

provided by the Prognostics Center of Excellence at NASA.

The same center proposed preliminary data from thermal over-

stress accelerated aging for six devices.

Note that this overview is obviously not exhaustive, but

enables to see that real systems are required to test and verify

PHM algorithms. Also, the variety of presented applications

reveals that most PHM tools are application-based. Thus,

further developments to face this aspect are still required.

Among the works of the PHM field, bearings failures analysis

benefits from a great interest and this is the point addressed

in the following of the paper.

B. Bearings test beds

Numerous prognostic methods proposed in the literature

were tested on the degradation of bearings. Thus, in [12] the

authors have used a test bed related to bearings’ degradations

to test and verify their fault detection and diagnostic method.

Similarly, a bearing test bed is proposed in [13] to detect

defects on the balls, the inner and outer raceways of bearings.

In this application, the defects were induced by means of

electrical discharge machine. In the same way, a diagnostic

method has been proposed in [14] were three accelerometers

were used to measure the vibration on the tested bearings.

The difference with the above applications is that in this one

a load is applied on the bearing to accelerate its degradation.

Also, in [15] a dedicated test bed has been used to perform

failure prognostic on bearings. The particularity of the used

application is that the bearings’ degradations were obtained

after several days (around 50 days) and thus the amount of data

to process was considerable. An experimental platform was

used in [16] to simultaneously degrade four bearings, whereas

in [17] a test bed for aerospace industry with special bearings

tested without lubrication was used. Finally, experimental data

related to bearings can be found in the NASA data repository

[6]. These data are provided by the Center for Intelligent

Maintenance Systems (IMS).

In the particular case of bearings test beds, and compared

to those proposed in the literature, the data provided by

the PRONOSTIA experimental platform are different in the

sense that they correspond to “normally”degraded bearings.

This means that the defects were not initially initiated on

the bearings and that each degraded bearing contains almost

all the types of defects (balls, rings and cage). The acquired

experimental data can then be used for fault detection, diag-

nostic and prognostic. Furthermore, even if the data presented

in this paper concern at this time only constant operating
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Fig. 1. Overview of PRONOSTIA.

conditions for each realized experiment, the current design of

PRONOSTIA allows us in the future to provide data related

to bearings degraded under variable operating conditions.

III. THE PRONOSTIA PLATFORM

PRONOSTIA is an experimentation platform (Fig. 1) ded-

icated to test and validate bearings fault detection, diagnostic

and prognostic approaches. The platform has been designed

and realized at AS2M1 department of FEMTO-ST2 institute.

The main objective of PRONOSTIA is to provide real exper-

imental data that characterize the degradation of ball bearings

along their whole operational life (until their total failure).

This experimental platform allows to conduct bearings’ degra-

dations in only few hours, and thus it is possible to get signif-

icant number of experiments within a week. PRONOSTIA is

composed of three main parts: a rotating part, a degradation

generation part (with a radial force applied on the tested

bearing) and a measurement part, which are detailed hereafter.

A. The rotating part

This part includes the asynchronous motor with a gearbox

and its two shafts. The first shaft is near to the motor and

the second shaft is placed at the ride side of the incremental

encoder.

The asynchronous motor is the actuator that allows the bearing

to rotate through a system of gearing and different couplings.

The motor has a power equal to 250 W and transmits the

rotating motion through a gearbox, which allows the motor

to reach its rated speed of 2830 rpm, so that it can deliver

its rated torque while maintaining the speed of the secondary

1Automatic control and Micro-Mechatronic Systems
2Franche-Comté Electronics, Mechanics, Thermal Processing, Optics -

Science and Technology

shaft to a speed less than 2000 rpm. The gearbox is home-

made and consists of two pulleys bound by a timing belt, itself

held by a turnbuckle. Compliant and rigid shaft couplings are

used to create connections for the transmission of the rotating

motion produced by the motor to the shaft support bearing.

The bearing support shaft (Fig. 2) leads the bearing through

its inner race. This one is kept fixed to the shaft with a

shoulder on the right hand and a threaded locking ring on

the left hand. The shaft which is made of one piece is held

by two pillow blocks and their large gearings. Two clampings

allow the longitudinal blocking of the shaft between the two

pillow blocks. The human machine interface of PRONOSTIA

allows the operator to set the speed, to select the direction of

the motor’s rotation and to display the monitoring parameters

such as the motor’s instantaneous temperature expressed in

percentage of the maximum temperature of use. The whole

driving chain of the motor includes the human interface

machine and a frequency converter, which are both connected

with a Profibus-DP link to an industrial programmable logic

controller.

Fig. 2. Shaft support bearing.



B. Generation of the radial force

This part has all its components, except the proportional

regulator, grouped in a unique and same aluminum plate and

is partially isolated from the instrumentation part by a thin

layer of polymer. The aluminum plate supports a pneumatic

jack (Fig. 3), a vertical axis and its lever arm, a force sensor, a

clamping ring of the test bearing, a support test bearing shaft,

two pillow blocks and their large oversized bearings.

The radial force applied on the test ball bearing constitutes

the heart of the global system. In fact, the radial force reduces

the bearing’s life duration by setting its value up to the

bearing’s maximum dynamic load which is 4000 N. This

load is generated by a force actuator, which consists in a

pneumatic jack, where the supply pressure is delivered by a

digital electro-pneumatic regulator.

Proportional
regulator

Pneumatic
jack

Fig. 3. The pneumatic jack, the pressure regulator and the radial force
generation.

The force issued from the pneumatic jack is indirectly

applied on the external ring of the test ball bearing. This force

is first amplified by a rotating lever arm, then transmitted to

the test bearing through its clamping ring (Fig. 3).

C. Measurements part

The Bearing’s operation conditions are determined by

instantaneous measures of the radial force applied on the

bearing, the rotation speed of the shaft handling the bearing

and of the torque inflicted to the bearing. Each of these three

analog measures is acquired at a frequency equal to 100 Hz.

The characterization of the bearing’s degradation is based

on two data types of sensors: vibration and temperature

(Fig. 4). The vibration sensors consists of two miniature

accelerometers positioned at 90◦ to each other; the first is

placed on the vertical axis and the second is placed on the

horizontal axis. The two accelerometers are placed radially

on the external race of the bearing. The temperature sensor is

an RTD (Resistance Temperature Detector) platinum PT100

(1/3 DIN class) probe, which is place inside a hole close to

the external bearing’s ring. The acceleration measures are

sampled at 25.6 kHz and the temperature ones are sampled

at 10 Hz.

Fig. 4. The accelerometers and temperature sensor.

The data acquisition system is based on a four slot chassis,

which includes three I/O modules. It aggregates the data

issued from the whole sensors and transmits them through

an USB 2.0 link to the central unit in charge of real time data

visualization and storage.

Finally, the visualization of the monitoring data is done by a

specific application implemented under Labview environment

and installed on a dedicated computer (Fig. 5).

Fig. 5. Data visualization and Human Interface Machine.

This application allows the operator to visualize raw signals

from different sensors. The acquired data are formatted, time

stamped and stored locally in the computer under different

files. The data can then be used for offline or online pro-

cessing in order to continuously assess the health condition

of the test bearing (fault detection, diagnostic and prognostic

applications). Figure 6 depicts an example of what one can

observe on the ball bearing components before and after an

experiment.

IV. EXPERIMENTAL RESULTS

A. Degradation patterns

Depending on various factors, the degradation may be

different for distinct bearings. Assuming that no other in-

formation is available about the other components than the

rotating system and that load and speed are constant, one has

to use only the data collected via the sensors located around

the bearings. Moreover, nothing is known about the nature

and the origin of the degradation (balls, inner or outer races,



Fig. 6. Normal and degraded bearing.

cage...) therefore data-driven techniques has to be applied.

According to the bearing and to the way the degradation

evolves, the fault modes can be slightly different for distinct

bearings. As a result, the degradation “patterns” may have

particular characteristics as illustrated in the following. In this

paper, we considered several experiments for which different

features (health index) were extracted. The choice of features

is typical of bearings diagnostics and prognostics [18]. Figure

7 shows a vibration raw signal taken from PRONOSTIA

during a whole experiment.
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Fig. 7. A vibration raw signal.

B. The ideal degradation

As a first example, consider an experiment where several

features (and health index) agree about the degradation and

where the patterns depicted are very typical. Figure 8 il-

lustrates the evolution of the power spectrum density (PSD)

computed on the horizontal accelerometer sensor. The evolu-

tion is mainly monotonic increasing and represents an ideal

case where a prediction model can be used with some easy

thresholds for RUL estimation. The K-factor computed on the

vertical accelerometer signal also depicts a slowly degradation

with almost no noise (Fig. 9).

Fig. 8. Power spectrum density (PSD) computed on the data of the horizontal
accelerometer.
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Fig. 9. K-factor computed on the data of the vertical and horizontal
accelerometers.

C. Sudden degradations

In some cases, the degradation appears suddenly and does

not depict a slow monotonic behavior. In this case, finding a

prediction model is much more difficult based on those typical

health index such as PSD (Fig. 10) or the K-factor (Fig. 11).

Therefore, other features have to be imagined.

D. Theoretical models mismatch

Applying prediction models based on life duration is not

relevant. Indeed, the degradation of bearings considered in

PRONOSTIA depict very different behaviors leading to very

different experiment duration (until the fault). Moreover, the

theoretical models based on frequency signatures to detect

bearings’ faults (such as the inner and outer races and the cage

faults) do not work with the data provided by PRONOSTIA.

This is because the frequency signatures are difficult to obtain

due to the fact that the degradation may concern at a same time



Fig. 10. Power spectrum density (PSD) computed on the data of the
horizontal accelerometer.
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Fig. 11. K-factor computed on the data of the vertical and horizontal
accelerometers.

all the components of the test bearing. Finally, the existing

reliability laws for bearings’ life duration, such as the L10, do

not give same results than those obtained by the experiments

(theoretical estimated life durations are different from those

given by the experiments).

E. Level of noise

The level of noise is not controlled and depends on the

degradation process. In figures 8 to 11 the level of noise

presented different values. There are some cases where this

level can be high, possibly explained by the interactions with

other parts of the rotating system. Figures 12 and 13 depict

the crest factor and the PSD for an experiment where the level

of noise is particularly high.

Figure 14 shows an example of a Wavelet Packet Decom-

position (WPD) performed on vibration data provided by an

accelerometer. A WPD is a time-frequency technique which
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Fig. 12. Crest factor computed on the data of the horizontal and vertical
accelerometers.

Fig. 13. Power spectrum density (PSD) computed on the data of the vertical
accelerometer.

permits to adjust the size of the temporal window according to

the analyzed frequencies. A WPD has two parameters: a scale

parameter a for the frequency and a translation parameter b for

the time [19]. By using a WPD, the original vibration signals

can be decomposed into several levels and the energy of each

level can be calculated.

V. IEEE PHM 2012 PROGNOSTIC CHALLENGE

A. Outline of the challenge

The IEEE Reliability Society and Femto-st Institute orga-

nize the IEEE PHM 2012 Prognostic Challenge. The challenge

is focused on prognostics of the remaining useful life (RUL) of

bearings, a critical problem since most of failures of rotating

machines are related to these components, strongly affecting

availability, security and cost effectiveness of mechanical or

power industries.
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Fig. 14. Wavelet Packet Decomposition (WPD) performed on the data of
the horizontal accelerometer.

Challenge datasets are provided by Femto-st Institute. Ex-

periments were carried out on the platform (PRONOSTIA)

presented in this paper. The challenge is open to all potential

conference attendees. Both Academic (from University) and

Professional teams (from Industry) are encouraged to enter.

The two top scoring participants from both categories will

be distinguished and invited to present their results at a

special session of the 2012 IEEE International Conference on

Prognostics and Health Management.

B. Aims of the challenge

As for the PHM challenge, 3 different loads were consid-

ered:

• First operating conditions: 1800 rpm and 4000 N;

• Second operating conditions: 1650 rpm and 4200 N;

• Third operating conditions: 1500 rpm and 5000 N.

Participants are provided with 6 run-to-failure datasets in order

to build their prognostics models, and are asked to estimate

accurately the RUL of 11 remaining bearings (see Table I).

Monitoring data of the 11 test bearings are truncated so that

participants are supposed to predict the remaining life, and

thereby perform RUL estimates. Also, no assumption on the

type of failure to be occurred is given.

The learning set is quite small while the spread of the

life duration of all bearings is very wide (from 1h to 7h).

Performing good estimates is thereby quite difficult and this

makes the challenge more exciting. Note also that, as stated

in IV-D, there is a mismatch between the experiments and the

theoretical framework (L10 law, BPFI, BPFE, etc.).

C. Scoring of the challenge

Participants are scored based on their RUL results that are

converted into percent errors of predictions. Let note R̂ULi

and ActRULi respectively the remaining useful life of the

bearing estimated by a participant, and the actual RUL to

TABLE I
DATASETS OF IEEE PHM 2012 PROGNOSTIC CHALLENGE

Data sets
Operating Conditions

Conditions 1 Conditions 2 Conditions 3

Learning set
Bearing1_1 Bearing2_1 Bearing3_1
Bearing1_2 Bearing2_2 Bearing3_2

Test set

Bearing1_3 Bearing2_3 Bearing3_3
Bearing1_4 Bearing2_4
Bearing1_5 Bearing2_5
Bearing1_6 Bearing2_6
Bearing1_7 Bearing2_7

be predicted (where i states for the test bearings defined in

Table I). The percent error on experiment i is defined by:

%Eri = 100×
ActRULi − R̂ULi

ActRULi
(1)

Underestimates and overestimates will not be considered in

the same manner: good performance of estimates relates to

early predictions of RUL (i.e. cases where %Eri > 0), with

deduction to early removal, and more severe deductions for

RUL estimates that exceed actual component RUL (i.e. cases

where %Eri < 0). The score of accuracy of a RUL estimates

for experiment i is thereby defined as follows:

Ai =

{

exp−ln(0.5).(Eri/5) if Eri ≤ 0
exp+ln(0.5).(Eri/20) if Eri > 0

(2)

Figure 15 depicts the evolution of this scoring function.
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Fig. 15. Scoring function of a RUL estimates according to its percent error

The final score of all RUL estimates will be defined as being

the mean of all experiment’s score:

Score =
1

11

11
∑

i=1

(Ai) (3)

More details on the objective of the challenge, the scoring of

results, the application form, and obviously on the provided

datasets, can be found on the home page of the challenge:

http://www.femto-st.fr/ieee-PHM2012-data-challenge.



VI. CONCLUSION

A new experimental platform, called PRONOSTIA, is pre-

sented in this paper. Its main purpose is to provide exper-

imental data related to bearings’ degradations. These data

can then be used to test and verify research methods in

the following fields: condition monitoring, fault detection,

diagnostic and prognostic. The particularity of this platform is

that the bearing’s degradation can be realized under constant as

well as variable operating conditions and the data are acquired

throughout the whole duration of each experiment.

Three sets of experimental data realized under three different

operating conditions are provided to researchers in order to test

their methods for the prediction of the remaining useful life

of the degraded bearings. These tests are organized in a form

of a challenge where the results of the proposed methods are

then assessed and compared. Moreover, the experimental data

remain stored in the indicated website to allow verifications

by researchers working in the PHM field over the world.

Finally, it can be noted that in the three sets of experimental

data provided for the organized challenge, each set contains

a given number of historical data realized in same operating

conditions. So, to be close to the real industrial applications,

further works concern online variations of operating conditions

within the same experiment.
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